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Abstract

We provide minimal universal denominators for linear difference
equations with fixed leading and trailing coefficients. In the case of
first order equations, they are factors of Abramov’s universal denom-
inators. While in the case of higher order equations, we show that
Abramov’s universal denominators are minimal.

Keywords : linear difference equation, universal denominator, Abramov’s uni-
versal denominator, minimal universal denominator.

1. Introduction

Finding rational solutions of linear difference equations with polynomial coef-
ficients plays an important role in computer algebra. Many problems reduce
to it, such as the generalization of Gosper’s algorithm [12] and the problem
of finding hypergeometric solutions of a non-homogenous difference equa-
tion [11].

∗Corresponding author
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Let K be a field of characteristic zero. We denote by K[n] and K(n)
the sets of polynomials in n and the rational functions of n, respectively.
Consider the linear difference equation

d
∑

i=0

pi(n+ i)y(n+ i) = p(n), (1.1)

where p0(n), . . . , pd(n), p(n) ∈ K[n] are given polynomials such that p0(n)
and pd(n) are non-zero. A polynomial g(n) ∈ K[n] is called a universal

denominator for (1.1) if for every rational solution y(n) ∈ K(n) to (1.1),
g(n)y(n) is a polynomial. Once a universal denominator is found, then it is
easy to find the rational solutions to (1.1) by finding polynomial solutions
using the techniques in [1, 7, 11].

Abramov firstly developed an algorithm to find a universal denominator
in [2,3]. The algorithm given there is quite complicated and relies on all the
coefficients p0(n), . . . , pd(n) and p(n). In [4] (see also [5, 6]) Abramov pre-
sented an improved version of his algorithm which requires only the leading
and tailing coefficients (p0(n) and pd(n)). The resulting universal denomina-
tors are usually called Abramov’s universal denominators. Barkatou [8] (see
also [15]) provided an explicit formula for Abramov’s universal denominators
in a generalized form. Chen, Paule and Saad [9] obtained the same formula
by convergence properties. Khmel’nov [10] presented a variant of van Hoeij’s
algorithm [14] for the scalar case which improves the Abramov’s bounds but
uses all coefficients.

In this article, we consider the possibility of the improvement of Abramov’s
algorithm. Suppose that we have an algorithm to compute a universal de-
nominator u(n) = u(n ∣ p0, pd) for (1.1) using p0(n) and pd(n). If for any
two polynomials p0(n), pd(n), there exist p1(n), . . . , pd−1(n) and p(n) such
that (1.1) has a rational solution whose denominator is u(n) (written in re-
duced form), then the algorithm is optimal. We call the corresponding u(n)
the minimal universal denominator. To get a universal denominator smaller
than u(n), we have to use more information.

For first order linear difference equations, we provide an improvement
of Abramov’s algorithm and prove that the resulting polynomials are the
minimal universal denominators. While in the case of higher order, we show
that Abramov’s universal denominators are already minimal.

2



2. First Order Linear Difference Equations

Throughout the paper, we use gcd(a(n), b(n)) to denote the monic greatest
common divisor of polynomials a(n), b(n) ∈ K[n]. If gcd(a(n), b(n)) = 1,
then we say that the rational function a(n)/b(n) ∈ K(n) is reduced.

Let ℕ be the set of nonnegative integers. For two polynomials a(n), b(n),
we call

Dis(a, b) = {ℎ ∈ ℕ ∣ gcd(a(n), b(n + ℎ)) ∕= 1}

the dispersion set. Observe that Dis(a, b) can be computed as the nonnega-
tive integer roots of the resultant polynomial R(ℎ) = Resultantn(a(n), b(n+
ℎ)).

In the case of first order linear difference equations, (1.1) becomes

p0(n)y(n) + p1(n+ 1)y(n+ 1) = p(n). (2.1)

2.1 Universal Denominator

The following lemma is the key observation to get the universal denominator.

Lemma 2.1 Suppose u0, v0, u1, v1 ∈ K[n] be polynomials such that gcd(u0, v0) =
gcd(u1, v1) = 1. Then

u0

v0
+

u1

v1
∈ K[n] =⇒ v0/v1 ∈ K.

Proof. Denote g = gcd(v0, v1). Then

u0

v0
+

u1

v1
=

u0v1/g + u1v0/g

v0v1/g
.

Since
gcd(u0v1/g + u1v0/g, v0/g) = gcd(u0v1/g, v0/g) = 1,

u0

v0
+ u1

v1
∈ K[n] implies that v0/g is a constant. Similarly, v1/g is also a

constant. The assertion follows immediately.

