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Abstract3

Berge [2] gave a formula for computing the deficiency of maximum matchings of a4

graph. More generally, Lovász obtained a deficiency formula of (g, f)-optimal graphs5

and consequently a criterion for the existence of (g, f)-factors. Moreover, Lovász proved6

that there is one of these decompositions which is ”canonical” in a sense. In this7

paper, we present a short constructive proof for the deficiency formula of (g, f)-optimal8

graphs, and the proof implies an efficient algorithm of time complexity O(g(V )|E|) for9

computing the deficiency. Furthermore, this proof implies this canonical decomposition10

(that is, in polynomial time) via efficient algorithms.11

1 Introduction12

In this paper, we consider finite undirected simple graphs without loop and multiple edge.13

For a graph G = (V, E), the degree of x in G is denoted by dG(x), and the set of vertices14

adjacent to x in G is denoted by NG(x). For S ⊆ V (G), the subgraph of G induced by S is15

denoted by G[S] and G − S = G[V (G) − S]. Let T and H be two graphs and R = T ∪H16

denote a graph with E(R) = E(T ) ∪ E(H) and V (R) = V (H) ∪ V (T ). A set M of edges17

in a graph G is a matching if no two members of M share a vertex. A matching M is a18

maximum matching of G if there doesn’t exist a matching M ′ of G such that |M ′| > |M |.19

A matching M is perfect if every vertex of G is covered by an edge of M .20

Let f and g be two nonnegative integer-valued functions on V (G) with g(x) ≤ f(x) for21

every x ∈ V (G). A spanning subgraph F of G is a (g, f)-factor if g(v) ≤ dF (v) ≤ f(v) for22

all v ∈ V (G). When g ≡ f ≡ 1, a (g, f)-factor is called a 1-factor (or perfect matching).23
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For 1-factors in bipartite graphs, König (1931) and Hall (1935) obtained the so-called1

König-Hall Theorem. In 1947, Tutte gave a characterization (i.e., so-called Tutte’s 1-Factor2

Theorem) for the existence of 1-factors in arbitrary graphs. Berge [2] discovered the defi-3

ciency formula of maximum matchings, which is often referred as Berge’s formula.4

The more general version of deficiency formula for (g, f)-optimal subgraphs was investi-5

gated by Lovász [6]. In this paper, we present a short proof to Lovász’s deficiency formula6

by using alternating trail.7

Theorem 1.1 (Lovász, [6]) Let G be a graph and g, f : V (G) → Z such that g(x) ≤ f(x)
for all x ∈ V (G). Then

def(G) = max{
∑

t∈T

dG−S(t)− g(T ) + f(S)− qG(S, T ) ≥ 0 | S, T ⊆ V (G) and S ∩ T = ∅},

where qG(S, T ) denotes the number of components C of G− (S ∪ T ) such that g(x) = f(x)8

for all x ∈ V (C) and e(V (C), T ) +
∑

x∈V (C) f(x) ≡ 1 (mod 2).9

2 The short proof of deficiency formula10

Given two integer-valued functions f and g with g ≤ f and a subgraph H of G, we define
the deficiency of H with respect to g(v) as

defH(G) =
∑

v∈V

max{0, g(v)− dH(v)}.

Suppose that G contains no (g, f)-factor. Choose a spanning subgraph F of G satisfying11

dF (v) ≤ f(v) for every vertex v ∈ V such that the deficiency is minimized over all such12

choices. Then F is called as a (g, f)-optimal subgraph of G. Necessarily, there is a vertex13

v ∈ V such that dF (v) < g(v) and so the deficiency of F is positive.14

In the rest of the paper, F always denotes a (g, f)-optimal subgraph. The deficiency of15

G, def(G), is defined as defF (G) and the deficiency of an induced subgraph G[S] of G for16

a vertex subset S ⊆ V by defF (S).17

Let B0 = {v | dF (v) < g(v)}. An F -alternating trail is a trail P = v0v1 . . . vk with18

vivi+1 6∈ F for i even and vivi+1 ∈ F for i odd.19

We define

D∗ = {v | ∃ both an even and an odd F -alternating trails from vertices of B0 to v},
B∗ = {v | ∃ an even F -alternating trail from a vertex of B0 to v} −D∗,

