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Abstract

In this paper we study the distribution of stacks in k-noncrossing, τ -canonical RNA
pseudoknot structures (〈k, τ〉-structures). An RNA structure is called k-noncrossing
if it has no more than k − 1 mutually crossing arcs and τ -canonical if each arc is
contained in a stack of length at least τ . Based on the ordinary generating func-
tion of 〈k, τ〉-structures [4] we derive the bivariate generating function Tk,τ (x, u) =∑

n≥0

∑
0≤t≤n

2
Tk,τ (n, t) utxn, where Tk,τ (n, t) is the number of 〈k, τ〉-structures

having exactly t stacks and study its singularities. We show that for a certain
parametrization of the variable u, Tk,τ (x, u) has a unique, dominant singularity.
The particular shift of this singularity parametrized by u implies a central limit
theorem for the distribution of stack-numbers. Our results are of importance for
understanding the “language” of minimum-free energy RNA pseudoknot structures,
generated by computer folding algorithms.

Key words: k-noncrossing RNA structure, pseudoknot, generating function,
singularity analysis, central limit theorem

1 Introduction

In this paper we compute the bivariate generating function

Tk,τ (x, u) =
∑

n≥0

∑

0≤t≤n
2

Tk,τ (n, t) utxn, (1)
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where Tk,τ (n, t) is the number of k-noncrossing, τ -canonical structures having
exactly t stacks. Furthermore we prove the central limit theorem

lim
n→∞P


Xn

k,τ − µk,τn√
nσ2

k,τ

< x


 =

1√
2π

∫ x

−∞
e−

1
2
t2dt , (2)

where Xn
k,τ is a random variable with distribution

P(Xn,k,τ = t) = Tk,τ (n, t)/Tk,τ (n), (3)

see Fig. 1 and Tab. 1. Our results allow to compute the stack-numbers of a ran-
dom k-noncrossing, τ -canonical RNA structure. Since the latter are obtained
via the reflection principle, it is nontrivial and currently not known how to
construct such structures with uniform probability in polynomial time.

An RNA molecule is a sequence of the four nucleotides A, G, U and C together
with the Watson-Crick (A-U, G-C) and (U-G) base pairing rules. RNA
molecules form “helical” structures by pairing nucleotides and thereby low-
ering their minimum free energy (mfe). The biochemistry of these nucleotide-
pairings favors parallel stacking of bonds due to mesomerie effects. The re-
sulting 3-dimensional configuration of the nucleotides is the RNA tertiary
structure which determines the functionality of the molecule.

In this paper we study the distribution of stacks in k-noncrossing, τ -canonical
RNA structures. We represent RNA structures as diagrams and identify Watson-
Crick (A-U, G-C) and (U-G) base pairings with arcs drawn in the upper
halfplane, ignoring the bonds of the primary sequence. A diagram is a graph
over the vertex set [n] = {1, . . . , n} in which each vertex has degree less or
equal to one. It is represented by drawing the vertices in a horizontal line
and its arcs (i, j), where i < j, in the upper half-plane, see Fig. 2. The ver-
tices and arcs correspond to nucleotides and Watson-Crick (A-U, G-C) and
(U-G) base pairs, respectively. Diagrams have the three key parameters k, λ
and τ . Here k− 1 is the maximum number of mutually crossing arcs, λ is the
minimum arc-length and τ the minimum length of a stack. A λ-arc is an arc
(i, j), where j − i = λ and a stack of length τ is a sequence of “parallel” arcs:
((i, j), (i + 1, j − 1), . . . , (i + (τ − 1), j − (τ − 1))).

We call a k-noncrossing diagram with arc-length λ ≥ 4 and stack-length τ ≥ 3
a k-noncrossing, τ -canonical RNA structure (〈k, τ〉-structure). We denote the
number of 〈k, τ〉-structures and those with exactly t stacks by Tk,τ (n) and
Tk,τ (n, t), respectively. For k = 2 this recovers the well known RNA secondary
structures [7,13–15]. Of course, the interesting cases are k ≥ 3, where we allow
for crossings, i.e. the RNA pseudoknot structures. However, to the best of our
knowledge, our results are–even for RNA secondary structures new. In Fig. 3
we give two representations of a typical 〈3, 3〈 RNA pseudoknot structure.
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The results of this paper are relevant for the understanding of mfe RNA pseu-
doknot structures. Computer folding algorithms, like for instance, cross [6], or
the dynamic programming routine of Rivas and Eddy [11], can generate, at
least for n ≤ 120, mfe-pseudoknot structures reasonably fast. While it is well
known how to generate a random RNA secondary structure, the particular
construction hinges on the fact that the latter can be build inductively. Al-
though 〈k, τ〉-structures are D-finite non inductive recursion exists [8,9] and
it is at present time not known how to generate them with uniform probabil-
ity. Our findings are therefore of particular importance for understanding the
“language of RNA”, generated by ab initio folding algorithms.