Now suppose f(n)/g(n) be a reduced rational solution to (2.1), where
f, g ∈ K[n]. Lemma 2.1 implies that when written in reduced forms, the
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denominators of p0(n)f(n)/g(n) and p1(n+1)f(n+1)/g(n+1) are the same
up to a scalar multiple. Therefore, we may assume that

p0(n)
f(n)

g(n)
=

r(n)

s(n)
, p1(n)

f(n)

g(n)
=

r′(n)

s(n− 1)
, (2.2)

where gcd(r(n), s(n)) = gcd(r′(n), s(n−1)) = 1. Note that s(n) is a factor of
g(n), we may further assume that g(n) = u(n)s(n) for a certain polynomial
u(n). We will see that upper bounds of u(n) and s(n) can be computed by
Gosper’s algorithm. For this, recall that in Gosper’s algorithm, we do the
following computation:

Let Dis(p1, p0) = {ℎ1, . . . , ℎN} (ℎ1 < ℎ2 < . . . < ℎN) be the dispersion

set of p1(n) and p0(n). Set p
(0)
0 = p0, p

(0)
1 = p1 and for 1 ≤ i ≤ N ,

si(n) = gcd(p
(i−1)
1 (n), p

(i−1)
0 (n+ ℎi)),

p
(i)
1 (n) = p

(i−1)
1 (n)/si(n), p

(i)
0 (n) = p

(i−1)
0 (n)/si(n− ℎi).

(2.3)

Finally, let

c(n) =
N
∏

i=1

ℎi
∏

j=1

si(n− j). (2.4)

Using these notations, we have

Lemma 2.2 The polynomials s(n) and u(n) are bounded by the following

divisibilities:

s(n− 1) ∣ c(n) and u(n) ∣ s1(n− ℎ1) ⋅ ⋅ ⋅ sN(ℎ− ℎN ).

Proof. By (2.2), we have

p1(n)

p0(n)
=

r′(n)

r(n)

s(n)

s(n− 1)
.

Since the Gosper-Petkovšek representation [11] of p1(n)/p0(n) is

p
(N)
1 (n)

p
(N)
0 (n)

c(n + 1)

c(n)
,

4



we derive from the maximality of c(n) that s(n−1) ∣ c(n) ( [13, Lemma 5.3.1]).

Since g(n) = u(n)s(n) and gcd(f, g) = 1, (2.2) implies that

u(n) ∣ p0(n) and u(n) ∣ p1(n)s(n− 1).

Therefore, u(n) ∣ gcd(p0(n), p1(n)c(n)). On the other hand, Proposition 5.3.1
of [13] states that for any 1 ≤ i ≤ N ,

gcd
(

p
(N)
0 (n), p

(i−1)
1 (n− ℎ)

)

= 1, ∀ℎ < ℎi.

Since si(n) is a factor of p
(i−1)
1 (n), we derive that

gcd

(

p
(N)
0 (n),

ℎi−1
∏

j=0

si(n− j)

)

= 1,

which implies that

gcd(p0(n), p1(n)c(n)) = s1(n− ℎ1) ⋅ ⋅ ⋅ sN(n− ℎN ).

This completes the proof.

Combining Lemma 2.1 and Lemma 2.2, we obtain

Theorem 2.3 Let y(n) = f(n)/g(n) be a solution to (2.1), where f, g ∈
K[n] and gcd(f, g) = 1. Then

g(n)

∣

∣

∣

∣

∣

N
∏

i=1

ℎi
∏

j=0

si(n− j) , (2.5)

where si(n)’s are defined by (2.3).

We see that Theorem 2.3 is noting but saying that
N
∏

i=1

ℎi
∏

j=0

si(n − j) is a

universal denominator for (2.1).

Remark. Let us recall Abramov’s algorithm. The universal denominator
u(n) is given by the following process.
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Let Dis(pd, p0) = {ℎ1, . . . , ℎN} (ℎ1 > ℎ2 > . . . > ℎN) be the dispersion

set of pd(n) and p0(n). Let p̃
(0)
0 = p0, p̃

(0)
d = pd and for 1 ≤ i ≤ N ,

s̃i(n) = gcd(p̃
(i−1)
d (n), p̃

(i−1)
0 (n+ ℎi)),

p̃
(i)
d (n) = p̃

(i−1)
d (n)/s̃i(n), p̃

(i)
0 (n) = p̃

(i−1)
0 (n)/s̃i(n− ℎi).

(2.6)

Finally,

ũ(n) =
N
∏

i=1

ℎi
∏

j=0

s̃i(n− j).

