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Abstract. This paper gives a characterization of connected cubic s-
transitive Cayley graphs. It is shown that, for s ≥ 3, every connected
cubic s-transitive Cayley graph is a normal cover of one of 13 graphs:
three 3-transitive graphs, four 4-transitive graphs and six 5-transitive
graphs. Moreover, the argument in this paper also gives another proof
for a well-known result which says that all connected cubic arc-transitive
Cayley graphs of finite non-abelian simple groups are normal except two
5-transitive Cayley graphs of the alternating group A47.
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1. Introduction

All graphs in this paper are assumed to be finite, simple and undirected.

Let Γ be a graph with vertex set V (Γ), edge set E(Γ) and full au-
tomorphism group Aut(Γ). Let X be a subgroup of Aut(Γ) (written as
X ≤ Aut(Γ)). Then Γ is said to be X-vertex-transitive or X-edge-transitive
if X acts transitively on V (Γ) or on E(Γ), respectively. Let s be a positive
integer. An (s + 1)-sequence (α0, α1, · · · , αs) of vertices of Γ is called an
s-arc if {αi−1, αi} ∈ E(Γ) for 1 ≤ i ≤ s and αi−1 6= αi+1 for 1 ≤ i ≤ s − 1.
The graph Γ is called (X, s)-arc-transitive if Γ has at least one s-arc and X
is transitive on the vertices and on the s-arcs of Γ; and Γ is said to be (X, s)-
transitive if it is (X, s)-arc-transitive but not (X, s + 1)-arc-transitive. In
particular, a 1-arc is simply called an arc, and an (X, 1)-arc-transitive graph
is said to be X-arc-transitive or X-symmetric. An arc-transitive graph Γ is
said to be (X, s)-regular if it is (X, s)-arc-transitive and, for any two s-arcs
of Γ, there is a unique automorphism of Γ mapping one arc to the other one.
In the case where X = Aut(Γ), an (X, s)-arc-transitive ((X, s)-transitive,
(X, s)-regular and X-symmetric, respectively) graph is simply called an s-
arc-transitive (s-transitive, s-regular and symmetric, respectively) graph.
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Tutte [24, 25] proved that every finite connected cubic symmetric graph
is s-regular for some s ≤ 5. Since Tutte’s seminal work, the study of s-arc-
transitive graphs, aiming at constructing and characterizing such graphs,
has received considerable attention in the literature, see [12, 13, 14, 10, 26,
2, 4, 5, 23, 6, 11, 17, 18, 20, 19, 28, 29] for example, and now there is an
extensive body of knowledge on such graphs. In this paper, we investigate
the cubic symmetric Cayley graphs.

Let G be a group and S a subset of G such that S = S−1:={g−1
∣∣ g ∈ S}

and S does not contain the identity element 1 of G. The Cayley graph
Cay(G,S) of G with respect to S is the graph with vertex set G and edge
set {{g, sg}

∣∣ g ∈ G, s ∈ S}. Then a Cayley graph Cay(G,S) has valency
|S|, and it is connected if and only if 〈S〉 = G. Further, each g ∈ G gives
an automorphism g : G → G, x 7→ xg of Cay(G,S). Thus G can be viewed
as a regular subgroup of Aut(Cay(G,S)). A Cayley graph Cay(G,S) is said
to be normal (with respect to G) if G is normal in Aut(Cay(G,S)); and
Cay(G,S) is said to be core-free (with respect to G) if G is core-free in some
X ≤ Aut(Cay(G,S)), that is, CoreX(G) := ∩x∈XGx = 1.

The main motivation for this paper arises from one result of Li [19] which
says that for s ∈ {2, 3, 4, 5, 7} and k ≥ 3 there are only finite number of core-
free s-transitive Cayley graphs of valency k, and that, with the exceptions
s = 2 and (s, k) = (3, 7), every s-transitive Cayley graph is a normal cover
(see Section 3 for the definition) of a core-free one. In this paper, we shall
give a characterization of cubic s-transitive Cayley graphs; in particular,
determine all connected core-free cubic s-transitive Cayley graphs up to
isomorphism, and then prove the following results.

Theorem 1.1. Let Γ = Cay(G,S) be a connected core-free (with respect to
G) cubic s-transitive Cayley graph. Then Γ ∼= Cay(Gs,ı, Ss,ı) for 2 ≤ s ≤ 5
and 1 ≤ ı ≤ `s, where `2 = 2, `3 = 3, `4 = 4, `5 = 6, Gs,ı = 〈Ss,ı〉 and
Ss,ı is given as in Subsections 4.1, 4.2, 4.3 and 4.4 while s = 2, 3, 4 and 5,
respectively. Further, s, Aut(Γ ) and G are listed in Table 1.

Theorem 1.2. Let Γ be a connected cubic s-transitive Cayley graph. Then

(1) s ≤ 2 and Aut(Γ ) contains a semi-regular normal subgroup which
has at most two orbits on V (Γ ); or

(2) Aut(Γ ) contains a regular subgroup which has a quotient group iso-
morphic to one of the groups listed in the third column of Table 1.

2. A reduction to the core-free case

Let Γ be a connected X-vertex-transitive and X-edge-transitive graph
with X ≤ Aut(Γ ). Denote by val(Γ ) the valency of Γ . Let N be an intran-
sitive normal subgroup of X and B be the set of N -orbits on V (Γ ). The
normal quotient ΓN of Γ induced by N is the graph with vertex set B such
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s Aut(Γ ) G Remark
2 S4 × Z2 D8 Cube
2 S4 Z4 K4

3 S3 o Z2 Z6 or D6 K3,3

3 Z4
2 o (S3 o Z2) Z4 × S4 or Z4

2 o S3

3 PGL2(11) Z11 o Z10

4 PGL2(7) D14 Heawood’s graph
4 PGL2(23) Z23 o Z22

4 Z7
3 o PGL2(7) Z6

3 o (Z7 o Z6)
4 S24 S23

5 N2 o Z2
2 (Z7 ×N)o Z2 N = PSL(2, 7)

5 N2 o Z2
2 (A23 ×N)o Z2 N = A24

5 N2 o Z2
2 (Z23 o Z11 ×N)o Z2 N = PSL(2, 23)

5 N2 o Z2
2 (Z6

3 o (Z7 o Z3)×N)o Z2 N = Z7
3 o PSL(2, 7)

5 A48 A47 two graphs

Table 1. Core-free cubic s-transitive Cayley graphs.

that B1, B2 ∈ B are adjacent in ΓN if and only if some vertex u ∈ B1 is
adjacent in Γ to some vertex v ∈ B2. Since Γ is connected and X-edge-
transitive, we conclude that ΓN is X/N -edge-transitive, each B ∈ B is an
independent subset of Γ and, for an edge {B1, B2} ∈ E(ΓN ), the subgraph
Γ [B1, B2] of Γ induced by B1 ∪ B2 is a regular bipartite graph which is
independent of the choice of {B1, B2} up to isomorphism. In particular,
val(Γ ) = val(ΓN )val(Γ [B1, B2]). If val(Γ ) = val(ΓN ), then Γ is called a
normal cover of ΓN . It was proved by Praeger[23] that ΓN is (X/N, s)-arc-
transitive if Γ is (X, s)-arc-transitive, and that Γ is a normal cover of ΓN

if s ≥ 2 and |B| ≥ 3. In general, if Γ is a normal cover of ΓN then N acts
regularly on each N -orbit, X/N is isomorphic to a subgroup of Aut(ΓN ) and
ΓN is (X/N, s)-arc-transitive if and only if Γ is (X, s)-arc-transitive.

In the following, we assume that Γ = Cay(G,S) is a connected X-edge-
transitive Cayley graph with G ≤ X ≤ Aut(Γ ). Set Aut(G,S) = {σ ∈
Aut(G)

∣∣ Sσ = S}. Let N be the maximal one among normal subgroups
of X contained in G, that is, N = CoreX(G) is the core of G in X. Then
either |G : N | ≤ 2 or N has at least three orbits on V (Γ ). If N = G, then
X ≤ GoAut(G,S) by [27]; if N is intransitive on V (Γ ), then every N -orbit
is an independent set of Γ since Γ is connected and X-edge-transitive.

