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ABSTRACT. This paper gives a characterization of connected cubic s-
transitive Cayley graphs. It is shown that, for s > 3, every connected
cubic s-transitive Cayley graph is a normal cover of one of 13 graphs:
three 3-transitive graphs, four 4-transitive graphs and six 5-transitive
graphs. Moreover, the argument in this paper also gives another proof
for a well-known result which says that all connected cubic arc-transitive
Cayley graphs of finite non-abelian simple groups are normal except two
5-transitive Cayley graphs of the alternating group A4z.
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1. INTRODUCTION

All graphs in this paper are assumed to be finite, simple and undirected.

Let I' be a graph with vertex set V(I'), edge set E(I') and full au-
tomorphism group Aut(I'). Let X be a subgroup of Aut(I') (written as
X < Aut(T")). Then I is said to be X -vertex-transitive or X -edge-transitive
if X acts transitively on V(I') or on E(I"), respectively. Let s be a positive
integer. An (s + 1)-sequence (ag, o, -+, o) of vertices of I' is called an
s-arc if {aj—1,0;} € E(T') for 1 <i<sand ;1 # ajpq for 1 <i <s—1.
The graph T is called (X, s)-arc-transitive if ' has at least one s-arc and X
is transitive on the vertices and on the s-arcs of I'; and T' is said to be (X, s)-
transitive if it is (X, s)-arc-transitive but not (X, s + 1)-arc-transitive. In
particular, a 1-arc is simply called an arc, and an (X, 1)-arc-transitive graph
is said to be X -arc-transitive or X -symmetric. An arc-transitive graph I is
said to be (X, s)-regular if it is (X, s)-arc-transitive and, for any two s-arcs
of I, there is a unique automorphism of I' mapping one arc to the other one.
In the case where X = Aut(l'), an (X, s)-arc-transitive ((X, s)-transitive,
(X, s)-regular and X-symmetric, respectively) graph is simply called an s-
arc-transitive (s-transitive, s-reqular and symmetric, respectively) graph.
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Tutte [24, 25] proved that every finite connected cubic symmetric graph
is s-regular for some s < 5. Since Tutte’s seminal work, the study of s-arc-
transitive graphs, aiming at constructing and characterizing such graphs,
has received considerable attention in the literature, see [12, 13, 14, 10, 26,
2,4, 5,23, 6, 11, 17, 18, 20, 19, 28, 29| for example, and now there is an
extensive body of knowledge on such graphs. In this paper, we investigate
the cubic symmetric Cayley graphs.

Let G be a group and S a subset of G such that S = S~h:={g~! } g€e S}t
and S does not contain the identity element 1 of G. The Cayley graph
Cay(@G, S) of G with respect to S is the graph with vertex set G and edge
set {{g, sg} ‘ g € G,s € S}. Then a Cayley graph Cay(G,.S) has valency
|S|, and it is connected if and only if (S) = G. Further, each g € G gives
an automorphism g : G — G, x — xg of Cay(G,S). Thus G can be viewed
as a regular subgroup of Aut(Cay(G,S)). A Cayley graph Cay(G,S) is said
to be normal (with respect to G) if G is normal in Aut(Cay(G,5)); and
Cay(G, S) is said to be core-free (with respect to G) if G is core-free in some
X < Aut(Cay(G,5)), that is, Corex (G) := NzexG* = 1.

The main motivation for this paper arises from one result of Li [19] which
says that for s € {2,3,4,5,7} and k > 3 there are only finite number of core-
free s-transitive Cayley graphs of valency k, and that, with the exceptions
s =2 and (s,k) = (3,7), every s-transitive Cayley graph is a normal cover
(see Section 3 for the definition) of a core-free one. In this paper, we shall
give a characterization of cubic s-transitive Cayley graphs; in particular,
determine all connected core-free cubic s-transitive Cayley graphs up to
isomorphism, and then prove the following results.

Theorem 1.1. Let I' = Cay(G, S) be a connected core-free (with respect to
G) cubic s-transitive Cayley graph. Then I' = Cay(Gs,, Ss,) for2 < s <5
and 1 <1 < lg, where by = 2, 3 =3, {4 =4, l5 =6, G5, = (Ss,) and
Ss. 15 given as in Subsections 4.1, 4.2, 4.3 and 4.4 while s = 2, 3, 4 and 5,
respectively. Further, s, Aut(I") and G are listed in Table 1.

Theorem 1.2. Let I' be a connected cubic s-transitive Cayley graph. Then

(1) s < 2 and Aut(I") contains a semi-reqular normal subgroup which
has at most two orbits on V(I'); or

(2) Aut(I') contains a regular subgroup which has a quotient group iso-
morphic to one of the groups listed in the third column of Table 1.

2. A REDUCTION TO THE CORE-FREE CASE

Let I' be a connected X-vertex-transitive and X-edge-transitive graph
with X < Aut(I"). Denote by val(I') the valency of I'. Let N be an intran-
sitive normal subgroup of X and B be the set of N-orbits on V(I'). The
normal quotient I'y of I' induced by N is the graph with vertex set B such
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s | Aut(l) G Remark

2 S4 X ZQ Dg Cube

2 S4 Z4 K4

3 Sg l ZQ ZG or D6 K373

3 Z%N(SgZZQ) Zy4 X Sy or Z%NS;;

3 PGLQ(ll) ZH X ZIO

4 | PGL(7) D1y Heawood’s graph
4 PGL2(23) Zgg X Zgg

4 Zg X PGLQ(?) Zg X (Z7 X Zﬁ)

4 | So4 So3

5| N2 x Z3 (Z7 x N) x Zs N =PSL(2,7)

5 N2><]Z§ (AggXN)NZQ N:A24

5 N2 X Zg (Zgg X ZH X N) X ZQ N = PSL(2,23)
5| N? xZ3 (Z§ % (Z7 X Z3) x N) x Zy | N = Z§ x PSL(2,7)
5| Ayg Ayr two graphs

TABLE 1. Core-free cubic s-transitive Cayley graphs.

that Bi, By € B are adjacent in Iy if and only if some vertex v € Bj is
adjacent in I' to some vertex v € By. Since I' is connected and X-edge-
transitive, we conclude that I'y is X/N-edge-transitive, each B € B is an
independent subset of I" and, for an edge {By, B2} € E(I'y), the subgraph
I'[By, By] of T induced by B; U By is a regular bipartite graph which is
independent of the choice of {Bj, B2} up to isomorphism. In particular,
val(I') = val(T'y)val(I'[B1, Ba]). If val(I') = val(T'nx), then I' is called a
normal cover of I'. It was proved by Praeger[23] that Iy is (X/N, s)-arc-
transitive if I" is (X, s)-arc-transitive, and that I" is a normal cover of I'y
if s > 2 and |B| > 3. In general, if I' is a normal cover of I'y then N acts
regularly on each N-orbit, X/N is isomorphic to a subgroup of Aut(I'y) and
I'y is (X/N, s)-arc-transitive if and only if I" is (X, s)-arc-transitive.

In the following, we assume that I' = Cay(G, S) is a connected X-edge-
transitive Cayley graph with G < X < Aut(['). Set Aut(G,S) = {0 €
Aut(G) | S° = S}. Let N be the maximal one among normal subgroups
of X contained in G, that is, N = Corex(G) is the core of G in X. Then
either |G : N| <2 or N has at least three orbits on V(I"). If N = G, then
X < GxAut(G, S) by [27]; if N is intransitive on V(I"), then every N-orbit
is an independent set of I" since I' is connected and X-edge-transitive.

