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Abstract

Using the inclusion-exclusion principle, we derive a formula of generating functions

for P -partitions related to ordinal sums of posets. This formula simplifies computations

for many variations of plane partitions, such as plane partition polygons and plane

partitions with diagonals or double diagonals. We illustrate our method by several

examples, some of which are new variations of plane partitions.
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1 Introduction

A P -partition is an order-reversing map from a poset to non-negative integers [26, Ch. IV].
To be precise, let (P,≤P ) be a poset and N the set of non-negative integers. Then σ : P → N

is a P -partition related to P if for any two elements a, b ∈ P , a ≤P b implies that σ(a) ≥ σ(b).
The (multivariate) generating function for P -partitions related to a poset P = {a1, . . . , an}
is given by

fP (x) = fP (x1, x2, . . . , xn) :=
∑

σ

x
σ(a1)
1 x

σ(a2)
2 · · ·xσ(an)

n ,

where σ runs over all P -partitions related to P .

Stanley [26, Theorem 4.5.4] provided an elegant formula which expresses fP (x) in terms
of descent numbers. However, the formula is a summation over all linear extensions of P .
As we know, counting the number of linear extensions is #P -complete [16]. Therefore, we
need a more efficient way to compute fP (x).

On the other hand, P -partitions can be viewed as solutions of a system of linear Diophan-
tine inequalities. In the pioneering book “Combinatory Analysis” [24, Vol. II, pp. 91–170]
MacMahon introduced partition analysis as a computational method for solving general sys-
tems of linear Diophantine inequalities and equations. The technique was given a new life by
Andrews [1] in his study of lecture hall theorem introduced by Bousquet-Mélou and Eriks-
son [15]. Andrews, Paule and Riese published a series of papers [2–13] to exhibit its various
applications to combinatorial problems. Corteel, Savage et. al. [19, 20] presented the “five
guidelines” approach to lecture hall type theorems and linear inequalities as a simplifica-
tion of MacMahon’s partition analysis. By this method, Andrews, Corteel and Savage [14]
revealed stronger results about lecture hall partitions and anti-lecture hall compositions [17].
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The key ingredient of MacMahon’s partition analysis is the Omega operator Ω≥ which is
defined by

Ω
≥

∞
∑

s1=−∞

· · ·
∞
∑

sr=−∞

As1,...,sr
λs1

1 · · ·λsr

r :=
∞
∑

s1=0

· · ·
∞
∑

sr=0

As1,...,sr
.

For the evaluation of the Omega operator and further for the implements of partition analysis,
Andrews, Paule and Riese provided the Mathematica package Omega. Han [22] gave an
algorithm by using the coefficients of polynomials. Xin [27] combined the theory of iterated
Laurent series and partial fraction decompositions to obtain a fast algorithm. We will use
Xin’s updated Maple package Ell2 [28] for the examples in this paper.

MacMahon’s partition analysis provides us a powerful tool to compute fP (x) for general
posets. It is still interesting to find more efficient algorithms for special types of posets. For
example, Ekhad and Zeilberger [21] discussed the posets constructed by “grafting”.

Our main goal is to find an efficient method to compute fP (x) for posets composed of
several simple or small blocks by ordinal sums. The ordinal sum of two posets (P,≤P ) and
(Q,≤Q) is the poset P ⊕ Q defined on their disjoint union and partially ordered by x ≤ y
in P ⊕ Q if and only if (a) x, y ∈ P and x ≤P y or (b) x, y ∈ Q and x ≤Q y, or (c) x ∈ P
and y ∈ Q. Stanley [25] provided a formula of fP⊕Q(x) which involves a summation over
linear extensions of Q. We use the inclusion-exclusion principle to derive a new formula in
Section 2. This formula only involves the minimal elements of Q and is a summation over
subsets of these elements. Moreover, it enables us to handle posets composed of several
simple or small blocks by ordinal sums, especially P ⊕ P ⊕ · · · ⊕ P . We can deal with small
posets by MacMahon’s partition analysis and then use the formula iteratively to obtain the
final generating functions. This process simplifies the computation for many variations of
plane partitions, including plane partition polygons and plane partitions with diagonals or
double diagonals. We will illustrate the method by several examples in Sections 3 and 4.
Some of the examples are generalizations of known results and some are new variations of
plane partitions.