2 Some basic facts

In the following, we shall identify RNA pseudoknot structures with k-non-
crossing diagrams with minimum arc-length ≥ 4 and stack-length τ ≥ 3. From
now on we will always assume that any structure has a minimum arc-length
greater than four. Let Tk,τ (n) (Tk,τ (n)) denote the set (number) of 〈k, τ〉-
structures over [n]. Furthermore, let Tk,τ (n, t) and Tk,τ (n, t) denote the set
(number) of 〈k, τ〉-structures having exactly t stacks. In addition, let Tk,τ (n, h)
and Tk,τ (n, h) denote the set (number) of 〈k, τ〉-structures having exactly h
arcs. The generating function,

Tk,τ (z) =
∑

n≥0

Tk,τ (n)zn k ≥ 2, τ ≥ 3

of 〈k, τ〉-structures has been obtained in [4]. The function is closely related
to Fk(z) =

∑
n fk(2n)z2n, the generating function of k-noncrossing matchings.

Beyond functional equations implied directly by the reflection-principle [5],
the following asymptotic formula [10] will be of importance

∀ k ∈ N; fk(2n) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))2n, ck > 0 . (4)

Tk,τ (x) is given as follows:

Theorem 2.1 Let k ≥ 2, τ ≥ 3, x be an indeterminate and ρk the dominant,
positive real singularity of Fk(z). Then Tk,τ (x) is given by

Tk,τ (x) =
1

v0(x)
Fk




√
w0(x) x

v0(x)


 , (5)

where w0(x) = x2τ−2

1−x2+x2τ and v0(x) = 1 − x + w0(x)x2 + w0(x)x3 + w0(x)x4.
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Furthermore,

Tk,τ (n) ∼ ck n−(k−1)2− k−1
2

(
1

γk,τ

)n

, for k = 2, 3, . . . , 9 (6)

holds, where γk,τ is the minimal positive real solution of the equation

√
w0(x) x

v0(x)
=

ρk.

In addition we shall make use of the following basic theorem on limit distri-
butions:

Theorem 2.2 (Lévy-Cramér) Let {ξn} be a sequence of random variables
and let {ϕn(x)} and {Fn(x)} be the corresponding sequences of character-
istic and distribution functions. If there exists a function ϕ(t), such that
limn→∞ ϕn(t) = ϕ(t) uniformly over an arbitrary finite interval enclosing the
origin, then there exists a random variable ξ with distribution function F (x)
such that

Fn(x) =⇒ F (x)

uniformly over any finite or infinite interval of continuity of F (x).

3 Combinatorics of stacks

The objective of this section is to compute the bivariate generating function

Tk,τ (x, u) =
∑

n≥0

∑

0≤t≤n
2

Tk,τ (n, t) utxn . (7)

For this purpose let us recall the concept of k-noncrossing cores developed
in [9]. A k-noncrossing core is a k-noncrossing diagram in which all stacks
have size one. We denote the set and the number of cores over [n] by Ck(n)
and Ck(n), respectively. Furthermore, let Ck(n, t) (Ck(n, t)) denote the set and
number of cores having exactly t stacks. We consider the arc-sets

β2 = {(i, i+2) | i+1 is isolated } and β3 = {(i, i+3) | i+1, i+2 are isolated }

and set β = β2 ∪ β3. Furthermore, let

C∗
k(n, t) = {ζ | ζ ∈ Ck(n, t); ζ contains no 1- or β-arc } (8)

T ∗
k,1(n, h) = {ζ | ζ ∈ Tk,1(n, h); ζ contains no 1- or β-arc } (9)

and we set C∗k(n, 0) = T∗k,1(n, 0) = 1 for 0 ≤ n. In our first theorem we shall
show that the number of all 〈k, τ〉-structures with exactly t stacks is a sum of
the number of C∗

k(n′, t)-diagrams with positive integer coefficients.
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Theorem 3.1 Suppose we have k, t, τ ∈ N, k ≥ 2, τ ≥ 3 and 1 ≤ t ≤ bn/2c.
Then

Tk,τ (n, t) =
bn/2c∑

h≥tτ

(
(1− τ)t + h− 1

t− 1

)
C∗k(n + 2t− 2h, t) (10)

C∗k(n, h) =
h−1∑

b=0

(−1)h−b−1

(
h− 1

b

)
T∗k,1(n− 2h + 2b + 2, b + 1)

for h ≥ 1.

