CUBIC s-ARC TRANSITIVE CAYLEY GRAPHS

JING JIAN LI
ZAI PING LU

CENTER FOR COMBINATORICS
LPMC, NANKAI UNIVERSITY
TIANJIN 300071, P. R. CHINA

Abstract

This paper gives a characterization of connected cubic s transitive Cayley graphs. It is shown that, for $s \geq 3$, every connected cubic s-transitive Cayley graph is a normal cover of one of 13 graphs: three 3 -transitive graphs, four 4 -transitive graphs and six 5 -transitive graphs. Moreover, the argument in this paper also gives another proof for a well-known result which says that all connected cubic arc-transitive Cayley graphs of finite non-abelian simple groups are normal except two 5 -transitive Cayley graphs of the alternating group A_{47}.

Keywords. Cayley graph, s-arc-transitive, core-free, normal quotient.

1. Introduction

All graphs in this paper are assumed to be finite, simple and undirected.
Let Γ be a graph with vertex set $V(\Gamma)$, edge set $E(\Gamma)$ and full automorphism group $\operatorname{Aut}(\Gamma)$. Let X be a subgroup of $\operatorname{Aut}(\Gamma)$ (written as $X \leq \operatorname{Aut}(\Gamma)$). Then Γ is said to be X-vertex-transitive or X-edge-transitive if X acts transitively on $V(\Gamma)$ or on $E(\Gamma)$, respectively. Let s be a positive integer. An $(s+1)$-sequence $\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{s}\right)$ of vertices of Γ is called an s-arc if $\left\{\alpha_{i-1}, \alpha_{i}\right\} \in E(\Gamma)$ for $1 \leq i \leq s$ and $\alpha_{i-1} \neq \alpha_{i+1}$ for $1 \leq i \leq s-1$. The graph Γ is called (X, s)-arc-transitive if Γ has at least one s-arc and X is transitive on the vertices and on the s-arcs of Γ; and Γ is said to be (X, s) transitive if it is (X, s)-arc-transitive but not $(X, s+1)$-arc-transitive. In particular, a 1-arc is simply called an arc, and an ($X, 1$)-arc-transitive graph is said to be X-arc-transitive or X-symmetric. An arc-transitive graph Γ is said to be (X, s)-regular if it is (X, s)-arc-transitive and, for any two s-arcs of Γ, there is a unique automorphism of Γ mapping one arc to the other one. In the case where $X=\operatorname{Aut}(\Gamma)$, an (X, s)-arc-transitive ((X, s)-transitive, (X, s)-regular and X-symmetric, respectively) graph is simply called an s -arc-transitive (s-transitive, s-regular and symmetric, respectively) graph.

[^0]Tutte [24, 25] proved that every finite connected cubic symmetric graph is s-regular for some $s \leq 5$. Since Tutte's seminal work, the study of s-arctransitive graphs, aiming at constructing and characterizing such graphs, has received considerable attention in the literature, see [12, 13, 14, 10, 26, $2,4,5,23,6,11,17,18,20,19,28,29]$ for example, and now there is an extensive body of knowledge on such graphs. In this paper, we investigate the cubic symmetric Cayley graphs.

Let G be a group and S a subset of G such that $S=S^{-1}:=\left\{g^{-1} \mid g \in S\right\}$ and S does not contain the identity element 1 of G. The Cayley graph Cay (G, S) of G with respect to S is the graph with vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$. Then a Cayley graph Cay (G, S) has valency $|S|$, and it is connected if and only if $\langle S\rangle=G$. Further, each $g \in G$ gives an automorphism $g: G \rightarrow G, x \mapsto x g$ of $\operatorname{Cay}(G, S)$. Thus G can be viewed as a regular subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$. A Cayley graph Cay (G, S) is said to be normal (with respect to G) if G is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S)$); and Cay (G, S) is said to be core-free (with respect to G) if G is core-free in some $X \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$, that is, $\operatorname{Core}_{X}(G):=\cap_{x \in X} G^{x}=1$.

The main motivation for this paper arises from one result of Li [19] which says that for $s \in\{2,3,4,5,7\}$ and $k \geq 3$ there are only finite number of corefree s-transitive Cayley graphs of valency k, and that, with the exceptions $s=2$ and $(s, k)=(3,7)$, every s-transitive Cayley graph is a normal cover (see Section 3 for the definition) of a core-free one. In this paper, we shall give a characterization of cubic s-transitive Cayley graphs; in particular, determine all connected core-free cubic s-transitive Cayley graphs up to isomorphism, and then prove the following results.

Theorem 1.1. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected core-free (with respect to $G)$ cubic s-transitive Cayley graph. Then $\Gamma \cong \operatorname{Cay}\left(G_{s, \imath}, S_{s, \imath}\right)$ for $2 \leq s \leq 5$ and $1 \leq \imath \leq \ell_{s}$, where $\ell_{2}=2$, $\ell_{3}=3, \ell_{4}=4, \ell_{5}=6, G_{s, \imath}=\left\langle S_{s, \imath}\right\rangle$ and $S_{s, 2}$ is given as in Subsections 4.1, 4.2, 4.3 and 4.4 while $s=2,3,4$ and 5, respectively. Further, $s, \operatorname{Aut}(\Gamma)$ and G are listed in Table 1.

Theorem 1.2. Let Γ be a connected cubic s-transitive Cayley graph. Then
(1) $s \leq 2$ and $\operatorname{Aut}(\Gamma)$ contains a semi-regular normal subgroup which has at most two orbits on $V(\Gamma)$; or
(2) Aut (Γ) contains a regular subgroup which has a quotient group isomorphic to one of the groups listed in the third column of Table 1.

2. A Reduction to the core-free case

Let Γ be a connected X-vertex-transitive and X-edge-transitive graph with $X \leq \operatorname{Aut}(\Gamma)$. Denote by $\operatorname{val}(\Gamma)$ the valency of Γ. Let N be an intransitive normal subgroup of X and \mathcal{B} be the set of N-orbits on $V(\Gamma)$. The normal quotient Γ_{N} of Γ induced by N is the graph with vertex set \mathcal{B} such

s	Aut (Γ)	G	Remark
2	$\mathrm{~S}_{4} \times \mathbb{Z}_{2}$	D_{8}	Cube
2	$\mathrm{~S}_{4}$	\mathbb{Z}_{4}	$\mathrm{~K}_{4}$
3	$\mathrm{~S}_{3} \prec \mathbb{Z}_{2}$	\mathbb{Z}_{6} or D_{6}	$\mathrm{~K}_{3,3}$
3	$\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} \prec \mathbb{Z}_{2}\right)$	$\mathbb{Z}_{4} \times \mathrm{S}_{4}$ or $\mathbb{Z}_{2}^{4} \rtimes \mathrm{~S}_{3}$	
3	$\mathrm{PGL}_{2}(11)$	$\mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$	
4	$\mathrm{PGL}_{2}(7)$	D_{14}	Heawood's graph
4	$\mathrm{PGL}_{2}(23)$	$\mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$	
4	$\mathbb{Z}_{3}^{7} \rtimes \mathrm{PGL}_{2}(7)$	$\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}\right)$	
4	$\mathrm{~S}_{24}$	$\mathrm{~S}_{23}$	
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathbb{Z}_{7} \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\operatorname{PSL}(2,7)$
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathrm{~A}_{23} \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\mathrm{A}_{24}$
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\operatorname{PSL}(2,23)$
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)$
5	$\mathrm{~A}_{48}$	$\mathrm{~A}_{47}$	two graphs

Table 1. Core-free cubic s-transitive Cayley graphs.
that $B_{1}, B_{2} \in \mathcal{B}$ are adjacent in Γ_{N} if and only if some vertex $u \in B_{1}$ is adjacent in Γ to some vertex $v \in B_{2}$. Since Γ is connected and X-edgetransitive, we conclude that Γ_{N} is X / N-edge-transitive, each $B \in \mathcal{B}$ is an independent subset of Γ and, for an edge $\left\{B_{1}, B_{2}\right\} \in E\left(\Gamma_{N}\right)$, the subgraph $\Gamma\left[B_{1}, B_{2}\right]$ of Γ induced by $B_{1} \cup B_{2}$ is a regular bipartite graph which is independent of the choice of $\left\{B_{1}, B_{2}\right\}$ up to isomorphism. In particular, $\operatorname{val}(\Gamma)=\operatorname{val}\left(\Gamma_{N}\right) \operatorname{val}\left(\Gamma\left[B_{1}, B_{2}\right]\right)$. If $\operatorname{val}(\Gamma)=\operatorname{val}\left(\Gamma_{N}\right)$, then Γ is called a normal cover of Γ_{N}. It was proved by Praeger[23] that Γ_{N} is $(X / N, s)$-arctransitive if Γ is (X, s)-arc-transitive, and that Γ is a normal cover of Γ_{N} if $s \geq 2$ and $|\mathcal{B}| \geq 3$. In general, if Γ is a normal cover of Γ_{N} then N acts regularly on each N-orbit, X / N is isomorphic to a subgroup of $\operatorname{Aut}\left(\Gamma_{N}\right)$ and Γ_{N} is $(X / N, s)$-arc-transitive if and only if Γ is (X, s)-arc-transitive.

In the following, we assume that $\Gamma=\operatorname{Cay}(G, S)$ is a connected X-edgetransitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$. Set $\operatorname{Aut}(G, S)=\{\sigma \in$ $\left.\operatorname{Aut}(G) \mid S^{\sigma}=S\right\}$. Let N be the maximal one among normal subgroups of X contained in G, that is, $N=\operatorname{Core}_{X}(G)$ is the core of G in X. Then either $|G: N| \leq 2$ or N has at least three orbits on $V(\Gamma)$. If $N=G$, then $X \leq G \rtimes \operatorname{Aut}(G, S)$ by [27]; if N is intransitive on $V(\Gamma)$, then every N-orbit is an independent set of Γ since Γ is connected and X-edge-transitive.

Assume that $|G: N|=2$. Then N has exactly two orbits on $V(\Gamma)$ and Γ is a bipartite graph; in this case Γ is so called a bi-normal Cayley graph [19]. Further, Γ is in fact a bi-Cayley graph [21] of N, say $\Gamma=\mathrm{BCay}(N, D)$, where $D \subseteq N$ and contains the identity of N with $\langle D\rangle=N$. Moreover, by [21], the arc-stabilizer $X_{u v}$ is contained in $\operatorname{Aut}(N, D)$ for some arc (u, v) of Γ.

Now assume that N has at least three orbits on $V(\Gamma)$, and it is easily shown that G / N acts regularly on $V\left(\Gamma_{N}\right)$. Then Γ_{N} is a Cayley graph of the quotient G / N, and X / N acts transitively on the edges of Γ_{N}. Further either $\operatorname{val}(\Gamma)>\operatorname{val}\left(\Gamma_{N}\right)$ and Γ is not $(X, 2)$-arc-transitive, or $\operatorname{val}(\Gamma)=\operatorname{val}\left(\Gamma_{N}\right)$, $X / N \lesssim \operatorname{Aut}\left(\Gamma_{N}\right)$ and Γ is a normal cover of Γ_{N}. In addition, if Γ is a normal cover of Γ_{N} then Γ_{N} is core-free with respect to G / N.

In summary we get a reduction for edge-transitive Cayley graphs.
Proposition 2.1. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected X-edge-transitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$ and let $N=\operatorname{Core}_{X}(G)$.
(1) If $G=N$ then $X \leq G \rtimes \operatorname{Aut}(G, S)$ and $X_{1} \leq \operatorname{Aut}(G, S)$.
(2) If $|G: N|=2$, then there exists $D \subseteq N$ with $1 \in D,\langle D\rangle=N$ and $X_{u v} \leq \operatorname{Aut}(N, D)$ for an $\operatorname{arc}(u, v)$ of Γ.
(3) If N has at least three orbits on $V(\Gamma)$, then Γ_{N} is an X / N-edgetransitive Cayley graph of G / N and either
(a) $\operatorname{val}\left(\Gamma_{N}\right)<\operatorname{val}(\Gamma)$ and Γ is not $(X, 2)$-arc-transitive; or
(b) Γ is a normal cover of $\Gamma_{N}, G / N \leq X / N \lesssim \operatorname{Aut}\left(\Gamma_{N}\right)$ and Γ_{N} is core-free with respect to G / N.

Remark 2.1. (i) If we assume Γ with some further limits, then several cases in Proposition 2.1 are not necessary to happen. For example, (2) can not happen when $|V(\Gamma)|$ is odd, and (3.a) can not occur when Γ is either 2 -arc-transitive or of prime valency.
(ii) In case (3.b), if $N=1$ then, by considering the right multiplication action of X on the right cosets of G in X, we may view X as a subgroup of the symmetric group S_{n} for some n, which contains a regular subgroup (of S_{n}) isomorphic to a stabilizer of X acting on $V(\Gamma)$; and in this way, G is a stabilizer of X acting on $\{1,2, \cdots, n\}$. Replacing by a conjugation of G in X, we may assume G fixes 1 .

Corollary 2.2. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected cubic (X, s)-transitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$ and let $N=\operatorname{Core}_{X}(G)$. Then either
(1) $|G: N| \leq 2$, and $s \leq 2$ in this case; or
(2) $|G: N|>2, s \geq 2, \Gamma_{N}$ is a core-free $(X / N, s)$-transitive Cayley graph of G / N, and Γ is a normal cover of Γ_{N}.