Assume that |G : N| = 2. Then N has exactly two orbits on V' (I") and I’
is a bipartite graph; in this case I is so called a bi-normal Cayley graph [19].
Further, I' is in fact a bi-Cayley graph [21] of N, say I' = BCay(N, D), where
D C N and contains the identity of N with (D) = N. Moreover, by [21],
the arc-stabilizer X, is contained in Aut(N, D) for some arc (u,v) of I.



4 LI & LU

Now assume that N has at least three orbits on V' (I"), and it is easily
shown that G/N acts regularly on V(I'y). Then [y is a Cayley graph of the
quotient G/N, and X/N acts transitively on the edges of I'y. Further either
val(I")>val(I'y) and I' is not (X,2)-arc-transitive, or val(I') = val(I'y),
X/N < Aut(I'y) and I' is a normal cover of I'y. In addition, if I" is a
normal cover of I'y then I'y is core-free with respect to G/N.

In summary we get a reduction for edge-transitive Cayley graphs.

Proposition 2.1. Let I' = Cay(G, S) be a connected X -edge-transitive Cay-
ley graph with G < X < Aut(I") and let N = Corex(G).

(1) If G = N then X <G x Aut(G, S) and X; < Aut(G, 5).

(2) If |G : N| =2, then there exists D C N with 1 € D, (D) = N and
Xuw < Aut(N, D) for an arc (u,v) of I'.

(3) If N has at least three orbits on V(I'), then I'y is an X/N-edge-
transitive Cayley graph of G/N and either
(a) val(I'y) < val(I') and I' is not (X, 2)-arc-transitive; or
(b) T is a normal cover of I'y, G/N < X/N S Aut(I'n) and I'y is

core-free with respect to G/N.

Remark 2.1. (i) If we assume I" with some further limits, then several
cases in Proposition 2.1 are not necessary to happen. For example,
(2) can not happen when |V (I')| is odd, and (3.a) can not occur
when I' is either 2-arc-transitive or of prime valency.

(ii) In case (3.b), if N =1 then, by considering the right multiplication
action of X on the right cosets of G in X, we may view X as a
subgroup of the symmetric group S,, for some n, which contains a
regular subgroup (of S,) isomorphic to a stabilizer of X acting on
V(T'); and in this way, G is a stabilizer of X acting on {1,2,--- ,n}.
Replacing by a conjugation of G in X, we may assume G fixes 1.

Corollary 2.2. Let I' = Cay(G,S) be a connected cubic (X, s)-transitive
Cayley graph with G < X < Aut(I') and let N = Corex(G) . Then either

(1) |G : N| <2, and s <2 in this case; or
(2) |G : N| > 2, s > 2, I'v is a core-free (X/N, s)-transitive Cayley
graph of G/N, and T is a normal cover of I'y.

Proof. Assume |G : N| < 2. Then, by Proposition 2.1, either X; <
Aut(G,S) < Sz or Xy < Aut(N,D) = Zy for an arc (u,v) of I'. Each
of these two cases implies that I' is not (X, 3)-arc-transitive, and so s < 2.
Thus, by Proposition 2.1, it suffices to show that |G : N| > 2 yields s > 2.
Suppose to the contrary that |G : N| > 2 and s = 1. Then I'" is X-arc-
regular and X7 = Z3. By Remark 2.1 and Proposition 2.1 (3), G := G/N is
a core-free subgroup of X := X/N = G X1, where X; = X;N/N. Further,
|X1| = |X1]| = 3 and |X| = |G||X1|. Consider the right multiplication action
of X on the right cosets of G in X. Then X has a faithful permutation



CUBIC CAYLEY GRAPHS 5

representation of degree |X1| =3, and so X/N = X < S3. Thus G/N < Zs,
a contradiction. Hence s > 2. |

3. CONSTRUCTION OF CORE-FREE CAYLEY GRAPHS

Let X be an arbitrary finite group with a core-free subgroup H and let
D C X\ H with D~' = D. The coset graph Cos(X, H, D), and denoted
by Cos(X, H, z) for a singleton D = {z} or a binary set D = {z,27'}, is
the graph with vertex set [X : H] := {Hz | € X} such that Hz and
Hy are adjacent if and only if yz~! € HDH. Consider the action of X on
[X : H| by right multiplication on right cosets. Then this action is faithful
and preserves the adjacency of the coset graph. Thus we identify X with a
subgroup of Aut(Cos(X, H, D)). Further, we have the following basic facts.

Proposition 3.1. Let Cos(X, H, D) be defined as above.

(1) Cos(X, H, D) is connected if and only if X = (H, D);

(2) Cos(X, H, D) is X -edge-transitive if and only if HDH = H{z, z~'}H
for some z € X;

(3) The valency of Cos(X, H, 2) is either |H|/|HNH?| if HzH = Hz"'H,
or 2|H|/|H N H?| otherwise;

(4) Cos(X, H,z) is X -arc-transitive if and only if HzH = Hz"1H.

(5) If X has a subgroup G acting reqularly on the vertices of Cos(X, H, D),
then Cos(X, H, D) = Cay(G, S), where S =GN HDH.

Proof. (1), (2), (3) and (4) are well-known, see [20] for example. Assume
that X contains a regular subgroup G acting on [X : H|. Then X = GH
and G N H = 1, hence every right coset of H in X can be uniquely written
as Hg for g € G. Set S = GN HDH. Then for any g1,g92 € G, the pair
(Hg1,Hgs) is an arc of Cos(X, H, D) if and only if gggfl eGNHDH =S.
Thus Cos(X, H, D) = Cay(G, S), and (5) holds. 1

Let I' = Cay(G, S) be a Cayley graph and G < X < Aut(I"). Let H = X,
be the stabilizer of 1 € V(I') in X. Define p : V(I') — [X : H]; g — Hg.
It follows from X = GH and GN H = 1 that p is a bijection. Further, it
is easily shown that p is an isomorphism from I" to Cos(X, H,S). Assume
further that I' = Cay(G, S) is X-arc-transitive. Then Cos(X, H,S) is X-
arc-transitive. It follows that HSH = HzH and HzH = Hz 'H for any
z € S. Then I' = Cos(X, H, z) for any z € S. Note that each involution z
(if exists) in S normalizes H N H?, the arc-stabilizer of (1,2) in X. Since H
is core-free in X, we have following simple result.

Proposition 3.2. Let I' = Cay(G, S) be a connected X -arc-transitive Cay-
ley graph with G < X < Aut(I'). Let H be the stabilizer of 1 € V/(I') in X.
If S contains an involution z, then z € GNNx(HNH?)\ (Uixxk<aNx (K)),
I' =2 Cos(X,H,z), (2,H) =X and G =((GNHzH)).
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The above argument and Remark 2.1 allow us to construct theoreti-
cally all possible connected core-free edge-transitive Cayley graphs with a
given stabilizer isomorphic to a regular subgroup H of S,,. One may take
7 € Sp \ (Uizrk<nmNs, (K)) with 17 = 1. Then Cos(X, H,7) = Cay(G, S)
is a connected core-free X-edge-transitive Cayley graph with respect to G,
where X = (r,H), G = {o € X |1° =1} and S = {0 € HTH | 17 =
1}. Note that all isomorphic regular subgroups of S,, are conjugate in S,
(see [29], for example). Thus, up to isomorphism, Cos(X, H, ) is indepen-
dent of the choice of H. Note that Cos(X, H,7) = Cos(X?, H,77) for any
o € Ng, (H). By Proposition 3.2, we may construct, up to isomorphism,
the connected core-free arc-transitive Cayley graphs Cay(G, S) with a given
vertex-stabilizer H of order n, a given arc-stabilizer P and S containing an
involution by finding all possible such involutions as follows:

Step 1 Determine I := {7 € Ng,(P) \ Uizx<nNs, (K) ‘ 2 =1,1" =1}.