Assume that |G : N | = 2. Then N has exactly two orbits on V (Γ ) and Γ
is a bipartite graph; in this case Γ is so called a bi-normal Cayley graph [19].
Further, Γ is in fact a bi-Cayley graph [21] of N , say Γ = BCay(N, D), where
D ⊆ N and contains the identity of N with 〈D〉 = N . Moreover, by [21],
the arc-stabilizer Xuv is contained in Aut(N, D) for some arc (u, v) of Γ .
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Now assume that N has at least three orbits on V (Γ ), and it is easily
shown that G/N acts regularly on V (ΓN ). Then ΓN is a Cayley graph of the
quotient G/N , and X/N acts transitively on the edges of ΓN . Further either
val(Γ )>val(ΓN ) and Γ is not (X, 2)-arc-transitive, or val(Γ ) = val(ΓN ),
X/N . Aut(ΓN ) and Γ is a normal cover of ΓN . In addition, if Γ is a
normal cover of ΓN then ΓN is core-free with respect to G/N .

In summary we get a reduction for edge-transitive Cayley graphs.

Proposition 2.1. Let Γ = Cay(G,S) be a connected X-edge-transitive Cay-
ley graph with G ≤ X ≤ Aut(Γ ) and let N = CoreX(G).

(1) If G = N then X ≤ Go Aut(G,S) and X1 ≤ Aut(G,S).
(2) If |G : N | = 2, then there exists D ⊆ N with 1 ∈ D, 〈D〉 = N and

Xuv ≤ Aut(N, D) for an arc (u, v) of Γ .
(3) If N has at least three orbits on V (Γ ), then ΓN is an X/N -edge-

transitive Cayley graph of G/N and either
(a) val(ΓN ) < val(Γ ) and Γ is not (X, 2)-arc-transitive; or
(b) Γ is a normal cover of ΓN , G/N ≤ X/N . Aut(ΓN ) and ΓN is

core-free with respect to G/N .

Remark 2.1. (i) If we assume Γ with some further limits, then several
cases in Proposition 2.1 are not necessary to happen. For example,
(2) can not happen when |V (Γ )| is odd, and (3.a) can not occur
when Γ is either 2-arc-transitive or of prime valency.

(ii) In case (3.b), if N = 1 then, by considering the right multiplication
action of X on the right cosets of G in X, we may view X as a
subgroup of the symmetric group Sn for some n, which contains a
regular subgroup (of Sn) isomorphic to a stabilizer of X acting on
V (Γ); and in this way, G is a stabilizer of X acting on {1, 2, · · · , n}.
Replacing by a conjugation of G in X, we may assume G fixes 1.

Corollary 2.2. Let Γ = Cay(G,S) be a connected cubic (X, s)-transitive
Cayley graph with G ≤ X ≤ Aut(Γ ) and let N = CoreX(G) . Then either

(1) |G : N | ≤ 2, and s ≤ 2 in this case; or
(2) |G : N | > 2, s ≥ 2, ΓN is a core-free (X/N, s)-transitive Cayley

graph of G/N , and Γ is a normal cover of ΓN .

Proof. Assume |G : N | ≤ 2. Then, by Proposition 2.1, either X1 ≤
Aut(G,S) . S3 or Xuv ≤ Aut(N, D) ∼= Z2 for an arc (u, v) of Γ . Each
of these two cases implies that Γ is not (X, 3)-arc-transitive, and so s ≤ 2.
Thus, by Proposition 2.1, it suffices to show that |G : N | > 2 yields s ≥ 2.
Suppose to the contrary that |G : N | > 2 and s = 1. Then Γ is X-arc-
regular and X1

∼= Z3. By Remark 2.1 and Proposition 2.1 (3), Ḡ := G/N is
a core-free subgroup of X̄ := X/N = ḠX̄1, where X̄1 = X1N/N . Further,
|X̄1| = |X1| = 3 and |X̄| = |Ḡ||X̄1|. Consider the right multiplication action
of X̄ on the right cosets of Ḡ in X̄. Then X̄ has a faithful permutation
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representation of degree |X̄1| = 3, and so X/N = X̄ . S3. Thus G/N . Z2,
a contradiction. Hence s ≥ 2.

3. Construction of core-free Cayley graphs

Let X be an arbitrary finite group with a core-free subgroup H and let
D ⊆ X \ H with D−1 = D. The coset graph Cos(X, H,D), and denoted
by Cos(X, H, z) for a singleton D = {z} or a binary set D = {z, z−1}, is
the graph with vertex set [X : H] := {Hx

∣∣ x ∈ X} such that Hx and
Hy are adjacent if and only if yx−1 ∈ HDH. Consider the action of X on
[X : H] by right multiplication on right cosets. Then this action is faithful
and preserves the adjacency of the coset graph. Thus we identify X with a
subgroup of Aut(Cos(X, H,D)). Further, we have the following basic facts.

Proposition 3.1. Let Cos(X, H,D) be defined as above.

(1) Cos(X, H,D) is connected if and only if X = 〈H, D〉;
(2) Cos(X, H,D) is X-edge-transitive if and only if HDH = H{z, z−1}H

for some z ∈ X;
(3) The valency of Cos(X, H, z) is either |H|/|H∩Hz| if HzH = Hz−1H,

or 2|H|/|H ∩Hz| otherwise;
(4) Cos(X, H, z) is X-arc-transitive if and only if HzH = Hz−1H.
(5) If X has a subgroup G acting regularly on the vertices of Cos(X, H,D),

then Cos(X, H,D) ∼= Cay(G,S), where S = G ∩HDH.

Proof. (1), (2), (3) and (4) are well-known, see [20] for example. Assume
that X contains a regular subgroup G acting on [X : H]. Then X = GH
and G ∩H = 1, hence every right coset of H in X can be uniquely written
as Hg for g ∈ G. Set S = G ∩ HDH. Then for any g1, g2 ∈ G, the pair
(Hg1,Hg2) is an arc of Cos(X, H,D) if and only if g2g

−1
1 ∈ G ∩HDH = S.

Thus Cos(X, H,D) ∼= Cay(G,S), and (5) holds.

Let Γ = Cay(G,S) be a Cayley graph and G ≤ X ≤ Aut(Γ ). Let H = X1

be the stabilizer of 1 ∈ V (Γ ) in X. Define ρ : V (Γ ) → [X : H]; g 7→ Hg.
It follows from X = GH and G ∩ H = 1 that ρ is a bijection. Further, it
is easily shown that ρ is an isomorphism from Γ to Cos(X, H, S). Assume
further that Γ = Cay(G,S) is X-arc-transitive. Then Cos(X, H, S) is X-
arc-transitive. It follows that HSH = HzH and HzH = Hz−1H for any
z ∈ S. Then Γ ∼= Cos(X, H, z) for any z ∈ S. Note that each involution z
(if exists) in S normalizes H ∩Hz, the arc-stabilizer of (1, z) in X. Since H
is core-free in X, we have following simple result.