Proof. Assume $|G: N| \leq 2$. Then, by Proposition 2.1, either $X_{1} \leq$ $\operatorname{Aut}(G, S) \lesssim \mathrm{S}_{3}$ or $X_{u v} \leq \operatorname{Aut}(N, D) \cong \mathbb{Z}_{2}$ for an $\operatorname{arc}(u, v)$ of Γ. Each of these two cases implies that Γ is not ($X, 3$)-arc-transitive, and so $s \leq 2$. Thus, by Proposition 2.1, it suffices to show that $|G: N|>2$ yields $s \geq 2$. Suppose to the contrary that $|G: N|>2$ and $s=1$. Then Γ is X-arcregular and $X_{1} \cong \mathbb{Z}_{3}$. By Remark 2.1 and Proposition 2.1 (3), $\bar{G}:=G / N$ is a core-free subgroup of $\bar{X}:=X / N=\bar{G} \bar{X}_{1}$, where $\bar{X}_{1}=X_{1} N / N$. Further, $\left|\bar{X}_{1}\right|=\left|X_{1}\right|=3$ and $|\bar{X}|=|\bar{G}|\left|\bar{X}_{1}\right|$. Consider the right multiplication action of \bar{X} on the right cosets of \bar{G} in \bar{X}. Then \bar{X} has a faithful permutation
representation of degree $\left|\bar{X}_{1}\right|=3$, and so $X / N=\bar{X} \lesssim \mathrm{~S}_{3}$. Thus $G / N \lesssim \mathbb{Z}_{2}$, a contradiction. Hence $s \geq 2$.

3. Construction of core-Free Cayley graphs

Let X be an arbitrary finite group with a core-free subgroup H and let $D \subseteq X \backslash H$ with $D^{-1}=D$. The coset $\operatorname{graph} \operatorname{Cos}(X, H, D)$, and denoted by $\operatorname{Cos}(X, H, z)$ for a singleton $D=\{z\}$ or a binary set $D=\left\{z, z^{-1}\right\}$, is the graph with vertex set $[X: H]:=\{H x \mid x \in X\}$ such that $H x$ and $H y$ are adjacent if and only if $y x^{-1} \in H D H$. Consider the action of X on $[X: H]$ by right multiplication on right cosets. Then this action is faithful and preserves the adjacency of the coset graph. Thus we identify X with a subgroup of $\operatorname{Aut}(\operatorname{Cos}(X, H, D))$. Further, we have the following basic facts.

Proposition 3.1. Let $\operatorname{Cos}(X, H, D)$ be defined as above.
(1) $\operatorname{Cos}(X, H, D)$ is connected if and only if $X=\langle H, D\rangle$;
(2) $\operatorname{Cos}(X, H, D)$ is X-edge-transitive if and only if $H D H=H\left\{z, z^{-1}\right\} H$ for some $z \in X$;
(3) The valency of $\operatorname{Cos}(X, H, z)$ is either $|H| /\left|H \cap H^{z}\right|$ if $H z H=H z^{-1} H$, or $2|H| /\left|H \cap H^{z}\right|$ otherwise;
(4) $\operatorname{Cos}(X, H, z)$ is X-arc-transitive if and only if $H z H=H z^{-1} H$.
(5) If X has a subgroup G acting regularly on the vertices of $\operatorname{Cos}(X, H, D)$, then $\operatorname{Cos}(X, H, D) \cong \operatorname{Cay}(G, S)$, where $S=G \cap H D H$.

Proof. (1), (2), (3) and (4) are well-known, see [20] for example. Assume that X contains a regular subgroup G acting on $[X: H]$. Then $X=G H$ and $G \cap H=1$, hence every right coset of H in X can be uniquely written as $H g$ for $g \in G$. Set $S=G \cap H D H$. Then for any $g_{1}, g_{2} \in G$, the pair $\left(H g_{1}, H g_{2}\right)$ is an arc of $\operatorname{Cos}(X, H, D)$ if and only if $g_{2} g_{1}^{-1} \in G \cap H D H=S$. Thus $\operatorname{Cos}(X, H, D) \cong \operatorname{Cay}(G, S)$, and (5) holds.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph and $G \leq X \leq \operatorname{Aut}(\Gamma)$. Let $H=X_{1}$ be the stabilizer of $1 \in V(\Gamma)$ in X. Define $\rho: V(\Gamma) \rightarrow[X: H] ; g \mapsto H g$. It follows from $X=G H$ and $G \cap H=1$ that ρ is a bijection. Further, it is easily shown that ρ is an isomorphism from Γ to $\operatorname{Cos}(X, H, S)$. Assume further that $\Gamma=\operatorname{Cay}(G, S)$ is X-arc-transitive. Then $\operatorname{Cos}(X, H, S)$ is X -arc-transitive. It follows that $H S H=H z H$ and $H z H=H z z^{-1} H$ for any $z \in S$. Then $\Gamma \cong \operatorname{Cos}(X, H, z)$ for any $z \in S$. Note that each involution z (if exists) in S normalizes $H \cap H^{z}$, the arc-stabilizer of $(1, z)$ in X. Since H is core-free in X, we have following simple result.

Proposition 3.2. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected X-arc-transitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$. Let H be the stabilizer of $1 \in V(\Gamma)$ in X. If S contains an involution z, then $z \in G \cap \mathrm{~N}_{X}\left(H \cap H^{z}\right) \backslash\left(\cup_{1 \neq K \unlhd H} \mathrm{~N}_{X}(K)\right)$, $\Gamma \cong \operatorname{Cos}(X, H, z),\langle z, H\rangle=X$ and $G=\langle(G \cap H z H)\rangle$.

The above argument and Remark 2.1 allow us to construct theoretically all possible connected core-free edge-transitive Cayley graphs with a given stabilizer isomorphic to a regular subgroup H of S_{n}. One may take $\tau \in \mathrm{S}_{n} \backslash\left(\cup_{1 \neq K \unlhd H} \mathrm{~N}_{\mathrm{S}_{n}}(K)\right)$ with $1^{\tau}=1$. Then $\operatorname{Cos}(X, H, \tau) \cong \operatorname{Cay}(G, S)$ is a connected core-free X-edge-transitive Cayley graph with respect to G, where $X=\langle\tau, H\rangle, G=\left\{\sigma \in X \mid 1^{\sigma}=1\right\}$ and $S=\left\{\sigma \in H \tau H \mid 1^{\sigma}=\right.$ $1\}$. Note that all isomorphic regular subgroups of S_{n} are conjugate in S_{n} (see [29], for example). Thus, up to isomorphism, $\operatorname{Cos}(X, H, \tau)$ is independent of the choice of H. Note that $\operatorname{Cos}(X, H, \tau) \cong \operatorname{Cos}\left(X^{\sigma}, H, \tau^{\sigma}\right)$ for any $\sigma \in \mathrm{N}_{\mathrm{S}_{n}}(H)$. By Proposition 3.2, we may construct, up to isomorphism, the connected core-free arc-transitive Cayley graphs Cay (G, S) with a given vertex-stabilizer H of order n, a given arc-stabilizer P and S containing an involution by finding all possible such involutions as follows:

Step 1 Determine $I:=\left\{\tau \in \mathrm{N}_{\mathrm{S}_{n}}(P) \backslash \cup_{1 \neq K \unlhd H} \mathrm{~N}_{\mathrm{S}_{n}}(K) \mid \tau^{2}=1,1^{\tau}=1\right\}$.
Step 2 Determine the set $I(n, H)$ of involutions in I which are not conjugate to each other under $\mathrm{N}_{\mathrm{S}_{n}}(H)$;
Step 3 For $\tau \in I(n, H)$, determine $X=\langle\tau, H\rangle, G=\left\{\sigma \in X \mid 1^{\sigma}=1\right\}$ and $S=\left\{\sigma \in H \tau H \mid 1^{\sigma}=1\right\}$.

Remark 3.1. It is easy to know P has $|H: P|$ orbits on $\Omega=\{1,2, \cdots, n\}$, which give an $\mathrm{N}_{\mathrm{S}_{n}}(P)$-invariant partition of Ω. Then, with the assumption that $1^{\tau}=1, \tau$ fixes set-wise the P-orbit which contains 1 .

4. Core-free cubic s-Transitive Cayley graphs

In this section, we construct all possible core-free cubic s-transitive Cayley graphs up to isomorphism. Hereafter, we use σ^{Δ} to denote the restriction of σ on Δ, for $\sigma \in \mathrm{S}_{n}$ which fixes a subset Δ of $\Omega=\{1,2, \cdots, n\}$ set-wise.

Let Γ be a core-free cubic (X, s)-transitive Cayley graph. Then $s \geq 2$ by Corollary 2.2. Note that, for a Cayley graph Cay (G, S) of odd valency, S must contain an involution. By Proposition 3.2 , write $\Gamma=\operatorname{Cos}(X, H, \tau)$, where $H \leq \mathrm{S}_{n}, \tau \in I(n, H)$ and $n=|H|$. Then s, H, n and $P:=H \cap H^{\tau}$ are listed in Table 2. (See [2, 18c] for example.) Note that P is a Sylow 2-subgroup of H and that $\Gamma=\operatorname{Cos}(X, H, \tau) \cong \operatorname{Cos}\left(X, H, \tau^{\sigma}\right)$ for any $\sigma \in H$. Thus, in practice, we may take a given regular subgroup H of S_{n} and a given Sylow 2-subgroup P of H. Since H acts regularly on $\Omega=\{1,2, \cdots, n\}$ and

s	2	3	4	5
H	$\mathrm{~S}_{3}$	D_{12}	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4} \times \mathbb{Z}_{2}$
n	6	12	24	48
P	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	D_{8}	$\mathrm{D}_{8} \times \mathbb{Z}_{2}$

TAble 2. Vertex-stabilizers of cubic s-transitive graphs.
$|H: P|=3$, we know that P is semiregular on Ω and so has exactly three orbits, say Σ_{1}, Σ_{2} and Σ_{3}. By Remark 3.1, we may assume that $1^{\tau}=1 \in \Sigma_{1}=\Sigma_{1}^{\tau}$, and τ either fixes or interchanges Σ_{2} and Σ_{3} set-wise.
4.1. $s=2$. In this case, $H \cong \mathrm{~S}_{3}, P \cong \mathbb{Z}_{2}$ and $X \leq \mathrm{S}_{6}$. Let $H=\langle\alpha, \beta\rangle$ and $P=\langle\beta\rangle$ where $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)(456)$ and $\beta=(15)(24)(36)$. Set $\Sigma_{1}=\{1,5\}$, $\Sigma_{2}=\{2,4\}$ and $\Sigma_{3}=\{3,6\}$. Since $\tau \in I(6, H)$, we have $\beta^{\tau}=\beta$ but $\langle\alpha\rangle^{\tau} \neq\langle\alpha\rangle$. Recalling that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$, it follows that τ is one of $(24),(36),(24)(36)$ and $(26)(34)$. It is easy to check that the first two permutations are conjugate under $\mathrm{N}_{\mathrm{S}_{6}}(H)$. Thus we assume that τ is one of

$$
\tau_{2,1}=(24), \tau_{2,1^{\prime}}=(24)(36), \tau_{2,2}=(26)(34)
$$

Set $X_{2, \imath}=\left\langle\tau_{2, \imath}, H\right\rangle$ and $\Gamma_{2, \imath}=\operatorname{Cos}\left(X_{2, \imath}, H, \tau_{2, \imath}\right)$ for $\imath=1,1^{\prime}, 2$. Let $G_{2, \imath}=$ $\left\{\sigma \in X_{2, \imath} \mid 1^{\sigma}=1\right\}$ and $S_{2, \imath}=G_{2, \imath} \cap H \tau_{2, \imath} H$. Then $\Gamma_{2, \imath} \cong \operatorname{Cay}\left(G_{2, \imath}, S_{2, \imath}\right)$, $\imath=1,1^{\prime}, 2$. By calculation, we get

$$
\begin{aligned}
S_{2,1} & =\{(24),(35),(25)(34)\}, & G_{2,1} & =\langle(2543),(24)\rangle \cong \mathrm{D}_{8}, \\
S_{2,1^{\prime}} & =\{(26),(34),(24)(36)\}, & G_{2,1^{\prime}} & =\langle(2463),(26)\rangle \cong \mathrm{D}_{8}, \\
S_{2,2} & =\{(26)(43),(2364),(2463)\}, & G_{2,2} & =\langle(2364)\rangle \cong \mathbb{Z}_{4} .
\end{aligned}
$$

