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Abstract

Let G be an n-vertex graph, with eigenvalues λ1, λ2, . . . , λn . Then E(G) =
∑n

i=1 |λi| is
its energy and Mk(G) =

∑n
i=1(λi)k its k-th spectral moment. A sufficient condition that

the graph G be non-hypoenergetic (i. e., E(G) ≥ n) is
√

[M2(G)]3/M4(G) ≥ n . In a recent
paper [Majstorović, Klobučar, Gutman, MATCH Commun. Math. Comput. Chem. 62
(2009) 509–524] necessary and sufficient conditions for the validity of the latter inequality
were determined for triregular graphs. These results are incorrect. We now present correct
necessary and sufficient conditions for the validity of

√
[M2(G)]3/M4(G) ≥ n in the case of

triregular graphs.

1 Introduction

In this paper we are concerned with simple graphs. Let G be such a graph, let n

and m be the numbers of its vertices and edges, respectively, and let λ1, λ2, . . . , λn be

its eigenvalues [1, 2] (i. e., the eigenvalues of the adjacency matrix of G). Then the
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energy of G is [3, 4]

E = E(G) =
n∑

i=1

|λi| .

The problem of characterizing (molecular) graphs for which the condition E(G) >

n is obeyed seems to be first time considered by England and Ruedenberg [5]. These

authors, however, used a quantum–chemical language and way of reasoning, and the

true mathematical meaning of their paper needed to be “translated” into a standard

graph-theoretical terminology [6]. In the paper [6], and in three consecutive articles

[7–9], several classes of graphs (some of proper chemical relevance) were shown to

satisfy the condition E ≥ n . In an earlier work [10], the validity of this inequality

was confirmed also for regular graphs.

Graphs for which E < n are referred to as hypoenergetic [11–16]. Therefore we

may say that a graph for which E ≥ n is non-hypoenergetic. For a review of research

on non-hypoenergetic graphs see [17].

The k-th spectral moment of a graph G is defined as

Mk(G) =
n∑

i=1

(λi)
k .

As well know in spectral graph theory, for a graph G with n vertices, m edges, q

quadrangles, and vertex degrees d1, d2, . . . , dn ,

M2(G) = 2m (1)

and

M4(G) = 2
n∑

i=1

(di)
2 − 2m + 8q . (2)

Rada and Tineo [18] obtained the following lower bound for graph energy (see

also [19, 20]) :

E(G) ≥ M2(G)

√
M2(G)

M4(G)
.

Bearing in mind (1) and (2), we directly arrive at:

Theorem 1.1. Let G be a graph with n vertices and m edges, possessing q quadran-

gles, and let d1, d2, . . . , dn be its vertex degrees. If the condition

2m

√√√√√√
2m

2
n∑

i=1

(di)
2 − 2m + 8q

≥ n (3)



is obeyed, then G is non-hypoenergetic.

Let x , a , and b be integers, 1 ≤ x < a < b . A graph is said to be (x, a, b)-

triregular if the degrees of its vertices assume exactly three different values: x , a ,

and b .

In [9] the validity of the inequality (3) was investigated for triregular trees and

connected triregular unicyclic and bicyclic graphs. Unfortunately, the results obtained

there were incorrect. We now consider the very same problem and offer the flawless

results.

For a connected (x, a, b)-triregular graph with n vertices and m edges we have

nx + na + nb = n (4)

and

xnx + a na + b nb = 2m (5)

where nx is the number of vertices of degree x , na is the number of vertices of degree

a , and nb is the number of vertices of degree b . From inequalities (4) and (5) follows

na =
nx(x− b) + (bn− 2m)

b− a
; nb =

nx(a− x)− (an− 2m)

b− a
. (6)

For triregular graphs it must be nx ≥ 1 , na ≥ 1 , and nb ≥ 1 . Since na ≥ 1 holds

if and only if nx ≤ [b(n − 1) + a − 2m]/(b − x) , whereas nb ≥ 1 holds if and only if

nx ≥ [a(n− 1) + b− 2m]/(a− x) , we have

nx ≤ b(n− 1) + a− 2m

b− x
(7)

and

nx ≥ a(n− 1) + b− 2m

a− x
. (8)

By di we denote the degree of i-th vertex. Then

n∑
i=1

(di)
2 = x2 nx + a2 na + b2 nb

which combined with equalities (6) yields

n∑
i=1

(di)
2 = nx(a− x)(b− x) + 2m(a + b)− abn .