Step 2 Determine the set I(n, H) of involutions in I which are not conjugate
to each other under Ng, (H);

Step 3 For 7 € I(n,H), determine X = (1,H), G = {0 € X | 1° = 1} and
S={oceHrH |17 =1}.

Remark 3.1. It is easy to know P has |H : P| orbits on Q = {1,2,--- ,n},
which give an Ng, (P)-invariant partition of Q. Then, with the assumption
that 1™ = 1, 7 fixes set-wise the P-orbit which contains 1.

4. CORE-FREE CUBIC s-TRANSITIVE CAYLEY GRAPHS

In this section, we construct all possible core-free cubic s-transitive Cayley
graphs up to isomorphism. Hereafter, we use 02 to denote the restriction
of o on A, for o € S,, which fixes a subset A of Q = {1,2,--- ,n} set-wise.

Let T' be a core-free cubic (X, s)-transitive Cayley graph. Then s > 2 by
Corollary 2.2. Note that, for a Cayley graph Cay(G,S) of odd valency, S
must contain an involution. By Proposition 3.2, write I' = Cos(X, H, ),
where H < S,,, 7 € I(n,H) and n = |H|. Then s, H, n and P:= HNH"
are listed in Table 2. (See [2, 18¢c| for example.) Note that P is a Sylow
2-subgroup of H and that I" = Cos(X, H,7) = Cos(X, H,7%) for any 0 € H.
Thus, in practice, we may take a given regular subgroup H of S,, and a given
Sylow 2-subgroup P of H. Since H acts regularly on Q = {1,2,--- ,n} and

s 12 3 4 5

H Sg D12 S4 S4 X ZQ
n|6 12 24 48

P ZQ ZQ X Zg Dg Dg X ZQ

TABLE 2. Vertex-stabilizers of cubic s-transitive graphs.
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|H : P| = 3, we know that P is semiregular on © and so has exactly
three orbits, say 31, Yo and 3. By Remark 3.1, we may assume that
1" =1 € ¥ = X7, and 7 either fixes or interchanges ¥5 and X3 set-wise.

4.1. s = 2. In this case, H =2 S3, P =2 7y and X < Sg. Let H = (o, 3) and
P = (B) where a = (1 2 3)(4 5 6) and 8 = (1 5)(2 4)(3 6). Set £y = {1,5},
Yo = {2,4} and X3 = {3,6}. Since 7 € I(6,H), we have 7 = [ but
(a)™ # (a). Recalling that 3y = X] and 17 = 1, it follows that 7 is one
of (24), (36), (24)(36) and (26)(34). It is easy to check that the first two
permutations are conjugate under Ng, (H). Thus we assume that 7 is one of

72,1 = (24), 72,17 = (24)(3 6), 72,2 = (2 6)(34)

Set Xo, = (12, H) and Iy, = Cos(Xs,, H,T2,) for 1 =1,1",2. Let Gy, =
{O‘ € Xgﬂ ’ 19 = 1} and SQ’Z = GQ’Z N HTQ}»LH. Then FQ’/L = Cay(Gg,Z,Sg,l),
1 =1,1’,2. By calculation, we get

S21 =1{(24),(35),(25)(34)}, Ga1 = ((2543),(24)) = Dy,
Sa1 ={(26),(34),(24)(36)}, G = ((2463),(26)) = D,
Soo = {(26)(43),(2364),(2463)}, Gao = ((2364)) = 7Z,.

Let p = (23)(56). Then G’i1 = Go 1 and 5’571 = Sy1/. Hence Iy; =
Cay(G2,1,592,1) = Cay(Ga,r, S217) = I'x1r. In fact I is the 3-dimensional
cube Q3 and I 5 is the complete graph Ky on four vertices. Thus Aut(l31) =
Xo1 = Sy X Zy and Aut(l32) = X292 =2 Sy. In summary, we have

Lemma 4.1.1. [’271 = FQJ/ = Qg, F272 = K4, G271 = G2,1/ = Dg, G272 = Z4,
Aut(Ip1) = X1 = Sy X Zy and Aut(Iz2) = Xo o = Sy.

4.2. s = 3. In this case, H = Dj2 and X < Sj3. We may take H = (a, )
and P = (a?®) x (3), where a = (12345 6)(789 10 11 12) and 3 =
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7). Set ¥, = {1,4,9,12}, ¥y = {2,5,8,11}
and Y3 = {3,6,7,10}. It is easy to find all non-trivial normal subgroups of
H as follows: {(a), {a?), (a3), (a?,3), (a?,aB) and H itself. Noting that
(o) is a characteristic subgroup of H, it follows that Uixx<nrNg,,(K) =
N512(<a2>) U NS12(<a3>) = N512(<a2>) U CSIQ(<a3>)'

Since 7 € 1(12, H), 7 normalizes P = {a?, 3,a33,1} and 7 & Ng,, ((a?))U
Cs,, ({@3)). In particular, (o)™ # 3. It follows that 7 fixes, by conju-
gation, one of 3 and 3@, and interchanges the other one and a3. Let
§ = (912)(811)(710). Then o’ = a and (a?B)° = 3; and so § € Ng,,(H) N
Ns,,(P). By replacing 7 with 7° if necessary, we may assume that 7 = 3
and (a®)™ = a38. Recall the assumption that ¥; = X7 and 17 = 1 before
Subsection 4.1. Then 37 = 3 yields 75t = 1 or (4 9).

Assume first that 7 interchanges Yo and 3. Then, by 87 = 3, we have
(211)7(58)" = (8*2)™ = 3** = (3 10)(6 7). Since
a® = (14)(25)(36)(710)(811)(912),
(@) =a?B8=(19)(28)(37)(412)(511)(6 10),
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we have (25)7(811)" = (37)(6 10). Checking case by case implies that 7 is
one of the following four permutations:

731 = (49)(27)(611)(35)(810), 32 = (49)(26)(711)(38)(510),
733 = (49)(23)(1011)(57)(68), 735 = (49)(210)(311)(56)(78).

Let v = (26)(35)(711)(810). Then v € Ns,(H) and 733 = 733. Thus we
may assume that 7 is one of 731, 732 and 733 in this case.

Now let 7 fix every ; set-wise. By 57 = 3 and (o)™ = o33, we have
(112)7(49)7 = (112)(49), (14)7(912)" = (19)(412),
(211)7(58)7 = (211)(58), (25)7(811)" = (28)(511),
(310)7(67)" = (310)(67), (36)7(710)" = (37)(6 10).

It follows from 1™ = 1 that 7 is one of the following four permutations:
(49)(211)(67), (49)(211)(310), (49)(58)(310), (49)(58)(67).