Let us introduce some representations of posets and P -partitions used in this paper. Let
(P,≤) be a poset. For x, y ∈ P , we say y covers x, denoted by x ⋖ y, if x < y and if
no element z ∈ P satisfies x < z < y. Clearly, P is determined by its cover relation set
R(P ) := {(x, y) : x ⋖ y} which is taken as one representation of P . Another representation
is the Hasse diagram of P . Every element of P is represented by a vertex and two vertices
x, y are joined by a line with vertex y drawn above vertex x if x ⋖ y. To coincide with
the descriptions used by Andrews, Paule and Riese [8], we rotate the Hasse diagram by 90
degree clockwise so that smaller elements lie to the left. For example, a diamond poset
P = {a1, a2, a3, a4} with R(P ) = {(a1, a2), (a1, a3), (a2, a4), (a3, a4)} can be represented by
Figure 1. A P -partition σ related to P = {a1, . . . , an} can be represented by the sequence
(σ(a1), . . . , σ(an)). For convenience, we will omit σ and use also ai to indicate the integer
σ(ai), which will cause no confusion from the context.

It should be noticed that we have also strict P -partitions σ : P → N which requires that
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a1 a4

a2

a3

Figure 1: The graph representation of a diamond poset.

σ(a) < σ(b) for any a covers b in P . The corresponding generating function is given by

gP (x) = gP (x1, x2, . . . , xn) :=
∑

σ

x
σ(a1)
1 x

σ(a2)
2 · · ·xσ(an)

n ,

where σ runs over all strict P -partitions related to P . When P is graded with the rank
function ρ, it is straightforward to show that

gP (x) = x
m−ρ(a1)
1 · · ·xm−ρ(an)

n fP (x),

where m is the rank of P , i.e., m = max
a∈P

ρ(a).

Generally, we have Stanley’s reciprocity theorem for P -partitions [26, Theorem 4.5.7]
which states that

x1x2 · · ·xn gP (x1, . . . , xn) = (−1)nfP

(

1

x1
, . . . ,

1

xn

)

.

Therefore, we will consider mainly the generating function fP (x) in this paper.

2 The Main Theorems and Corollaries

Before considering fP⊕Q(x) for arbitrary posets P and Q, we first look at the case in which
Q has a smallest element. To keep expressions as simple as possible, we denote the product
x1x2 · · ·xk by Xk. The following lemma can be viewed as an elementary ingredient in this
paper.

Lemma 2.1 Let P = {a1, a2, . . . , an} and Q = {b1, b2, . . . , bm} be two posets. If Q contains

a smallest element, say b1, then

fP⊕Q(x1, x2, . . . , xn, y1, y2, . . . , ym) = fP (x1, x2, . . . , xn)fQ(y1Xn, y2, . . . , ym). (2.1)

Proof. Let (a1, . . . , an) and (b1, . . . , bm) be the P -partitions related to P and Q, respectively.
Consider the sequence c = (a1 + b1, a2 + b1, . . . , an + b1, b1, . . . , bm). Since b1 is the smallest
element of Q, we have ai+b1 ≥ b1 ≥ bj for any 1 ≤ i ≤ n, 1 ≤ j ≤ m. Thus c is a P -partition
related to P ⊕ Q. Conversely, given a P -partition (a1, . . . , an, b1, . . . , bm) related to P ⊕ Q,
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from the definition of P ⊕ Q, we immediately derive that (a1 − b1, a2 − b1, . . . , an − b1) and
(b1, . . . , bm) are P -partitions related to P and Q, respectively. Hence,

fP⊕Q(x1, . . . , xn, y1, . . . , ym) =
∑

xa1−b1
1 · · ·xan−b1

n (Xny1)
b1yb2

2 · · · ybm

m

= fP (x1, . . . , xn)fQ(y1Xn, y2, . . . , ym),

which completes the proof.

Lemma 2.1 can also be proved by using partition analysis or Stanley’s formula on P -
partitions. Its special case in which Q contains only one element will be frequently used:

fP⊕{b}(x1, x2, . . . , xn, y1) =
fP (x1, . . . , xn)

1 − Xny1

. (2.2)

Denote the ordinal sum of P with itself k times by k×P . By iterative use of Lemma 2.1,
we obtain

Theorem 2.2 Let P = {a1, a2, . . . , an} be a poset with the smallest element a1. Then for

any positive integer k we have

fk×P (x1, x2, . . . , xkn) =

k−1
∏

i=0

fP (Xin+1, xin+2, . . . , x(i+1)n). (2.3)

In many cases, we are interested in the specialization xi = q of fk×P (x). Noting that
the first variable of fP (x) plays a different role, we need to compute the specialization
fP (x, q, q, . . . , q) instead of fP (q, . . . , q). One will see this trick in the examples.