Let $\rho=(23)(56)$. Then $G_{2,1}^{\rho}=G_{2,1^{\prime}}$ and $S_{2,1}^{\rho}=S_{2,1^{\prime}}$. Hence $\Gamma_{2,1} \cong$ $\operatorname{Cay}\left(G_{2,1}, S_{2,1}\right) \cong \operatorname{Cay}\left(G_{2,1^{\prime}}, S_{2,1^{\prime}}\right) \cong \Gamma_{2,1^{\prime}}$. In fact $\Gamma_{2,1}$ is the 3-dimensional cube Q_{3} and $\Gamma_{2,2}$ is the complete graph K_{4} on four vertices. Thus Aut $\left(\Gamma_{2,1}\right)=$ $X_{2,1} \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}$ and $\operatorname{Aut}\left(\Gamma_{2,2}\right)=X_{2,2} \cong \mathrm{~S}_{4}$. In summary, we have
Lemma 4.1.1. $\Gamma_{2,1} \cong \Gamma_{2,1^{\prime}} \cong \mathrm{Q}_{3}, \Gamma_{2,2} \cong \mathrm{~K}_{4}, G_{2,1} \cong G_{2,1^{\prime}} \cong \mathrm{D}_{8}, G_{2,2} \cong \mathbb{Z}_{4}$, $\operatorname{Aut}\left(\Gamma_{2,1}\right)=X_{2,1} \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}$ and $\operatorname{Aut}\left(\Gamma_{2,2}\right)=X_{2,2} \cong \mathrm{~S}_{4}$.
4.2. $s=3$. In this case, $H \cong \mathrm{D}_{12}$ and $X \leq \mathrm{S}_{12}$. We may take $H=\langle\alpha, \beta\rangle$ and $P=\left\langle\alpha^{3}\right\rangle \times\langle\beta\rangle$, where $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 5 & 6\end{array}\right)\left(\begin{array}{llllll}7 & 9 & 10 & 11 & 12\end{array}\right)$ and $\beta=$ $(112)(211)(310)(49)(58)(67)$. Set $\Sigma_{1}=\{1,4,9,12\}, \Sigma_{2}=\{2,5,8,11\}$ and $\Sigma_{3}=\{3,6,7,10\}$. It is easy to find all non-trivial normal subgroups of H as follows: $\langle\alpha\rangle,\left\langle\alpha^{2}\right\rangle,\left\langle\alpha^{3}\right\rangle,\left\langle\alpha^{2}, \beta\right\rangle,\left\langle\alpha^{2}, \alpha \beta\right\rangle$ and H itself. Noting that $\langle\alpha\rangle$ is a characteristic subgroup of H, it follows that $\cup_{1 \neq K \unlhd H} \mathrm{~N}_{\mathrm{S}_{12}}(K)=$ $\mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{2}\right\rangle\right) \cup \mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{3}\right\rangle\right)=\mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{2}\right\rangle\right) \cup \mathrm{C}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{3}\right\rangle\right)$.

Since $\tau \in I(12, H), \tau$ normalizes $P=\left\{\alpha^{3}, \beta, \alpha^{3} \beta, 1\right\}$ and $\tau \notin \mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{2}\right\rangle\right) \cup$ $\mathrm{C}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{3}\right\rangle\right)$. In particular, $\left(\alpha^{3}\right)^{\tau} \neq \alpha^{3}$. It follows that τ fixes, by conjugation, one of β and $\alpha^{3} \beta$, and interchanges the other one and α^{3}. Let $\delta=(912)(811)(710)$. Then $\alpha^{\delta}=\alpha$ and $\left(\alpha^{3} \beta\right)^{\delta}=\beta$; and so $\delta \in \mathrm{N}_{\mathrm{S}_{12}}(H) \cap$ $\mathrm{N}_{\mathrm{S}_{12}}(P)$. By replacing τ with τ^{δ} if necessary, we may assume that $\beta^{\tau}=\beta$ and $\left(\alpha^{3}\right)^{\tau}=\alpha^{3} \beta$. Recall the assumption that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$ before Subsection 4.1. Then $\beta^{\tau}=\beta$ yields $\tau^{\Sigma_{1}}=1$ or (49).

Assume first that τ interchanges Σ_{2} and Σ_{3}. Then, by $\beta^{\tau}=\beta$, we have $(211)^{\tau}(58)^{\tau}=\left(\beta^{\Sigma_{2}}\right)^{\tau}=\beta^{\Sigma_{3}}=(310)(67)$. Since

$$
\begin{aligned}
\alpha^{3} & =(14)(25)(36)(710)(811)(912), \\
\left(\alpha^{3}\right)^{\tau}=\alpha^{3} \beta & =(19)(28)(37)(412)(511)(610),
\end{aligned}
$$

we have $(25)^{\tau}(811)^{\tau}=(37)(610)$. Checking case by case implies that τ is one of the following four permutations:

$$
\begin{aligned}
& \tau_{3,1}=(49)(27)(611)(35)(810), \tau_{3,2}=(49)(26)(711)(38)(510) \\
& \tau_{3,3}=(49)(23)(1011)(57)(68), \tau_{3,3^{\prime}}=(49)(210)(311)(56)(78)
\end{aligned}
$$

Let $\gamma=(26)(35)(711)(810)$. Then $\gamma \in \mathrm{N}_{\mathrm{S}_{12}}(H)$ and $\tau_{3,3}^{\gamma}=\tau_{3,3^{\prime}}$. Thus we may assume that τ is one of $\tau_{3,1}, \tau_{3,2}$ and $\tau_{3,3}$ in this case.

Now let τ fix every Σ_{i} set-wise. By $\beta^{\tau}=\beta$ and $\left(\alpha^{3}\right)^{\tau}=\alpha^{3} \beta$, we have

$$
\begin{aligned}
& (112)^{\tau}(49)^{\tau}=(112)(49),(14)^{\tau}(912)^{\tau}=(19)(412), \\
& (211)^{\tau}(58)^{\tau}=(211)(58),(25)^{\tau}(811)^{\tau}=(28)(511), \\
& (310)^{\tau}(67)^{\tau}=(310)(67),(36)^{\tau}(710)^{\tau}=(37)(610) .
\end{aligned}
$$

It follows from $1^{\tau}=1$ that τ is one of the following four permutations:

$$
(49)(211)(67),(49)(211)(310),(49)(58)(310),(49)(58)(67)
$$

It is not difficult to show that the last three involutions above are conjugate under $\mathrm{N}_{\mathrm{S}_{12}}(H)$. Thus, in this case, we may assume that τ is one of

$$
\tau_{3,1^{\prime}}=(49)(211)(67), \tau_{3,2^{\prime}}=(49)(58)(67)
$$

Set $X_{3, \imath}=\left\langle\tau_{3, \imath}, H\right\rangle$ and $\Gamma_{3, \imath}=\operatorname{Cos}\left(X_{3, \imath}, H, \tau_{3, \imath}\right)$ for $\imath=1,1^{\prime}, 2,2^{\prime}, 3$.
Let $G_{3, \imath}=\left\{\sigma \in X_{3, \imath} \mid 1^{\sigma}=1\right\}$ and $S_{3, \imath}=G_{3, \imath} \cap H \tau_{3,2} H$. Then $\Gamma_{3, \imath} \cong$ $\operatorname{Cay}\left(G_{3, \imath}, S_{3, \imath}\right)$ and $G_{3, \imath}=\left\langle S_{3, \imath}\right\rangle$ for $\imath=1,1^{\prime}, 2,2^{\prime}, 3$, where

$$
\begin{array}{rlrl}
S_{3,1} & =\left\{\tau_{3,1}, \sigma_{3,1}, \sigma_{3,1}^{-1}\right\}, & \sigma_{3,1} & =(2114769)(35)(810), \\
S_{3,1^{\prime}} & =\left\{\tau_{3,1^{\prime}}, \sigma_{3,1^{\prime}}, \tau_{3,1^{\prime}} \sigma_{3,1^{\prime}} \tau_{3,1^{\prime}}\right\}, & \sigma_{3,1^{\prime}} & =(27)(411)(69), \\
S_{3,2} & =\left\{\tau_{3,2}, \sigma_{3,2}, \sigma_{3,2}^{-1}\right\}, & \sigma_{3,2} & =(269)(35810)(4711), \\
S_{3,2^{\prime}} & =\left\{\tau_{3,2^{\prime}}, \sigma_{3,2^{\prime}}, \alpha \sigma_{3,2^{\prime} \alpha^{-1}}\right\}, & \sigma_{3,2^{\prime}}=(38)(47)(512)=\alpha \tau_{3,2^{\prime}} \alpha^{-1}, \\
S_{3,3} & =\left\{\tau_{3,3}, \sigma_{3,3}, \sigma_{3,3}^{-1}\right\}, & \sigma_{3,3} & =(2810114731256) .
\end{array}
$$

It is easy to show that $G_{3,1} \cong \mathbb{Z}_{6}, G_{3,1^{\prime}} \cong \mathrm{D}_{6}, \Gamma_{3,1} \cong \Gamma_{3,1^{\prime}} \cong \mathrm{K}_{3,3}$ and $\operatorname{Aut}\left(\Gamma_{3,1}\right)=X_{3,1} \cong X_{3,1^{\prime}} \cong \mathrm{S}_{3} 乙 \mathbb{Z}_{2}$. Note that $G_{3,3}$ is a 2 -transitive permutation group of degree 11 (on $\Omega \backslash\{1\}$). Thus $X_{3,3}$ is a 3 -transitive permutation group of degree 12 . Let $\sigma=\tau_{3,3} \sigma_{3,3} \tau_{3,3} \sigma_{3,3}^{-1}$. Then $\sigma=$ $(23561091241187), \sigma^{\tau_{3,3}}=\sigma^{-1}$ and $\sigma^{\sigma_{3,3}}=\sigma^{8}$. Thus $\mathbb{Z}_{11} \cong\langle\sigma\rangle \triangleleft G_{3,3}$. Then $G_{3,3} \cong \mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$, and hence $X_{3,3}$ is sharply 3 -transitive on Ω. Then $X_{3,3} \cong \mathrm{PGL}(2,11)$ by [15, XI.2.6]. Thus we have the following lemma.

Lemma 4.2.1. $\Gamma_{3,1} \cong \Gamma_{3,1^{\prime}} \cong \mathrm{K}_{3,3}, G_{3,1} \cong \mathbb{Z}_{6}, G_{3,1^{\prime}} \cong \mathrm{D}_{6}$, $\operatorname{Aut}\left(\Gamma_{3,1}\right)=$ $X_{3,1} \cong X_{3,1^{\prime}} \cong S_{3} \imath \mathbb{Z}_{2}, G_{3,3} \cong \mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$ and $X_{3,3} \cong \operatorname{PGL}(2,11)$.

In the following we shall determine $X_{3,2}, X_{3,2^{\prime}}, G_{3,2}$ and $G_{3,2^{\prime}}$.
Lemma 4.2.2. $G_{3,2} \cong \mathbb{Z}_{4} \times \mathrm{S}_{4}$ and $G_{3,2^{\prime}} \cong \mathbb{Z}_{2}^{4} \rtimes \mathrm{~S}_{3}$.

Proof. Let $\eta=\sigma_{3,2}^{4}$ and $\rho=\sigma_{3,2}^{6} \tau_{3,2}$. We have $\eta=(269)(4711), \rho=$ (26)(49)(711) and $\eta \rho=(41196)$. Further

$$
\begin{aligned}
\langle\eta, \rho\rangle & =\left\langle(\eta \rho)^{2}, \eta, \rho^{(\eta \rho)^{2}}\right\rangle=\left\langle(\eta \rho)^{2},\left((\eta \rho)^{2}\right)^{\eta}\right\rangle \rtimes\left\langle\eta, \rho^{(\eta \rho)^{2}}\right\rangle \cong \mathrm{S}_{4}, \\
G_{3,2} & =\left\langle\tau_{3,2}, \sigma_{3,2}\right\rangle=\left\langle\sigma_{3,2}^{3}, \sigma_{3,2}^{4}, \sigma_{3,2}^{6} \tau_{3,2}\right\rangle=\left\langle\sigma_{3,2}^{3}\right\rangle \times\langle\eta, \rho\rangle \cong \mathbb{Z}_{4} \times \mathrm{S}_{4} .
\end{aligned}
$$

Let $\delta_{3,2^{\prime}}=\alpha \sigma_{3,2^{\prime}} \alpha^{-1}$. Then $\delta_{3,2^{\prime}}=(27)(312)(411)$. Set $M=\left\langle\sigma_{3,2^{\prime}}^{\sigma}\right| \sigma \in$ $\left.G_{3,2^{\prime}}\right\rangle$ and $B=\left\langle\tau_{3,2^{\prime}}, \delta_{3,2^{\prime}}^{\tau_{3,2}} \sigma_{3,2^{\prime}}\right\rangle$. Then $M \unlhd G_{3,2^{\prime}}$, and $B \cong \mathrm{~S}_{3}$ by calculation. Let $\pi_{1}=\sigma_{3,2,2^{\prime}}^{\tau_{3,2}}, \pi_{2}=\sigma_{3,2^{\prime}}^{\delta_{3,2^{\prime}}}$ and $\pi_{3}=\sigma_{3,2^{\prime}}^{\tau_{3,2} \delta_{3,2^{\prime}}}$. It is easily shown that $\left\langle\sigma_{3,2^{\prime}}, \pi_{1}, \pi_{2}, \pi_{3}\right\rangle \cong \mathbb{Z}_{2}^{4}$ and that $\sigma_{3,2^{\prime}}, \tau_{3,2^{\prime}}$ and $\delta_{3,2^{\prime}}$ normalize $\left\langle\sigma_{3,2^{\prime}}, \pi_{1}, \pi_{2}, \pi_{3}\right\rangle$. Then $M=\left\langle\sigma_{3,2^{\prime}}, \pi_{1}, \pi_{2}, \pi_{3}\right\rangle \cong \mathbb{Z}_{2}^{4}$. Noting that $M \cap B \unlhd B$ and each normal subgroup of B has order 1,3 or 6 , it follows that $M \cap B=1$. Hence $G_{3,2^{\prime}}=\left\langle\tau_{3,2^{\prime}}, \sigma_{3,2^{\prime}}, \delta_{3,2^{\prime}}\right\rangle=M B=M \rtimes B \cong \mathbb{Z}_{2}^{4} \rtimes \mathrm{~S}_{3}$.