It is not difficult to show that the last three involutions above are conjugate
under Ng,,(H). Thus, in this case, we may assume that 7 is one of

T31 = (49)(211)(67), 1300 = (49)(58)(67).
Set X3, = (r3,,H) and I3, = Cos(X3,,H,13,) for « = 1,1',2,2,3.

Let G3, = {0 € X3,|1° = 1} and S5, = G3, N Hr3,H. Then I3, =
Cay(Gs,, S3,) and Gs, = (S3,) for 1 = 1,1/,2,2',3, where

S31 ={731,031,051}, 031 = (2 114769)( 5)(810),

Ss 1= {131,031, 131003 T30}, o310 = (27)(411)(69),

5372 = {7’372,0'372,0'3:%}, 0'3’2 = (269)(35810)(4711),

S3’2/ = {T372/,O'372170403,210471}, 0’372/ = ( )( )(5 12) = 047'3 2/(171,
Ss3 ={733,033,053}, 033 =(28101147312586).

It is easy to show that G31 = Zg, G317 = D¢, I31 = I3 = K33 and
Aut(I31) = X31 = X311 =2 S31Zs. Note that G33 is a 2-transitive per-
mutation group of degree 11 (on Q \ {1}). Thus X33 is a 3-transitive
permutation group of degree 12. Let o = 7'37303737'3730?:3{. Then o =
(23561091241187), 0™3 = ¢~ and 0733 = 8. Thus Z11 = (o) < Gs3.
Then G333 = Z11 X Zig, and hence X3 3 is sharply 3-transitive on 2. Then
X33 = PGL(2,11) by [15, XI.2.6]. Thus we have the following lemma.

Lemma 4.2.1. I3 = I3 = Ksg, G31 = Zg, Ga 1 = D¢, Aut(l371) =
X371 = X3,1/ X S31Zo, G3’3 = 741 X Zyo and X373 = PGL(Q, 11)

In the following we shall determine X329, X3/, G32 and G3 .

Lemma 4.2.2. G372 = Z4 X S4 and G372/ = Z% X Sg.
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Proof. Let n = 05‘;2 and p = 036)727'3,2. We have n = (269)(4711), p =
(26)(49)(711) and np = (41196). Further

(n,p) = ((p)%, 1, p7°) = ((np)2, (np)2)") x (, p1") 22 S,
Gs2 = (T32,032) = (a§2,0§2,a§273 2) = (039) X (n,p) = Zs X Sy.

)

Let 5372/ = 04(7372/04_1. Then (5372/ = (2 7)(3 12)(4 11). Set M = <U§,2/ oEc
Gso) and B = (139, 5;32’%”"3’2’) Then M < Gy, and B = Sz by cal-

. of Og o T3 903 of . .
culation. Let m = 03 5, M2 = O3 23 and w3 = 3323 22 Tt is easily

shown that (o3, 71'1,71'2,7r3> >~ 73 and that 032, 732 and 039 normalize
(03,21, m1,m2,m3). Then M = <O‘372/,7T1,7T2,7T3> =~ 743. Noting that M NB<B
and each normal subgroup of B has order 1, 3 or 6, it follows that M NB = 1.
Hence G372/ = <7'372/,0'372/,5372/> =MB=MxB= Z% X Sg. ]

Lemma 4.2.3. X372 = Xg}g/ = Z% X (83 l ZQ) and F3,2 = F372/.

Proof. By calculation, 8 = (a®732)? = (a®739/)%. Thus X32 = {(a, 732) and
X3 = (o, T32/).

Let p = a5(7'372a)2(a7'372)3a27'3 9. Then w=(38)(5 10), T3 2/l = UT3 2,

pf = Bp and o = (128956)(341011127). Set N = (u” | 0 € X32) =
(n | 1 <i<12). Then N < X35 and N = (u,ua,uaz,ua3> >~ 73. Let
v = (a?732)* and w = a3 20} (1320)%(1320)%. Then v = (185)(31012),
w=(27)(46)(911) and 732 = (au)3vauwava. Thus

X392 = (a,132) = (U, ap, v, w) = N{ap, v,w),

L= <aM7V7w> = <(O‘:U’) ( )3)V)w7wa#> = <(O‘M)2V7 (aM)Sa vavwau>
= ({r,wo) x {(ap)?r1,w)) % ((ap)?) = Sg1 Zo.
Since |NHL‘/’NHL’ = |X3’2‘ = ’G3’2HH| = ‘Z4 X S4HD12‘ = 1152, we have
NNL=1. Thus )(3,2:]\7%[/%2‘2L X (83222).

The above argument for X32 also holds for X3 o by replacing 732 with
73,2/. It follows that o — «; 732 +— 73 o/ gives an isomorphism ¢ from X3 5 to
X372/. Then X3’2 = X372/ = Z% X (S3 l Zz) Since ﬁ ((X T3 2) (0637'3’2/)2,
we know that 3% = 3, and H® = H. It is easy to verify that ¢ induces an
isomorphism from I35 = Cos(X32, H,732) to I3 = Cos(X3 o, H,732/). 1

4.3. s = 4. In this case, H &2 S4, P = Dg and X < So4. We may take
H = {«, > and P = (« ,’y), where v = (a?)? and

a=(1234)(5678)(9101112)(1314 15 16)(17 18 1920)(21 2223 24),

B = (118)(211)(36)(415)(516)(7 10)(821)(922)(1217)(13 24)(14 19)(20 23),
N =

(123)(222)(321)(424)(519)(6 18)(717)(820)(913)(10 16)(11 15)(12 14).

Then the three orbits of P on Q are ¥7 = {1,2,3,4,21,22,23,24}, 3y =
{5,6,7,8,17,18,19,20} and >3 = {9,10,11,12,13,14,15,16}. It is easy to
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know that H has totally three non-trivial normal subgroups: K = (a?,v) =
73, (a?,y,af) = Ay and H itself. Noting that K is a characteristic subgroup
of H, we have U1¢M§1HNSQ4(M) = N524(K).

Assume 7 € (24, H). Then 7 € Ng,,(P) \ Ns,,(K). Noting that (a?) is
the center of P, it follows that 7 normalizes (a?), and so (a?)” = a?. Since
K = {1,a%v,a%y} and P contains totally 5 involutions, say, a2, v, a7,
a?y and o3y, we have {v,a?y}” = {av, a®vy}. Recall the assumption that
Y1 = X7 and 17 = 1 before Subsection 4.1. We have

E = (123)(222)(321)(424), (a?y)*t = (121)(224)(323)(422),
(7)™ = (122)(221)(324)(423), (o)™ = (124)(223)(322)(421).

Then {21,23}" = {22,24}, and hence 7>! is one of (24)(2122)(2324) and
(24)(2124)(2223). Thus, either 477 = a?y and (a?y)" = ay for 751 =
(24)(2122)(2324), or y" = ay and (a?y)7 = a3y for 751 = (24)(2124)(2223).

Assume that 7 interchanges Yo and X3. Set A = ¥y U X3 and consider
the restrictions of v, oy, ay and o®y on A. Then

A = (519)(6 18)(7 17)(820)(9 13)(1016)(11 15)(12 14),
(a24)2 = (517)(620)(719)(8 18)(9 15)(1014)(11 13)(12 16),
(ay)® = (518)(617)(720)(819)(916)(1015)(11 14)(1213),
(a®4)2 = (520)(619)(718)(817)(914)(1013)(11 16)(12 15).