To set up the formula of fP⊕Q(x) for general poset Q = {b1, . . . , bm}, we introduce the
notation Q[j1,...,jl] which denotes the ordinal sum of the 1-element poset {b0} and the sub-
poset (a subset inheriting the order relations) Q \ {bj1 , . . . , bjl

} of Q. With this notation, we
have

Theorem 2.3 Let P = {a1, a2, . . . , an} and Q = {b1, b2, . . . , bm} be two posets. Suppose

that the minimal elements of Q are b1, . . . , br. Then we have

fP⊕Q(x1, . . . , xn, y1, . . . , ym) = fP (x1, . . . , xn)hQ(Xn, y1, . . . , ym) (2.4)

with

hQ(y0, y1, . . . , ym)

=

r
∑

l=1

(−1)l−1
∑

1≤j1<···<jl≤r

fQ[j1,...,jl]
(y0yj1 · · · yjl

, y1, . . . , ŷj1, . . . , ŷjl
, . . . , ym),

where ŷk means suppressing the variable yk.
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Proof. We divide the set S of all P -partitions (a1, . . . , an, b1, . . . , bm) related to P ⊕ Q into
several groups according to (b1, . . . , br). In fact, denote by S[j1,...,jl] the set

{

(a1, . . . , an, b1, . . . , bm) ∈ S : bj1 = bj2 = · · · = bjl
= max{b1, . . . , bm}

}

.

It follows that S[j1,...,jl] = S[j1] ∩ · · · ∩ S[jl] and S = S[1] ∪ S[2] ∪ · · · ∪ S[r]. Observe that there
is a natural bijection between S[j1,...,jl] and P -partitions related to P ⊕ Q[j1,...,jl]:

(a1, . . . , an, b1, . . . , bm) 7→ (a1, . . . , an, max{b1, . . . , bm}, b1, . . . , b̂j1, . . . , b̂jl
, . . . , bm).

Now applying the inclusion-exclusion principle, we derive that

fP⊕Q(x1, . . . , xn, y1, . . . , ym)

=
r
∑

l=1

(−1)l−1
∑

1≤j1<···<jl≤r

∑

(a1,...,an,b1,...,bm)∈S[j1,...,jl]

xa1
1 · · ·xan

n yb1
1 · · · ybm

m

=

r
∑

l=1

(−1)l−1
∑

1≤j1<···<jl≤r

fP⊕Q[j1,...,jl]
(x1, . . . , xn, yj1 · · · yjl

, y1, . . . , ŷj1, . . . , ŷjl
, . . . , ym).

Since Q[j1,...,jl] are posets with the smallest element b0, applying Lemma 2.1 to each summand,
we arrive at (2.4).

As a direct consequence, we have

Corollary 2.4 Let P = {a1, a2, . . . , an} be a poset with minimal elements a1, . . . , ar. Then

for k ≥ 1,

fk×P (x1, . . . , xkn) = fP (x1, . . . , xn) ×

k−1
∏

i=1

hP (Xin, xin+1, xin+2, . . . , x(i+1)n),

with

hP (y0, y1, . . . , yn) =
r
∑

l=1

(−1)l−1
∑

1≤j1<···<jl≤r

fP[j1,...,jl]
(y0yj1yj2 · · · yyl

, y1, . . . ,

ŷj1, . . . , ŷjl
, . . . , yn).

By Corollary 2.4, in order to compute fk×P (x), we need only compute fP (x) and hP (y0, y1, . . . , yn),
which can be handled by partition analysis or other methods.

3 Applications to Posets with a Smallest Element

In this section, we exhibit some applications of Lemma 2.1 and Theorem 2.2 which focus on
posets with a smallest element. We begin with an introductory example, i.e., hexagonal plane
partitions with diagonals. Then we deal with plane partition fans which are generalizations
of plane partition diamonds. Finally, we introduce solid partition hexahedrons and compute
their generating functions.
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3.1 An Introductory Example

A hexagonal plane partition with diagonals of length k, first studied by Andrews, Paule and
Riese in [11], is a P -partition related to the poset Hk given by Figure 2.

a7

a3

a2

a10a8

a6

a4

a5 a5ka5k−2

a5k−4a11

a9

a1 a5k+1

a5k−1a5k−3

· · ·

Figure 2: The poset Hk for hexagonal plane partitions with diagonals.