(11)

Furthermore, T∗k,1(n, h) satisfies

T∗k,1(n, h) =
∑

0≤j1+j2+j3≤h

(−1)j1+j2+j3

λ(n, j1, j2, j3) fk(n− 2j1 − 3j2 − 4j3, n− 2h− j2 − 2j3)
(12)

where

λ(n, j1, j2, j3) =

(
n− j1 − 2j2 − 3j3

j1, j2, j3, n− 2j1 − 3j2 − 4j3

)
.

Proof. First, there exists a mapping from 〈k, τ〉-structures with t stacks into
C∗

k(n− 2(h− t), t):

c : Tk,τ (n, t) → ⋃̇

tτ≤h≤bn
2
c
C∗

k(n− 2(h− t), t), ζ 7→ c(ζ) (13)

The core diagram, c(ζ)[9], is obtained in two steps: first we map arcs and
isolated vertices as follows

∀` ≥ τ−1; ((i−`, j+`), . . . , (i, j)) 7→ (i, j) and j 7→ j if j is isolated. (14)

Second we relabel the vertices of the resulting diagram from left to right
in increasing order. That is we replace each stack by a single arc, keep iso-
lated vertices and then relabel, see Fig. 4. We next verify that c : Tk,τ (n, t) →⋃̇

tτ≤h≤bn
2
c C

∗
k(n−2(h−t), t) is well-defined and surjective. Taking into account

that each stack has its specific length gives rise to consider

fk,τ : Tk,τ (n, t) −→ ⋃̇

t τ≤h≤bn
2
c
(C∗

k(n + 2t− 2h, t)×

{(αi)1≤i≤t |
t∑

i=1

αi = h− t, αi ≥ τ − 1})
(15)

given by fk,τ (ζ) = (c(ζ), (αi)1≤i≤t). By construction fk,τ is well-defined and a
bijection: obviously we can reconstruct the original Tk,τ (n, t)-element from its
core and the sequence of its stack-multiplicities (labeling the stacks from left
to right). Computing the multiplicities of the resulting cores we derive

∣∣∣∣∣

{
(αi)1≤i≤t |

t∑

i=1

αi = h− t; αi ≥ τ − 1

}∣∣∣∣∣ =

(
(1− τ)t + h− 1

t− 1

)
. (16)
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We can therefore conclude

Tk,τ (n, t) =
bn/2c∑

h≥tτ

(
(1− τ)t + h− 1

t− 1

)
Ck

∗(n + 2t− 2h, t), (17)

whence eq. (10). Next we switch and consider arcs instead of stacks, using the
parameter h. Again, collapsing the stack induces the mapping

c∗ : T ∗
k,1(n, h) → ⋃̇

0≤b≤h−1
C∗

k(n− 2b, h− b) ζ 7→ c∗(ζ) (18)

Indeed, c∗ is well defined, since a T ∗
k (n, h)-diagram can be mapped into a

core structure without 1- and β- arcs, i.e. into an element of C∗
k(n′, h′). It

is straightforward to show that c∗ is surjective. Labeling the h − b stacks of
ζ ∈ T ∗

k,1(n, h) from left to right and keeping track of multiplicities gives rise
to the map

mk : T ∗
k,1(n, h) →

⋃̇

0≤b≤h−1

[
C∗

k(n− 2b, h− b)×
{

(ai)1≤i≤h−b |
h−b∑

i=1

ai = b, ai ≥ 0

}]

(19)

given by mk(ζ) = (c(ζ), (ai)1≤i≤h−b). The mapping mk is well-defined and a
bijection. Clearly,

∣∣∣∣∣

{
(ai)1≤i≤h−b |

h−b∑

i=1

ai = b; ai ≥ 0

}∣∣∣∣∣ =

(
h− 1

b

)
(20)

and eq. (19) and eq. (20) imply

T∗k,1(n, h) =
h−1∑

b=0

(
h− 1

b

)
C∗k(n− 2b, h− b). (21)

Via Möbius-inversion eq. (11) follows. It is straightforward to show that there
are

λ(n, j1, j2, j3) =

(
n− j1 − 2j2 − 3j3

j1, j2, j3, n− 2j1 − 3j2 − 4j3

)

ways to select j1 1-arcs, j2 β2-arcs and j3 β3-arcs over [n]. Since removing j1

1-arcs, j2 β2-arcs and j3 β3-arcs removes 2j1 + 3j2 + 4j3 vertices, the number
of configurations of at least j1 1-arcs, j2 β2-arcs and j3 β3-arcs is given by
λ(n, j1, j2, j3)fk(n − 2j1 − 3j2 − 4j3, n − 2h − j2 − 2j3). Via the inclusion-
exclusion principle, we arrive at