From this, inequality (3) becomes
√

4m3

nx(a− x)(b− x) + m(2a + 2b− 1)− abn + 4q
≥ n

implying

nx ≤ 4m3 + n2[abn− 4q −m(2a + 2b− 1)]

n2(a− x)(b− x)
. (9)

Theorem 1.2. Let G be connected (x, a, b)-triregular graph with n vertices and m

edges. Let nx be the number of vertices of degree x . Then inequality (3) holds if and

only if

nx ≤ 4m3 + n2[abn− 4q −m(2a + 2b− 1)]

n2(a− x)(b− x)
.

2 Triregular trees

Let T be a triregular n-vertex tree with vertex degrees 1, a , and b , 1 < a < b ≤ n−2 .

Then n ≥ 5 and the number of edges is m = n − 1 . Now, by applying Theorem 1.2

we obtain that inequality (3) holds if and only if

n1 ≤ (5 + ab− 2a− 2b)n3 + (2a + 2b− 13)n2 + 12n− 4

n2(a− 1)(b− 1)
. (10)

On the other hand, by applying inequality (8) we get

n1 ≥ (a− 2)(n− 1) + b

a− 1
. (11)

By combining (10) and (11), we obtain:

Theorem 2.1. Let T be an n-vertex (1, a, b)-triregular tree, 1 < a < b ≤ n− 2 . Let

n1 be the number of vertices of degree 1 . Then inequality (3) holds if and only if

a = 2 and

n1 ≤ n3 + (2b− 9)n2 + 12n− 4

n2(b− 1)
. (12)

Proof. When a = 2 , inequality (10) reduces to (12). So the sufficiency is obvious.

Conversely, if inequality (3) holds, then inequality (10) holds by Theorem 1.2.

From inequality (11), we get

(a− 2)(n− 1) + b

a− 1
≤ (5 + ab− 2a− 2b)n3 + (2a + 2b− 13)n2 + 12n− 4

n2(a− 1)(b− 1)



which is equivalent to

(a− 3)n3 + (b2 − b− ab− a + 11)n2 − 12n + 4 ≤ 0 . (13)

Denote by f(a) the left–hand side of (13). For a = 3 , it must be b ≥ 4 and then

f(3) = (b2− 4b + 8)n2− 12n + 4 ≥ 8n2− 12n + 4 > 0 , a contradiction. When a ≥ 4 ,

we have that n ≥ a + b and

f(a) ≥ n3 + [b2 − (a + 1)b + 11− a]n2 − 12n + 4 ≥ (11 + b)n2 − 12n + 4 > 0

a contradiction. Hence it cannot be a ≥ 3 , i. e. it must be a = 2 . This leads to

inequality (12).

Furthermore we can determine the interval for b in Theorem 2.1 as follows.

Theorem 2.2. Let T be an n-vertex (1, a, b)-triregular tree, 1 < a < b ≤ n− 2 . Let

n1 be the number of vertices of degree 1 . Then inequality (3) holds if and only if

n ≥ 8 , a = 2 ,

3 ≤ b ≤ 3

2
+

√
n− 27

4
+

12

n
− 4

n2

and

n1 ≤ n3 + (2b− 9)n2 + 12n− 4

n2(b− 1)
.

Proof. Clearly, the sufficiency follows from Theorem 2.1. Now we suppose that

inequality (3) holds. Then by Theorem 2.1 we have a = 2 and

n1 ≤ n3 + (2b− 9)n2 + 12n− 4

n2(b− 1)
.

From inequality (11) for a = 2 , we get n1 ≥ b . Therefore

b ≤ n3 + (2b− 9)n2 + 12n− 4

n2(b− 1)

which can be transformed into

n3 + (3b− 9− b2)n2 + 12n− 4 ≥ 0 . (14)

Denote f(b) = −n2b2 + 3n2b + n3 − 9n2 + 12n − 4 . Then f(b) is a quadratic

polynomial in the variable b and inequality (14) is equivalent to f(b) ≥ 0 . Since the



discriminant D = (3n2)2 − 4(−n2)(n3 − 9n2 + 12n− 4) = 4n5 − 27n4 + 48n− 16 > 0

and the two roots of f(b) = 0 are

b1,2 =
−3n2 ∓√4n5 − 27n4 + 48n− 16

−2n2
=

3

2
±

√
n− 27

4
+

12

n
− 4

n2

we see that f(b) ≥ 0 if and only if

3

2
−

√
n− 27

4
+

12

n
− 4

n2
≤ b ≤ 3

2
+

√
n− 27

4
+

12

n
− 4

n2
.