A∗ = {v | ∃ an odd F -alternating trail from a vertex of B0 to v} −D∗,

2



and C∗ = V (G) − A∗ − B∗ − D∗. Clearly, D∗, B∗, A∗, and C∗ are disjoint. We call an1

F -alternating trail M an augmenting trail if defF (G) > defF4M (G).2

For any v ∈ B∗, then dF (v) ≤ g(v), or else by exchanging edges of F along an even3

alternating trail ending in v, we decrease the deficiency. Similarly, dF (v) = f(v) for any4

v ∈ A∗, or else we can decrease the deficiency by exchanging edges of F along an odd5

alternating trail ending in v. By the above discussion, we have dF (v) = g(v) = f(v) for6

every v ∈ V (D∗)−B0.7

From the definitions stated above, we can easily see the following lemma.8

Lemma 2.1 If F is an optimal subgraph, then F cannot contain an augmenting trail.9

Let τ denote the number of components of G[D∗] and D1, . . . , Dτ be the components of10

G[D∗].11

Lemma 2.2 defF (Di) ≤ 1 for i = 1, . . . , τ and g(v) = f(v) for any v ∈ D∗.12

Proof. Suppose the result does not hold. Let v ∈ Di and defF (v) ≥ 1. By the definition
of D∗, there exists an odd alternating trail C from a vertex x of B0 to v. Then x = v,
otherwise, defF (G) > defF∆C(G), a contradiction. Furthermore, if defF (v) ≥ 2, then
defF (G) > defF∆C(G), a contradiction. So we have defF (v) = 1 and defF (u) ≤ 1 for any
u ∈ Di − v. Moreover, dF (v) + 1 = f(v) = g(v). Set

D1
i = {w ∈ Di | ∃ both an odd alternating trail T1 and an even alternating trail

T2 from v to w such that V (T1 ∪ T2) ⊆ Di}.

Now we choose a maximal subset D2
i of D1

i such that C ⊆ D2
i and there exist both an odd13

alternating trail T1 and an even alternating trail T2 from v to w, where V (T1 ∪ T2) ⊆ D2
i ,14

for any w ∈ D2
i .15

Claim. D2
i = Di.16

Otherwise, since Di is connected, then there exists an edge xy ∈ E(G) such that x ∈17

Di − V (D2
i ) and y ∈ V (D2

i ). We consider two cases.18

Case 1. xy ∈ E(F ).19

Then there exists an even alternating trail P1 from v to x, where xy ∈ P1 and V (P1)−x ⊆20

V (D2
i ). Since x ∈ Di, there exists an odd alternating trail P2 from a vertex t of B0 to x.21

Then t 6= v, otherwise, we have V (P1 ∪ P2) ⊆ D2
i , a contradiction. If E(P1) ∩ E(P2) = ∅,22

then defF (G) > defF4(P1∪P2)(G), a contradiction. Let z ∈ P2 be the first vertex which23

also belongs to D2
i and denote the subtrail of P2 from t to z by P3. By the definition, there24
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exist both an odd alternating trail P4 from v to z and an even alternating trail P5 from v1

to z such that V (P4 ∪P5) ⊆ V (D2
i ). Thus either P4 ∪P3 or P5 ∪P3 is an augmenting trail,2

a contradiction.3

Case 2. xy 6∈ E(F ).4

The proof is similar to that of Case 1.5

Let u ∈ V (Di)− v and defF (u) = 1, then there exists an odd alternating trail P6 from6

v to u. We have defF (G) > defF4P6(G), a contradiction.7

We complete the proof. 28

By the proof of above lemma, we have the following result.9

Lemma 2.3 If defF (Di) = 1, then E[Di, B
∗] ⊆ F and E[Di, A

∗] ∩ E(F ) = ∅ for i =10

1, . . . , τ .11

Proof. Let defF (r) = 1, r ∈ V (Di). Suppose the result does not hold. Let uv 6∈ E(F ),12

where u ∈ V (Di), v ∈ V (B∗). By the proof of Lemma 2.2, there exists an even alternating13

trail P ⊆ G[Di] from r to u. Then P ∪ uv be an odd alternating trail from r to v, a14

contradiction.15

Let xy ∈ E(F ), where x ∈ Di and y ∈ A∗. Then there exists an odd alternating16

trail P1 ⊆ G[Di] from r to x. Hence P1 ∪ xy is an even alternating trail from r to y, a17

contradiction. 218

From the definitions of B∗, C∗ and D∗, the following lemma follows immediately.19