T∗k,1(n, h) =
∑

0≤j1+j2+j3≤h

(−1)j1+j2+j3

λ(n, j1, j2, j3) fk(n− 2j1 − 3j2 − 4j3, n− 2h− j2 − 2j3),
(22)
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whence Theorem 3.1. 2

Of course, Theorem 3.1 implies a functional relation for Tk,τ (x, u):

Lemma 3.2 Let k ≥ 2, τ ≥ 3 and let u, x be indeterminates. Then we have
the functional relation

∑

n≥0

∑

0≤t≤bn
2
c
Tk,τ (n, t)utxn =

∑

n≥0

∑

0≤t≤bn
2
c
C∗k(n, t)

(
ux2(τ−1)

1− x2

)t

xn (23)

and in particular, for u = 1

∑

n≥0

Tk,τ (n)xn =
∑

n≥0

∑

0≤t≤bn
2
c
C∗k(n, t)

(
x2(τ−1)

1− x2

)t

xn. (24)

Proof. We set

∑

1≤t≤bn
2
c


∑

n≥2

C∗k(n, t)xn


 ut =

∑

t≥1

ϕt(x)ut

and proceed by deducing a functional equation for
∑

n≥0 Tk,τ (n)xn via Theo-
rem 3.1. For this purpose we note that for t = 0 the Binomial coefficient

(
(1− τ)t + h− 1

t− 1

)

is zero, while the term Tk,τ (n, 0) = 1 for n ≥ 1. Clearly, Tk,τ (n, 0) = 1 counts
for each n ≥ 1 the structure consisting only of isolated vertices. We accordingly
have to extend the identity of Theorem 3.1

Tk,τ (n, t) =
bn/2c∑

h≥tτ

(
(1− τ)t + h− 1

t− 1

)
C∗k(n + 2t− 2h, t)

to the case t = 0, n ≥ 1 which gives rise to the term
∑

n≥1 xn = x
1−x

. Accord-
ingly, we derive

∑

n≥0

∑

0≤t≤bn
2
c
Tk,τ (n, t)utxn =

∑

n≥2

∑

1≤t≤bn
2
c

bn/2c∑

h≥tτ

C∗k(n + 2t− 2h, t) ×
(

(1− τ)t + h− 1

t− 1

)
utxn +

∑

n≥0

xn.

(25)
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We rewrite the right hand side of eq. (25)

=
∑

t≥1

bn/2c∑

h≥tτ

∑

n≥2t

C∗k(n + 2t− 2h, t)xn+2t−2h

(
(1− τ)t + h− 1

t− 1

)
utx2h−2t +

1

1− x

=
∑

t≥1

bn/2c∑

h≥tτ

ϕt(x)

(
(1− τ)t + h− 1

t− 1

)
utx2h−2t +

1

1− x
.

Rearranging the terms of the summation we obtain

=
∑

t≥1

bn/2c∑

h≥tτ

ϕt(x)

(
t− tτ + h− 1

h− tτ

)
x2h(

u

x2
)t +

1

1− x

=
bn/2c∑

h≥tτ

∑

t≥1

ϕt(x)

(
h− tτ + (t− 1)

h− tτ

)
(x2)h−tτ (ux2(τ−1))t +

1

1− x
.

Using
∑

n

(
n+k

n

)
xn = 1

(1−x)k+1 , we can transform the summation over h and
derive

∑

n≥0

∑

0≤t≤bn
2
c
Tk,τ (n, t)utxn =

∑

t≥1

ϕt(x)
(

1

1− x2

)t

(ux2(τ−1))t +
1

1− x

=
∑

n≥0

∑

0≤t≤bn
2
c
C∗k(n, t)

(
ux2(τ−1)

1− x2

)t

xn.

and the proof of Lemma 3.2 is complete. 2

We next consider a functional equation for
∑

n,h T∗k(n, h)uhxn proved in [9].

Lemma 3.3 Let k, τ ∈ N, k ≥ 2 and let u, x be indeterminates. Suppose we
have

∀h ≥ 1, Ak,τ (n, h) =
h−1∑

b=τ−1

(
b + (2− τ)(h− b)− 1

h− b− 1

)
Bk(n− 2b, h− b) and Ak,τ (n, 0) = 1 .