Lemma 4.2.3. $X_{3,2} \cong X_{3,2^{\prime}} \cong \mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} \backslash \mathbb{Z}_{2}\right)$ and $\Gamma_{3,2} \cong \Gamma_{3,2^{\prime}}$.
Proof. By calculation, $\beta=\left(\alpha^{3} \tau_{3,2}\right)^{2}=\left(\alpha^{3} \tau_{3,2^{\prime}}\right)^{2}$. Thus $X_{3,2}=\left\langle\alpha, \tau_{3,2}\right\rangle$ and $X_{3,2^{\prime}}=\left\langle\alpha, \tau_{3,2^{\prime}}\right\rangle$.

Let $\mu=\alpha^{5}\left(\tau_{3,2} \alpha\right)^{2}\left(\alpha \tau_{3,2}\right)^{3} \alpha^{2} \tau_{3,2} \alpha^{2}$. Then $\mu=(38)(510), \tau_{3,2} \mu=\mu \tau_{3,2}$, $\mu \beta=\beta \mu$ and $\alpha \mu=(128956)(341011127)$. Set $N=\left\langle\mu^{\sigma} \mid \sigma \in X_{3,2}\right\rangle=$ $\left\langle\mu^{\alpha^{i}} \mid 1 \leq i \leq 12\right\rangle$. Then $N \triangleleft X_{3,2}$ and $N=\left\langle\mu, \mu^{\alpha}, \mu^{\alpha^{2}}, \mu^{\alpha^{3}}\right\rangle \cong \mathbb{Z}_{2}^{4}$. Let $\nu=\left(\alpha^{2} \tau_{3,2}\right)^{4}$ and $\omega=\alpha \tau_{3,2} \alpha^{4}\left(\tau_{3,2} \alpha\right)^{2} \alpha\left(\tau_{3,2} \alpha\right)^{4}$. Then $\nu=(185)(31012)$, $\omega=(27)(46)(911)$ and $\tau_{3,2}=(\alpha \mu)^{3} \nu \alpha \mu \omega \alpha \nu \alpha$. Thus

$$
\begin{gathered}
X_{3,2}=\left\langle\alpha, \tau_{3,2}\right\rangle=\langle\mu, \alpha \mu, \nu, \omega\rangle=N\langle\alpha \mu, \nu, \omega\rangle, \\
L:=\langle\alpha \mu, \nu, \omega\rangle=\left\langle(\alpha \mu)^{2},(\alpha \mu)^{3}, \nu, \omega, \omega^{\alpha \mu}\right\rangle=\left\langle(\alpha \mu)^{2} \nu,(\alpha \mu)^{3}, \nu, \omega, \omega^{\alpha \mu}\right\rangle \\
=\left(\left\langle\nu, \omega^{\alpha \mu}\right\rangle \times\left\langle(\alpha \mu)^{2} \nu^{-1}, \omega\right\rangle\right) \rtimes\left\langle(\alpha \mu)^{3}\right\rangle \cong \mathrm{S}_{3} \backslash \mathbb{Z}_{2} .
\end{gathered}
$$

Since $|N||L| /|N \cap L|=\left|X_{3,2}\right|=\left|G_{3,2}\right||H|=\left|\mathbb{Z}_{4} \times \mathrm{S}_{4}\right|\left|\mathrm{D}_{12}\right|=1152$, we have $N \cap L=1$. Thus $X_{3,2}=N \rtimes L \cong \mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} \backslash \mathbb{Z}_{2}\right)$.

The above argument for $X_{3,2}$ also holds for $X_{3,2^{\prime}}$ by replacing $\tau_{3,2}$ with $\tau_{3,2^{\prime}}$. It follows that $\alpha \mapsto \alpha ; \tau_{3,2} \mapsto \tau_{3,2^{\prime}}$ gives an isomorphism ϕ from $X_{3,2}$ to $X_{3,2^{\prime}}$. Then $X_{3,2} \cong X_{3,2^{\prime}} \cong \mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} \imath \mathbb{Z}_{2}\right)$. Since $\beta=\left(\alpha^{3} \tau_{3,2}\right)^{2}=\left(\alpha^{3} \tau_{3,2^{\prime}}\right)^{2}$, we know that $\beta^{\phi}=\beta$, and $H^{\phi}=H$. It is easy to verify that ϕ induces an isomorphism from $\Gamma_{3,2}=\operatorname{Cos}\left(X_{3,2}, H, \tau_{3,2}\right)$ to $\Gamma_{3,2^{\prime}}=\operatorname{Cos}\left(X_{3,2^{\prime}}, H, \tau_{3,2^{\prime}}\right)$.
4.3. $s=4$. In this case, $H \cong \mathrm{~S}_{4}, P \cong \mathrm{D}_{8}$ and $X \leq \mathrm{S}_{24}$. We may take $H=\langle\alpha, \beta\rangle$ and $P=\langle\alpha, \gamma\rangle$, where $\gamma=\left(\alpha^{2}\right)^{\beta}$ and $\alpha=(1234)(5678)(9101112)(13141516)(17181920)(21222324)$,
$\beta=(118)(211)(36)(415)(516)(710)(821)(922)(1217)(1324)(1419)(2023)$,
$\gamma=(123)(222)(321)(424)(519)(618)(717)(820)(913)(1016)(1115)(1214)$.

Then the three orbits of P on Ω are $\Sigma_{1}=\{1,2,3,4,21,22,23,24\}, \Sigma_{2}=$ $\{5,6,7,8,17,18,19,20\}$ and $\Sigma_{3}=\{9,10,11,12,13,14,15,16\}$. It is easy to
know that H has totally three non-trivial normal subgroups: $K=\left\langle\alpha^{2}, \gamma\right\rangle \cong$ $\mathbb{Z}_{2}^{2},\left\langle\alpha^{2}, \gamma, \alpha \beta\right\rangle \cong \mathrm{A}_{4}$ and H itself. Noting that K is a characteristic subgroup of H, we have $\cup_{1 \neq M \unlhd H} \mathrm{~N}_{\mathrm{S}_{24}}(M)=\mathrm{N}_{\mathrm{S}_{24}}(K)$.

Assume $\tau \in I(24, H)$. Then $\tau \in \mathrm{N}_{\mathrm{S}_{24}}(P) \backslash \mathrm{N}_{\mathrm{S}_{24}}(K)$. Noting that $\left\langle\alpha^{2}\right\rangle$ is the center of P, it follows that τ normalizes $\left\langle\alpha^{2}\right\rangle$, and so $\left(\alpha^{2}\right)^{\tau}=\alpha^{2}$. Since $K=\left\{1, \alpha^{2}, \gamma, \alpha^{2} \gamma\right\}$ and P contains totally 5 involutions, say, $\alpha^{2}, \gamma, \alpha \gamma$, $\alpha^{2} \gamma$ and $\alpha^{3} \gamma$, we have $\left\{\gamma, \alpha^{2} \gamma\right\}^{\tau}=\left\{\alpha \gamma, \alpha^{3} \gamma\right\}$. Recall the assumption that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$ before Subsection 4.1. We have

$$
\begin{aligned}
\gamma^{\Sigma_{1}} & =(123)(222)(321)(424), & & \left(\alpha^{2} \gamma\right)^{\Sigma_{1}}=(121)(224)(323)(422), \\
(\alpha \gamma)^{\Sigma_{1}} & =(122)(221)(324)(423), & & \left(\alpha^{3} \gamma\right)^{\Sigma_{1}}=(124)(223)(322)(421) .
\end{aligned}
$$

Then $\{21,23\}^{\tau}=\{22,24\}$, and hence $\tau^{\Sigma_{1}}$ is one of (24)(2122)(2324) and (24)(2124)(22 23). Thus, either $\gamma^{\tau}=\alpha^{3} \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha \gamma$ for $\tau^{\Sigma_{1}}=$ (24)(2122)(2324), or $\gamma^{\tau}=\alpha \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha^{3} \gamma$ for $\tau^{\Sigma_{1}}=(24)(2124)(2223)$.

Assume that τ interchanges Σ_{2} and Σ_{3}. Set $\Delta=\Sigma_{2} \cup \Sigma_{3}$ and consider the restrictions of $\gamma, \alpha^{2} \gamma, \alpha \gamma$ and $\alpha^{3} \gamma$ on Δ. Then

$$
\begin{aligned}
\gamma^{\Delta} & =(519)(618)(717)(820)(913)(1016)(1115)(1214), \\
\left(\alpha^{2} \gamma\right)^{\Delta} & =(517)(620)(719)(818)(915)(1014)(1113)(1216), \\
(\alpha \gamma)^{\Delta} & =(518)(617)(720)(819)(916)(1015)(1114)(1213), \\
\left(\alpha^{3} \gamma\right)^{\Delta} & =(520)(619)(718)(817)(914)(1013)(1116)(1215) .
\end{aligned}
$$

Considering all possible images of 5 under τ, it follows from $\left\{\gamma, \alpha^{2} \gamma\right\}^{\tau}=$ $\left\{\alpha \gamma, \alpha^{3} \gamma\right\}$ that one of the following eight cases occurs:

$$
\begin{aligned}
& 5^{\tau}=9, \quad\{17,19\}^{\tau}=\{14,16\} ; 5^{\tau}=10,\{17,19\}^{\tau}=\{13,15\} ; \\
& 5^{\tau}=11,\{17,19\}^{\tau}=\{14,16\} ; 5^{\tau}=12,\{17,19\}^{\tau}=\{13,15\} ; \\
& 5^{\tau}=13,\{17,19\}^{\tau}=\{10,12\} ; 5^{\tau}=14,\{17,19\}^{\tau}=\{9,11\} ; \\
& 5^{\tau}=15,\{17,19\}^{\tau}=\{10,12\} ; 5^{\tau}=16,\{17,19\}^{\tau}=\{9,11\} .
\end{aligned}
$$

It is easy to check that there are exactly two possible τ 's arising from each of the above eight cases. Then we get sixteen permutations, which are conjugate under $\mathrm{N}_{\mathrm{S}_{24}}(H)$ to one of the following two permutations:

$$
\begin{aligned}
& \tau_{4,2}=(24)(510)(69)(712)(811)(1319)(1418)(1517)(1620)(2122)(2324), \\
& \tau_{4,3}=(24)(59)(612)(711)(810)(1318)(1417)(1520)(1619)(2124)(2223) .
\end{aligned}
$$

Now assume that τ fixes every Σ_{i} set-wise. Consider the possible images of 5 and of 9 under τ. Then $5^{\tau} \in\{5,6,7,8\}$ and $9^{\tau} \in\{9,10,11,12\}$. If $\tau^{\Sigma_{1}}=$ (24)(2122)(2324), then $\gamma^{\tau}=\alpha^{3} \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha \gamma$, and we get sixteen permutations. If $\tau^{\Sigma_{1}}=(24)(2124)(2223)$, then $\gamma^{\tau}=\alpha \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha^{3} \gamma$, and we get another sixteen permutations. Further, these 32 permutations are conjugate under $\mathrm{N}_{\mathrm{S}_{24}}(H)$ to one of the following two permutations:

$$
\begin{aligned}
\tau_{4,1} & =(24)(56)(78)(910)(1112)(1416)(1820)(2122)(2324), \\
\tau_{4,4} & =(24)(56)(78)(910)(1112)(1315)(1719)(2124)(2223) .
\end{aligned}
$$

Set $X_{4, \imath}=\left\langle\tau_{4, \imath}, \alpha, \beta\right\rangle$ and $\Gamma_{4, \imath}=\operatorname{Cos}\left(X_{4, \imath}, H, \tau_{4, \imath}\right)$ for $\imath=1,2,3,4$. Let $G_{4, \imath}=\left\{\sigma \in X_{4, \imath} \mid 1^{\sigma}=1\right\}$ and $S_{4, \imath}=G_{4, \imath} \cap H \tau_{4,2} H$. Then $\Gamma_{4, \imath} \cong$ $\operatorname{Cay}\left(G_{4, \imath}, S_{4, \imath}\right)$ for $1 \leq \imath \leq 4$. By calculation, we have

$$
S_{4, \imath}=\left\{\tau_{4, \imath}, \sigma_{4, \imath}, \delta_{4, \imath}\right\}, G_{4, \imath}=\left\langle\tau_{4, \imath}, \sigma_{4, \imath}, \delta_{4, \imath}\right\rangle \text { for } 1 \leq \imath \leq 4
$$

where $\delta_{4,2}=\sigma_{4,2}^{-1}, \delta_{4,3}=\sigma_{4,3}^{-1}$ and

$$
\begin{aligned}
& \sigma_{4,1}=(224)(318)(413)(510)(620)(823)(1122)(1216)(1417), \\
& \delta_{4,1}=(27)(310)(424)(618)(813)(920)(1214)(1621)(1722), \\
& \sigma_{4,2}=(247151911221783166121821231095201413), \\
& \sigma_{4,3}=(247182123108316151961211221713)(59)(1420), \\
& \sigma_{4,4}=(224)(38)(411)(510)(620)(719)(1322)(1417)(1823), \\
& \delta_{4,4}=(217)(316)(424)(722)(813)(920)(1021)(1115)(1214) .
\end{aligned}
$$

It is easy to know $G_{4,1} \cong \mathrm{D}_{14}$. By [22], we have the following lemma.
Lemma 4.3.1. $G_{4,1} \cong \mathrm{D}_{14}, X_{4,1}=\operatorname{Aut}\left(\Gamma_{4,1}\right) \cong \operatorname{PGL}(2,7)$ and $\operatorname{Cay}\left(G_{4,1}, S_{4,1}\right)$ is isomorphic to the point-line incidence graph of the seven-point plane.