Bearing in mind the fact that b ≥ 3 , we have

3 ≤ b ≤ 3

2
+

√
n− 27

4
+

12

n
− 4

n2

which holds for n ≥ 8 . The proof is thus complete.

Let T be an n-vertex (1, 2, b)-triregular tree. Then by applying equality (6) we

have n2 = [n1(1− b) + (b− 2)n + 2]/(b− 2) , or equivalently, n1 = [(n− n2)(b− 2) +

2]/(b− 1) . Hence inequality (12) can be rewritten as

(n− n2)(b− 2) + 2

b− 1
≤ n3 + (2b− 9)n2 + 12n− 4

n2(b− 1)

which is equivalent to

n2 ≥ (b− 3)n3 + (11− 2b)n2 − 12n + 4

(b− 2)n2
. (15)

Similarly, by applying equality (6) we have nb = (n1 − 2)/(b− 2) and inequality (12)

can be rewritten as

(b− 2)nb + 2 ≤ n3 + (2b− 9)n2 + 12n− 4

n2(b− 1)

which is equivalent to

nb ≤ n3 − 7n2 + 12− 4

(b− 1)(b− 2)n2
. (16)

Hence we have the following:

Remark 2.3. Inequality (12) in Theorems 2.1 and 2.2 can be replaced by one of the

inequalities (15) and (16), where n2 and nb are the numbers of vertices of degree 2

and b , respectively.



From inequality (16) we see that when b is large nb should have small value so

that inequality (3) holds. By using inequality (15), we can prove the following:

Corollary 2.4. Let T be an n-vertex (1, 2, 3)-triregular tree. Let n2 be the number

of vertices of degree 2 . Then inequality (3) holds if and only if n2 ≥ 5 , n ≥ 8 , or

n2 = 4 , n = 8 or 10 .

Proof. By Theorem 2.2 and Remark 2.3, inequality (3) holds if and only if n ≥ 8

and inequality (15) holds. Now, inequality (15) becomes n2 ≥ (5n2− 12n+4)/n2 , or

equivalently,

(5− n2)n
2 − 12n + 4 ≤ 0 . (17)

Since n ≥ 8 , it is clear that (17) holds if and only if n2 ≥ 5 or n2 = 4 and 8 ≤ n ≤ 11 .

From equality (6) we have n3 = n1 − 2 . Hence when n2 = 4 , n is even and so n = 8

or 10 . The proof is thus complete.

3 Triregular unicyclic graphs

For an n-vertex unicyclic (x, a, b)-triregular graph, it must be x = 1 , m = n , n ≥ 4

and the number of quadrangles q is either 0 or 1 . Now, by applying Theorem 1.2 we

obtain that inequality (3) holds if and only if

n1 ≤ (5 + ab− 2a− 2b)n− 4q

(a− 1)(b− 1)
. (18)

On the other hand, by applying inequality (8) we get

n1 ≥ (a− 2)n + b− a

a− 1
. (19)

By combining (18) and (19), we obtain:

Theorem 3.1. Let G be an n-vertex unicyclic (1, a, b)-triregular graph, 1 < a < b ≤
n − 1 . Let n1 be the number of its vertices of degree 1 , and q the number of its

quadrangles, where q = 0 or 1 . Then inequality (3) holds if and only if a = 2 and

n1 ≤ n− 4q

b− 1
. (20)



Proof. Note first that when a = 2 , then inequality (18) reduces to (20). So the

sufficiency is obvious.

Conversely, if inequality (3) holds, then inequality (18) also holds. Combining

(18) and (19) we get

(a− 2)n + b− a

a− 1
≤ (5 + ab− 2a− 2b)n− 4q

(a− 1)(b− 1)

which is equivalent to

(a− 3)n ≤ −(b− a)(b− 1)− 4q .

Since −(b − a)(b − 1) − 4q < 0 , then (a − 3)n < 0 , which is satisfied only if a = 2 .

So we get a = 2 , implying inequality (20).

Furthermore we can determine the interval for b in Theorem 3.1 as follows.