(26)

Then we have the functional relation

∑

n≥0

∑

0≤h≤n
2

Ak,τ (n, h)uhxn =
∑

n≥0

∑

0≤h≤n
2

Bk(n, h)

(
u · (ux2)τ−1

1− ux2

)h

xn . (27)

Combining Lemma 3.3 and T∗k,1(n, h) =
∑h−1

b=0

(
h−1

b

)
C∗k(n−2b, h− b) we arrive

at
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∑

n≥0

∑

0≤h≤n
2

T∗k,1(n, h)uhxn =
∑

n≥0

∑

0≤h≤n
2

C∗k(n, h)
(

u

1− ux2

)h

xn . (28)

We shall make use of an additional relation for
∑

n≥0

∑
0≤h≤n

2
T∗k,1(n, h)uhxn,

proved in [4]:

Lemma 3.4 Let k ∈ N, k ≥ 2, and x, w be indeterminates. Then we have the
functional relation

∑

n≥0

∑

h≤n
2

T∗k,1(n, h)whxn =
1

v(x)

∑

n≥0

fk(2n)

(√
wx

v(x)

)2n

, (29)

where v(x) = 1−x+wx2+wx3+wx4 and fk(2n) is the number of k-noncrossing
matchings over 2n vertices.

We are now in the position to present the main result of this section:

Theorem 3.5 Let k ≥ 2, τ ≥ 3 and suppose u, x are indeterminates. Then
we have the identity of formal power series

∑

n≥0

∑

0≤t≤n
2

Tk,τ (n, t)utxn =
1

v(x)

∑

n≥0

fk(2n)

(√
u0 x

v(x)

)2n

, (30)

where v(x) and u0 = u0(x, u) are given by

u0 =
ux2(τ−1)

ux2τ − x2 + 1
(31)

v(x) = 1− x + u0x
2 + u0x

3 + u0x
4. (32)

In particular, we can consider eq. (30) as a relation between analytic functions,
valid for u = es and |s| < ε for ε sufficiently small and |x| ≤ 1/2.

Proof. We interpret the bivariate generating function
∑

n≥0

∑

0≤h≤n
2

C∗k(n, h)yhxn

in two different ways: first, via Lemma 3.2 we have

∑

n≥0

∑

0≤t≤bn
2
c
Tk,τ (n, t)utxn =

∑

n≥0

∑

0≤t≤bn
2
c
C∗k(n, t)

(
ux2(τ−1)

1− x2

)t

xn (33)

and second according to eq. (28):

∑

n≥0

∑

0≤h≤n
2

T∗k,1(n, h)uh
0x

n =
∑

n≥0

∑

0≤h≤n
2

C∗k(n, h)
(

u0

1− u0x2

)h

xn (34)
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The key observation is the relation between the terms ux2(τ−1)

1−x2 and u0

1−u0x2 .
Using the Ansatz

ux2(τ−1)

1− x2
=

u0

1− u0x2
(35)

we obtain the unique solution u0 = ux2(τ−1)

1−x2+ux2τ . Accordingly, we conclude

∑

n≥0

∑

0≤t≤bn
2
c
Tk,τ (n, t)utxn =

∑

n≥0

∑

0≤t≤bn
2
c
C∗k(n, t)

(
ux2(τ−1)

1− x2

)t

xn

=
∑

n≥0

∑

0≤h≤n
2

T∗k,1(n, h)uh
0x

n

=
1

v(x)

∑

n≥0

fk(2n)

(√
u0 x

v(x)

)2n

,

where v(x) = 1 − x + u0x
2 + u0x

3 + u0x
4, and u0 = ux2(τ−1)

ux2τ−x2+1
. In order to

consider eq. (30) as a relation between analytic functions we need to satisfy
ux2τ − x2 + 1 6= 0. Suppose u = es, |s| < ε for ε sufficiently small. From
|x| ≤ 1/2 and the continuity (in s) of the roots of the family of polynomials

ωs(X) = esX2τ −X2 + 1, |s| < ε

we conclude ωs(x) 6= 0. Therefore eq. (30) holds for u = es, |s| < ε and
sufficiently small ε and |x| ≤ 1/2. 2

4 The central limit theorem

Suppose ε > 0, 2 ≤ k and u is parametrized as u = es, where |s| < ε. We set

ϕn,k,τ (s) =
∑

t≤n
2

Tk,τ (n, t)ets (36)

Uk(z, s) =
∑

n≥0

ϕn,k,τ (s)z
n. (37)

We will use Theorem 3.5, which relates the generating functions Uk(z, s) and
Fk(z) =

∑
n f(2n)z2n in order to study the singularities of Uk(z, s).