Note that the only difference between the two algorithms lies in the order of
ℎi’s. In (2.6), the loop starts from the largest ℎ in Dis(pd, p0), while in (2.3),
the loop starts from the smallest one. In the next subsection, we will show the
minimality of the universal denominators given by Theorem 2.3. Therefore,
they are factors of Abramov’s universal denominators. The following example
shows that the algorithm improve the Abramov’s algorithm, even the gcd-
improvement of Abramov’s algorithm given by Abramov and Barkatou [6].

Example 1 Suppose p1(n) = n+2, p0(n) = n(n+1). By the gcd-improvement

of Abramov’s algorithm, we obtain the universal denominator (n+2)(n+1)n.
While by (2.5), we get a smaller universal denominator (n + 2)(n+ 1).

2.2 Minimality

To prove that the universal denominator given by (2.5) is minimal, we need
the following lemmas to construct suitable solutions to (2.1).

Lemma 2.4 Let f, g ∈ K[n] be two polynomials which are relatively prime.

Then for any polynomials ℎ1, . . . , ℎr ∈ K[n], there exists an integer M such

that for all integers m > M ,

gcd(ℎi, f +mg) = 1, i = 1, 2, . . . , r.

Proof. Suppose that there exist m1 < m2 < ⋅ ⋅ ⋅ and i1, i2, . . . such that
gcd(ℎik , f + mkg) ∕= 1 for all k ≥ 1. Since {ℎ1, . . . , ℎr} is a finite set, there
is 1 ≤ j ≤ r such that ik = j holds for infinite many k. Note that the
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irreducible factor of ℎj is also finite, there exists an irreducible factor p of ℎj

such that p ∣ (f +mg) holds for infinitely many m, say, for ms and mt with
ms ∕= mt. Then p ∣ (ms −mt)g, and hence p ∣ gcd(f, g), which contradicts to
the hypothesis gcd(f, g) = 1.

Corollary 2.5 Let f, g ∈ K[n] be two polynomials. Then for any polynomial

c ∈ K[n], there exists an integer M such that for all integers m > M ,

gcd(c, f +mg) = gcd(c, f, g).

Proof. Let d = gcd(f, g) and f ′ = f/d, g′ = g/d. Then gcd(f ′, g′) = 1
and hence by Lemma 2.4, there exists M such that for all integers m > M ,
gcd(c, f ′ +mg′) = 1. Therefore,

gcd(c, f +mg) = gcd(c, d(f ′ +mg′)) = gcd(c, d) = gcd(c, f, g), ∀m > M.

This completes the proof.

This corollary enable us to prove inductively the following fact.

Lemma 2.6 Let a, b, c ∈ K[n] be polynomials such that

gcd(a, c) = gcd(b, c) = 1.

Then there exists a polynomial f ∈ K[n] such that

gcd(f(n), c(n)) = gcd(f(n), c(n− 1)) = 1,

and
a(n)f(n) + b(n)f(n + 1)

c(n)
∈ K[n].

Proof. We firstly prove that the assertion holds for c(n) of the form

c(n) = p(n)�0p(n+ 1)�1 ⋅ ⋅ ⋅ p(n+ r)�r , (2.7)

where p(n) is an irreducible polynomial and �0, �1, . . . , �r are positive inte-
gers.

Let


 = max{�0, . . . , �r} and q(n) =
(

p(n)p(n + 1) ⋅ ⋅ ⋅p(n+ r)
)

.
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Furthermore, for k = 0, . . . , r + 1, let

fk(n) = (−1)kq(n+ k − r − 2) ⋅ q(n+ k) ⋅

r+1−k
∏

i=1

a(n− i) ⋅

k−1
∏

i=0

b(n + i).

We claim that f =
r+1
∑

k=0

fk(n) is a polynomial required.

In fact, we have

a(n)f(n) + b(n)f(n + 1)

= a(n)f0(n) +

r+1
∑

k=1

(

a(n)fk(n) + b(n)fk−1(n+ 1)
)

+ b(n)fr+1(n+ 1)

= a(n)f0(n) + b(n)fr+1(n+ 1).

Noting that q(n) ∣ f0(n) and q(n) ∣ fr+1(n + 1), we immediately derive that

a(n)f(n) + b(n)f(n + 1)

c(n)
∈ K[n].

Since p(n) is irreducible, for any integer i,

gcd(p(n+ i), q(n+ i− r − 1)) = gcd(p(n+ i), q(n+ i+ 1)) = 1.