Proposition 3.2. Let Γ = Cay(G,S) be a connected X-arc-transitive Cay-
ley graph with G ≤ X ≤ Aut(Γ ). Let H be the stabilizer of 1 ∈ V (Γ ) in X.
If S contains an involution z, then z ∈ G∩NX(H ∩Hz)\ (∪1 6=K£HNX(K)),
Γ ∼= Cos(X, H, z), 〈z, H〉 = X and G = 〈(G ∩HzH)〉.
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The above argument and Remark 2.1 allow us to construct theoreti-
cally all possible connected core-free edge-transitive Cayley graphs with a
given stabilizer isomorphic to a regular subgroup H of Sn. One may take
τ ∈ Sn \ (∪1 6=K£HNSn(K)) with 1τ = 1. Then Cos(X, H, τ) ∼= Cay(G,S)
is a connected core-free X-edge-transitive Cayley graph with respect to G,
where X = 〈τ, H〉, G = {σ ∈ X

∣∣ 1σ = 1} and S = {σ ∈ HτH
∣∣ 1σ =

1}. Note that all isomorphic regular subgroups of Sn are conjugate in Sn

(see [29], for example). Thus, up to isomorphism, Cos(X, H, τ) is indepen-
dent of the choice of H. Note that Cos(X, H, τ) ∼= Cos(Xσ,H, τσ) for any
σ ∈ NSn(H). By Proposition 3.2, we may construct, up to isomorphism,
the connected core-free arc-transitive Cayley graphs Cay(G,S) with a given
vertex-stabilizer H of order n, a given arc-stabilizer P and S containing an
involution by finding all possible such involutions as follows:

Step 1 Determine I := {τ ∈ NSn(P ) \ ∪1 6=K£HNSn(K)
∣∣ τ2 = 1, 1τ = 1}.

Step 2 Determine the set I(n,H) of involutions in I which are not conjugate
to each other under NSn(H);

Step 3 For τ ∈ I(n,H), determine X = 〈τ, H〉, G = {σ ∈ X
∣∣ 1σ = 1} and

S = {σ ∈ HτH
∣∣ 1σ = 1}.

Remark 3.1. It is easy to know P has |H : P | orbits on Ω = {1, 2, · · · , n},
which give an NSn(P )-invariant partition of Ω. Then, with the assumption
that 1τ = 1, τ fixes set-wise the P -orbit which contains 1.

4. Core-free cubic s-transitive Cayley graphs

In this section, we construct all possible core-free cubic s-transitive Cayley
graphs up to isomorphism. Hereafter, we use σ∆ to denote the restriction
of σ on ∆, for σ ∈ Sn which fixes a subset ∆ of Ω = {1, 2, · · · , n} set-wise.

Let Γ be a core-free cubic (X, s)-transitive Cayley graph. Then s ≥ 2 by
Corollary 2.2. Note that, for a Cayley graph Cay(G,S) of odd valency, S
must contain an involution. By Proposition 3.2, write Γ = Cos(X, H, τ),
where H ≤ Sn, τ ∈ I(n,H) and n = |H|. Then s, H, n and P := H ∩Hτ

are listed in Table 2. (See [2, 18c] for example.) Note that P is a Sylow
2-subgroup of H and that Γ = Cos(X, H, τ) ∼= Cos(X, H, τσ) for any σ ∈ H.
Thus, in practice, we may take a given regular subgroup H of Sn and a given
Sylow 2-subgroup P of H. Since H acts regularly on Ω = {1, 2, · · · , n} and

s 2 3 4 5
H S3 D12 S4 S4 × Z2

n 6 12 24 48
P Z2 Z2 × Z2 D8 D8 × Z2

Table 2. Vertex-stabilizers of cubic s-transitive graphs.
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|H : P | = 3, we know that P is semiregular on Ω and so has exactly
three orbits, say Σ1, Σ2 and Σ3. By Remark 3.1, we may assume that
1τ = 1 ∈ Σ1 = Στ

1 , and τ either fixes or interchanges Σ2 and Σ3 set-wise.

4.1. s = 2. In this case, H ∼= S3, P ∼= Z2 and X ≤ S6. Let H = 〈α, β〉 and
P = 〈β〉 where α = (1 2 3)(4 5 6) and β = (1 5)(2 4)(3 6). Set Σ1 = {1, 5},
Σ2 = {2, 4} and Σ3 = {3, 6}. Since τ ∈ I(6,H), we have βτ = β but
〈α〉τ 6= 〈α〉. Recalling that Σ1 = Στ

1 and 1τ = 1, it follows that τ is one
of (2 4), (3 6), (2 4)(3 6) and (2 6)(3 4). It is easy to check that the first two
permutations are conjugate under NS6(H). Thus we assume that τ is one of

τ2,1 = (2 4), τ2,1′ = (2 4)(3 6), τ2,2 = (2 6)(3 4).

Set X2,ı = 〈τ2,ı,H〉 and Γ2,ı = Cos(X2,ı,H, τ2,ı) for ı = 1, 1′, 2. Let G2,ı =
{σ ∈ X2,ı

∣∣ 1σ = 1} and S2,ı = G2,ı ∩ Hτ2,ıH. Then Γ2,ı
∼= Cay(G2,ı, S2,ı),

ı = 1, 1′, 2. By calculation, we get

S2,1 = {(2 4), (3 5), (2 5)(3 4)}, G2,1 = 〈(2 5 4 3), (2 4)〉 ∼= D8,
S2,1′ = {(2 6), (3 4), (2 4)(3 6)}, G2,1′ = 〈(2 4 6 3), (2 6)〉 ∼= D8,
S2,2 = {(2 6)(4 3), (2 3 6 4), (2 4 6 3)}, G2,2 = 〈(2 3 6 4)〉 ∼= Z4.

Let ρ = (2 3)(5 6). Then Gρ
2,1 = G2,1′ and Sρ

2,1 = S2,1′ . Hence Γ2,1
∼=

Cay(G2,1, S2,1) ∼= Cay(G2,1′ , S2,1′) ∼= Γ2,1′ . In fact Γ2,1 is the 3-dimensional
cube Q3 and Γ2,2 is the complete graph K4 on four vertices. Thus Aut(Γ2,1) =
X2,1

∼= S4 × Z2 and Aut(Γ2,2) = X2,2
∼= S4. In summary, we have

Lemma 4.1.1. Γ2,1
∼= Γ2,1′ ∼= Q3, Γ2,2

∼= K4, G2,1
∼= G2,1′ ∼= D8, G2,2

∼= Z4,
Aut(Γ2,1) = X2,1

∼= S4 × Z2 and Aut(Γ2,2) = X2,2
∼= S4.

4.2. s = 3. In this case, H ∼= D12 and X ≤ S12. We may take H = 〈α, β〉
and P = 〈α3〉 × 〈β〉, where α = (1 2 3 4 5 6)(7 8 9 10 11 12) and β =
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7). Set Σ1 = {1, 4, 9, 12}, Σ2 = {2, 5, 8, 11}
and Σ3 = {3, 6, 7, 10}. It is easy to find all non-trivial normal subgroups of
H as follows: 〈α〉, 〈α2〉, 〈α3〉, 〈α2, β〉, 〈α2, αβ〉 and H itself. Noting that
〈α〉 is a characteristic subgroup of H, it follows that ∪1 6=K£HNS12(K) =
NS12(〈α2〉) ∪NS12(〈α3〉) = NS12(〈α2〉) ∪ CS12(〈α3〉).

Since τ ∈ I(12,H), τ normalizes P = {α3, β, α3β, 1} and τ 6∈ NS12(〈α2〉)∪
CS12(〈α3〉). In particular, (α3)τ 6= α3. It follows that τ fixes, by conju-
gation, one of β and α3β, and interchanges the other one and α3. Let
δ = (9 12)(8 11)(7 10). Then αδ = α and (α3β)δ = β; and so δ ∈ NS12(H) ∩
NS12(P ). By replacing τ with τ δ if necessary, we may assume that βτ = β
and (α3)τ = α3β. Recall the assumption that Σ1 = Στ

1 and 1τ = 1 before
Subsection 4.1. Then βτ = β yields τΣ1 = 1 or (4 9).

Assume first that τ interchanges Σ2 and Σ3. Then, by βτ = β, we have
(2 11)τ (5 8)τ = (βΣ2)τ = βΣ3 = (3 10)(6 7). Since

α3 = (1 4)(2 5)(3 6)(7 10)(8 11)(9 12),
(α3)τ = α3β = (1 9)(2 8)(3 7)(4 12)(5 11)(6 10),
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we have (2 5)τ (8 11)τ = (3 7)(6 10). Checking case by case implies that τ is
one of the following four permutations:

τ3,1 = (4 9)(2 7)(6 11)(3 5)(8 10), τ3,2 = (4 9)(2 6)(7 11)(3 8)(5 10),
τ3,3 = (4 9)(2 3)(10 11)(5 7)(6 8), τ3,3′ = (4 9)(2 10)(3 11)(5 6)(7 8).