Lemma 2.4 E[B∗, C∗ ∪B∗] ⊆ F , E[D∗, C∗] = ∅.20

Lemma 2.5 F misses at most an edge from Di to B∗ and contains at most an edge from21

Di to A∗; if F misses an edge from Di to B∗, then E[Di, A
∗] ∩ F = ∅; if F contains an22

edge from Di to A∗, then E[Di, B
∗] ⊆ F .23

Proof. By Lemma 2.3, we may assume defF (Di) = 0. Let u ∈ V (Di), by the definition of24

D∗, there exists an alternating trail P from a vertex x of B0 to u. Without loss of generality,25

suppose that the first vertex in P belonging to Di is y, and the sub-trail of P from x to26

y is denoted by P1, which is an odd alternating trail. Then y1 ∈ B∗, y1y ∈ E(P1) and27

y1y /∈ F . Since y ∈ D∗, there exists an even alternating trail P2 from a vertex x1 of B0 to28

y. Hence we have y1y ∈ E(P2), otherwise, P2 ∪ y1y is an odd alternating trail from x1 to29

y1, a contradiction. Let P3 be a sub-trail of P2 from y to y. Then we have V (P3) ⊆ Di. Set30

D1
i = {w ∈ D1 | ∃ both an odd alternating trail R1 and an even alternating trail R2

traversing P1 from x to w such that V (R1 ∪R2)− V (P1 − y) ⊆ Di}.
4



Now we choose a maximal subset D2
i of D1

i such that V (P3) ⊆ D2
i and there are both an1

odd alternating trail T1 and an even alternating trail T2 traversing P1 from x to w, where2

V (T1 ∪ T2)− (V (P1)− y)) ⊆ D2
i , for every w ∈ D2

i .3

With a similar proof as in that of Lemma 2.2, we have D1
i = Di = D2

i . Let x3y3 ∈4

E(G) − yy1, where x3 ∈ Di and y3 ∈ B∗. By the above discussion, there exists an even5

alternating trail P4 from y1 to x3 such that V (P4) − y1 ⊆ Di. If x3y3 6∈ E(F ), then6

P1 ∪ P4 ∪ x3y3 is an odd alternating trail from x to y3, a contradiction. Now suppose7

x4y4 ∈ E(F ), where x4 ∈ Di and y4 ∈ A∗. Similarly, there exists an odd alternating trail8

P5 from y1 to x4 and V (P5)− y1 ⊆ Di, and then P1∪ (P5− y1)∪x4y4 is an even alternating9

trail from x to y4, a contradiction. The proofs of other cases can be dealt similarly.10

We complete the proof. 211

From Lemmas 2.2 and 2.5, we obtain the following.12

Lemma 2.6 For i = 1, . . . , τ , we have

|E[Di, B
∗]|+

∑

v∈Di

f(v) ≡ 1 (mod 2),

and for every component R of G[C∗], either g(v) = f(v) for all v ∈ R and

|E[R, B∗]|+
∑

v∈R

f(v) ≡ 0 (mod 2),

or there exists a vertex v ∈ V (R) such that g(v) < f(v).13

Now we present a constructive proof to Lovász’s deficiency theorem.14

Theorem 2.7 (Lovász, [6]) defF (G) = τ + g(B∗)−∑
v∈B∗ dG−A∗(v)− f(A∗).15

Proof. Let τ1 denote the number of components of G[D∗] which satisfies defF (Di) = 1
for i = 1, . . . , τ . Let τB∗ (or τA∗) be the number of components T of G[D∗] such that
F misses (or contains) an edge from T to B∗ (or A∗). By Lemmas 2.3 and 2.5, we have
τ = τ1 + τA∗ + τB∗ . Note that dF (v) ≤ g(v) for all v ∈ B∗ and dF (v) = f(v) for all v ∈ A∗.
So

defF (G) = τ1 + g(B∗)−
∑

v∈B∗
dF (v)

= τ1 + g(B∗)− (
∑

v∈B∗
dG−A∗(v)− τB∗)− (f(A∗)− τA∗)

= τ + g(B∗)−
∑

v∈B∗
dG−A∗(v)− f(A∗).