Theorem 3.2. Let G be an n-vertex unicyclic (1, a, b)-triregular graph, 1 < a < b ≤
n − 1 . Let n1 be the number of its vertices of degree 1 , and q be the number of its

quadrangles, where q = 0 or 1 . Then inequality (3) holds if and only if a = 2 ,

3 ≤ b ≤ 3 +
√

4n + 1− 16q

2
and n1 ≤ n− 4q

b− 1
.

Proof. The sufficiency follows from Theorem 3.1.

In order to verify the necessity, we suppose that inequality (3) holds. Then by

Theorem 3.1, a = 2 and n1 ≤ (n − 4q)/(b − 1) . From inequality (19) for a = 2 , we

get n1 ≥ b− 2 . Therefore

b− 2 ≤ n− 4q

b− 1

which can be transformed into

b2 − 3b + 2 + 4q − n ≤ 0 . (21)

Denote f(b) = b2 − 3b + 2 + 4q − n . Then inequality (21) is equivalent to f(b) ≤ 0 .

For f(b) = 0 , the discriminant D = 4n + 1 − 16q > 0 for n ≥ 4 and the respective

roots are (3±√4n + 1− 16q)/2 . So f(b) ≤ 0 if and only if

3−√4n + 1− 16q

2
≤ b ≤ 3 +

√
4n + 1− 16q

2
.



Since b ≥ 3 , we finally get

3 ≤ b ≤ 3 +
√

4n + 1− 16q

2

which completes the proof.

Let G be an n-vertex unicyclic (1, 2, b)-triregular graph. Then by applying equality

(6) we have n2 = [n1(1 − b) + (b − 2)n]/(b − 2) , or equivalently, n1 = [(n − n2)(b −
2)]/(b− 1) . Hence inequality (20) can be rewritten as

(n− n2)(b− 2)

b− 1
≤ n− 4q

b− 1

which is equivalent to

n2 ≥ (b− 3)n + 4q

b− 2
. (22)

Similarly, by applying equality (6) we have nb = n1/(b − 2) and inequality (20) can

be rewritten as

(b− 2)nb ≤ n− 4q

b− 1

i. e.,

nb ≤ n− 4q

(b− 1)(b− 2)
. (23)

Hence we have the following:

Remark 3.3. Inequality (20) in Theorems 3.1 and 3.2 can be replaced by one of the

inequalities (22) and (23), where n2 and nb are the numbers of vertices of degree 2

and b , respectively.

When b = 3 , inequality (22) becomes n2 ≥ 4q . Hence by Theorem 3.2 and

Remark 3.3, we have:

Corollary 3.4. Let G be an n-vertex unicyclic (1, 2, 3)-triregular graph, n2 be the

number of its vertices of degree 2 , and q be the number of its quadrangles, where

q = 0 or 1 . Then inequality (3) holds if and only if n2 ≥ 4q .



4 Triregular Bicyclic graphs

For an n-vertex bicyclic (x, a, b)-triregular graph, it must have x = 1 , m = n + 1 ,

n ≥ 5 , and the number of quadrangles q is 0, 1, 2, or 3 . Now, by applying Theorem

1.2 we obtain that inequality (3) holds if and only if

n1 ≤ (5 + ab− 2a− 2b)n3 + (13− 2a− 2b− 4q)n2 + 12n + 4

n2(a− 1)(b− 1)
. (24)

On the other hand, by applying inequality (8) we get

n1 ≥ (a− 2)n + b− a− 2

a− 1
. (25)

By combining (24) and (25), we obtain:

Theorem 4.1. Let G be an n-vertex bicyclic (1, a, b)-triregular graph, 1 < a < b ≤
n − 1 . Let n1 be the number of its vertices of degree 1 , and q be the number of its

quadrangles, where q = 0, 1, 2 , or 3 . Then inequality (3) holds if and only if a = 2

and

n1 ≤ n3 + (9− 2b− 4q)n2 + 12n + 4

n2(b− 1)
(26)

or a = 3 , b = 4 , q = 0 , and

n1 ≤ 3n3 − n2 + 12n + 4

6n2
. (27)

Proof. Note first that for a = 2 , the inequality (24) reduces to (26). In addition, for

a = 3 , b = 4 , and q = 0 , the inequality (24) reduces to (27). So the sufficiency is

obvious.