Theorem 4.1 Suppose ε > 0, 2 ≤ k ≤ 9, 3 ≤ τ ≤ 7 and u = es, where
|s| < ε. Then the following assertions hold:
(a) For sufficiently small ε, Uk(z, s) has the unique singularity, γk,τ (s), which
is analytic in s and the unique minimal real positive solution of

√
u0(s) z

1− z + u0(s)z2 + u0(s)z3 + u0(s)z4
− ρk = 0. (38)
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(b) The coefficients of Uk(z, s) are asymptotically given by

[zn]Uk(z, s) = A(s) (1−O(n−1)) n−((k−1)2+ k−1
2

)

(
1

γk,τ (s)

)n

, A(s) ∈ C, (39)

uniformly in s in a neighborhood of 0. In particular, the subexponential factors
of the coefficients of Uk(z, s) coincide with those of Fk(z) and are independent
of s.

Proof. According to Theorem 3.5 we have for |s| < ε

Uk(z, s) =
1

v(z, s)

∑

n≥0

fk(2n)




√
u0(s) z

v(z, s)




2n

(40)

where v(z, s) = 1− z +u0(s)z
2 +u0(s)z

3 +u0(s)z
4 and u0(s) = esz2(τ−1)

esz2τ−z2+1
. We

set

ψτ (z, s) =

√
u0(s) z

1− z + u0(s)z2 + u0(s)z3 + u0(s)z4
(41)

Wk(z, s) =
∑

n≥0

fk(2n)




√
u0(s) z

v(z, s)




2n

. (42)

Our first objective is to prove the existence of the unique singularity, γk,τ (s).
For this purpose we consider

F (z, s) = ψτ (z, s)− ρk. (43)

For s = 0 and 2 ≤ k ≤ 9, 3 ≤ τ ≤ 7 it is straightforward to verify that
a unique minimal real solution, ω, exists. We observe that for |s| < ε holds:
(i) F (ω, 0) = 0, (ii) Fz(ω, 0) 6= 0 and (iii) the partial derivatives Fz(z, s) and
Fs(z, s) are continuous. According to the analytic implicit function theorem
[3], there exists in a sufficiently small neighborhood of 0, a unique analytic
function γk,τ (s), that satisfies

∀ s; |s| < ε; F (γk,τ (s), s) = 0 and γk,τ (0) = ω.

Claim 1. For ε sufficiently small and |s| < ε, γk,τ (s) is a dominant singularity
of Uk(z, s).
Let ζ(s) be a dominant singularity of Uk(z, s). It is straightforward to prove
that ζ(0) is necessarily a singularity of Wk(z, 0). We proceed by applying
an continuity argument. For ε sufficiently small and |s| < ε the singularities
of v(z, s)−1 and γk,τ (s) are both continuous in s. Therefore we can conclude
from our observation for s = 0 that, for sufficiently small ε, all singularities of
v(z, s)−1 have modulus strictly larger than γk,τ (s). Accordingly, for sufficiently

11



small ε, γk,τ (s) is a dominant singularity of Uk(z, s) , whence Claim 1.
Claim 2. γk,τ (s) is unique.
Functional relations arising from the reflection principle [5] imply that the
generating function Fk(z) is D-finite [12]. Accordingly there exists some e ∈ N
for which Fk(z) satisfies an ODE of the form

q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + qe,k(z)Fk(z) = 0, (44)

where qj,k(z) are polynomials. Any dominant singularity of Fk(z) is contained
in the set of roots of q0,k(z) [12] and via direct computation we can verify that
γk,τ (0) is the unique solution with minimal modulus of

ψτ (z, 0) = |ρk|. (45)

The analytic implicit function theorem applied to eq. (43) now implies locally
the existence of an unique analytic function γk,τ (s) solving ψτ (z, s) = ρk. Using
continuity we conclude from the fact that γk,τ (0) is the unique solution with
minimal modulus of ψτ (z, 0) = |ρk|, that for ε sufficiently small, γk,τ (s) is the
unique solution with minimal modulus of ψτ (z, s) = |ρk|. This implies Claim
2 and (a) follows.
We finally prove (b). According to eq. (4) we have

fk(2n) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))2n

for some ck > 0 and

Fk(z) =





O((z − ρk)
(k−1)2+(k−1)/2−1 ln(z − ρk)) for k odd, z → ρk

O((z − ρk)
(k−1)2+(k−1)/2−1) for k even, z → ρk,

in accordance with basic structure theorems for singularities of solutions of
eq. (44) [3], p. 499. Let Qγk,τ (s)(z, s) denote the singular expansion of Uk(z, s)
at γk,τ (s). We have shown in Claim 1 that ψτ (z, s) does not induce any dom-
inant singularities and is regular at ρk. Let Qρk