Lemma 4.3.2. $X_{4,2} \cong \operatorname{PGL}(2,23)$ and $G_{4,2} \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$.
Proof. Let $\sigma=\tau_{4,2} \sigma_{4,2}^{11}$. Then σ is a 23-cycle, $\sigma^{\tau_{4,2}}=\sigma^{-1}$ and $\sigma^{\sigma_{4,2}}=\sigma^{19}$. It follows that $G_{4,2}$ is a 2-transitive permutation group on $\Omega \backslash\{1\}$ and $G_{4,2}$ contains a normal regular subgroup $\langle\sigma\rangle \cong \mathbb{Z}_{23}$. Therefore, $G_{4,2} \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$. It implies that $X_{4,2}=H G_{4,2}$ is a sharply 3-transitive permutation group of degree 24 . Then $X_{4,2} \cong \operatorname{PGL}(2,23)$ by [15, XI.2.6].

Lemma 4.3.3. $X_{4,3} \cong \mathbb{Z}_{3}^{7} \rtimes \operatorname{PGL}(2,7)$ and $G_{4,3} \cong \mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}\right)$.
Proof. Let $\pi=\tau_{4,3} \sigma_{4,3}$. Set $\mu=\sigma_{4,3}^{2} \pi \sigma_{4,3}^{10} \pi^{2} \sigma_{4,3}^{2} \pi, \nu=\sigma_{4,3}^{2} \pi^{2} \sigma_{4,3}^{4} \pi \sigma_{4,3}^{7}$ and $\omega=\pi^{2} \sigma_{4,3}^{3}\left(\pi \sigma_{4,3}\right)^{3} \pi$. Then $\mu=(2610)(142024)$,

$$
\begin{aligned}
& \nu=(22015111218)(3816101417)(422624217)(59)(1323), \\
& \omega=(222157241312)(314198101617)(461821112023),
\end{aligned}
$$

$\omega^{\nu}=\omega^{3}, \tau_{4,3}=\nu^{2} \omega \nu$ and $\sigma_{4,3}=\mu^{2} \nu \mu \nu^{4} \mu^{2} \nu^{2} \omega^{2} \mu^{2}$. Thus $\langle\omega\rangle \triangleleft\langle\nu, \omega\rangle \cong$ $\mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}$, and $G_{4,3}=\left\langle\tau_{4,3}, \sigma_{4,3}\right\rangle=\langle\mu, \nu, \omega\rangle=M\langle\omega, \nu\rangle$, where $M=\left\langle\mu^{\sigma}\right| \sigma \in$ $\langle\omega, \nu\rangle\rangle \triangleleft G_{4,3}$. By calculation, we have $M=\left\langle\mu, \mu^{\nu^{2}}, \mu^{\nu^{3}}, \mu^{\nu^{4}}, \mu^{\nu^{5}}, \mu^{\omega^{5}}\right\rangle \cong \mathbb{Z}_{3}^{6}$. Noting that $\langle\omega, \nu\rangle$ has no nontrivial normal subgroups of order a power of 3 , it yields $M \cap\langle\omega, \nu\rangle=1$. Thus $G_{4,3}=M \rtimes\langle\omega, \nu\rangle \cong \mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}\right)$.

Let μ, ν and ω be as above. Then $\mu=\left(\left(\tau_{4,3} \beta\right)^{8}\left(\left(\tau_{4,3} \beta\right)^{8}\right)^{\alpha}\right)^{\alpha \beta \alpha}$. Set $N=\left\langle\mu, \mu^{\alpha}, \mu^{\beta}, \mu^{\tau_{4,3}}, \mu^{\alpha^{2}}, \mu^{\alpha^{3}}, \mu^{\alpha \beta}\right\rangle$. It is easily shown that $N \cong \mathbb{Z}_{3}^{7}$, and further that, for each ε of the seven generators of N, the conjugations of ε by α, β and $\tau_{4,3}$ are contained in N. It implies that $N=\left\langle\mu^{\sigma} \mid \sigma \in X_{4,3}\right\rangle \triangleleft X_{4,3}$ and $M<N$. Suppose that $\nu^{2} \in N$. Then $N=M \times\left\langle\nu^{2}\right\rangle \triangleleft G_{4,3}$. It follows that $\left\langle\nu^{2}\right\rangle \triangleleft\langle\nu, \omega\rangle$. Noting that $\langle\omega\rangle \triangleleft\langle\nu, \omega\rangle$, it implies that ν^{2} centralizes ω. But $\omega^{\nu^{2}}=\omega^{9}=\omega^{2}$, which is a contradiction. Thus $\nu^{2} \notin N$.

Consider the normal quotient $\left(\Gamma_{4,3}\right)_{N}$ of $\Gamma_{4,3}$ induced by N. Then $\left(\Gamma_{4,3}\right)_{N}$ is a cubic $\left(X_{4,3} / N, 4\right)$-transitive graph on 14 vertices. It follows from [22] that $\left(\Gamma_{4,3}\right)_{N}$ is (isomorphic to) the point-line incidence graph of the sevenpoint plane. Thus we conclude that $X_{4,3} / N \cong \operatorname{PGL}(2,7)$. In particular, $\left|X_{4,3}\right|=2^{4} \cdot 3^{8} \cdot 7$, and $N\left\langle\nu^{2}\right\rangle$ is a Sylow 3-subgroup of $X_{4,3}$. Noting that $N \cap\left\langle\nu^{2}\right\rangle=1$, it follows from Gaschütz' Theorem (see [1, (10.4)] for example) that there is $L \leq X_{4,3}$ with $X_{4,3}=N L$ and $N \cap L=1$. Thus $L \cong X_{4,3} / N \cong$ $\operatorname{PGL}(2,7)$ and $X_{4,3}=N \rtimes L \cong \mathbb{Z}_{3}^{7} \rtimes \operatorname{PGL}(2,7)$.

Lemma 4.3.4. $X_{4,4}=\mathrm{S}_{24}$ and $G_{4,4} \cong \mathrm{~S}_{23}$.
Proof. Recall that $G_{4,4}=\left\langle\tau_{4,4}, \sigma_{4,4}, \delta_{4,4}\right\rangle$ is the stabilizer of 1 in $X_{4,4}$ acting on Ω. It is easy to see that $G_{4,4}$ is transitive on $\Omega \backslash\{1\}$. Then $X_{4,4}$ is a 2 -transitive, and hence primitive on Ω. Let $\rho=\tau_{4,4}^{\alpha} \beta \sigma_{4,4}$. Then $\rho \in X_{4,4}$ and $X_{4,4}$ contains a 7 -cycle $\rho^{24}=(51469242110)$. Noting that $\sigma_{4,4}$ is an odd permutation, $X_{4,4}=\mathrm{S}_{24}$ by [9, Theorem 3.3 E$]$, and so $G_{4,4} \cong \mathrm{~S}_{23}$.
4.4. $s=5$. For the completeness, this paper involves the following content constructing six known 5 -transitive Cayley graphs (see [7] for example).

In this case $H \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}, P \cong \mathrm{D}_{8} \times \mathbb{Z}_{2}$ and $X \leq \mathrm{S}_{48}$. Since all isomorphic regular groups on $\Omega=\{1,2, \cdots, 48\}$ are conjugate in S_{48}, we may take $H=\langle\alpha, \beta, \gamma\rangle \times\langle\delta\rangle$ and $P=\langle\alpha, \beta, \delta\rangle$, where $\alpha^{2}=\beta^{\gamma} \beta$ and

$$
\begin{aligned}
& \alpha=(1234)(5678)(9101112)(13141516)(17181920)(21222324) \\
& \text { (25 } 2627 \text { 28) (29 } 303132 \text {)(33 } 343536 \text {)(37 } 383940 \text {) } \\
& \text { (41 } 424344)(45464748) \text {, } \\
& \beta=(18)(27)(36)(45)(916)(1015)(1114)(1213)(1724)(1823)(1922) \\
& (2021)(2532)(2631)(2730)(2829)(3340)(3439)(3538) \\
& \text { (36 37) (41 48) (42 47) (43 46) (44 45), } \\
& \gamma=(11733)(23920)(32438)(43423)(53721)(61940)(73618) \\
& \text { (82235)(92541)(104728)(113246)(124231) } \\
& \text { (13 } 45 \text { 29) (14 } 2748)(154426)(163043) \text {, } \\
& \delta=(19)(210)(311)(412)(513)(614)(715)(816)(1725)(1826)(1927) \\
& (2028)(2129)(2230)(2331)(2432)(3341)(3442)(3543) \\
& (3644)(3745)(3846)(3947)(4048) \text {. }
\end{aligned}
$$

Then P has three orbits on $\Omega=\{1,2, \cdots, 48\}$, say, $\Sigma_{i}=\{16(i-1)+j \mid 1 \leq$ $j \leq 16\}$, where $i=1,2$ and 3 . It is easy to know that H has totally eight nontrivial normal subgroups, say $\langle\delta\rangle,\left\langle\alpha^{2}, \beta\right\rangle,\left\langle\alpha^{2}, \beta, \delta\right\rangle,\langle\beta, \gamma\rangle,\langle\beta, \gamma, \delta\rangle,\langle\alpha, \beta, \gamma\rangle$, $\langle\alpha \delta, \beta, \gamma\rangle$ and H itself, which are isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{2}^{2}, \mathbb{Z}_{2}^{3}, \mathrm{~A}_{4}, \mathrm{~A}_{4} \times \mathbb{Z}_{2}, \mathrm{~S}_{4}$, S_{4} and $\mathrm{S}_{4} \times \mathbb{Z}_{2}$, respectively. Note that $\langle\delta\rangle$ is a characteristic subgroup of H and $\left\langle a^{2}, \beta\right\rangle$ is a characteristic subgroup of $\langle\alpha, \beta, \gamma\rangle$ and of $\langle\alpha \delta, \beta, \gamma\rangle$. It yields $\cup_{1 \neq K \triangleleft H} \mathrm{~N}_{\mathrm{S}_{48}}(K)=\mathrm{N}_{\mathrm{S}_{48}}(\langle\delta\rangle) \cup \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta\right\rangle\right) \cup \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right)$.

Let $\tau \in I(48, H)$. Then $\tau \in \mathrm{N}_{\mathrm{S}_{48}}(P) \backslash\left(\mathrm{N}_{\mathrm{S}_{48}}(\langle\delta\rangle) \cup \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta\right\rangle\right) \cup\right.$ $\mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right)$). Since τ normalizes P, we know that τ normalizes the

Frattini subgroup $\Phi(P)=\left\langle\alpha^{2}\right\rangle$ and the center $Z(P)=\left\{1, \alpha^{2}, \delta, \alpha^{2} \delta\right\}$ of P. It follows that $\left(\alpha^{2}\right)^{\tau}=\alpha^{2}, \delta^{\tau}=\alpha^{2} \delta$, and hence $\beta^{\tau} \notin\left\langle\alpha^{2}, \beta, \delta\right\rangle$ as $\tau \notin \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right)$. Considering the involutions in P, we have $\beta^{\tau} \in$ $\left\{\alpha \beta, \alpha^{3} \beta, \alpha \beta \delta, \alpha^{3} \beta \delta\right\}$. Let

$$
\begin{aligned}
\iota_{1}= & (24)(57)(1012)(1315)(1719)(2224)(2527)(3032)(3338) \\
& (3437)(3540)(3639)(4146)(4245)(4348)(4447), \\
\iota_{2}= & (210)(412)(513)(715)(1826)(2028)(2129)(2331)(3442) \\
& (3644)(3745)(3947) .
\end{aligned}
$$

Then $\iota_{1}, \iota_{2} \in \mathrm{~N}_{\mathrm{S}_{48}}(H) \cap \mathrm{N}_{\mathrm{S}_{48}}(P) \cap \mathrm{C}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right),(\alpha \beta)^{\iota_{1}}=\alpha^{3} \beta,(\alpha \beta \delta)^{\iota_{1}}=$ $\alpha^{3} \beta \delta$ and $(\alpha \beta)^{\iota_{2}}=\alpha \beta \delta$. Further, both ι_{1} and ι_{2} fix every P-orbit set-wise. Thus, replacing τ with $\tau^{\iota_{1}}, \tau^{\iota_{2}}$ or $\tau^{\iota_{2} \iota_{1}}$ if necessary, we may assume $\beta^{\tau}=\alpha \beta$. Then $\beta=\beta^{\tau^{2}}=\alpha^{\tau} \beta^{\tau}=a^{\tau} \alpha \beta$, and hence $\alpha^{\tau}=\alpha^{-1}$.