Let γ = (2 6)(3 5)(7 11)(8 10). Then γ ∈ NS12(H) and τγ
3,3 = τ3,3′ . Thus we

may assume that τ is one of τ3,1, τ3,2 and τ3,3 in this case.

Now let τ fix every Σi set-wise. By βτ = β and (α3)τ = α3β, we have

(1 12)τ (4 9)τ = (1 12)(4 9), (1 4)τ (9 12)τ = (1 9)(4 12),
(2 11)τ (5 8)τ = (2 11)(5 8), (2 5)τ (8 11)τ = (2 8)(5 11),
(3 10)τ (6 7)τ = (3 10)(6 7), (3 6)τ (7 10)τ = (3 7)(6 10).

It follows from 1τ = 1 that τ is one of the following four permutations:

(4 9)(2 11)(6 7), (4 9)(2 11)(3 10), (4 9)(5 8)(3 10), (4 9)(5 8)(6 7).

It is not difficult to show that the last three involutions above are conjugate
under NS12(H). Thus, in this case, we may assume that τ is one of

τ3,1′ = (4 9)(2 11)(6 7), τ3,2′ = (4 9)(5 8)(6 7).

Set X3,ı = 〈τ3,ı,H〉 and Γ3,ı = Cos(X3,ı,H, τ3,ı) for ı = 1, 1′, 2, 2′, 3.
Let G3,ı = {σ ∈ X3,ı

∣∣ 1σ = 1} and S3,ı = G3,ı ∩ Hτ3,ıH. Then Γ3,ı
∼=

Cay(G3,ı, S3,ı) and G3,ı = 〈S3,ı〉 for ı = 1, 1′, 2, 2′, 3, where

S3,1 = {τ3,1, σ3,1, σ
−1
3,1}, σ3,1 = (2 11 4 7 6 9)(3 5)(8 10),

S3,1′ = {τ3,1′ , σ3,1′ , τ3,1′σ3,1′τ3,1′}, σ3,1′ = (2 7)(4 11)(6 9),
S3,2 = {τ3,2, σ3,2, σ

−1
3,2}, σ3,2 = (2 6 9)(3 5 8 10)(4 7 11),

S3,2′ = {τ3,2′ , σ3,2′ , ασ3,2′α
−1}, σ3,2′ = (3 8)(4 7)(5 12) = ατ3,2′α

−1,
S3,3 = {τ3,3, σ3,3, σ

−1
3,3}, σ3,3 = (2 8 10 11 4 7 3 12 5 6).

It is easy to show that G3,1
∼= Z6, G3,1′ ∼= D6, Γ3,1

∼= Γ3,1′ ∼= K3,3 and
Aut(Γ3,1) = X3,1

∼= X3,1′ ∼= S3 o Z2. Note that G3,3 is a 2-transitive per-
mutation group of degree 11 (on Ω \ {1}). Thus X3,3 is a 3-transitive
permutation group of degree 12. Let σ = τ3,3σ3,3τ3,3σ

−1
3,3. Then σ =

(2 3 5 6 10 9 12 4 11 8 7), στ3,3 = σ−1 and σσ3,3 = σ8. Thus Z11
∼= 〈σ〉 ¢ G3,3.

Then G3,3
∼= Z11 o Z10, and hence X3,3 is sharply 3-transitive on Ω. Then

X3,3
∼= PGL(2, 11) by [15, XI.2.6]. Thus we have the following lemma.

Lemma 4.2.1. Γ3,1
∼= Γ3,1′ ∼= K3,3, G3,1

∼= Z6, G3,1′ ∼= D6, Aut(Γ3,1) =
X3,1

∼= X3,1′ ∼= S3 o Z2, G3,3
∼= Z11 o Z10 and X3,3

∼= PGL(2, 11).

In the following we shall determine X3,2, X3,2′ , G3,2 and G3,2′ .

Lemma 4.2.2. G3,2
∼= Z4 × S4 and G3,2′ ∼= Z4

2 o S3.
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Proof. Let η = σ4
3,2 and ρ = σ6

3,2τ3,2. We have η = (2 6 9)(4 7 11), ρ =
(2 6)(4 9)(7 11) and ηρ = (4 11 9 6). Further

〈η, ρ〉 = 〈(ηρ)2, η, ρ(ηρ)2〉 = 〈(ηρ)2, ((ηρ)2)η〉o 〈η, ρ(ηρ)2〉 ∼= S4,
G3,2 = 〈τ3,2, σ3,2〉 = 〈σ3

3,2, σ
4
3,2, σ

6
3,2τ3,2〉 = 〈σ3

3,2〉 × 〈η, ρ〉 ∼= Z4 × S4.

Let δ3,2′ = ασ3,2′α
−1. Then δ3,2′ = (2 7)(3 12)(4 11). Set M = 〈σσ

3,2′
∣∣ σ ∈

G3,2′〉 and B = 〈τ3,2′ , δ
τ3,2′σ3,2′
3,2′ 〉. Then M £ G3,2′ , and B ∼= S3 by cal-

culation. Let π1 = σ
τ3,2′
3,2′ , π2 = σ

δ3,2′
3,2′ and π3 = σ

τ3,2′δ3,2′
3,2′ . It is easily

shown that 〈σ3,2′ , π1, π2, π3〉 ∼= Z4
2 and that σ3,2′ , τ3,2′ and δ3,2′ normalize

〈σ3,2′ , π1, π2, π3〉. Then M = 〈σ3,2′ , π1, π2, π3〉 ∼= Z4
2. Noting that M ∩B £B

and each normal subgroup of B has order 1, 3 or 6, it follows that M∩B = 1.
Hence G3,2′ = 〈τ3,2′ , σ3,2′ , δ3,2′〉 = MB = M oB ∼= Z4

2 o S3.

Lemma 4.2.3. X3,2
∼= X3,2′ ∼= Z4

2 o (S3 o Z2) and Γ3,2
∼= Γ3,2′.

Proof. By calculation, β = (α3τ3,2)2 = (α3τ3,2′)2. Thus X3,2 = 〈α, τ3,2〉 and
X3,2′ = 〈α, τ3,2′〉.

Let µ = α5(τ3,2α)2(ατ3,2)3α2τ3,2α
2. Then µ = (3 8)(5 10), τ3,2µ = µτ3,2,

µβ = βµ and αµ = (1 2 8 9 5 6)(3 4 10 11 12 7). Set N = 〈µσ
∣∣ σ ∈ X3,2〉 =

〈µαi ∣∣ 1 ≤ i ≤ 12〉. Then N ¢ X3,2 and N = 〈µ, µα, µα2
, µα3〉 ∼= Z4

2. Let
ν = (α2τ3,2)4 and ω = ατ3,2α

4(τ3,2α)2α(τ3,2α)4. Then ν = (1 8 5)(3 10 12),
ω = (2 7)(4 6)(9 11) and τ3,2 = (αµ)3ναµωανα. Thus

X3,2 = 〈α, τ3,2〉 = 〈µ, αµ, ν, ω〉 = N〈αµ, ν, ω〉,
L := 〈αµ, ν, ω〉 = 〈(αµ)2, (αµ)3, ν, ω, ωαµ〉 = 〈(αµ)2ν, (αµ)3, ν, ω, ωαµ〉

= (〈ν, ωαµ〉 × 〈(αµ)2ν−1, ω〉)o 〈(αµ)3〉 ∼= S3 o Z2.

Since |N ||L|/|N ∩ L| = |X3,2| = |G3,2||H| = |Z4 × S4||D12| = 1152, we have
N ∩ L = 1. Thus X3,2 = N o L ∼= Z4

2 o (S3 o Z2).