If p(n + i) ∣ a(n− j) for some 1 ≤ j ≤ r − i, then p(n + i+ j) ∣ a(n), which
contradicts to the hypothesis gcd(c(n), a(n)) = 1. If p(n+i) ∣ b(n+j) for some
0 ≤ j ≤ i, then p(n + i− j) ∣ b(n), which contradicts to gcd(c(n), b(n)) = 1.
Therefore,

gcd
(

p(n + i), fi+1(n)
)

= 1, ∀ − 1 ≤ i ≤ r.

Notice that for any −1 ≤ i ≤ r, we have p(n + i) ∣ fj(n) whenever j ∕= i+ 1
and 0 ≤ j ≤ r + 1. Therefore, we finally obtain that

gcd
(

p(n+ i), f(n)
)

= 1, ∀ − 1 ≤ i ≤ r,

which implies that

gcd(f(n), c(n)) = gcd(f(n), c(n− 1)) = 1.

Thus f(n) satisfies the conditions we required.
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Now we prove that the assertion holds for general c(n) by induction on
the degree of c(n). The assertion becomes trivial for c(n) of degree 0 by
taking f(n) = 1.

Suppose that c(n) is of degree greater than 0. If c(n) is of form (2.7), we
are done. Otherwise, there exist non-constant polynomials c1(n) and c2(n)
such that c(n) = c1(n)c2(n) and

gcd(c1(n + 1), c2(n)) = gcd(c1(n), c2(n)) = gcd(c1(n− 1), c2(n)) = 1.

Clearly, the degrees of c1(n) and c2(n) are less than that of c(n). By induc-
tion, there exists f1(n) and f2(n) such that

a(n)c2(n− 1) ⋅ f1(n) + b(n)c2(n + 1) ⋅ f1(n+ 1)

c1(n)
∈ K[n],

a(n)c1(n− 1) ⋅ f2(n) + b(n)c1(n + 1) ⋅ f2(n+ 1)

c2(n)
∈ K[n],

and that

gcd(f1(n), c1(n)c1(n− 1)) = gcd(f2(n), c2(n)c2(n− 1)) = 1.

For any integer m, set

f (m)(n) = c2(n)c2(n− 1)f1(n) +mc1(n)c1(n− 1)f2(n).

Then

a(n)f (m)(n) + b(n)f (m)(n+ 1)

c(n)

=
a(n)c2(n− 1)f1(n) + b(n)c2(n+ 1)f1(n+ 1)

c1(n)

+ m
a(n)c1(n− 1)f2(n) + b(n)c1(n+ 1)f2(n + 1)

c2(n)
∈ K[n].

By Corollary 2.5, for sufficient large m, we have

gcd(c(n)c(n− 1), f (m)(n))

= gcd
(

c(n)c(n− 1), c2(n)c2(n− 1)f1(n), c1(n)c1(n− 1)f2(n)
)

= gcd
(

c2(n)c2(n− 1) gcd(c1(n)c1(n− 1), f1(n)),

c1(n)c1(n− 1) gcd(c2(n)c2(n− 1), f2(n))
)

= gcd(c2(n)c2(n− 1), c1(n)c1(n− 1)) = 1.
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Therefore, f (m)(n) is the desired polynomial for sufficient large m, which
completes the proof.

Now we are ready to prove the minimality of the universal denominators.

Theorem 2.7 Let p0(n), p1(n) be two polynomials in n. Let si(n)’s and c(n)
be given by (2.3) and (2.4), respectively. Denote

g(n) = c(n)
N
∏

i=1

si(n) =
N
∏

i=1

ℎi
∏

j=0

si(n− j).

Then there exists a polynomial f(n) such that gcd(f(n), g(n)) = 1 and

p0(n)
f(n)

g(n)
+ p1(n+ 1)

f(n+ 1)

g(n+ 1)
∈ K[n].

Proof. By definition,

p0(n)

g(n)
=

p
(N)
0 (n)

c(n+ 1)
and

p1(n+ 1)

g(n+ 1)
=

p
(N)
1 (n+ 1)

c(n + 1)
.

Since
p
(N)
1 (n)

p
(N)
0 (n)

c(n+ 1)

c(n)

is the Gosper-Petkovšek representation of p1(n)/p0(n),

gcd(p
(N)
0 (n), c(n+ 1)) = gcd(p

(N)
1 (n+ 1), c(n+ 1)) = 1.

By Lemma 2.6, there exist a polynomial f(n) such that

p
(N)
0 (n)f(n) + p

(N)
1 (n + 1)f(n+ 1)

c(n + 1)
∈ K[n],

and
gcd

(

f(n), c(n+ 1)
)

= gcd
(

f(n), c(n)
)

= 1.