Considering all possible images of 5 under 7, it follows from {v,a?y}™ =
{ary, a3y} that one of the following eight cases occurs:

57 =9, {17,19}" = {14,16}; 57 = 10, {17,19}7 = {13,15};
57 =11, {17,19}" = {14,16}; 5" = 12, {17,19}7 = {13,15};
57 =13, {17,19}" = {10,12}; 5" = 14, {17,19}" = {9,11};
57 =15, {17,19}" = {10, 12}; 5" = 16, {17,19}" = {9, 11}.

It is easy to check that there are exactly two possible 7’s arising from each
of the above eight cases. Then we get sixteen permutations, which are
conjugate under Ng,, (H) to one of the following two permutations:

742 = (24)(510)(69)(712)(811)(1319)(14 18)(1517)(16 20)(21 22) (23 24),
a3 = (24)(59)(612)(711)(8 10)(13 18)(14 17)(1520)(16 19)(21 24)(22 23).

Now assume that 7 fixes every 3; set-wise. Consider the possible images of
5 and of 9 under 7. Then 5" € {5,6,7,8} and 9™ € {9,10,11,12}. If 7> =
(24)(2122)(2324), then v7 = a3y and (a?y)” = av, and we get sixteen
permutations. If 751 = (24)(2124)(2223), then 7 = ay and (a?y)™ = a7,
and we get another sixteen permutations. Further, these 32 permutations
are conjugate under Ng,,(H) to one of the following two permutations:

741 = (24)(56)(78)(910)(1112)(14 16)(18 20)(21 22)(23 24),
714 = (24)(56)(78)(910)(1112)(13 15)(17 19)(21 24)(2223).
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Set X4, = (1u,,,8) and Iy, = Cos(Xy,, H,74,) for » = 1,2,3,4. Let
Gay = {0 € X4, |17 = 1} and Sy, = G4, N Hry,H. Then Iy, =
Cay(Gu,, Sa,) for 1 <1 < 4. By calculation, we have

S4,z = {7—4,170'4,13 64,1}, G4,z = <T4,270'4,za 64,1> for 1 <12 <4,
where 049 = 04_5, 043 = 04_:% and

041 = (224)(318)(413)(510)(620)(823)(1122)(1216)(1417),
841 = (27)(310)(424)(6 18)(813)(920)(1214)(16 21)(17 22),
042 =(2471519112217831661218212310952014 13),
043 =(247182123108316151961211221713)(59)(14 20),
o4 = (224)(38)(411)(510)(6 20)(7 19)(1322)(14 17)(18 23),
844 = (217)(316)(424)(722)(813)(920)(1021)(11 15)(12 14).

It is easy to know Gy 1 = D14. By [22], we have the following lemma.

Lemma 4.3.1. G41=Dy4, X471:Aut(F4’1)§PGL(2,7) and Cay(G471,S4,1)
is isomorphic to the point-line incidence graph of the seven-point plane.

Lemma 4.3.2. X492 = PGL(2,23) and Gaa = Zaz X Zao.

Proof. Let 0 = 14204" 2. Then o is a 23-cycle, 0™2 = o=t and 0942 = o9
It follows that G4 is a 2-transitive permutation group on \ {1} and G4
contains a normal regular subgroup (o) = Zs3. Therefore, G4 o = Zoz X Zos.
It implies that X4 o = HG4 2 is a sharply 3-transitive permutation group of
degree 24. Then X, = PGL(2,23) by [15, XI.2.6]. |

Lemma 4.3.3. Xy 3 = Z] x PGL(2,7) and Gu3 = Z§ x (Z7 x Zg).
Proof. Let m = 143043. Set u = aiyrai%WQai 3T, V = 03 3T ai‘ 37raz3 and
w= 7r2033(7r04 3)3m. Then p = (2610)(142024),

=(22015111218)(3816101417)(422624217)(59)(1323),
= (222157241312)(314198101617)(46 1821 1120 23),

w' = w3 73 = viwr and o453 = pPrutp?r2w?u?. Thus (W) < (v,w) =

Ly X ZLg, and Ga3 = (Ta3,043) = (i, V,w) = M(w,v), where M = (u? ‘ o€
(w,v)) <Gy 3. By calculation, we have M = (y, ot e, /f"5> =~ 78.
Noting that (w,r) has no nontrivial normal subgroups of order a power of
3, it yields M N (w,v) = 1. Thus G43 = M x (w,v) = Z$ x (Z7 x Zg).

Let p, v and w be as above. Then u = ((1438)%((14383)%)*)**. Set
N = <u,,u°‘,,w6,;f473,uaz,uag,ﬂo‘ﬁ>. It is easily shown that N = ZI, and
further that, for each € of the seven generators of IV, the conjugations of € by
a, f and 74 3 are contained in N. It implies that N = (u” ’ o€ Xy3)<4Xu3
and M < N. Suppose that v € N. Then N = M x (v?) <t G4 3. It follows
that (v?) < (v,w). Noting that (w) < (v,w), it implies that v centralizes w.
But w”’ = w? = w?, which is a contradiction. Thus 12 ¢ N.
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Consider the normal quotient (I 3)n of I’y 3 induced by N. Then (Iy3)n
is a cubic (X43/N,4)-transitive graph on 14 vertices. It follows from [22]
that (I'y3)n is (isomorphic to) the point-line incidence graph of the seven-
point plane. Thus we conclude that X43/N = PGL(2,7). In particular,
|X43] =2%-3%.7, and N{(v?) is a Sylow 3-subgroup of X43. Noting that
NN(¥?) = 1, it follows from Gaschiitz’ Theorem (see [1, (10.4)] for example)
that there is L < Xy 3 with X43 = NLand NNL =1. Thus L = X, 3/N =
PGL(2,7) and X453 = N x L =2 ZI x PGL(2,7). ]

Lemma 4.3.4. X4’4 = 824 and G474 = 823.

Proof. Recall that G4 4 = (74.4,04.4,94,4) is the stabilizer of 1 in X, 4 acting
on Q. It is easy to see that G44 is transitive on ©Q \ {1}. Then X44 is a
2-transitive, and hence primitive on ). Let p = T£4ﬂ0'4’4. Then p € Xy4
and Xy 4 contains a 7-cycle p** = (5146924 2110). Noting that 04,4 is an
odd permutation, Xy 4 = Sa4 by [9, Theorem 3.3E], and so G44 = So3. |

4.4. s = 5. For the completeness, this paper involves the following content
constructing six known 5-transitive Cayley graphs (see [7] for example).

In this case H =2 Sy X Zg, P = Dg X Zo and X < Syg. Since all isomorphic
regular groups on Q = {1,2,---,48} are conjugate in Sz, we may take
H = (o, 3,7) x {§) and P = (a, 3,6), where o> = 373 and

a= (1234)(5678)(9101112)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)
(41 42 43 44)(45 46 47 48),
(1.8)(2 7)(3 6)(4 5)(9 16)(10 15)(11 14)(12 13)(17 24)(18 23)(19 22)
(20 21)(25 32)(26 31)(27 30)(28 29)(33 40)(34 39)(35 38)
(36 37)(41 48)(42 47)(43 46)(44 45),
v= (117 33)(2 39 20)(3 24 38)(4 34 23)(5 37 21)(6 19 40)(7 36 18)
(8 22 35)(9 25 41)(10 47 28)(11 32 46)(12 42 31)
(13 45 29)(14 27 48)(15 44 26)(16 30 43),
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)
(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)
(36 44)(37 45)(38 46)(39 47)(40 48).