The above argument for X3,2 also holds for X3,2′ by replacing τ3,2 with
τ3,2′ . It follows that α 7→ α; τ3,2 7→ τ3,2′ gives an isomorphism φ from X3,2 to
X3,2′ . Then X3,2

∼= X3,2′ ∼= Z4
2 o (S3 o Z2). Since β = (α3τ3,2)2 = (α3τ3,2′)2,

we know that βφ = β, and Hφ = H. It is easy to verify that φ induces an
isomorphism from Γ3,2 = Cos(X3,2,H, τ3,2) to Γ3,2′ = Cos(X3,2′ ,H, τ3,2′).

4.3. s = 4. In this case, H ∼= S4, P ∼= D8 and X ≤ S24. We may take
H = 〈α, β〉 and P = 〈α, γ〉, where γ = (α2)β and

α = (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24),
β = (1 18)(2 11)(3 6)(4 15)(5 16)(7 10)(8 21)(9 22)(12 17)(13 24)(14 19)(20 23),
γ = (1 23)(2 22)(3 21)(4 24)(5 19)(6 18)(7 17)(8 20)(9 13)(10 16)(11 15)(12 14).

Then the three orbits of P on Ω are Σ1 = {1, 2, 3, 4, 21, 22, 23, 24}, Σ2 =
{5, 6, 7, 8, 17, 18, 19, 20} and Σ3 = {9, 10, 11, 12, 13, 14, 15, 16}. It is easy to
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know that H has totally three non-trivial normal subgroups: K = 〈α2, γ〉 ∼=
Z2

2, 〈α2, γ, αβ〉 ∼= A4 and H itself. Noting that K is a characteristic subgroup
of H, we have ∪1 6=M£HNS24(M) = NS24(K).

Assume τ ∈ I(24,H). Then τ ∈ NS24(P ) \ NS24(K). Noting that 〈α2〉 is
the center of P , it follows that τ normalizes 〈α2〉, and so (α2)τ = α2. Since
K = {1, α2, γ, α2γ} and P contains totally 5 involutions, say, α2, γ, αγ,
α2γ and α3γ, we have {γ, α2γ}τ = {αγ, α3γ}. Recall the assumption that
Σ1 = Στ

1 and 1τ = 1 before Subsection 4.1. We have

γΣ1 = (1 23)(2 22)(3 21)(4 24), (α2γ)Σ1 = (1 21)(2 24)(3 23)(4 22),
(αγ)Σ1 = (1 22)(2 21)(3 24)(4 23), (α3γ)Σ1 = (1 24)(2 23)(3 22)(4 21).

Then {21, 23}τ = {22, 24}, and hence τΣ1 is one of (2 4)(21 22)(23 24) and
(2 4)(21 24)(22 23). Thus, either γτ = α3γ and (α2γ)τ = αγ for τΣ1 =
(2 4)(21 22)(23 24), or γτ = αγ and (α2γ)τ = α3γ for τΣ1 = (2 4)(21 24)(22 23).

Assume that τ interchanges Σ2 and Σ3. Set ∆ = Σ2 ∪ Σ3 and consider
the restrictions of γ, α2γ, αγ and α3γ on ∆. Then

γ∆ = (5 19)(6 18)(7 17)(8 20)(9 13)(10 16)(11 15)(12 14),
(α2γ)∆ = (5 17)(6 20)(7 19)(8 18)(9 15)(10 14)(11 13)(12 16),
(αγ)∆ = (5 18)(6 17)(7 20)(8 19)(9 16)(10 15)(11 14)(12 13),

(α3γ)∆ = (5 20)(6 19)(7 18)(8 17)(9 14)(10 13)(11 16)(12 15).

Considering all possible images of 5 under τ , it follows from {γ, α2γ}τ =
{αγ, α3γ} that one of the following eight cases occurs:

5τ = 9, {17, 19}τ = {14, 16}; 5τ = 10, {17, 19}τ = {13, 15};
5τ = 11, {17, 19}τ = {14, 16}; 5τ = 12, {17, 19}τ = {13, 15};
5τ = 13, {17, 19}τ = {10, 12}; 5τ = 14, {17, 19}τ = {9, 11};
5τ = 15, {17, 19}τ = {10, 12}; 5τ = 16, {17, 19}τ = {9, 11}.

It is easy to check that there are exactly two possible τ ’s arising from each
of the above eight cases. Then we get sixteen permutations, which are
conjugate under NS24(H) to one of the following two permutations:

τ4,2 = (2 4)(5 10)(6 9)(7 12)(8 11)(13 19)(14 18)(15 17)(16 20)(21 22)(23 24),
τ4,3 = (2 4)(5 9)(6 12)(7 11)(8 10)(13 18)(14 17)(15 20)(16 19)(21 24)(22 23).

Now assume that τ fixes every Σi set-wise. Consider the possible images of
5 and of 9 under τ . Then 5τ ∈ {5, 6, 7, 8} and 9τ ∈ {9, 10, 11, 12}. If τΣ1 =
(2 4)(21 22)(23 24), then γτ = α3γ and (α2γ)τ = αγ, and we get sixteen
permutations. If τΣ1 = (2 4)(21 24)(22 23), then γτ = αγ and (α2γ)τ = α3γ,
and we get another sixteen permutations. Further, these 32 permutations
are conjugate under NS24(H) to one of the following two permutations:

τ4,1 = (2 4)(5 6)(7 8)(9 10)(11 12)(14 16)(18 20)(21 22)(23 24),
τ4,4 = (2 4)(5 6)(7 8)(9 10)(11 12)(13 15)(17 19)(21 24)(22 23).
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Set X4,ı = 〈τ4,ı, α, β〉 and Γ4,ı = Cos(X4,ı,H, τ4,ı) for ı = 1, 2, 3, 4. Let
G4,ı = {σ ∈ X4,ı

∣∣ 1σ = 1} and S4,ı = G4,ı ∩ Hτ4,ıH. Then Γ4,ı
∼=

Cay(G4,ı, S4,ı) for 1 ≤ ı ≤ 4. By calculation, we have

S4,ı = {τ4,ı, σ4,ı, δ4,ı}, G4,ı = 〈τ4,ı, σ4,ı, δ4,ı〉 for 1 ≤ ı ≤ 4,

where δ4,2 = σ−1
4,2, δ4,3 = σ−1

4,3 and

σ4,1 = (2 24)(3 18)(4 13)(5 10)(6 20)(8 23)(11 22)(12 16)(14 17),
δ4,1 = (2 7)(3 10)(4 24)(6 18)(8 13)(9 20)(12 14)(16 21)(17 22),
σ4,2 = (2 4 7 15 19 11 22 17 8 3 16 6 12 18 21 23 10 9 5 20 14 13),
σ4,3 = (2 4 7 18 21 23 10 8 3 16 15 19 6 12 11 22 17 13)(5 9)(14 20),
σ4,4 = (2 24)(3 8)(4 11)(5 10)(6 20)(7 19)(13 22)(14 17)(18 23),
δ4,4 = (2 17)(3 16)(4 24)(7 22)(8 13)(9 20)(10 21)(11 15)(12 14).

It is easy to know G4,1
∼= D14. By [22], we have the following lemma.

Lemma 4.3.1. G4,1
∼=D14, X4,1=Aut(Γ4,1)∼=PGL(2, 7) and Cay(G4,1, S4,1)

is isomorphic to the point-line incidence graph of the seven-point plane.

Lemma 4.3.2. X4,2
∼= PGL(2, 23) and G4,2

∼= Z23 o Z22.

Proof. Let σ = τ4,2σ
11
4,2. Then σ is a 23-cycle, στ4,2 = σ−1 and σσ4,2 = σ19.

It follows that G4,2 is a 2-transitive permutation group on Ω \ {1} and G4,2

contains a normal regular subgroup 〈σ〉 ∼= Z23. Therefore, G4,2
∼= Z23oZ22.

It implies that X4,2 = HG4,2 is a sharply 3-transitive permutation group of
degree 24. Then X4,2

∼= PGL(2, 23) by [15, XI.2.6].

Lemma 4.3.3. X4,3
∼= Z7

3 o PGL(2, 7) and G4,3
∼= Z6

3 o (Z7 o Z6).