Notice that the poset Hk is isomorphic to (k × H) ⊕ {a} with H being the poset given
by Figure 3.

a3

a2 a4

a5

a1

Figure 3: The basic block for the poset Hk.

With the help of the Maple package Ell2, we find that

fH(x1, . . . , x5) =
(1 − X1X3)(1 − X3X5)

(1 − X3/x2)(1 − X5/x4)

5
∏

i=1

1

(1 − Xi)
.

Since H has a smallest element a1, applying Theorem 2.2, we obtain

fk×H(x1, . . . , x5k) =

5k
∏

i=1

1

1 − Xi

k−1
∏

i=0

(1 − X5i+1X5i+3)(1 − X5i+3X5i+5)

(1 − X5i+3/x5i+2)(1 − X5i+5/x5i+4)
.

By Equation (2.2), we finally derive that

fHk
(x1, . . . , x5k+1) =

fk×P (x1, . . . , x5k)

1 − X5k+1

=

5k+1
∏

i=1

1

1 − Xi

k−1
∏

i=0

(1 − X5i+1X5i+3)(1 − X5i+3X5i+5)

(1 − X5i+3/x5i+2)(1 − X5i+5/x5i+4)
,

which coincides with [11, Theorem 4].

Especially, when xi = q for 1 ≤ i ≤ 5k + 1, we get

fHk
(q, . . . , q) =

(−q2; q5)k(−q4; q5)k

(q; q)5k+1

.
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Here and in the follows we use the standard notation (a; q)n = (1−a)(1−aq) · · · (1−aqn−1).
Since the poset Hk is graded, we have

gHk
(q, . . . , q) = q(15k2+3k)/2 (−q2; q5)k(−q4; q5)k

(q; q)5k+1

.

Using the same approach, one can easily recover the generating functions for plane par-
tition diamonds [8], hexagonal plane partitions [11], and plane partition polygons [18].

3.2 Plane Partition Fans

We now generalize plane partition diamonds to plane partition fans (of width s and length
k), which are P -partitions related to the poset F s

k given by Figure 4. Notice that the plane

a1

a2

...

an

an+1

· · ·

akn−n+1

a2n

an+2

akn

n = s + 1

...
...

a2n+1 akn−n+1

akn+1

Figure 4: The poset F s
k for plane partition fans of width s and length k.

partition fans reduce to plane partition diamonds when s = 2.

Clearly, the poset F s
k is isomorphic to (k×CLs)⊕{a}, where CLs is the poset {a1, · · · , as+1}

with the cover relation set

R(CLs) = {(a1, aj) : 2 ≤ j ≤ s + 1}.

We are interested in the specialization xi = q of the generating function fF s
k
(x). From the

words after Theorem 2.2, we need a reasonable formula of fCLs(x, q, . . . , q). In fact, by the
definition of P -partitions, we have

fCLs(x1, q, . . . , q) =
∑

a1≥0

xa1
1

∑

a1≥a2≥0

qa2
∑

a1≥a3≥0

qa3 · · ·
∑

a1≥as+1≥0

qas+1

=
∑

a1≥0

xa1
1

1 − qa1+1

1 − q
· · ·

1 − qa1+1

1 − q

=
1

(1 − q)s

∑

a1≥0

xa1
1

s
∑

i=0

(−1)i

(

s

i

)

q(a1+1)i

=
1

(1 − q)s

s
∑

i=0

(−1)i

(

s

i

)

qi

1 − x1qi
.

Thus, Theorem 2.2 together with Equation (2.2) leads to
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Theorem 3.1 For integers k ≥ 1 and s ≥ 1, we have

fF s
k
(q, . . . , q) =

1

(1 − q)ks(1 − q(s+1)k+1)

k−1
∏

j=0

(

s
∑

i=0

(−1)i
(

s
i

)

qi

1 − q(s+1)j+i+1

)

. (3.1)

The explicit formulaes of fF s
k
(q, . . . , q) for s = 2, 3, 4 are

fF 2
k
(q, . . . , q) =

∏k−1
i=0 (1 + q3i+2)

(q; q)3k+1
,

fF 3
k
(q, . . . , q) =

∏k−1
i=0 (1 + 2q4i+2(1 + q) + q8i+5)

(q; q)4k+1
,

fF 4
k
(q, . . . , q) =

∏k−1
i=0 (1 + (q5i+2 + q10i+5)(3 + 5q + 3q2) + q15i+9)

(q; q)5k+1
.