Recall the assumption that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$ before Subsection 4.1. Then $\left(\alpha^{2}\right)^{\tau}=\alpha^{2}$ yields $3^{\tau}=3, \delta^{\tau}=\alpha^{2} \delta$ yields $9^{\tau}=11$ and $\beta^{\tau}=\alpha \beta$ yields $8^{\tau}=7$. It follows that $5^{\tau}=6,4^{\tau}=2,16^{\tau}=13,14^{\tau}=15,10^{\tau}=10$ and $12^{\tau}=12$. Thus $\tau^{\Sigma_{1}}=(24)(56)(78)(911)(1316)(1415)$.

Note that $Z(P)$ has eight orbits on $\Omega \backslash \Sigma_{1}$ as follows:

$$
\begin{aligned}
& \Sigma_{21}=\{17,19,25,27\}, \quad \Sigma_{22}=\{18,20,26,28\}, \\
& \Sigma_{23}=\{21,23,29,31\}, \Sigma_{24}=\{22,24,30,32\}, \\
& \Sigma_{31}=\{33,35,41,43\}, \Sigma_{32}=\{34,36,42,44\}, \\
& \Sigma_{33}=\{37,39,45,47\}, \Sigma_{34}=\{38,40,46,48\},
\end{aligned}
$$

which form a τ-invariant partition of $\Sigma_{2} \cup \Sigma_{3}$. Further, we have

$$
\Sigma_{i 1}^{\beta}=\Sigma_{i 4}, \Sigma_{i 2}^{\beta}=\Sigma_{i 3}, \Sigma_{i 1}^{\alpha \beta}=\Sigma_{i 3}, \Sigma_{i 2}^{\alpha \beta}=\Sigma_{i 4}, \text { for } i=2,3
$$

Assume that τ fixes every Σ_{i} set-wise. It follows from $\beta^{\tau}=\alpha \beta$ that one of the following four cases occurs:

$$
\begin{aligned}
& \Sigma_{21}^{\tau}=\Sigma_{21}, \Sigma_{22}^{\tau}=\Sigma_{22}, \Sigma_{23}^{\tau}=\Sigma_{24}, \Sigma_{31}^{\tau}=\Sigma_{31}, \Sigma_{32}^{\tau}=\Sigma_{32}, \Sigma_{33}^{\tau}=\Sigma_{34} ; \\
& \Sigma_{21}^{\tau}=\Sigma_{21}, \Sigma_{22}^{\tau}=\Sigma_{22}, \Sigma_{23}^{\tau}=\Sigma_{24}, \Sigma_{33}^{\tau}=\Sigma_{33}, \Sigma_{34}^{\tau}=\Sigma_{34}, \Sigma_{31}^{\tau}=\Sigma_{32} ; \\
& \Sigma_{23}^{\tau}=\Sigma_{23}, \Sigma_{24}^{\tau}=\Sigma_{24}, \Sigma_{21}^{\tau}=\Sigma_{22}, \Sigma_{31}^{\tau}=\Sigma_{31}, \Sigma_{32}^{\tau}=\Sigma_{32}, \Sigma_{33}^{\tau}=\Sigma_{34} ; \\
& \Sigma_{23}^{\tau}=\Sigma_{23}, \Sigma_{24}^{\tau}=\Sigma_{24}, \Sigma_{21}^{\tau}=\Sigma_{22}, \Sigma_{33}^{\tau}=\Sigma_{33}, \Sigma_{34}^{\tau}=\Sigma_{34}, \Sigma_{31}^{\tau}=\Sigma_{32} .
\end{aligned}
$$

Combining with $\delta^{\tau}=\alpha^{2} \delta$, each case gives 4 choices of $\tau^{\Sigma_{2} \cup \Sigma_{3}}$. Thus we get 16 possible τ 's, which are conjugate under $\mathrm{N}_{\mathrm{S}_{48}}(H)$ to one of the following two permutations:

$$
\begin{aligned}
\tau_{5,1}= & (24)(56)(78)(911)(1316)(1415)(1720)(1819)(2123)(2526)(2728) \\
& (3032)(3336)(3435)(3739)(4142)(4344)(4648), \text { or } \\
\tau_{5,2}= & (24)(56)(78)(911)(1316)(1415)(1719)(2124)(2223)(2628)(2930) \\
& (3132)(3335)(3740)(3839)(4244)(4546)(4748) .
\end{aligned}
$$

Now assume that $\Sigma_{2}^{\tau}=\Sigma_{3}$. Then one of the following four cases holds:

$$
\begin{gathered}
\Sigma_{21}^{\tau}=\Sigma_{31}, \Sigma_{22}^{\tau}=\Sigma_{32}, \Sigma_{23}^{\tau}=\Sigma_{34}, \Sigma_{24}^{\tau}=\Sigma_{33} ; \\
\Sigma_{21}^{\tau}=\Sigma_{32}, \Sigma_{22}^{\tau}=\Sigma_{31}, \Sigma_{23}^{\tau}=\Sigma_{33}, \Sigma_{24}^{\tau}=\Sigma_{34} ; \\
\Sigma_{21}^{\tau}=\Sigma_{33}, \Sigma_{22}^{\tau}=\Sigma_{34}, \Sigma_{23}^{\tau}=\Sigma_{32}, \Sigma_{24}^{\tau}=\Sigma_{31} ; \\
\Sigma_{21}^{\tau}=\Sigma_{34}, \Sigma_{22}^{\tau}=\Sigma_{33}, \Sigma_{23}^{\tau}=\Sigma_{31}, \Sigma_{24}^{\tau}=\Sigma_{32}
\end{gathered}
$$

Further, each case gives four choices of $\tau^{\Sigma_{2} \cup \Sigma_{3}}$, and then we get 16 possible τ 's, which are conjugate under $\mathrm{N}_{\mathrm{S}_{48}}(H)$ to one of the following permutations:

$$
\begin{aligned}
\tau_{5,3}= & (24)(56)(78)(911)(1316)(1415)(1735)(1834)(1933)(2036) \\
& (2140)(2239)(2338)(2437)(2541)(2644) \\
& (2743)(2842)(2946)(3045)(3148)(3247), \\
\tau_{5,4}= & (24)(56)(78)(911)(1316)(1415)(1734)(1833)(1936)(2035) \\
& (2137)(2240)(2339)(2438)(2544)(2643) \\
& (2742)(2841)(2947)(3046)(3145)(3248), \\
\tau_{5,5}= & (24)(56)(78)(911)(1316)(1415)(1745)(1848)(1947)(2046) \\
& (2142)(2241)(2344)(2443)(2539)(2638) \\
& (2737)(2840)(2936)(3035)(3134)(3233), \\
\tau_{5,6}= & (24)(56)(78)(911)(1316)(1415)(1746)(1845)(1948)(2047) \\
& (2141)(2244)(2343)(2442)(2540)(2639) \\
& (2738)(2837)(2935)(3034)(3133)(3236) .
\end{aligned}
$$

Set $X_{5, \imath}=\left\langle\alpha, \beta, \delta, \gamma, \tau_{5, \imath}\right\rangle, \Gamma_{5, \imath}=\operatorname{Cos}\left(X_{5, \imath}, H, \tau_{5, \imath}\right), G_{5, \imath}=\left\{\sigma \in X_{5, \imath} \mid 1^{\sigma}=\right.$ $1\}$ and $S_{5, \imath}=\left\{\sigma \in H \tau_{5,2} H \mid 1^{\sigma}=1\right\}, \imath=1,2,3,4,5,6$. Then $\Gamma_{5, \imath} \cong$ $\operatorname{Cay}\left(G_{5,2}, S_{5,2}\right)$. By calculation, $S_{5,2}=\left\{\tau_{5,2}, \sigma_{5,2}, \delta_{5, \imath}\right\}$ and $G_{5, \imath}=\left\langle\tau_{5,2}, \sigma_{5, \imath}, \delta_{5, \imath}\right\rangle$ for $1 \leq \imath \leq 6$, where $\delta_{5, \jmath}=\sigma_{5, \jmath}^{-1}$ for $\jmath \geq 3$, and

$$
\begin{aligned}
\sigma_{5,1}= & (224)(337)(47)(519)(834)(914)(1027)(1142)(1332)(1645)(1821) \\
& (2033)(2338)(2530)(2846)(3141)(3639)(4348)=\gamma \alpha^{2} \tau_{5,1} \beta \gamma \alpha, \\
\delta_{5,1}= & (27)(320)(435)(538)(621)(916)(1129)(1246)(1343)(1428)(1739) \\
& (1823)(2434)(2542)(2730)(3247)(3637)(4148)=\alpha \beta \gamma \tau_{5,1} \gamma, \\
\sigma_{5,2}= & (27)(321)(438)(535)(620)(916)(1128)(1243)(1346)(1429)(1724) \\
& (1823)(1936)(2237)(2745)(3044)(4148)(4247)=\alpha \beta \gamma \tau_{5,2} \alpha \gamma, \\
\delta_{5,2}= & (219)(334)(47)(524)(837)(914)(1032)(1145)(1327)(1642)(1840) \\
& (2135)(2530)(2643)(2831)(2948)(3338)(3639)=\alpha^{2} \delta \gamma \tau_{5,2} \gamma \alpha \delta, \\
\sigma_{5,3}= & (24191836402221863423392033735524331738)(914454825 \\
& 41302647314443101512324613272911422816)=\delta \gamma^{2} \tau_{5,3}^{2} \delta, \\
\sigma_{5,4}^{2}= & (242420863721334331723393851935)(91442461015122748 \\
& 252811452647413043133231442916)(1836)(2240)=\alpha \gamma \tau_{5,4} \gamma \alpha, \\
\sigma_{5,5}= & (254402510124136233015482438442634320274637682142 \\
& 149162822)(733451129391847311935324317)=\beta \gamma \tau_{5,5} \gamma \delta, \\
\sigma_{5,6}= & (254332746193542112837321251541227404731362345149 . \\
& 1629243830101248346820442617)(18324339)=\delta \alpha \beta \gamma^{2} \tau_{5,6} \gamma^{2} \alpha^{3} .
\end{aligned}
$$

In the following we determine $X_{5, \imath}$ and $G_{5, \imath}$. Noting that $\alpha, \beta, \delta, \gamma$ and $\tau_{5, \imath}$ are all even permutations, we have $G_{5, \imath} \leq X_{5, \imath} \leq \mathrm{A}_{48}$ for $1 \leq \imath \leq 6$.

Lemma 4.4.1. $G_{5,1} \cong\left(\mathbb{Z}_{7} \times \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,1} \cong(\operatorname{PSL}(2,7) \times$ $\operatorname{PSL}(2,7)) \rtimes \mathbb{Z}_{2}^{2}$.

Proof. Let $\mu=\left(\delta_{5,1}^{\tau_{5,1}} \sigma_{5,1}\right)^{3}$. Then

$$
\mu=(2435724834)(3332037391736)(523216183819),
$$

and $\mu^{\tau_{5,1}}=\mu^{-1}, \mu^{\sigma_{5,1}}=\mu^{-1}, \mu^{\delta_{5,1}}=\mu^{-1}$. Then $\langle\mu\rangle \triangleleft G_{5,1}$. Further, $\delta_{5,1}=\left(\left(\sigma_{5,1} \delta_{5,1}\right)^{5} \tau_{5,1}\right)^{2}\left(\sigma_{5,1} \delta_{5,1}\right)^{2} \tau_{5,1}$. Thus

$$
G_{5,1}=\left\langle\tau_{5,1}, \sigma_{5,1}, \delta_{5,1}\right\rangle=\left\langle\mu, \mu \sigma_{5,1} \delta_{5,1}, \tau_{5,1}\right\rangle=\langle\mu\rangle\left\langle\mu \sigma_{5,1} \delta_{5,1}, \tau_{5,1}\right\rangle
$$

Let $\nu=\mu \sigma_{5,1} \delta_{5,1}, \omega=\tau_{5,1} \tau_{5,1}^{\nu}, N=\langle\nu, \omega\rangle$ and $L=\left\langle\nu, \omega, \tau_{5,1}\right\rangle$. Then

$$
\begin{aligned}
\nu= & (9281246141645)(10304229112527)(13473243413148), \\
\omega= & (911)(1012)(1315)(1416)(2527)(2628)(2931)(3032)(4143) \\
& (4244)(4547)(4648) .
\end{aligned}
$$

Further, $\nu^{\tau_{5,1}}=\nu \omega, \tau_{5,1}$ centralizes ω and μ centralizes N; in particular, $L=N \rtimes\left\langle\tau_{5,1}\right\rangle$ and hence $G_{5,1}=(\langle\mu\rangle \times N) \rtimes\left\langle\tau_{5,1}\right\rangle$. Note that $N=\left\langle\nu^{4}, \omega\right\rangle$ has the same presentation as $\operatorname{PSL}(2,7)$. Then $N \cong \operatorname{PSL}(2,7)$ (see [8] for example), and hence $G_{5,1} \cong\left(\mathbb{Z}_{7} \times \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$.