Proof. Let π = τ4,3σ4,3. Set µ = σ2
4,3πσ10

4,3π
2σ2

4,3π, ν = σ2
4,3π

2σ4
4,3πσ7

4,3 and
ω = π2σ3

4,3(πσ4,3)3π. Then µ = (2 6 10)(14 20 24),

ν = (2 20 15 11 12 18)(3 8 16 10 14 17)(4 22 6 24 21 7)(5 9)(13 23),
ω = (2 22 15 7 24 13 12)(3 14 19 8 10 16 17)(4 6 18 21 11 20 23),

ων = ω3, τ4,3 = ν2ων and σ4,3 = µ2νµν4µ2ν2ω2µ2. Thus 〈ω〉 ¢ 〈ν, ω〉 ∼=
Z7oZ6, and G4,3 = 〈τ4,3, σ4,3〉 = 〈µ, ν, ω〉 = M〈ω, ν〉, where M = 〈µσ

∣∣ σ ∈
〈ω, ν〉〉¢G4,3. By calculation, we have M = 〈µ, µν2

, µν3
, µν4

, µν5
, µω5〉 ∼= Z6

3.
Noting that 〈ω, ν〉 has no nontrivial normal subgroups of order a power of
3, it yields M ∩ 〈ω, ν〉 = 1. Thus G4,3 = M o 〈ω, ν〉 ∼= Z6

3 o (Z7 o Z6).

Let µ, ν and ω be as above. Then µ = ((τ4,3β)8((τ4,3β)8)α)αβα. Set
N = 〈µ, µα, µβ, µτ4,3 , µα2

, µα3
, µαβ〉. It is easily shown that N ∼= Z7

3, and
further that, for each ε of the seven generators of N , the conjugations of ε by
α, β and τ4,3 are contained in N . It implies that N = 〈µσ

∣∣ σ ∈ X4,3〉¢X4,3

and M < N . Suppose that ν2 ∈ N . Then N = M × 〈ν2〉¢ G4,3. It follows
that 〈ν2〉¢ 〈ν, ω〉. Noting that 〈ω〉¢ 〈ν, ω〉, it implies that ν2 centralizes ω.
But ων2

= ω9 = ω2, which is a contradiction. Thus ν2 6∈ N .
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Consider the normal quotient (Γ4,3)N of Γ4,3 induced by N . Then (Γ4,3)N

is a cubic (X4,3/N, 4)-transitive graph on 14 vertices. It follows from [22]
that (Γ4,3)N is (isomorphic to) the point-line incidence graph of the seven-
point plane. Thus we conclude that X4,3/N ∼= PGL(2, 7). In particular,
|X4,3| = 24 · 38 · 7, and N〈ν2〉 is a Sylow 3-subgroup of X4,3. Noting that
N∩〈ν2〉 = 1, it follows from Gaschütz’ Theorem (see [1, (10.4)] for example)
that there is L ≤ X4,3 with X4,3 = NL and N ∩L = 1. Thus L ∼= X4,3/N ∼=
PGL(2, 7) and X4,3 = N o L ∼= Z7

3 o PGL(2, 7).

Lemma 4.3.4. X4,4 = S24 and G4,4
∼= S23.

Proof. Recall that G4,4 = 〈τ4,4, σ4,4, δ4,4〉 is the stabilizer of 1 in X4,4 acting
on Ω. It is easy to see that G4,4 is transitive on Ω \ {1}. Then X4,4 is a
2-transitive, and hence primitive on Ω. Let ρ = τα

4,4βσ4,4. Then ρ ∈ X4,4

and X4,4 contains a 7-cycle ρ24 = (5 14 6 9 24 21 10). Noting that σ4,4 is an
odd permutation, X4,4 = S24 by [9, Theorem 3.3E], and so G4,4

∼= S23.

4.4. s = 5. For the completeness, this paper involves the following content
constructing six known 5-transitive Cayley graphs (see [7] for example).

In this case H ∼= S4×Z2, P ∼= D8×Z2 and X ≤ S48. Since all isomorphic
regular groups on Ω = {1, 2, · · · , 48} are conjugate in S48, we may take
H = 〈α, β, γ〉 × 〈δ〉 and P = 〈α, β, δ〉, where α2 = βγβ and

α= (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)
(41 42 43 44)(45 46 47 48),

β= (1 8)(2 7)(3 6)(4 5)(9 16)(10 15)(11 14)(12 13)(17 24)(18 23)(19 22)
(20 21)(25 32)(26 31)(27 30)(28 29)(33 40)(34 39)(35 38)
(36 37)(41 48)(42 47)(43 46)(44 45),

γ= (1 17 33)(2 39 20)(3 24 38)(4 34 23)(5 37 21)(6 19 40)(7 36 18)
(8 22 35)(9 25 41)(10 47 28)(11 32 46)(12 42 31)
(13 45 29)(14 27 48)(15 44 26)(16 30 43),

δ= (1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)
(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)
(36 44)(37 45)(38 46)(39 47)(40 48).

Then P has three orbits on Ω = {1, 2, · · · , 48}, say, Σi = {16(i−1)+j
∣∣ 1 ≤

j ≤ 16}, where i = 1, 2 and 3. It is easy to know that H has totally eight non-
trivial normal subgroups, say 〈δ〉, 〈α2, β〉, 〈α2, β, δ〉, 〈β, γ〉, 〈β, γ, δ〉, 〈α, β, γ〉,
〈αδ, β, γ〉 and H itself, which are isomorphic to Z2, Z2

2, Z3
2, A4, A4×Z2, S4,

S4 and S4 × Z2, respectively. Note that 〈δ〉 is a characteristic subgroup of
H and 〈a2, β〉 is a characteristic subgroup of 〈α, β, γ〉 and of 〈αδ, β, γ〉. It
yields ∪1 6=K¢HNS48(K) = NS48(〈δ〉) ∪NS48(〈α2, β〉) ∪NS48(〈α2, β, δ〉).

Let τ ∈ I(48,H). Then τ ∈ NS48(P ) \ (NS48(〈δ〉) ∪ NS48(〈α2, β〉) ∪
NS48(〈α2, β, δ〉)). Since τ normalizes P , we know that τ normalizes the
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Frattini subgroup Φ(P ) = 〈α2〉 and the center Z(P ) = {1, α2, δ, α2δ} of
P . It follows that (α2)τ = α2, δτ = α2δ, and hence βτ 6∈ 〈α2, β, δ〉
as τ 6∈ NS48(〈α2, β, δ〉). Considering the involutions in P , we have βτ ∈
{αβ, α3β, αβδ, α3βδ}. Let

ι1 = (2 4)(5 7)(10 12)(13 15)(17 19)(22 24)(25 27)(30 32)(33 38)
(34 37)(35 40)(36 39)(41 46)(42 45)(43 48)(44 47),

ι2 = (2 10)(4 12)(5 13)(7 15)(18 26)(20 28)(21 29)(23 31)(34 42)
(36 44)(37 45)(39 47).

Then ι1, ι2 ∈ NS48(H)∩NS48(P )∩CS48(〈α2, β, δ〉), (αβ)ι1 = α3β, (αβδ)ι1 =
α3βδ and (αβ)ι2 = αβδ. Further, both ι1 and ι2 fix every P -orbit set-wise.
Thus, replacing τ with τ ι1 , τ ι2 or τ ι2ι1 if necessary, we may assume βτ = αβ.
Then β = βτ2

= ατβτ = aταβ, and hence ατ = α−1.

Recall the assumption that Σ1 = Στ
1 and 1τ = 1 before Subsection 4.1.

Then (α2)τ = α2 yields 3τ = 3, δτ = α2δ yields 9τ = 11 and βτ = αβ yields
8τ = 7. It follows that 5τ = 6, 4τ = 2, 16τ = 13, 14τ = 15, 10τ = 10 and
12τ = 12. Thus τΣ1 = (2 4)(5 6)(7 8)(9 11)(13 16)(14 15).