Conversely, if inequality (3) holds, then inequality (24) also holds. Combining

(24) and (25) we get

(a− 2)n + b− a− 2

a− 1
≤ (5 + ab− 2a− 2b)n3 + (13− 2a− 2b− 4q)n2 + 12n + 4

n2(a− 1)(b− 1)

which is equivalent to

(a− 3)n3 + (b2 − b− ab + 3a− 11 + 4q)n2 − 12n− 4 ≤ 0 . (28)

Let f(a) = (a− 3)n3 + (b2− b− ab + 3a− 11 + 4q)n2− 12n− 4 . Then inequality (28)

is equivalent to f(a) ≤ 0 .



Case 1. a ≥ 4 . Then f(a) = (a−3)n3+(b2−(a+1)b+3a−11+4q)n2−12n−4 ≥
n3 + n2 − 12n− 4 > 0 , a contradiction.

Case 2. a = 3 . Then f(3) = (b2 − 4b − 2 + 4q)n2 − 12n − 4 = [(b − 2)2 − 6 +

4q]n2 − 12n− 4 .

When b ≥ 5 , then f(3) ≥ 3n2 − 12n− 4 > 0 , for n ≥ 5 , a contradiction.

When b = 4 , then f(3) = (−2 + 4q)n2 − 12n − 4 . If q = 0 , then f(3) =

−2n2− 12n− 4 ≤ 0 . If q = 1 , then f(3) = 2n2− 12n− 4 . Since a = 3 and n ≥ 7 , it

follows that f(3) > 0 , a contradiction. If q = 2 , then f(3) = 6n2 − 12n− 4 > 0 and,

obviously, if q = 3 , then also f(3) > 0 , a contradiction.

Hence we get a = 2 and consequently inequality (26) or a = 3 , b = 4 , q = 0 and

consequently inequality (27).

Theorem 4.2. Let G be an n-vertex bicyclic (1, a, b)-triregular graph, 1 < a < b ≤
n− 1 . Let n1, nb be the numbers of its vertices of degree 1 and b , respectively, and q

be the number of its quadrangles, where q = 0, 1, 2 or 3 . Then inequality (3) holds if

and only if

(i) a = 2 , 3 ≤ b ≤ 3

2
+

√
n +

29

4
− 4q +

12

n
+

4

n2
and

n1 ≤ n3 + (9− 2b− 4q)n2 + 12n + 4

n2(b− 1)
, or

(ii) a = 3 , b = 4 , q = 0 , nb = 1 , and n ≥ 9 , or

(iii) a = 3 , b = 4 , q = 0 , nb = 2 , and 9 ≤ n ≤ 12 .

Proof. Suppose that inequality (3) holds. Then by Theorem 4.1, we distinguish the

following two cases:

Case 1. a = 2 and n1 ≤ n3 + (9− 2b− 4q)n2 + 12n + 4

n2(b− 1)
.

From inequality (25) for a = 2 , we get n1 ≥ b− 4 . Therefore

b− 4 ≤ n3 + (9− 2b− 4q)n2 + 12n + 4

n2(b− 1)

which can be transformed into

n2b2 − 3n2b− n3 + (4q − 5)n2 − 12n− 4 ≤ 0 . (29)



Denote f(b) = n2b2−3n2b−n3+(4q−5)n2−12n−4 . Then inequality (29) is equivalent

to f(b) ≤ 0 . For f(b) = 0 , the discriminant D = 4n5 +(29−16q)n4 +48n3 +16n2 > 0

for n ≥ 5 and the respective roots are

3n2 ±
√

4n5 + (29− 16q)n4 + 48n3 + 16n2

2n2
.

Consequently, f(b) ≤ 0 holds if and only if

3

2
−

√
n +

29

4
− 4q +

12

n
+

4

n2
≤ b ≤ 3

2
+

√
n +

29

4
− 4q +

12

n
+

4

n2
.

Since b ≥ 3 , we finally get

3 ≤ b ≤ 3

2
+

√
n +

29

4
− 4q +

12

n
+

4

n2
.

Case 2. a = 3 , b = 4 , q = 0 , and n1 ≤ 3n3 − n2 + 12n + 4

6n2
.

For a = 3 , b = 4 , and q = 0 , it must be n ≥ 9 . From equality (6) for x = 1 ,

a = 3 , b = 4 , and m = n+1 , we obtain n4 = 2n1−n+2 , i. e., n1 = (n4 +n− 2)/2 .