Since g(n) ∣ c(n)c(n+ 1), we have gcd(f(n), g(n)) = 1, as desired.
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Example 2 Suppose p1(n) = n + 2, p0(n) = n(n + 1) as in Example 1.

The universal denominator is u(n) = (n + 2)(n + 1). We notice that when

f(n) = n+ 3,

p0(n)
f(n)

u(n)
+ p1(n + 1)

f(n+ 1)

u(n+ 1)
= n + 2 ∈ K[n].

Therefore, (n+3)/(n+1)(n+2) is a reduced solution to the difference equation

p0(n)y(n) + p1(n+ 1)y(n+ 1) = n+ 2.

Noting further that (n+1)(n+2) is a universal denominator, we derive that

it is the minimal universal denominator.

2.3 Connection with Gosper’s Algorithm

Viewing Gosper’s algorithm as a special case of linear difference equations
of order one, we find that the universal denominator u(n) given by (2.5)
coincides with the denominator given by Gosper’s algorithm.

Recall that [13, Section 5.2] the kernel equation of Gosper’s algorithm is

r(n)y(n+ 1)− y(n) = 1. (2.8)

Write r(n) in reduced form r(n) = f(n)/g(n). The denominator c(n) of y(n)
is given by the following process.

Let Dis(f, g) = {ℎ1, . . . , ℎN} (ℎ1 < ℎ2 < . . . < ℎN ) be the dispersion set

of f(n) and g(n). Set p
(0)
0 = f , p

(0)
1 = g and for 1 ≤ i ≤ N ,

ci(n) = gcd(p
(i−1)
1 (n), p

(i−1)
0 (n+ ℎi)),

p
(i)
1 (n) = p

(i−1)
1 (n)/ci(n), p

(i)
0 (n) = p

(i−1)
0 (n)/ci(n− ℎi).

(2.9)

Finally, set

c(n) =

N
∏

i=1

ℎi
∏

j=1

ci(n− j).

On the other hand, written (2.8) in the form of (2.1), we have

p0(n) = g(n), p1(n) = f(n− 1), and p(n) = g(n).
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Since gcd(f, g) = 1, the smallest element ℎ1 in Dis(f, g) is greater than 1,
and hence

Dis(p1, p0) = {ℎ− 1 ∣ ℎ ∈ Dis(f, g)} = {ℎ1 − 1, ℎ2 − 1, . . . , ℎN − 1}.

Comparing (2.9) and (2.3), we derive that si(n) = ci(n−1) and hence u(n) =
c(n).

3. Higher Order Linear Difference Equations

The following Theorem shows that for linear difference of order greater than
one, u(n) given by Abramov’s algorithm is the minimal universal denomina-
tor.

Theorem 3.1 Let p0(n), pd(n) (d ≥ 2) be two polynomials and u(n) be given
by (2.6). Then there exist polynomials p1(n), . . . , pd−1(n) such that y(n) =
1/u(n) satisfies

p0(n)y(n) + p1(n + 1)y(n+ 1) + ⋅ ⋅ ⋅+ pd(n + d)y(n+ d) = 0.

Proof. Let p′(n) = −p
(N)
0 (n− 1)

∏N

i=1 si(n). Then

p0(n)y(n) + p′(n+ 1)y(n+ 1)

=
p
(N)
0 (n)

∏N

i=1

∏ℎi−1
j=0 si(n− j)

−
p
(N)
0 (n)

∏N

i=1 si(n+ 1)
∏N

i=1

∏ℎi

j=0 si(n+ 1− j)

= 0. (3.1)

Similarly, denoting p′′(n) = −p
(N)
d (n+ 1)

∏N

i=1 si(n− ℎi), we have

p′′(n+ d− 1)y(n+ d− 1) + pd(n+ d)y(n+ d) = 0. (3.2)

For d = 2, we may take p1(n) = p′(n) + p′′(n). For d > 2, we may take
p1(n) = p′(n), pd−1(n) = p′′(n) and pi(n) = 0 for 1 < i < d− 1.

Example 3 Suppose d = 2 and p0(n) = n(n + 1), p2(n) = n + 2. We have

s1(n) = n+ 2 and hence u(n) = (n+2)(n+1)n. Taking p1(n) = −n(n+3),
we have

p0(n)/u(n) + p1(n + 1)/u(n+ 1) + p2(n+ 2)/u(n+ 2) = 0.

Thus, u(n) is the minimal universal denominator.
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