Then P has three orbits on Q = {1,2,---,48}, say, ¥; = {16(i — 1)+ ‘ 1<
j <16}, where i = 1, 2 and 3. It is easy to know that H has totally eight non-
trivial normal subgroups, say (8), (a2, 8), (2, B, 8), (8,7), (3,7}, (@, B,7),
(a8, B,7) and H itself, which are isomorphic to Zs, 73, Z3, A4, Ay X Za, Sy,
S4 and Sy X Za, respectively. Note that () is a characteristic subgroup of
H and (a?, 3) is a characteristic subgroup of {(a,3,7) and of (ad, 3,7). 1
yields Ul?’éK<1HNS48 (K) = NS48(<6>) U NS48(<a27 ﬁ>) U NS48(<a27 B, 5>)

Let 7 € I(48,H). Then 7 € Ng,(P) \ (Ng,((0)) U Ng,((e?,8)) U
Ng,: ((a?,8,8))). Since 7 normalizes P, we know that 7 normalizes the
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(a?) and the center Z(P) = {1,a?,4,a26} of

P. Tt follows that (@®)T = a?, 07 = a?3, and hence B7 ¢ (a?,(3,0)
as T & Ng,((a?,3,0)). Con81der1ng the involutions in P, we have g7 €

{aﬁa Oﬁﬁa aﬁé 05366} Let

Frattini subgroup ®(P) =
2\7

= (24)(57)(1012)(1315)(17 19)(22 24)(2527)(30 32)(33 38)
(3437)(3540)(36 39) (41 46) (42 45) (43 48) (44 47),

1= (210)(412)(513)(715)(18 26)(20 28)(2129)(23 31)(34 42)
(36 44) (37 45)(39 47).

Then ¢1, 12 € Ng,s(H) NNg,s(P)NCs,s ({02, 3,6)), (af)t = a3, (apd)t =
B8 and (a3)2 = a36. Further, both ¢; and ¢y fix every P-orbit set-wise.
Thus, replacing 7 with 71, 72 or 721 if necessary, we may assume 57 = af.
Then 6 = 572 =a"f" =a"af, and hence a” = o~}

Recall the assumption that ¥; = X7 and 1™ = 1 before Subsection 4.1.
Then (a?)” = a? yields 37 = 3, 67 = a?§ yields 97 = 11 and 87 = af yields
8™ = 7. It follows that 57 = 6, 4™ = 2, 16" = 13, 147 = 15, 10" = 10 and
127 = 12. Thus 751 = (24)(56)(78)(911)(1316)(14 15).

Note that Z(P) has eight orbits on 2\ X; as follows:

Yo1 = {17,19,25,27}, ¥a = {18,20, 26,28},
Yoz ={21,23,29,31}, X4 = {22,24,30, 32},
231 = {337 357 417 43}5 232 - {34, 36, 427 44},
Y33 = {37,39,45,47}, X34 = {38,40, 46, 48},

which form a 7-invariant partition of Yo U X3. Further, we have

2,16’1 = 214, Eg = Zig, Z?lﬁ = Zig, 2?25 = Zi4, for i = 2, 3.

Assume that 7 fixes every X; set-wise. It follows from 67 = «f that one
of the following four cases occurs:

251 = o1, Yo = Yoo, g = Yoy, 5y = Mgy, Uy = Mgg, Xi3 = Nzy;

E21 = E217 E22 = E22, E23 Z247 E33 = E3£’n E34 = E347 E31 E327

E23 = E2Z’n E24 - E24, E21 Z]227 E31 E317 E32 - 2327 E33 - Z347

253 = X3, Mgy = Yog, 3y = g2, Mgy = M3z, U3y = Nzq, 13 = 3o
Combining with §7 = a?d, each case gives 4 choices of 7>2Y*3. Thus we get
16 possible 7’s, which are conjugate under Ng,,(H) to one of the following
two permutations:

msa= (24)(56)(78)(911)(1316)(14 15)(1720)(18 19)(21 23)(25 26) (27 28)
(3032)(3336)(3435)(3739) (41 42) (43 44)(46 48), or

Tso= (24)(56)(78)(911)(1316)(14 15)(17 19)(21 24)(22 23)(26 28)(29 30)
(3132)(3335)(3740)(38 39) (42 44) (45 46) (47 48).
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Now assume that 33 = ¥3. Then one of the following four cases holds:

E21 - Z:317 222 E327 E23 - E347 E24 - Z:3?);
E21 - E32, E22 E317 E23 - E337 E24 - E34;
251 = Y33, Xy = Nzq, M3 = Diz2, Xy = i31;
Y5 = X4, Xy = Y33, X3 = Mz1, XYy = Y32

Further, each case gives four choices of 752Y*3 and then we get 16 possible
7’s, which are conjugate under Ng,, (H) to one of the following permutations:

753 = (24)(56)(78)(911)(1316)(1415)(1735)(1834)(1933)(2036)
2140)(2239)(2338)(2437)(2541)(2644)
2743)(2842)(2946)(3045)(3148)(3247),
4)(56)(78)(911)(1316)(1415)(1734)(1833)(1936)(2035)
37)(2240)(2339)(24 38)(2544)(26 43)
42)(2841)(2947)(3046)(3145)(3248),
4)(56)(78)(911)(1316)(1415)(1745)(1848)(1947)(2046)
42)(2241)(2344)(2443)(2539)(26 38
3 0)(

8)(

)

)

T54 =

4)(56)(78)(911)(1316)(14 15)(17 46)(18 45)(19 48)(20 47)
41)(2244)(23 43) (24 42)(25 40) (26 39)
38)(2837)(29 35)(30 34)(31 33) (32 36).

(
(
(2
(21
(27
55 = (2
(2142 ) ) ) )
(2737)(2840)(2936)(3035)(3134)(3233),
56 = (2
(21
(2738

Set X5,z = <a, ﬂ, (5,"}/,7'5’Z>, F5,z = COS()(5,Z7 H, 7'57@), G5,z = {U S X5,z | 19 =
1} and S5, = {0 € Hr5,H |19 = 1}, v = 1,2,3,4,5,6. Then I, =
Cay(G5,Z, 5571). By Calculation, 5572 = {’7’5127 05, 5571} and G57z = <7—5,z; 05,15 55,z>
for 1 <+ < 6, where 05, = 0'5_7]1 for > 3, and

051 =(224)(337)(47)(519)(834)(914)(1027)(1142)(1332)(16 45)(1821)
(20 33)(23 38)(2530)(28 46) (31 41)(36 39) (43 48) = vya'’75 1 87,
051 =(27)(320)(435)(538)(621)(916)(1129)(1246)(1343)(1428)(17 39)
(1823)(2434)(2542)(2730)(3247)(36 37)(4148) = afBv7517,
052 =(27)(321)(438)(535)(620)(916)(1128)(1243)(1346)(1429)(1724)
1823)(1936)(2237)(2745 ) ) )

( )(3044)(4148)(4247) = affyTs 2007,

852 = (219)(334)(47)(524)(837)(914)(1032)(1145)(1327)(16 42) (18 40)
(2135)(2530)(26 43)(28 31)(29 48)(33 38)(36 39) = a25yT5 270,

053 =(24191836402221863423392033735524331738)(9 14454825
413026473144431015123246 132729114228 16) = 62753726,

054 =(242420863721334331723393851935)(9144246 1015122748
2528 1145264741 3043 1332314429 16)(1836)(2240) = ayTs 47,

055 = (2544025101241 3623 30 154824 3844 26 34 320 27 46 37 68 21 42
149162822)(733451129391847311935324317) = 75576,

056 =(254332746193542112837321251541227404731362345149
1629243830101248346820442617)(18 3243 39) = daB3v*75 672>

~— —~

In the following we determine X5, and G5,. Noting that o, 3, J, v and
75, are all even permutations, we have G5, < X5, < Ayg for 1 <1 <6.
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Lemma 4.4.1. G571 = (Z7 X PSL(Q,?)) X L and X571 = (PSL(2,7) X
PSL(2,7)) x Z3.