Therefore

n1 ≤ 3n3 − n2 + 12n + 4

6n2

if and only if
n4 + n− 2

2
≤ n

2
− 1

6
+

2

n
+

2

3n2

if and only if

n4 ≤ 5

3
+

4

n
+

4

3n2

if and only if n ≥ 13 and n4 = 1 , or 9 ≤ n ≤ 12 , n4 ≤ 2 . The necessity is thus

complete.

Conversely, the sufficiency easily follows from Theorem 4.1.

Let G be an n-vertex bicyclic (1, 2, b)-triregular graph. Then by applying equality

(6) we obtain n2 = [n1(1− b) + (b− 2)n− 2]/(b− 2) , or, the same in another form,

n1 = [(n− n2)(b− 2)− 2]/(b− 1) . Hence (26) can be rewritten as

(n− n2)(b− 2)− 2

b− 1
≤ n3 + (9− 2b− 4q)n2 + 12n + 4

n2(b− 1)



which is equivalent to

n2 ≥ (b− 3)n3 + (2b + 4q − 11)n2 − 12n− 4

(b− 2)n2
. (30)

Similarly, by applying equality (6) we have nb = (n1 + 2)/(b− 2) and inequality (26)

can be rewritten as

(b− 2)nb − 2 ≤ n3 + (9− 2b− 4q)n2 + 12n + 4

n2(b− 1)

from which we readily obtain

nb ≤ n3 + (7− 4q)n2 + 12 + 4

(b− 1)(b− 2)n2
. (31)

Hence we have the following:

Remark 4.3. Inequality (26) in Theorems 4.1 and 4.2 can be replaced by one of the

inequalities (30) and (31), where n2 and nb are the numbers of vertices of degree 2

and b , respectively.

Corollary 4.4. Let G be an n-vertex bicyclic (1, 2, 3)-triregular graph, n2 be the

number of its vertices of degree 2 , and q be the number of its quadrangles, where

q = 0, 1, 2 , or 3 . Then the inequality (3) holds if and only if

(i) q = 0 , or

(ii) q = 1 , or

(iii) q = 2 and n2 ≥ 3 , or

(iv) q = 2 , n2 = 2 and n = 8, 10 , or 12 , or

(v) q = 3 and n2 ≥ 7 , or

(vi) q = 3 , n2 = 6 , and n = 10 or 12 .

Proof. By Theorem 4.2 and Remark 4.3, inequality (3) holds if and only if inequal-

ity (30) holds. Now, inequality (30) becomes n2 ≥ [(4q − 5)n2 − 12n − 4]/n2 , or

equivalently,

(n2 + 5− 4q)n2 + 12n + 4 ≥ 0 . (32)

It is clear that (32) is obeyed if and only if q = 0 , or q = 1 , or q = 2 and (n2−3)n2 +

12n + 4 ≥ 0 , or q = 3 and (n2 − 7)n2 + 12n + 4 ≥ 0 .



If q = 2 , then n ≥ 7 . So (n2− 3)n2 +12n+4 ≥ 0 if and only if n2 ≥ 3 , or n2 = 2

and 7 ≤ n ≤ 12 . From equality (6) we have n3 = n1 + 2 . Hence when n2 = 2 , then

n is even and therefore n = 8, 10 , or 12 .

If q = 3 , then n ≥ 6 . Since n3 = n1 + 2 , if n2 = 5 , then n ≥ 9; if n2 = 6 , then

n ≥ 10 . So (n2−7)n2 +12n+4 ≥ 0 if and only if n2 ≥ 7 , or n2 = 6 and 10 ≤ n ≤ 12 .

Similarly, when n2 = 6 , n is even and so n = 10 or 12 .

The proof is thus complete.

5 On the Error in the Paper [9]

In the paper [9], and later also in the review [17], the indequality (10) was obtained

for triregular trees. Then, in view of the evident relation n1 ≥ a + b − 2 , it was

concluded that

(5 + ab− 2a− 2b)n3 + (2a + 2b− 13)n2 + 12n− 4

n2(a− 1)(b− 1)
≥ a + b− 2 (33)

which is correct. Next, it was concluded that (33) is a necessary and sufficient condi-

tion for the validity of inequality (3), which is incorrect. Then all conclusions drawn

from the analysis of (33) were incorrect too.

Analogous errors were committed also in the cases of unicyclic and bicyclic graphs.
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