(z) denote the singular expan-
sion of Fk(z) at the dominant singularity ρk, i.e. Fk(z) = O(Qρk

(z)) for z → ρk.
The singular expansion of the compositum, Fk(ψτ (z, s)), i.e. Qγk,τ (s)(z, s), is
derived by substituting the Taylor-expansion of ψτ (z, s) into Qρk

(z) and we
observe

Qγk,τ (s)(z, s) = Qρk
(ψτ (ζk(s), s)) = O(Qγk,τ (s)(z)) . (46)

Indeed, eq. (46) follows immediately substituting ψτ (z, s) − ψτ (γk,τ (s), s) for
z − ρk which does not change the singular expansion. Since ψτ (z, s) is contin-
uous in s the singular expansion is uniform with respect to the parameter s
and the uniformity lemma of singularity analysis [3] implies

[zn]Uk(z, s) = A(s) (1−O(1/n)) n−((k−1)2+(k−1)/2)

(
1

γk,τ (s)

)n

(47)
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for some A(s) ∈ C, uniformly in s in a neighborhood of 0. Therefore the
asymptotic expansion is uniform in s and eq. (39) follows. The proof shows in
addition that the subexponential factors of the coefficients of Uk(z, s) coincide
with those of Fk(z) and are independent of s. 2

We now consider the random variable Xn
k,σ having the distribution

P(Xn
k,τ = t) = Tk,τ (n, t)/Tk,τ (n) (48)

where t = 0, 1, . . . bn/2c. We shall show in the following theorem that the
distribution of Xn

k,τ is determined by the shift of the singularity parametrized
by s. In other words, Theorem 4.1 induces the below central limit theorem.
The proof-idea of Theorem 4.2 is due to Bender, where it appeared in slightly
different context [1]. It follows from analyzing the characteristic function, using
the Lévy-Cramér Theorem of Section 2.

Theorem 4.2 For any 2 ≤ k ≤ 9 and 3 ≤ τ ≤ 7 there exist a pair (µk,τ , σk,τ )
such that the normalized random variable

Y n
k,τ =

Xn
k,τ − µk,τ n√

nσk,τ
2

(49)

has asymptotically normal distribution with parameter (0, 1). That is we have

lim
n→∞P


Xn

k,τ − µk,τn√
nσ2

k,τ

< x


 =

1√
2π

∫ x

−∞
e−

1
2
c2dc , (50)

where µk,τ and σ2
k,τ are given by

µk,τ = −γ′k,τ (0)

γk,τ (0)
, σ2

k,τ =

(
γ′k,τ (0)

γk,τ (0)

)2

− γ′′k,τ (0)

γk,τ (0)
. (51)

Proof. Suppose we are given the random variable (r.v.) ξn with mean µn and
variance σ2

n. We consider the rescaled r.v. ηn = (ξn − µn)σ−1
n and the charac-

teristic function of ηn:

fηn(c) = E[eicηn ] = E[eic ξn
σn ]e−i µn

τn
c . (52)

Writing Xn instead of Xn
k,τ we derive for ξn = Xn, substituting for the term

E[eicηn ]

fXn(c) =




n/2∑

t=0

Tk,τ (n, t)

Tk,τ (n)
eic t

σn


 e−i µn

σn
c . (53)

In view of ϕn,k,τ (s) =
∑

t≤n/2 Tk,τ (n, t)ets we interpret

ϕn,k,τ (0) =
∑

t≤n/2

Tk,τ (n, t) and ϕn,k,τ ((ic)/(σn)) =
∑

t≤n/2

Tk,τ (n, t)et(ic)/(σn) .
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Writing ϕn instead of ϕn,k,τ , we accordingly obtain

fXn(c) =
1

ϕn(0)
ϕn

(
ic

σn

)
e−i µn

σn
c . (54)

Now we have to provide the interpretation of ϕn(0) and ϕn((ic)/(σn)). This is
facilitated via Theorem 4.1:

[zn]Uk(z, s) = K(s) θk(n)
(
γk,τ (s)

−1
)n

(1−O(1/n)) for some K(s) ∈ C,

(55)
uniformly in s and where θk(n) is some subexponential factor, independent of
s (we showed that the singular expansion remains invariant when substituting
ψτ (z, s) for z). Therefore

fXn(c) ∼ K( ic
σn

)

K(0)

[
γk,τ (

ic
σn

)

γk,τ (0)

]−n

e−i µn
σn

c, (56)

uniformly in c, where c is contained in an arbitrary bounded interval. Taking
the logarithm we obtain

ln fXn(c) ∼ ln
K( ic

σn
)