3.3 Solid Partition Hexahedrons

MacMahon [23] considered 3-dimensional generalization of plane partition diamonds, whose
basic poset is the Boolean poset of order 3 described by Figure 5. Similar to plane partition

a1

a5a2

a3

a4 a7

a8

a6

Figure 5: The Boolean poset B3.

diamonds, we glue B3 along their extremal elements to obtain a poset Sk represented by
Figure 6. We call the P -partitions related to Sk the solid partition hexahedrons (of length
k).

a1

a5a2

a3

a4 a7

a6

a8

a12a9

a10

a11

a15

a13

· · ·

a7k−6

a7k−2a7k−5

a7k−4

a7k−3 a7k

a7k+1

a7k−1

a14

Figure 6: The poset Sk for solid partition hexahedrons.

Let B′
3 = {a1, . . . , a7} be the poset obtained from B3 by removing the largest element

a8. Then Sk is isomorphic to (k ×B′
3)⊕ {a}. To compute fSk

(q, . . . , q), we first use Ell2 to
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find out

fB′

3
(x,q, . . . , q) =

H(x, q)

(x; q)7
,

where

H(x, q) = 1 + (2q + 2q2 + 3q3 + 2q4 + 2q5)x + (q3 + 3q4 + 4q5 + 8q6 + 4q7 + 3q8 + q9)x2

+ (2q7 + 2q8 + 3q9 + 2q10 + 2q11)x3 + q12x4.

Then by Theorem 2.2 and Equation (2.2) we obtain

fSk
(q, . . . , q) =

∏k−1
i=0 H(q7i+1, q)

(q; q)7k+1
.

Along this line, we can deal with higher dimensional partitions. D. Zeilberger asked
to enumerate the P -partitions related to the four dimension cube (through personal com-
munication), whose basic poset is the Boolean poset of order 4 depicted by Figure 7. Let

a1

a2

a3

a4

a5

a16

a12

a13

a14

a15

a6

a7

a8

a9

a10

a11

Figure 7: The Boolean poset B4.

B′
4 = {a1, . . . , a15} be the poset obtained from B4 by removing the largest element a16. With

the help of Ell2, we find that

fB′

4
(x, q, . . . , q) =

h(x, q)

(x; q)15
,

where h(x, q) is a polynomial of degree 11 in x. This leads to

f(k×B′

4)⊕{b}(x, q, . . . , q) =

∏k−1
i=0 h(xq15k, q)

(x; q)15k+1
.

When k = 1 and x = q, the above formula simplifies to

fB4(q, . . . , q) =
(1 + q8)N(q)

(q; q)16

,
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where N(q) is given by the following explicit formula:

1 + 3q2 + 5q3 + 9q4 + 15q5 + 28q6 + 45q7 + 85q8 + 124q9 + 208q10 + 287q11 + 415q12 + 571q13

+ 789q14 + 1060q15 + 1428q16 + 1872q17 + 2442q18 + 3129q19 + 3978q20 + 4944q21 + 6106q22

+7361q23+8840q24+10383q25+12176q26+14076q27+16166q28+18321q29+20596q30+22792q31

+ 25027q32 + 27036q33 + 28988q34 + 30554q35 + 31982q36 + 33010q37 + 33804q38 + 34223q39

+ 34434q40 + 34223q41 + 33804q42 + 33010q43 + 31982q44 + 30554q45 + 28988q46 + 27036q47

+ 25027q48 + 22792q49 + 20596q50 + 18321q51 + 16166q52 + 14076q53 + 12176q54 + 10383q55

+ 8840q56 + 7361q57 + 6106q58 + 4944q59 + 3978q60 + 3129q61 + 2442q62 + 1872q63 + 1428q64

+1060q65 +789q66 +571q67 +415q68 +287q69 +208q70 +124q71 +85q72 +45q73 +28q74 +15q75

+ 9q76 + 5q77 + 3q78 + q80.

4 Applications to General Posets

In this section, we show the applications of Theorem 2.3 and Corollary 2.4 by two examples.
In the first example, we provide a simple solution for plane partitions with double diagonals.
Furthermore, we generalize them to complete plane partitions. In the second one, we recover
the generating functions for plane partitions with diagonals, studied by Andrews, Paule and
Riese [10].