Note that Z(P ) has eight orbits on Ω \ Σ1 as follows:

Σ21 = {17, 19, 25, 27}, Σ22 = {18, 20, 26, 28},
Σ23 = {21, 23, 29, 31}, Σ24 = {22, 24, 30, 32},
Σ31 = {33, 35, 41, 43}, Σ32 = {34, 36, 42, 44},
Σ33 = {37, 39, 45, 47}, Σ34 = {38, 40, 46, 48},

which form a τ -invariant partition of Σ2 ∪ Σ3. Further, we have

Σβ
i1 = Σi4, Σβ

i2 = Σi3, Σαβ
i1 = Σi3, Σαβ

i2 = Σi4, for i = 2, 3.

Assume that τ fixes every Σi set-wise. It follows from βτ = αβ that one
of the following four cases occurs:

Στ
21 = Σ21, Στ

22 = Σ22, Στ
23 = Σ24, Στ

31 = Σ31, Στ
32 = Σ32, Στ

33 = Σ34;
Στ

21 = Σ21, Στ
22 = Σ22, Στ

23 = Σ24, Στ
33 = Σ33, Στ

34 = Σ34, Στ
31 = Σ32;

Στ
23 = Σ23, Στ

24 = Σ24, Στ
21 = Σ22, Στ

31 = Σ31, Στ
32 = Σ32, Στ

33 = Σ34;
Στ

23 = Σ23, Στ
24 = Σ24, Στ

21 = Σ22, Στ
33 = Σ33, Στ

34 = Σ34, Στ
31 = Σ32.

Combining with δτ = α2δ, each case gives 4 choices of τΣ2∪Σ3 . Thus we get
16 possible τ ’s, which are conjugate under NS48(H) to one of the following
two permutations:

τ5,1= (2 4)(5 6)(7 8)(9 11)(13 16)(14 15)(17 20)(18 19)(21 23)(25 26)(27 28)
(30 32)(33 36)(34 35)(37 39)(41 42)(43 44)(46 48), or

τ5,2= (2 4)(5 6)(7 8)(9 11)(13 16)(14 15)(17 19)(21 24)(22 23)(26 28)(29 30)
(31 32)(33 35)(37 40)(38 39)(42 44)(45 46)(47 48).
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Now assume that Στ
2 = Σ3. Then one of the following four cases holds:

Στ
21 = Σ31, Στ

22 = Σ32, Στ
23 = Σ34, Στ

24 = Σ33;
Στ

21 = Σ32, Στ
22 = Σ31, Στ

23 = Σ33, Στ
24 = Σ34;

Στ
21 = Σ33, Στ

22 = Σ34, Στ
23 = Σ32, Στ

24 = Σ31;
Στ

21 = Σ34, Στ
22 = Σ33, Στ

23 = Σ31, Στ
24 = Σ32.

Further, each case gives four choices of τΣ2∪Σ3 , and then we get 16 possible
τ ’s, which are conjugate under NS48(H) to one of the following permutations:

τ5,3 = (2 4)(5 6)(7 8)(9 11)(13 16)(14 15)(17 35)(18 34)(19 33)(20 36)
(21 40)(22 39)(23 38)(24 37)(25 41)(26 44)
(27 43)(28 42)(29 46)(30 45)(31 48)(32 47),

τ5,4 = (2 4)(5 6)(7 8)(9 11)(13 16)(14 15)(17 34)(18 33)(19 36)(20 35)
(21 37)(22 40)(23 39)(24 38)(25 44)(26 43)
(27 42)(28 41)(29 47)(30 46)(31 45)(32 48),

τ5,5 = (2 4)(5 6)(7 8)(9 11)(13 16)(14 15)(17 45)(18 48)(19 47)(20 46)
(21 42)(22 41)(23 44)(24 43)(25 39)(26 38)
(27 37)(28 40)(29 36)(30 35)(31 34)(32 33),

τ5,6 = (2 4)(5 6)(7 8)(9 11)(13 16)(14 15)(17 46)(18 45)(19 48)(20 47)
(21 41)(22 44)(23 43)(24 42)(25 40)(26 39)
(27 38)(28 37)(29 35)(30 34)(31 33)(32 36).

Set X5,ı = 〈α, β, δ, γ, τ5,ı〉, Γ5,ı = Cos(X5,ı,H, τ5,ı), G5,ı = {σ ∈ X5,ı

∣∣ 1σ =
1} and S5,ı = {σ ∈ Hτ5,ıH

∣∣ 1σ = 1}, ı = 1, 2, 3, 4, 5, 6. Then Γ5,ı
∼=

Cay(G5,ı, S5,ı). By calculation, S5,ı = {τ5,ı, σ5,ı, δ5,ı} and G5,ı = 〈τ5,ı, σ5,ı, δ5,ı〉
for 1 ≤ ı ≤ 6, where δ5, = σ−1

5, for  ≥ 3, and

σ5,1 = (2 24)(3 37)(4 7)(5 19)(8 34)(9 14)(10 27)(11 42)(13 32)(16 45)(18 21)
(20 33)(23 38)(25 30)(28 46)(31 41)(36 39)(43 48) = γα2τ5,1βγα,

δ5,1 = (2 7)(3 20)(4 35)(5 38)(6 21)(9 16)(11 29)(12 46)(13 43)(14 28)(17 39)
(18 23)(24 34)(25 42)(27 30)(32 47)(36 37)(41 48) = αβγτ5,1γ,

σ5,2 = (2 7)(3 21)(4 38)(5 35)(6 20)(9 16)(11 28)(12 43)(13 46)(14 29)(17 24)
(18 23)(19 36)(22 37)(27 45)(30 44)(41 48)(42 47) = αβγτ5,2αγ,

δ5,2 = (2 19)(3 34)(4 7)(5 24)(8 37)(9 14)(10 32)(11 45)(13 27)(16 42)(18 40)
(21 35)(25 30)(26 43)(28 31)(29 48)(33 38)(36 39) = α2δγτ5,2γαδ,

σ5,3 = (2 4 19 18 36 40 22 21 8 6 34 23 39 20 3 37 35 5 24 33 17 38)(9 14 45 48 25
41 30 26 47 31 44 43 10 15 12 32 46 13 27 29 11 42 28 16) = δγ2τ5,3γ

2δ,
σ5,4 = (2 4 24 20 8 6 37 21 3 34 33 17 23 39 38 5 19 35)(9 14 42 46 10 15 12 27 48

25 28 11 45 26 47 41 30 43 13 32 31 44 29 16)(18 36)(22 40) = αγτ5,4γα,
σ5,5 = (2 5 4 40 25 10 12 41 36 23 30 15 48 24 38 44 26 34 3 20 27 46 37 6 8 21 42

14 9 16 28 22)(7 33 45 11 29 39 18 47 31 19 35 32 43 17) = βγτ5,5γδ,
σ5,6 = (2 5 4 33 27 46 19 35 42 11 28 37 3 21 25 15 41 22 7 40 47 31 36 23 45 14 9

16 29 24 38 30 10 12 48 34 6 8 20 44 26 17)(18 32 43 39) = δαβγ2τ5,6γ
2α3.

In the following we determine X5,ı and G5,ı. Noting that α, β, δ, γ and
τ5,ı are all even permutations, we have G5,ı ≤ X5,ı ≤ A48 for 1 ≤ ı ≤ 6.
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Lemma 4.4.1. G5,1
∼= (Z7 × PSL(2, 7)) o Z2 and X5,1

∼= (PSL(2, 7) ×
PSL(2, 7))o Z2

2.