Proof. Let p = (65’ 051)%. Then

w=(2435724834)(3332037391736)(523216183819),

and p™ = =, po1 = p~t 1 = 4~ Then (u) < Gs,1. Further,

05,1 = ((05,155,1)57'5,1)2(05,155,1)27'5,1- Thus

Gs1 = (75,1,05,1,051) = (i, 405,105,1,T5,1) = (1) {105,105,1, T5,1)-

Let v = po51051, w = 751751, N = (v,w) and L = (v,w, 751). Then

v = (92812461416 45)(10304229 11 2527)(13 47 3243 41 31 48),
w = (911)(1012)(13 15)(1416)(25 27)(26 28)(29 31)(30 32) (41 43)
(42 44) (45 47) (46 48).

Further, v™! = vw, 751 centralizes w and p centralizes IN; in particular,
L = N x (151) and hence G571 = ({) x N) x (751). Note that N = (v, w)
has the same presentation as PSL(2,7). Then N = PSL(2,7) (see [8] for
example), and hence G5 1 = (Z7 x PSL(2,7)) % Zs.

Set M = (N,N°). Then M = (v,w,1°,w’) = N x N% and |X51 : M| =
| X51|/|IM| = |Gs,1||H|/|M| = 4. Considering the transitive permutation
representation of X5 1 on the right cosets of M, we have X5 ;/Corex;, (M) <
Sy. It follows that M <1 X51. It is easy to know that M has exactly two
orbits, say A = {i+16j | 1 <i <8, =0,1,2} and © = Q\ A. Further,
A% = ©; in particular, § ¢ M. Consider the restrictions M? and M®
of M on A and O, respectively. It follows that M* = N% < Alt(A) and
M® = N < Alt(©). Let p = T51- Then v¥ = wr, w” = w and dp = pd.
By calculation, p® = (24)(56)(78)(1720)(18 19)(21 23)(33 36)(34 35)(37 39)
and p© = (1012)(1314)(1516)(25 28)(26 27) (29 31)(41 44) (42 43) (45 47) are
odd permutations. Then p & M, (N,p) = N{p) = PGL(2,7), (N%, p) =
NO(p) = PGL(2,7) and X5, = M x (p,5) = (PSL(2,7) x PSL(2,7)) x Z2.1

Lemma 4.4.2. G572 = (A23 X A24) X ZQ and X572 = (A24 X A24) X Z%

1

Proof. Let pu = 052752 and v = 05275 2. Then p™? = pu=, 1752 = v~ and

L := (p,v) < Gs9 = (p,v)(15,2), where

p= (28743938)(32419361721)(53335620)(91345274616 1126 28)
(1243)(14 304248 41 474429 15)(18 22 40 37 23) (31 32),
v= (21719484018377)(334)(5213339363835246)(915 14 1146 45)

(1031264328 32)(13 27 16 44 42)(22 23) (25 29 47 48 30).

It is easy to know that L has two orbits, say A; = A\ {1} and © on Q\ {1},
where A and O are given as in Lemma 4.4.1. Consider the restrictions of
and v on A; and ©. We know that 42! and v>! are even permutations (on



16 LI & LU

Ay), 1® and v© are even permutations (on ©). It implies L < LA x [P <
Alt(A1) x Alt(O) = Az x Agy. By calculation,

pAtrAL = (24078)(36202134) (4361938 1733 24) (539 35)(18 23 3722),
pAiyA AT = (2374041735 3319)(320) (538213424 396),

(pPrvAn)% = (33421206) (41736331924 38)(53935),

((urp)8r)38 = (5352436 383339) (1327 16 44 42).

It follows that LA! is 2-transitive on A; and contains a 3-cycle (53935).
Then LAt = Alt(A1) = Agg by [9, Thorem 3.3A]. A similar argument yields
L® = Alt(0) = Ayy. Further, L contains a 7-cycle ¢ = (53524 36 38 33 39)
and a 5-cycle k = (13271644 42). Since 1 € L”' and k € L°®, we have 7 =
% and k% = k% for any o € L. Take e = (53524)(3338)(3639) € LA
and ¢ = (131644). Then w® = (52435) € L and xx°® = (134416) € L.
Consider the conjugations of (52435) and (134416) under L2! and L°,
respectively. We conclude that L contains all 3-cycles of L' and of L°.
Then LA < L and L® < L, so L = L? x L® = Alt(A;) x Alt(0) =
Aoz x Ags. Note that T$21 and 7'5?2 are odd permutations. Then 759 ¢ L.
Thus G5,2 = L<7‘5’2> =Lx <7’5’2> = (A23 X A24) X ZQ.

Set N = (u®,v®) and M = (N, N?% = N x N°. A similar argument as
in the proof of Lemma 4.4.1 leads to |X52: M| =4 and M < X52. Let 0o =
(1012)(2527), © = (56)(78)(1719)(2124)(2223)(33 35)(3740)(38 39) and
= (911)(13 16)(14 15)(25 27)(26 28) (29 30) (31 32) (42 44) (45 46) (47 48). We
have 7 € M® = N° and o, w € M® = N, and so p := (24)(1012) =
Tsp0omw € Xso. It is easy to see that p, 6 ¢ M and pd = dp. Then
X5’2 =M x <p, (5> = (A24 X A24) X Z% |

Lemma 4.4.3. G573 = (Zgg ><]ZH XPSL(Q, 23)) NZQ and X5’3 = (PSL(Q, 23) X
PSL(2,23)) x Z3.
Proof. Let w = (75,5755°)'%, i = (75,573 5")%, v = ((75,305,8)° (75,375 57) %) 2

V= ((7-5,305,3)6(757375?,)’3)23)11 575,3. By calculation, we have

w=(261938353618212433740342017233354739228),

)

and p=w

v=(2319371733518342336)(62224 20354038839 721),

1= (943324727111642 151428 13)(10 46 48 44 41 45 12 30 25 26 31 29),
v = (910273216 251143 154541 12)(13 28 30 48 31 42 26 46 29 47 44 14),
p = (220)(335)(57)(634)(817)(18 21)(1940)(22 23)(24 36)(33 39) (37 38)

(911)(1316)(1415)(2541)(2644)(2743)(2842)(2946)(3045)(31 48)(3247),
Gs3 = (753,053) = <75,3,75,305,3775,37553’3> = (p, (75,305,3)°, jt, W)
= (p, (75,305,3)6M7 [y W) = (P V, U, py w).
Further, w?¥ = w!'?, w? = w™! 0P = v, p? = p~ ' and v* = pv(p?v?)uvp.
Set L = (w,v) and N = (u,v). Then L{p) = Zog x Zgo and LN = L x
N < G5s3. Note that LN has exactly two orbits on Q \ {1} given as in
the proof of Lemma 4.4.2, say A; and ©. Considering the restrictions of

1
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p, L and N on A; and ©, we have p ¢ LN. Thus Gs3 = (L x N) x (p).
Let 7 = (uw)*/4%u* and w = pv?pv*y®. Then p = 7V wr’or?wrio
and v = mwr%wr, and hence N = (7, w). Further, calculation shows
that 723 = (7r4w7rlzw)2 = (rw)? = @w? = 1. Then N = PSL(2,23) and
N<p> = PGL(Q, 23) Thus G573 = (Zgg A ZH X PSL(Q, 23)) bl Zg.