4.1 Complete Plane Partitions

In [20], Davis, Souza, Lee and Savage introduced plane partitions with double diagonals
whose corresponding poset is given by Figure 8. They used the “digraph method” to derive
a recurrence relation on the generating functions and then proved the formulaes. We will
see that Theorem 2.3 enables us to find out the generating functions directly.

a1 a2k

a3 a5 a2k−1

a2k−2a2 a4

a7

a6 a2k−4

a2k−3

· · ·

Figure 8: The poset for plane partitions with double diagonals.

Let Ai denote the anti-chain poset with i elements, i.e., an i-element poset with the
empty cover relation set. Then the plane partitions with double diagonals are exactly the
P -partitions related to the poset K2 = A1 ⊕ ((k − 1)×A2)⊕A1, whose generating function
is given by the following theorem.
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Theorem 4.1 For any integer k > 1, we have

fK2(x1, . . . , x2k) =
2k
∏

i=1

1

1 − Xi

k−2
∏

j=0

1 − X2j+1X2j+3

1 − X2j+3/x2j+2

.

Especially,

fK2(q, . . . , q) =
(−q2; q2)k−1

(q; q)2k
.

Proof. Let Q = A2. Then Q[1] and Q[2] are both isomorphic to the poset {a1, a2} with
partial order a1 ≤ a2. While Q[1,2] is isomorphic to A1. Thus, fQ[1,2]

(x0) = 1/(1 − x0),
fQ[1]

(x0, x2) = 1/(1 − x0)(1 − x0x2) and fQ[2]
(x0, x1) = 1/(1 − x0)(1 − x0x1), so that

hQ(y0, y1, y2) = fQ[1]
(y0y1, y2) + fQ[2]

(y0y2, y1) − fQ[1,2]
(y0y1y2)

=
1 − y2

0y1y2

(1 − y0y1)(1 − y0y2)(1 − y0y1y2)
.

By iterative use of Theorem 2.3, we derive that

fK2(x) =
1

1 − x1
·

(

k−2
∏

i=0

hQ(X2i+1, x2i+2, x2i+3)

)

·
1

1 − X2k

=

2k
∏

i=1

1

1 − Xi

k−2
∏

k=0

1 − X2k+1X2k+3

1 − X2k+3/x2k+2
,

as desired.

Notice that Theorem 4.1 is the case n = 1 of Theorem 6 in [12], which provides the
generating functions for k-elongated partition diamonds of length n.

For K3 = A1 ⊕ ((k − 1) × A3) ⊕ A1, one can prove in a similar way the following result.

Theorem 4.2 For any integer k > 1, we have

fK3(x1, . . . , x3k−1)

=
3k−1
∏

i=1

1

1 − Xi

k−2
∏

j=0

hj(x)

(1 − x3j+3X3j+1)(1 − x3j+4X3j+1)(1 − X3j+4/x3j+2)(1 − X3j+4/x3j+3)
,

where

hj(x) = 1 + 2(1 + x3j+2)(1 + x3j+3)(1 + x3j+4)X
2
3j+1X3j+4 + X3

3j+1X
3
3j+4

−

(

x3j+2 + x3j+3 + x3j+4 +
1

x3j+2
+

1

x3j+3
+

1

x3j+4
+ 3

)

(1 + X3j+1X3j+4)X3j+1X3j+4.
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More generally, for a sequence s = (s1, s2, . . . , sk) of positive integers, we define the
complete plane partitions of type s to be the P -partitions related to the poset

CPs = A1 ⊕ As1 ⊕ As2 ⊕ · · · ⊕ Ask ⊕ A1.

We are interested in the specialization xi = q of fCPs
(x). Noting that Ar

[j1,...,jl]
is isomorphic

to the poset CLr−l discussed in subsection 3.2, we have

hAr(y0, q, . . . , q) =
r
∑

l=1

(−1)l−1

(

r

l

)

1

(1 − q)r−l

r−l
∑

i=0

(−1)i
(

r−l
i

)

qi

1 − y0qi+l

=

r
∑

l=1

(−1)l−1

(

r
l

)

(1 − q)r−l

r
∑

j=l

(−1)j−l
(

r−l
j−l

)

qj−l

1 − y0qj

=
1

(1 − q)r

r
∑

j=1

(−1)j−1
(

r
j

)

qj

1 − y0qj

j
∑

l=1

(

j

l

)(

1 − q

q

)l

=
1

(1 − q)r

r
∑

j=1

(−1)j−1
(

r
j

)

(1 − qj)

1 − y0qj
.