Set $M=\left\langle N, N^{\delta}\right\rangle$. Then $M=\left\langle\nu, \omega, \nu^{\delta}, \omega^{\delta}\right\rangle=N \times N^{\delta}$ and $\left|X_{5,1}: M\right|=$ $\left|X_{5,1}\right| /|M|=\left|G_{5,1}\right||H| /|M|=4$. Considering the transitive permutation representation of $X_{5,1}$ on the right cosets of M, we have $X_{5,1} / \operatorname{Core}_{X_{5,1}}(M) \lesssim$ S_{4}. It follows that $M \triangleleft X_{5,1}$. It is easy to know that M has exactly two orbits, say $\Delta=\{i+16 j \mid 1 \leq i \leq 8, j=0,1,2\}$ and $\Theta=\Omega \backslash \Delta$. Further, $\Delta^{\delta}=\Theta$; in particular, $\delta \notin M$. Consider the restrictions M^{Δ} and M^{Θ} of M on Δ and Θ, respectively. It follows that $M^{\Delta}=N^{\delta} \leq \operatorname{Alt}(\Delta)$ and $M^{\Theta}=N \leq \operatorname{Alt}(\Theta)$. Let $\rho=\tau_{5,1}^{\nu}$. Then $\nu^{\rho}=\omega \nu, \omega^{\rho}=\omega$ and $\delta \rho=\rho \delta$. By calculation, $\rho^{\Delta}=(24)(56)(78)(1720)(1819)(2123)(3336)(3435)(3739)$ and $\rho^{\Theta}=(1012)(1314)(1516)(2528)(2627)(2931)(4144)(4243)(4547)$ are odd permutations. Then $\rho \notin M,\langle N, \rho\rangle=N\langle\rho\rangle \cong \operatorname{PGL}(2,7),\left\langle N^{\delta}, \rho\right\rangle=$ $N^{\delta}\langle\rho\rangle \cong \operatorname{PGL}(2,7)$ and $X_{5,1}=M \rtimes\langle\rho, \delta\rangle \cong(\operatorname{PSL}(2,7) \times \operatorname{PSL}(2,7)) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.2. $G_{5,2} \cong\left(\mathrm{~A}_{23} \times \mathrm{A}_{24}\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,2} \cong\left(\mathrm{~A}_{24} \times \mathrm{A}_{24}\right) \rtimes \mathbb{Z}_{2}^{2}$.
Proof. Let $\mu=\sigma_{5,2} \tau_{5,2}$ and $\nu=\delta_{5,2} \tau_{5,2}$. Then $\mu^{\tau_{5,2}}=\mu^{-1}, \nu^{\tau_{5,2}}=\nu^{-1}$ and $L:=\langle\mu, \nu\rangle \triangleleft G_{5,2}=\langle\mu, \nu\rangle\left\langle\tau_{5,2}\right\rangle$, where

$$
\begin{aligned}
\mu= & (28743938)(32419361721)(53335620)(91345274616112628) \\
& (1243)(143042484147442915)(1822403723)(3132), \\
\nu= & (21719484018377)(334)(5213339363835246)(91514114645) \\
& (103126432832)(1327164442)(2223)(2529474830) .
\end{aligned}
$$

It is easy to know that L has two orbits, say $\Delta_{1}=\Delta \backslash\{1\}$ and Θ on $\Omega \backslash\{1\}$, where Δ and Θ are given as in Lemma 4.4.1. Consider the restrictions of μ and ν on Δ_{1} and Θ. We know that $\mu^{\Delta_{1}}$ and $\nu^{\Delta_{1}}$ are even permutations (on
Δ_{1}), μ^{Θ} and ν^{Θ} are even permutations (on Θ). It implies $L \leq L^{\Delta_{1}} \times L^{\Theta} \leq$ $\operatorname{Alt}\left(\Delta_{1}\right) \times \operatorname{Alt}(\Theta) \cong \mathrm{A}_{23} \times \mathrm{A}_{24}$. By calculation,

$$
\begin{aligned}
& \mu^{\Delta_{1}} \nu^{\Delta_{1}}=(24078)(36202134)(4361938173324)(53935)(18233722), \\
& \mu^{\Delta_{1}} \nu^{\Delta_{1}} \mu^{\Delta_{1}}=(23740417353319)(320)(538213424396), \\
& \left(\mu^{\Delta_{1}} \nu^{\Delta_{1}}\right)^{4}=(33421206)(4173633192438)(53935), \\
& \left((\mu \nu \mu)^{8} \nu\right)^{36}=(5352436383339)(1327164442) .
\end{aligned}
$$

It follows that $L^{\Delta_{1}}$ is 2 -transitive on Δ_{1} and contains a 3 -cycle (53935). Then $L^{\Delta_{1}}=\operatorname{Alt}\left(\Delta_{1}\right) \cong \mathrm{A}_{23}$ by [9, Thorem 3.3A]. A similar argument yields $L^{\Theta}=\operatorname{Alt}(\Theta) \cong \mathrm{A}_{24}$. Further, L contains a 7 -cycle $\iota=\left(\begin{array}{l}5 \\ 35 \\ 2436383339)\end{array}\right.$ and a 5-cycle $\kappa=(1327164442)$. Since $\iota \in L^{\Delta_{1}}$ and $\kappa \in L^{\Theta}$, we have $\iota^{\sigma}=$ $\iota^{\sigma^{\Delta_{1}}}$ and $\kappa^{\sigma}=\kappa^{\sigma^{\Theta}}$ for any $\sigma \in L$. Take $\epsilon=(53524)(3338)(3639) \in L^{\Delta_{1}}$ and $\varepsilon=(131644)$. Then $\iota \iota^{\epsilon}=(52435) \in L$ and $\kappa \kappa^{\varepsilon}=(134416) \in L$. Consider the conjugations of (52435) and (134416) under $L^{\Delta_{1}}$ and L^{Θ}, respectively. We conclude that L contains all 3 -cycles of $L^{\Delta_{1}}$ and of L^{Θ}. Then $L^{\Delta_{1}} \leq L$ and $L^{\Theta} \leq L$, so $L=L^{\Delta_{1}} \times L^{\Theta}=\operatorname{Alt}\left(\Delta_{1}\right) \times \operatorname{Alt}(\Theta) \cong$ $\mathrm{A}_{23} \times \mathrm{A}_{24}$. Note that $\tau_{5,2}^{\Delta_{1}}$ and $\tau_{5,2}^{\Theta}$ are odd permutations. Then $\tau_{5,2} \notin L$. Thus $G_{5,2}=L\left\langle\tau_{5,2}\right\rangle=L \rtimes\left\langle\tau_{5,2}\right\rangle \cong\left(\mathrm{A}_{23} \times \mathrm{A}_{24}\right) \rtimes \mathbb{Z}_{2}$.

Set $N=\left\langle\mu^{\Theta}, \nu^{\Theta}\right\rangle$ and $M=\left\langle N, N^{\delta}\right\rangle=N \times N^{\delta}$. A similar argument as in the proof of Lemma 4.4.1 leads to $\left|X_{5,2}: M\right|=4$ and $M \triangleleft X_{5,2}$. Let $o=$ $(1012)(2527), \pi=(56)(78)(1719)(2124)(2223)(3335)(3740)(3839)$ and $\varpi=(911)(1316)(1415)(2527)(2628)(2930)(3132)(4244)(4546)(4748)$. We have $\pi \in M^{\Delta}=N^{\delta}$ and $o, \varpi \in M^{\Theta}=N$, and so $\rho:=(24)(1012)=$ $\tau_{5,2} 0 \pi \varpi \in X_{5,2}$. It is easy to see that $\rho, \delta \notin M$ and $\rho \delta=\delta \rho$. Then $X_{5,2}=M \rtimes\langle\rho, \delta\rangle \cong\left(\mathrm{A}_{24} \times \mathrm{A}_{24}\right) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.3. $G_{5,3} \cong\left(\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times \operatorname{PSL}(2,23)\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,3} \cong(\operatorname{PSL}(2,23) \times$ $\operatorname{PSL}(2,23)) \rtimes \mathbb{Z}_{2}^{2}$.

Proof. Let $\omega=\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{12}, \mu=\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{23}, v=\left(\left(\tau_{5,3} \sigma_{5,3}\right)^{6}\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{23}\right)^{12}$, $\nu=\left(\left(\tau_{5,3} \sigma_{5,3}\right)^{6}\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{23}\right)^{11}$ and $\rho=\omega^{5} \tau_{5,3}$. By calculation, we have

$$
\begin{aligned}
& \omega=(261938353618212433740342017233354739228), \\
& v=(2319371733518342336)(6222420354038839721), \\
& \mu=(94332472711164215142813)(104648444145123025263129), \\
& \nu=(91027321625114315454112)(132830483142264629474414), \\
& \rho=(220)(335)(57)(634)(817)(1821)(1940)(2223)(2436)(3339)(3738) \\
&(911)(1316)(1415)(2541)(2644)(2743)(2842)(2946)(3045)(3148)(3247), \\
& G_{5,3}=\left\langle\tau_{5,3}, \sigma_{5,3}\right\rangle=\left\langle\tau_{5,3}, \tau_{5,3} \sigma_{5,3}, \tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right\rangle=\left\langle\rho,\left(\tau_{5,3} \sigma_{5,3}^{6}\right)^{6}, \mu, \omega\right\rangle \\
&=\left\langle\rho,\left(\tau_{5,3} \sigma_{5,3}\right)^{6} \mu, \mu, \omega\right\rangle=\langle\rho, \nu, v, \mu, \omega\rangle .
\end{aligned}
$$

Further, $\omega^{v}=\omega^{12}, \omega^{\rho}=\omega^{-1}, v^{\rho}=v, \mu^{\rho}=\mu^{-1}$ and $\nu^{\rho}=\mu^{9} \nu\left(\mu^{2} \nu^{2}\right)^{2} \mu \nu \mu$. Set $L=\langle\omega, v\rangle$ and $N=\langle\mu, \nu\rangle$. Then $L\langle\rho\rangle \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$ and $L N=L \times$ $N \triangleleft G_{5,3}$. Note that $L N$ has exactly two orbits on $\Omega \backslash\{1\}$ given as in the proof of Lemma 4.4.2, say Δ_{1} and Θ. Considering the restrictions of
ρ, L and N on Δ_{1} and Θ, we have $\rho \notin L N$. Thus $G_{5,3}=(L \times N) \rtimes\langle\rho\rangle$. Let $\pi=(\mu \nu)^{2} \nu^{4} \mu^{4}$ and $\varpi=\mu^{8} \nu^{2} \mu^{4} \nu^{4} \mu^{2}$. Then $\mu=\pi^{17} \varpi \pi^{7} \varpi \pi^{2} \varpi \pi^{3} \varpi$ and $\nu=\pi^{20} \varpi \pi^{9} \varpi \pi$, and hence $N=\langle\pi, \varpi\rangle$. Further, calculation shows that $\pi^{23}=\left(\pi^{4} \varpi \pi^{12} \varpi\right)^{2}=(\pi \varpi)^{3}=\varpi^{2}=1$. Then $N \cong \operatorname{PSL}(2,23)$ and $N\langle\rho\rangle \cong \operatorname{PGL}(2,23)$. Thus $G_{5,3} \cong\left(\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times \operatorname{PSL}(2,23)\right) \rtimes \mathbb{Z}_{2}$.

Let $M=\left\langle N, N^{\delta}\right\rangle$. Then $\delta \notin M$ and $M=N \times N^{\delta}$ has index 4 in $X_{5,3}$, and then $M \triangleleft X_{5,3}$. Consider the restrictions of M on $\Delta=\Delta_{1} \cup\{1\}$ and on Θ. We conclude that all elements of M^{Δ} and M^{Θ} are even permutations. It implies that $\rho \notin M$. Note that $\langle\rho, \delta\rangle \cong \mathrm{D}_{92}$ and $|M \cap\langle\rho, \delta\rangle|=23$. It follows that $X_{5,3}=M\langle\rho, \delta\rangle=M \rtimes\left\langle(\rho \delta)^{23}, \delta\right\rangle \cong(\operatorname{PSL}(2,23) \times \operatorname{PSL}(2,23)) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.4. $G_{5,4} \cong\left(\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,4} \cong$ $\left(\mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}^{2}$.