216

Summarizing all discussion above, we have the following.17
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Theorem 2.8 Let F be any (g, f)-optimal subgraph of G. Then we have1

(i) dF (v) ∈ [g(v), f(v)] for all v ∈ C∗;2

(ii) dF (v) ≤ g(v) for all v ∈ B∗;3

(iii) dF (v) ≥ f(v) for all v ∈ A∗;4

(iv) f(v)− 1 ≤ dF (v) ≤ f(v) + 1 for all v ∈ D∗.5

Remark: The above proof shows that F is a (g, f)-optimal subgraph if and only if6

it does not admit an augmenting trail. Since each search for an augmenting trail can be7

performed by breadth-first search in time O(|E|) and the corresponding augmentation lowers8

the value g(x) for at least one vertex x, so we have a very simple (g, f)-factor algorithm9

of time complexity O(g(V )|E|). By the above discussion, we also give an algorithm to10

determine if a graph is f -factor-critical. In particular, we obtain a canonical decomposition11

which is equivalent with the Lovás decomposition. So we obtain Lovás decomposition via12

efficient algorithms.13

From Theorem 2.7, we are able to derive characterizations of various factors as conse-14

quences.15

Corollary 2.9 (Lovász, [6]) A graph G has a (g, f)-factor if and only if

τ∗ − g(T )−
∑

v∈T

dG−S(v)− f(S) ≤ 0,

for any pair of disjoint subsets S, T ⊆ V (G), where τ∗ denotes the number of components16

C of G−S−T such that g(x) = f(x) for all x ∈ V (C) and e(V (C), T )+
∑

x∈V (C) f(x) ≡ 117

(mod 2).18

If g(x) < f(x) for all x ∈ V (G), then D∗ = ∅ and τ = 0. So, by Theorem 2.7, we obtain19

the following corollary.20

Corollary 2.10 ( [1], [4], [6]) A graph G contains a (g, f)-factor, where g < f , if and
only if

g(T )−
∑

v∈T

dG−S(v)− f(S) ≤ 0,

for any pair of disjoint subsets S, T ⊆ V (G).21

Note that for every component of Di of G[D∗], Di contains an odd cycle. So if G is a22

bipartite graph, then D∗ = ∅ and τ = 0.23
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Corollary 2.11 ( [1], [4], [6]) Let G be a bipartite graph. Then G contains a f-factor if
and only if

f(T )− f(S)−
∑

v∈T

dG−S(v) ≤ 0,

for any pair of disjoint subsets S, T ⊆ V (G).1

Given two nonnegative integer-valued functions f and g on V (G) and a vertex-subset2

S ⊆ V , let C1(S) denote the number of odd components C of G[S] with g(x) = f(x) = 13

for every vertex x ∈ V (C). Let Co(S) be the number of odd components of G[S].4

Theorem 2.12 Let G = (V, E) be a graph and f, g be two integer-valued functions defined
V (G) such that 0 ≤ g(x) ≤ 1 ≤ f(x) for each v ∈ V (G). Then the deficiency of (g, f)-
optimal subgraphs of G is

def(G) = max{C1(G− S)− f(S) | S ⊆ V (G)}.
Proof. Clearly, def(G) ≥ max{C1(G− S)− f(S) | S ⊆ V (G)}. So we only need to show5

that there exists T ⊆ V (G) such that def(G) = C1(G− T )− f(T ).6

Let F be an optimal (g, f)-subgraph such that dF (v) ≤ f(v) for all v ∈ V (G). Let7