Let M = (N,N°%). Then § ¢ M and M = N x N° has index 4 in X5 3,
and then M < X5 3. Consider the restrictions of M on A = A;U{1} and on
©. We conclude that all elements of M2 and M® are even permutations. It
implies that p & M. Note that (p,d) = Doy and |M N (p, §)| = 23. It follows
that X535 = M(p,8) = M x ((pd)?3,8) = (PSL(2,23) x PSL(2,23)) x Z3. 1

Lemma 4.4.4. G574 = (Zg X <Z7 X Zg) X Zg X PSL(?, 7)) X ZQ and X574 =
(Z% x PSL(2,7) x Z% x PSL(2,7)) x Z3.

Proof. Let ( = 754054 and § = 7‘5,47‘; 5", Then, by calculation, we have

(=1(224537334233820)(619181733363587)
(94544283010154248312613)(111412274643471632252941),

€=1(22439333557)(3211917343637)(48620182338)(93048)
(104344311415452526)(113246)(124227)(134129)(16 47 28).

Then Gs4 = (T54,054) = (754, 54054, T547T5 4" ) = (754,¢,€). Further,
¢4 = ¢~Land (4 = (€71 Set L = ((,€). Then L <1 G54. Since both
¢ and ¢ fix 22 and 40, we have 754 ¢ L. Thus G54 = L X (754,). Let
v = (§2C£)47 W= 597 H= (€2C£)9’ V= 577 K= <U7w> and N = <N’ V>' Then
L=((,&) = (£2¢6,€) = (v,w, p,v) = (v,w) X (p,v) = K x N,
=(283823193373324)(462039355211734),
— (23935724335)(3193437211736)(46183882023),
= (9143127)(10 16 48 43)(11444212)(13 29 32 15)(25 45 41 30) (26 28 47 46),
= (93048)(1025 1531 43 26 45 14 44) (11 32 46) (1242 27) (13 41 29) (16 47 28).

— 2
Let n Vw M3wdw and € = v3. Then €1 = ¢, W = w? and
2
w

e e’ e e e’ e’ = 1. Tt follows that B := (€7 |oce L)y =17 Q=

(w,n) = Z7 x Zs. Noting that @ has no normal subgroups of order 3, we

have BNQ=1. Thus K = (v,w) = (v7,03,w) = (Tw lvdwtdw, vd w) =

(e,mw) = B x Q27§ x (Zr x Zs).

Let e = 3, 7 = (v 1v#)? and o = (?)#ren~tyn~l. Then

1031 45)(14 25 43) (15 26 44),

0311347253215)(10422914114448)(1243 4626 3045 28),

— (915)(10 20)(11 14)(12 45)(13 27)(16 42) (25 32)(26 30) (28 41)

3147)(43 46) (44 48).

Then 77 = 02 = (rto)t = (m0)3 = 1, p = (7 te)?en’®(er1)%en?ono
0) = PSL(2,7) and N = (¢7 | 0 €

(m,0) 2 Z5 x PSL(2,7).

/—\/\

~—~

and v = & etor. It follows that (m,
N)(m,0) = (g,™, ™ €™ T et) X



18 LI & LU

The above argument yields G5 4 & (Z§ x (Z7 x Z3) x Z5 x PSL(2, 7)) x Zs.
Set M = (N,N%. Then 6 ¢ M, M = N x N° and |X54 : M| = 4.
Considering the transitive permutation representation of X5 4 on the right
cosets of M, we have X5 4/Corex, ,(M) < Sy. It is easily shown that M =
Corex; ,(M) <« X54. Let p = 0574505_&. Then pé = dp, and p & M by
considering the restrictions of M on its orbits on Q. Thus X54 = M x(p,J) =
(Z% x PSL(2,7) x Z% x PSL(2,7)) x Z3. ]

Lemma 4.4.5. G575 = G576 = A47 and X575 = X576 = A48.

Proof. Let 1 =5 or 6. Consider the actions of G5, and of <a;llagi”, (03’17571)%
on Q\ {1}. Then G5, is a 2-transitive permutation group of degree 47.
Since all generators of G5, are even permutations (on Q\ {1}), we have
Gs, < Alt(2\ {1}). Note that (7'575035)36 is a 5-cycle and (757602,6)32 is a

7-cycle. It follows from [9, Theorem 3.3E] that G5, = Alt(Q2\ {1}) = Ayr,
and hence X575 = X576 = A48. |

4.5. Conclusions. Now we prove Theorem 1.1 and 1.2.

Proof of Theorem 1.1. Let I' be a connected core-free cubic (X, s)-
transitive Cayley graph. Then s > 2 by Corollary 2.2. The argument in
Subsection 4.1 to 4.4 says that I" is isomorphic to one of I's , and I} ;, 2 I} ,,,
where 2 < 5,6t <5, t#5,1 <0< ls, 1 < g1, 90 < Uy, 1 # )2, b2 =2, 03 =3,
64:4and€5:6.

We claim that I’ , is not ¢-transitive for s < ¢. Suppose to the contrary
that I, is (X, t)-transitive for some G, < X, < Aut([,). By Corol-
lary 2.2, the quotient (I's ;) induced by N = Corex, (Gs,) is isomorphic to
some I},, in particular, G, = G, ,/N, which is impossible. It follows that
Aut(Is ;) = X, for 2 < s <5 and 1 <y < ¥, and I, ¥ I}, for possible
s < t, 7 and 2. Thus it suffices to show that I's 5 2 I'5 ¢ in the following.

Recall that I, = Cos(X5,, H,75,) and Aut(ls,) = X5, = Ayg, where
H =S, X Zs is a regular subgroup of Ayg under the natural action. Suppose
that I's 5 = I'5 6. Then, by [20, Lemma 2.3], there is some o € Aut(A4g) =
Sag with HrgyH = Hts6H such that HT — HT“ gives an isomorphism
from I's5 to I'56. Consider the neighborhood of H (as a vertex) in I5,.
Then {HT§5,HU;5,H(O’;E{)J} = {HT5’6,HO'576,HO'E;é}. In particular, one
of cosets H7s 5 ,Hos 5 and H o, ; must contain a permutation with the same
order 84 of 05 ¢, which is impossible by calculation. Thus I's 5 2 I'5 6. |

Theorem 1.2 is a direct consequence of Corollary 2.2 and Theorem 1.1.

Finally, since a Cayley graph of a finite non-abelian simple group is either
normal or core-free, our argument leads to the following well-known result
which can be derived from [16, 28, 29].
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Theorem 4.1. Let I' be a connected cubic arc-transitive Cayley graph of a
finite non-abelian simple group T. Then either I' is normal with respect to
T, or I' is isomorphic to one of I's5 and I5¢.

Note: All calculational results in this paper were also confirmed by GAP.
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