Thus we derive

Theorem 4.3 The specialization xi = q of the generating function for complete plane par-

titions of type s = (s1, s2, . . . , sk) is given by

fCPs
(q, . . . , q) =

1

(1 − q)(1 − qlk+2)

k
∏

i=1

hsi
(qli−1+1),

where l0 = 0, li = s1 + · · · + si (1 ≤ i ≤ k) and

hr(x) =
1

(1 − q)r

r
∑

j=1

(−1)j−1
(

r
j

)

(1 − qj)

1 − xqj
.

As an example, for Kr = CP(r,...,r) = A1 ⊕ ((k − 1) × Ar) ⊕ A1, we have

fK3(q, . . . , q) =

∏k−2
i=0 (1 + 2q3i+2 + 2q3i+3 + q6i+5)

(q; q)3k−1
,

fK4(q, . . . , q) =

∏k−2
i=0 (1 + q4i+3)(1 + 3q4i+2 + 4q4i+3 + 3q4i+4 + q8i+6)

(q; q)4k−2
.

Unfortunately there are no elegant formulaes for fKr(q, . . . , q) when r ≥ 5.
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a1 a4k+2

a3 a5 a4k+1

a4ka2 a4 a6 a8

a7 a9 a4k−1

a4k−2

· · ·

Figure 9: The poset for plane partitions with diagonals.

4.2 Plane Partitions with Diagonals

In [10], Andrews, Paule and Riese studied plane partitions with diagonals whose correspond-
ing poset PDk can be depicted as Figure 9. We will recover the generating function fPDk

(x)
using Theorem 2.3 and Corollary 2.4.

It is clear that PDk is isomorphic to A ⊕ ((k − 1) ×B)⊕C with the posets A, B and C
given by Figure 10.

a1 c3

a3 b2 c2

c1
a2 b1 b3

b4

A = B = C =

Figure 10: Three basic blocks of the poset PDk.

To compute hB(y0, y1, y2, y3, y4), we observe that B[1], B[2], B[1,2] are given by Figure 11.
With the aid of the Maple package Ell2, we can find the generating functions fB[1]

(x), fB[2]
(x)

b4 b4

b3 b1 b3

B[1] = B[2] =
b0 b2 b0

b4

b3

B[1,2] =
b0

Figure 11: The posets related to B.

and fB[1,2]
(x). After simplifying, we obtain that hB(y) = p1(y)/p2(y) with

p1(y0, y1, . . . , y4) = 1 − y2
0y1y2(1 + y4 + y2y4 + y2y3y4 + y1y2y3y4)

+ y3
0y1y

2
2y4(1 + y1 + y1y3 + y1y2y3 + y1y2y3y4) − y5

0y
3
1y

4
2y3y

2
4.

and

p2(y0, y1, . . . , y4) = (1 − y0y2)(1 − y0y2y4)(1 − y0y1y2y4)

4
∏

i=1

(1 − y0y1 · · · yi).

13



Similarly, we have

hC(y0, y1, y2, y3) =
1 − y2

0y1y2

(1 − y0y2)
∏3

i=1(1 − y0y1 · · · yi)
.

Now by Theorem 2.3 and Corollary 2.4, we recover Andrews-Paule-Riese’s formula:

Theorem 4.4 For any integer k > 1, we have

fPDk
(x1, . . . , x4k+2) =

(1 − X1X3)(1 − X4k−1X4k+1)

(1 − X3/x2)(1 − X4k+1/x4k)

4k+2
∏

i=1

1

1 − Xi

×

k−2
∏

j=0

hj(x)

(1 − X4j+5/x4j+4)(1 − X4j+7/x4j+6)(1 − X4j+7/x4j+4x4j+6)
,

where

hj(x) = 1 − x4j+5x4j+7X
2
4j+3X

2
4j+5X4j+7 + (1 + 1/x4j+4x4j+6)X4j+5X4j+7(X4j+3 − 1)

+ (x4j+5 + 1/x4j+6)X4j+3X4j+7(X4j+5 − 1) + (x4j+5x4j+7X4j+7 − 1)X4j+3X4j+5.
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