Proof. Let $\zeta=\tau_{5,4} \sigma_{5,4}$ and $\xi=\tau_{5,4} \tau_{5,4}^{\sigma_{5,4}}$. Then, by calculation, we have

$$
\begin{aligned}
\zeta= & (224537334233820)(619181733363587) \\
& (94544283010154248312613)(111412274643471632252941), \\
\xi= & (22439333557)(3211917343637)(48620182338)(93048) \\
& (104344311415452526)(113246)(124227)(134129)(164728) .
\end{aligned}
$$

Then $G_{5,4}=\left\langle\tau_{5,4}, \sigma_{5,4}\right\rangle=\left\langle\tau_{5,4}, \tau_{5,4} \sigma_{5,4}, \tau_{5,4} \tau_{5,4}^{\sigma_{5,4}}\right\rangle=\left\langle\tau_{5,4}, \zeta, \xi\right\rangle$. Further, $\xi^{\tau_{5,4}}=\xi^{-1}$ and $\zeta^{\tau_{5,4}}=\zeta \xi^{-1}$. Set $L=\langle\zeta, \xi\rangle$. Then $L \triangleleft G_{5,4}$. Since both ζ and ξ fix 22 and 40 , we have $\tau_{5,4} \notin L$. Thus $G_{5,4}=L \rtimes\left\langle\tau_{5,4},\right\rangle$. Let $v=\left(\xi^{2} \zeta \xi\right)^{4}, \omega=\xi^{9}, \mu=\left(\xi^{2} \zeta \xi\right)^{9}, \nu=\xi^{7}, K=\langle v, \omega\rangle$ and $N=\langle\mu, \nu\rangle$. Then

$$
\begin{aligned}
& L=\langle\zeta, \xi\rangle=\left\langle\xi^{2} \zeta \xi, \xi\right\rangle=\langle v, \omega, \mu, \nu\rangle=\langle v, \omega\rangle \times\langle\mu, \nu\rangle=K \times N, \\
& v=(283823193373324)(462039355211734), \\
& \omega=(23935724335)(3193437211736)(46183882023), \\
& \mu=(9143127)(10164843)(11444212)(13293215)(25454130)(26284746), \\
& \nu=(93048)(102515314326451444)(113246)(124227)(134129)(164728) .
\end{aligned}
$$

Let $\eta=v^{7} \omega^{-1} v^{3} \omega^{2} v^{3} \omega$ and $\epsilon=v^{3}$. Then $\epsilon^{\eta}=\epsilon^{\omega^{2}}, \omega^{\eta}=\omega^{4}$ and $\epsilon \epsilon^{\omega} \epsilon^{\omega^{2}} \epsilon^{\omega^{3}} \epsilon^{\omega^{4}} \epsilon^{\omega^{5}} \epsilon^{\omega^{6}}=1$. It follows that $B:=\left\langle\epsilon^{\sigma} \mid \sigma \in L\right\rangle \cong \mathbb{Z}_{3}^{6}, Q:=$ $\langle\omega, \eta\rangle \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$. Noting that Q has no normal subgroups of order 3 , we have $B \cap Q=1$. Thus $K=\langle v, \omega\rangle=\left\langle v^{7}, v^{3}, \omega\right\rangle=\left\langle v^{7} \omega^{-1} v^{3} \omega^{2} v^{3} \omega, v^{3}, \omega\right\rangle=$ $\langle\epsilon, \eta, \omega\rangle=B \rtimes Q \cong \mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right)$.

Let $\varepsilon=\nu^{3}, \pi=\left(\nu^{-1} \nu^{\mu}\right)^{3}$ and $o=\left(\varepsilon^{2}\right)^{\mu} \pi \varepsilon^{2} \pi^{-1} \nu \pi^{-1}$. Then

$$
\begin{aligned}
\varepsilon= & (103145)(142543)(152644), \\
\pi= & (9311347253215)(10422914114448)(12434626304528), \\
o= & (915)(1029)(1114)(1245)(1327)(1642)(2532)(2630)(2841) \\
& (3147)(4346)(4448) .
\end{aligned}
$$

Then $\pi^{7}=o^{2}=\left(\pi^{4} o\right)^{4}=(\pi o)^{3}=1, \mu=\left(\pi^{-1} \varepsilon\right)^{2} \varepsilon \pi^{5}\left(\varepsilon \pi^{-1}\right)^{2} \varepsilon \pi^{2} o \pi^{4} o$ and $\nu=\varepsilon^{\pi^{-1}} \varepsilon^{\mu} o \pi$. It follows that $\langle\pi, o\rangle \cong \operatorname{PSL}(2,7)$ and $N=\left\langle\varepsilon^{\sigma}\right| \sigma \in$ $N\rangle\langle\pi, o\rangle=\left\langle\varepsilon, \varepsilon^{\pi}, \varepsilon^{\pi^{2}}, \varepsilon^{\pi^{3}}, \varepsilon^{\pi^{4}}, \varepsilon^{\pi^{5}}, \varepsilon^{\mu}\right\rangle \rtimes\langle\pi, o\rangle \cong \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)$.

The above argument yields $G_{5,4} \cong\left(\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$. Set $M=\left\langle N, N^{\delta}\right\rangle$. Then $\delta \notin M, M=N \times N^{\delta}$ and $\left|X_{5,4}: M\right|=4$. Considering the transitive permutation representation of $X_{5,4}$ on the right cosets of M, we have $X_{5,4} / \operatorname{Core}_{X_{5,4}}(M) \lesssim \mathrm{S}_{4}$. It is easily shown that $M=$ $\operatorname{Core}_{X_{5,4}}(M) \triangleleft X_{5,4}$. Let $\rho=\sigma_{5,4} \delta \sigma_{5,4}^{-1}$. Then $\rho \delta=\delta \rho$, and $\rho \notin M$ by considering the restrictions of M on its orbits on Ω. Thus $X_{5,4}=M \rtimes\langle\rho, \delta\rangle \cong$ $\left(\mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.5. $G_{5,5}=G_{5,6} \cong \mathrm{~A}_{47}$ and $X_{5,5}=X_{5,6}=\mathrm{A}_{48}$.
Proof. Let $\imath=5$ or 6 . Consider the actions of $G_{5, \imath}$ and of $\left\langle\sigma_{5, \imath}^{-1} \sigma_{5, \imath}^{\tau_{5, \imath}},\left(\sigma_{5, \imath}^{2} \tau_{5, \imath}\right)^{2}\right\rangle$ on $\Omega \backslash\{1\}$. Then $G_{5, \imath}$ is a 2-transitive permutation group of degree 47 . Since all generators of $G_{5,2}$ are even permutations (on $\Omega \backslash\{1\}$), we have $G_{5, \imath} \leq \operatorname{Alt}(\Omega \backslash\{1\})$. Note that $\left(\tau_{5,5} \sigma_{5,5}^{7}\right)^{36}$ is a 5 -cycle and $\left(\tau_{5,6} \sigma_{5,6}^{9}\right)^{32}$ is a 7 -cycle. It follows from [9, Theorem 3.3E] that $G_{5, \imath}=\operatorname{Alt}(\Omega \backslash\{1\}) \cong \mathrm{A}_{47}$, and hence $X_{5,5}=X_{5,6}=\mathrm{A}_{48}$.
4.5. Conclusions. Now we prove Theorem 1.1 and 1.2.

Proof of Theorem 1.1. Let Γ be a connected core-free cubic (X, s) transitive Cayley graph. Then $s \geq 2$ by Corollary 2.2. The argument in Subsection 4.1 to 4.4 says that Γ is isomorphic to one of $\Gamma_{s, 2}$ and $\Gamma_{t, \jmath_{1}} \not \not \Gamma_{t, \gamma_{2}}$, where $2 \leq s, t \leq 5, t \neq 5,1 \leq \imath \leq \ell_{s}, 1 \leq \jmath_{1}, \jmath_{2} \leq \ell_{t}, \jmath_{1} \neq \jmath_{2}, \ell_{2}=2, \ell_{3}=3$, $\ell_{4}=4$ and $\ell_{5}=6$.

We claim that $\Gamma_{s, j}$ is not t-transitive for $s<t$. Suppose to the contrary that $\Gamma_{s, \jmath}$ is $\left(X_{\jmath}, t\right)$-transitive for some $G_{s, \jmath} \leq X_{\jmath} \leq \operatorname{Aut}\left(\Gamma_{s, \jmath}\right)$. By Corollary 2.2, the quotient $\left(\Gamma_{s, \jmath}\right)_{N}$ induced by $N=\operatorname{Core}_{X_{\jmath}}\left(G_{s, \jmath}\right)$ is isomorphic to some $\Gamma_{t, \imath}$, in particular, $G_{t, \imath} \cong G_{s, \jmath} / N$, which is impossible. It follows that $\operatorname{Aut}\left(\Gamma_{s, \jmath}\right)=X_{s, \jmath}$ for $2 \leq s \leq 5$ and $1 \leq \jmath \leq \ell_{s}$, and $\Gamma_{s, \jmath} \neq \Gamma_{t, \imath}$ for possible $s<t, \jmath$ and \imath. Thus it suffices to show that $\Gamma_{5,5} \not \neq \Gamma_{5,6}$ in the following.

Recall that $\Gamma_{5, \imath}=\operatorname{Cos}\left(X_{5, \imath}, H, \tau_{5, \imath}\right)$ and $\operatorname{Aut}\left(\Gamma_{5, \imath}\right)=X_{5, \imath}=\mathrm{A}_{48}$, where $H \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}$ is a regular subgroup of A_{48} under the natural action. Suppose that $\Gamma_{5,5} \cong \Gamma_{5,6}$. Then, by [20, Lemma 2.3], there is some $\sigma \in \operatorname{Aut}\left(\mathrm{A}_{48}\right)=$ S_{48} with $H \tau_{5,5}^{\sigma} H=H \tau_{5,6} H$ such that $H \tau \mapsto H \tau^{\sigma}$ gives an isomorphism from $\Gamma_{5,5}$ to $\Gamma_{5,6}$. Consider the neighborhood of H (as a vertex) in $\Gamma_{5, \imath}$. Then $\left\{H \tau_{5,5}^{\sigma}, H \sigma_{5,5}^{\sigma}, H\left(\sigma_{5,5}^{-1}\right)^{\sigma}\right\}=\left\{H \tau_{5,6}, H \sigma_{5,6}, H \sigma_{5,6}^{-1}\right\}$. In particular, one of cosets $H \tau_{5,5}, H \sigma_{5,5}$ and $H \sigma_{5,5}^{-1}$ must contain a permutation with the same order 84 of $\sigma_{5,6}$, which is impossible by calculation. Thus $\Gamma_{5,5} \neq \Gamma_{5,6}$.

Theorem 1.2 is a direct consequence of Corollary 2.2 and Theorem 1.1.
Finally, since a Cayley graph of a finite non-abelian simple group is either normal or core-free, our argument leads to the following well-known result which can be derived from [16, 28, 29].

Theorem 4.1. Let Γ be a connected cubic arc-transitive Cayley graph of a finite non-abelian simple group T. Then either Γ is normal with respect to T, or Γ is isomorphic to one of $\Gamma_{5,5}$ and $\Gamma_{5,6}$.

Note: All calculational results in this paper were also confirmed by GAP.

References

[1] M. Aschbacher, Finite Group Theory, Cambridge University Press, 1994, New York.
[2] N. Biggs, A new 5-arc-transitive cubic graph, J. Graph Theory 6(1982), 447-451.
[3] N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge Univ. Press, New York, 1992.
[4] M. Conder, An infinite family of 5-arc-transitive cubic graphs, Eleventh British Combinatorial Conference (London, 1987), Ars Combin. 25A(1988), 95-108.
[5] M. Conder and M. Mortona, A note on groups associated with 4-arc-transitive cubic graphs, Bull. London Math. Soc. 22(1990), 553-560.
[6] M. Conder and C.G. Walker, The infinitude of 7-arc-transitive graphs, J.Algebra 208(1998), 619-629.
[7] M. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, J. Algebra(2008), doi:10.1016.
[8] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[9] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag New York Berlin Heidelberg, 1996.
[10] D.Ž. Djoković and G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29(1980), 195-230.
[11] X.G. Fang and C.E. Praeger. Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra 27(1999), 3727-3754.
[12] A. Gardiner, Doubly-primitive vertex stabilisers in graphs, Math. Z. 135(1974), 257266.
[13] A. Gardiner, Arc-transitivity in graphs.II, Quart. J. Math. Oxford Ser. 25(1974), 163-167.
[14] A. Gardiner, Arc-transitivity in graphs.III, Quart. J. Math. Oxford Ser. 27(1976), 313-323.
[15] B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[16] C.H. Li, Isomorphisms of finite Cayley graphs, Ph.D. Thesis, The University of Western Australia, 1996.
[17] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$, Trans. Amer. Math. Soc. 353(2001) 3511-3529.
[18] C.H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81(2001), 307-317.
[19] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc. 133(2005), 31-40.
[20] C.H. Li, Z.P. Lu and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279(2004), 749-770.
[21] Z.P. Lu, On the automorphism groups of biCayley graphs, Beijing Daxue Xuebao Ziran Kexue Ban 39(2003), 1-5.
[22] D. Marušič and P. Potočnik, Classifying 2-arc-transitive graphs of order a product of two primes, Discrete Math. 244(2002), 331-338
[23] C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47(1992), 227239.
[24] W.T. Tutte, A family of cubical graphs, Proc. Cambr. Philosoph. Sic. 43(1947), 459474.
[25] W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11(1959), 621-624.
[26] R. Weiss, The non-existence of 8-transitive grsphs, Combinatorica 1(1981), 309-311.
[27] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182(1998), 309-320.
[28] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, On cubic s-arc-transitive Cayley graphs of finite simple groups, European J. Combin. 26(2005), 133-143.
[29] S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, 5-arc transitive cubic Cayley graphs on finite simple groups, European J. Combin. 28(2007), 1023-1036.

[^0]: The second author supported partially by the NSF and the 973 program of China. 2000 Mathematics Subject Classification 05C25.
 E-mail address: lu@nankai.edu.cn (Z.P. Lu), ljj@cfc.nankai.edu.cn (J.J Li).