K(0)
− n ln

γk,τ (
ic
σn

)

γk,τ (0)
− i

µn

σn

c . (57)

Expanding g(s) = ln(γk,τ (s))/(γk,τ (0)) in its Taylor series at s = 0, (note that
g(0) = 0 holds) yields

ln
γk,τ (

ic
σn

)

γk,τ (0)
=

γ′k,τ (0)

γk,τ (0)

ic

σn

−

γ′′k,τ (0)

γk,τ (0)
−

(
γ′k,τ (0)

γk,τ (0)

)2

 c2

2σ2
n

+ O(
(

ic

σn

)3

) (58)

and ln fn(c) becomes asymptotically

ln
K( ic

σn
)

K(0)
− n





γ′k,τ (0)

γk,τ (0)

ic

σn

− 1

2


γ′′k,τ (0)

γk,τ (0)
−

(
γ′k,τ (0)

γk,τ (0)

)2

 c2

σ2
n

+ O(
(

ic

σn

)3

)





− iµnc

σn

.

(59)

Uk(z, s) is analytic in s where s is contained in a disc of radius ε around 0
and therefore in particular continuous in s for |s| < ε. In view of eq. (59) we
set

µ = −γ′k,τ (0)

γk,τ (0)
, σ2 =





(
γ′k,τ (0)

γk,τ (0)

)2

− γ′′k,τ (0)

γk,τ (0)





Setting µn = nµ and σ2
n = nσ2 we can conclude from eq. (55) for fixed

c ∈]−∞,∞[
lim

n→∞ (ln K((ic)/(σn))− ln K(0)) = 0 (60)
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and eq. (59) becomes

ln fXn(c) ∼ − c2/2 + O(((ic)/σn)3) (61)

with uniform error term for c from any bounded interval. This is equivalent
to limn→∞ fXn(c) = exp(−c2/2) uniformly in c. The Lévy-Cramér Theorem of
Section 2 implies now eq. (50) and the proof of Theorem 4.2 is complete. 2
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k = 2 k = 3 k = 4

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 3 0.090323 0.0189975 0.115473 0.0086760 0.123509 0.0076977

τ = 4 0.071677 0.0131316 0.086554 0.0055685 0.091737 0.0049917

τ = 5 0.059591 0.0098165 0.069467 0.0039688 0.073166 0.0035769

τ = 6 0.051092 0.0077233 0.058149 0.0026885 0.060964 0.0027313

τ = 7 0.044774 0.0062991 0.050083 0.0017584 0.052319 0.0021788

k = 5 k = 6 k = 7

µk,τ σ2
k,τ µk,τ σ2

k,τ µk,τ σ2
k,τ

τ = 3 0.128157 0.0070210 0.131353 0.0065187 0.133748 0.0061254

τ = 4 0.094768 0.0020037 0.119551 0.0080515 0.098461 0.0040797

τ = 5 0.075345 0.0033114 0.076864 0.0031162 0.078016 0.0029639

τ = 6 0.062629 0.0025364 0.063794 0.0023936 0.064680 0.0022823

τ = 7 0.053648 0.0020277 0.054580 0.0019171 0.055291 0.0018310

Table 1
The mean µk,τ and variance σ2

k,τ of the normal limit distributions of the random
variable Xn

k,τ , for different k and τ .
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Fig. 1. Central limit distributions for the stack-numbers in 3-noncrossing τ -canonical
RNA structures for n = 500: we display the limit distribution of Theorem 4.2 for
τ = 3 (black), τ = 4 (blue) and τ = 5 (red). We also display the exact enumeration
results obtained via Theorem 3.1, eq. (10) represented by ¦, • and ∗, respectively.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

() a ( )b

( )c

9 10 9 10

9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 2. k-noncrossing diagrams: we display the only two nonplanar 3-noncrossing
diagrams over 10 vertices (upper) and a 3-noncrossing, 3-canonical diagram with
arc-length λ ≥ 4 (lower).
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50

5’end

3’end

5’end 3’end

Fig. 3. A 3-noncrossing 3-canonical RNA pseudoknot structures over 56 nucleotides
drawn as a planar graph (upper) and as a 3-noncrossing diagram (lower).

1 2 43 5 6 7 8 9 10 11 12 1 2 3 5 6 8 9 11 1 2 3 4 5 6 7 8

Fig. 4. The mapping c: Tk,τ (n, t) → ⋃̇
tτ≤h≤bn

2
cC∗

k(n−2(h− t), t) is obtained in two
steps: first contraction of the stacks and second relabeling the resulting diagram.
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