D∗, A∗, B∗, C∗ and B0 be defined above. Then E(B∗, B∗ ∪ C∗) ⊆ F . Let W = {x ∈8

V (G) | g(x) = 0}, by Theorem 2.8, we have W ∩ (D∗ ∪B∗) = ∅.9

Claim 1. E(C∗, B∗) = ∅, and G[B∗] consists of isolated vertices.10

Otherwise, assume e = xy ∈ E(B∗, C∗ ∪ B∗), where x ∈ B∗. Then e ∈ F . Since11

dF (x) ≤ 1, so dF (x) = 1 and x, y /∈ B0. By definition of B∗, there exists an even F -12

alternating trail P from a vertex u of B0 to x. Then e ∈ P , but P−e is an odd F -alternating13

trail from u to y, a contradiction.14

Claim 2. E(D∗, B∗) = ∅.15

Otherwise, let uv ∈ E(G) with u ∈ D∗
i and v ∈ B∗. Firstly, considering uv 6∈ E(F ), by16

the definition of B0, there exists an even alternating trail P from B0 to u. Note that dF (u) ≤17

1. If uv 6∈ E(P ), then P ∪ uv is an odd alternating trail from B0 to v, a contradiction. So18

uv ∈ E(P ) and it is from v to u in the trail. Then we have dF (u) ≥ 2, a contradiction since19

dF (u) ≤ f(u) = g(u) = 1. So we assume uv ∈ E(F ). Then an even alternating trail from20

B0 to u must contains uv since dF (v) ≤ 1 and thus P − uv is an odd alternating trail from21

B0 to v, a contradiction.22

So every component of G[D∗] is an odd component. By Lemma 2.3, then |V (Di)| is

7



odd, for i = 1, . . . , τ . Hence,

defF (G) = τ + g(B∗)−
∑

v∈B∗
dG−A∗(v)− f(A∗)

= τ + |B∗| − f(A∗)

= C1(G−A∗)− f(A∗).

We complete the proof. 21

Corollary 2.13 ( [5]) Let G be a graph and f, g be two integer-valued function defined
V (G) such that 0 ≤ g(x) ≤ 1 ≤ f(x) for all v ∈ V (G). Then G has a (g, f)-factor if and
only if, for any subset S ⊆ V

Co(G−X) ≤ f(X).

Let f ≡ g ≡ 1 in Theorem 2.12, Berge’s Formula is followed.2

Corollary 2.14 (Berge’s Formula, [2]) Let G be a graph. The number of vertices missed
by a maximum matching of G is

def(G) = max{Co(G− S)− |S| | S ⊆ V (G)}.

Corollary 2.15 (Tutte’s 1-Factor Theorem) Let G be a graph. Then there exists a
1-factor if and only if, for any sebset S ⊆ V (G)

Co(G− S) ≤ |S|.

Corollary 2.16 (Lovász, [6]) Let G be a graph and X be a subset of V (G). Then G3

contains a matching covering all vertices in X if and only if for each S ⊆ V (G), the graph4

G− S has at most |S| odd components which entirely in X.5

Proof. Let f, g be two integer-valued functions defined V (G) such that f(x) = 1 for every6

vertex x ∈ V (G), and7

g(x) =

{
1 if x ∈ X,
0 otherwise.

Then G contains a matching covering all vertices in X if and only if G has a (g, f)-factor.8

Suppose that G contains no a (g, f)-factor. Let A∗, B∗, C∗, D∗ be defined above. We have9

(V (G)−X) ∩ (D∗ ∪B∗) = ∅. By Theorem 2.12, the result is followed. 210

A graph G is said to have the odd cycle property if every pair of odd cycles in G either11

has a vertex in common or are joined by an edge. Let i(G) be the number of isolated12

vertices in G.13
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Corollary 2.17 Let G be a connected graph possessing odd cycle property, and f be an1

integer-valued function. Then G contains a (1, f)-factor if and only if i(G−S) ≤ f(S)− ε02

for every S ⊆ V (G), where ε0 = 1 if G− S contains an odd component C with |C| ≥ 3 and3

f(v) = 1 for all v ∈ V (C); otherwise, ε0 = 0.4

Proof. Suppose that G contains no (1, f)-factor. Let A∗, B∗, C∗, D∗ be defined above. By
the proof of Theorem 2.12, E(B∗, B∗ ∪ C∗ ∪D∗) = ∅ and B∗ consists of isolated vertices.
Moreover, D∗ contains at most one component C, where |C| ≥ 3 is odd and f(v) = 1 for
every v ∈ V (C). Denote the number of components of D∗ by ε. So, by Theorem 2.7, we
have

def(G) = |B∗|+ ε− f(A∗) = i(G−A∗) + ε− f(A∗).

We complete the proof. 25
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