Proof. Let µ = (δτ5,1

5,1 σ5,1)3. Then

µ = (2 4 35 7 24 8 34)(3 33 20 37 39 17 36)(5 23 21 6 18 38 19),

and µτ5,1 = µ−1, µσ5,1 = µ−1, µδ5,1 = µ−1. Then 〈µ〉 ¢ G5,1. Further,
δ5,1 = ((σ5,1δ5,1)5τ5,1)2(σ5,1δ5,1)2τ5,1. Thus

G5,1 = 〈τ5,1, σ5,1, δ5,1〉 = 〈µ, µσ5,1δ5,1, τ5,1〉 = 〈µ〉〈µσ5,1δ5,1, τ5,1〉.
Let ν = µσ5,1δ5,1, ω = τ5,1τ

ν
5,1, N = 〈ν, ω〉 and L = 〈ν, ω, τ5,1〉. Then

ν = (9 28 12 46 14 16 45)(10 30 42 29 11 25 27)(13 47 32 43 41 31 48),
ω = (9 11)(10 12)(13 15)(14 16)(25 27)(26 28)(29 31)(30 32)(41 43)

(42 44)(45 47)(46 48).

Further, ντ5,1 = νω, τ5,1 centralizes ω and µ centralizes N ; in particular,
L = N o 〈τ5,1〉 and hence G5,1 = (〈µ〉 ×N)o 〈τ5,1〉. Note that N = 〈ν4, ω〉
has the same presentation as PSL(2, 7). Then N ∼= PSL(2, 7) (see [8] for
example), and hence G5,1

∼= (Z7 × PSL(2, 7))o Z2.

Set M = 〈N, N δ〉. Then M = 〈ν, ω, νδ, ωδ〉 = N × N δ and |X5,1 : M | =
|X5,1|/|M | = |G5,1||H|/|M | = 4. Considering the transitive permutation
representation of X5,1 on the right cosets of M , we have X5,1/CoreX5,1(M) .
S4. It follows that M ¢ X5,1. It is easy to know that M has exactly two
orbits, say ∆ = {i + 16j

∣∣ 1 ≤ i ≤ 8, j = 0, 1, 2} and Θ = Ω \∆. Further,
∆δ = Θ; in particular, δ 6∈ M . Consider the restrictions M∆ and MΘ

of M on ∆ and Θ, respectively. It follows that M∆ = N δ ≤ Alt(∆) and
MΘ = N ≤ Alt(Θ). Let ρ = τν

5,1. Then νρ = ων, ωρ = ω and δρ = ρδ.
By calculation, ρ∆ = (2 4)(5 6)(7 8)(17 20)(18 19)(21 23)(33 36)(34 35)(37 39)
and ρΘ = (10 12)(13 14)(15 16)(25 28)(26 27)(29 31)(41 44)(42 43)(45 47) are
odd permutations. Then ρ 6∈ M , 〈N, ρ〉 = N〈ρ〉 ∼= PGL(2, 7), 〈N δ, ρ〉 =
N δ〈ρ〉 ∼= PGL(2, 7) and X5,1 = M o 〈ρ, δ〉 ∼= (PSL(2, 7)× PSL(2, 7))o Z2

2.

Lemma 4.4.2. G5,2
∼= (A23 ×A24)o Z2 and X5,2

∼= (A24 ×A24)o Z2
2.

Proof. Let µ = σ5,2τ5,2 and ν = δ5,2τ5,2. Then µτ5,2 = µ−1, ντ5,2 = ν−1 and
L := 〈µ, ν〉¢ G5,2 = 〈µ, ν〉〈τ5,2〉, where

µ = (2 8 7 4 39 38)(3 24 19 36 17 21)(5 33 35 6 20)(9 13 45 27 46 16 11 26 28)
(12 43)(14 30 42 48 41 47 44 29 15)(18 22 40 37 23)(31 32),

ν = (2 17 19 4 8 40 18 37 7)(3 34)(5 21 33 39 36 38 35 24 6)(9 15 14 11 46 45)
(10 31 26 43 28 32)(13 27 16 44 42)(22 23)(25 29 47 48 30).

It is easy to know that L has two orbits, say ∆1 = ∆\{1} and Θ on Ω\{1},
where ∆ and Θ are given as in Lemma 4.4.1. Consider the restrictions of µ
and ν on ∆1 and Θ. We know that µ∆1 and ν∆1 are even permutations (on
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∆1), µΘ and νΘ are even permutations (on Θ). It implies L ≤ L∆1 × LΘ ≤
Alt(∆1)×Alt(Θ) ∼= A23 ×A24. By calculation,

µ∆1ν∆1 = (2 40 7 8)(3 6 20 21 34)(4 36 19 38 17 33 24)(5 39 35)(18 23 37 22),
µ∆1ν∆1µ∆1 = (2 37 40 4 17 35 33 19)(3 20)(5 38 21 34 24 39 6),
(µ∆1ν∆1)4 = (3 34 21 20 6)(4 17 36 33 19 24 38)(5 39 35),
((µνµ)8ν)36 = (5 35 24 36 38 33 39)(13 27 16 44 42).

It follows that L∆1 is 2-transitive on ∆1 and contains a 3-cycle (5 39 35).
Then L∆1 = Alt(∆1) ∼= A23 by [9, Thorem 3.3A]. A similar argument yields
LΘ = Alt(Θ) ∼= A24. Further, L contains a 7-cycle ι = (5 35 24 36 38 33 39)
and a 5-cycle κ = (13 27 16 44 42). Since ι ∈ L∆1 and κ ∈ LΘ, we have ισ =
ισ

∆1 and κσ = κσΘ
for any σ ∈ L. Take ε = (5 35 24)(33 38)(36 39) ∈ L∆1

and ε = (13 16 44). Then ιιε = (5 24 35) ∈ L and κκε = (13 44 16) ∈ L.
Consider the conjugations of (5 24 35) and (13 44 16) under L∆1 and LΘ,
respectively. We conclude that L contains all 3-cycles of L∆1 and of LΘ.
Then L∆1 ≤ L and LΘ ≤ L, so L = L∆1 × LΘ = Alt(∆1) × Alt(Θ) ∼=
A23 × A24. Note that τ∆1

5,2 and τΘ
5,2 are odd permutations. Then τ5,2 6∈ L.

Thus G5,2 = L〈τ5,2〉 = Lo 〈τ5,2〉 ∼= (A23 ×A24)o Z2.

Set N = 〈µΘ, νΘ〉 and M = 〈N, N δ〉 = N × N δ. A similar argument as
in the proof of Lemma 4.4.1 leads to |X5,2 : M | = 4 and M ¢ X5,2. Let o =
(10 12)(25 27), π = (5 6)(7 8)(17 19)(21 24)(22 23)(33 35)(37 40)(38 39) and
$ = (9 11)(13 16)(14 15)(25 27)(26 28)(29 30)(31 32)(42 44)(45 46)(47 48). We
have π ∈ M∆ = N δ and o, $ ∈ MΘ = N , and so ρ := (2 4)(10 12) =
τ5,2oπ$ ∈ X5,2. It is easy to see that ρ, δ 6∈ M and ρδ = δρ. Then
X5,2 = M o 〈ρ, δ〉 ∼= (A24 ×A24)o Z2

2.

Lemma 4.4.3. G5,3
∼= (Z23oZ11×PSL(2, 23))oZ2 and X5,3

∼= (PSL(2, 23)×
PSL(2, 23))o Z2

2.

Proof. Let ω = (τ5,3τ
σ5,3

5,3 )12, µ = (τ5,3τ
σ5,3

5,3 )23, υ = ((τ5,3σ5,3)6(τ5,3τ
σ5,3

5,3 )23)12,
ν = ((τ5,3σ5,3)6(τ5,3τ

σ5,3

5,3 )23)11 and ρ = ω5τ5,3. By calculation, we have

ω = (2 6 19 38 35 36 18 21 24 3 37 40 34 20 17 23 33 5 4 7 39 22 8),
υ = (2 3 19 37 17 33 5 18 34 23 36)(6 22 24 20 35 40 38 8 39 7 21),
µ = (9 43 32 47 27 11 16 42 15 14 28 13)(10 46 48 44 41 45 12 30 25 26 31 29),
ν = (9 10 27 32 16 25 11 43 15 45 41 12)(13 28 30 48 31 42 26 46 29 47 44 14),
ρ = (2 20)(3 35)(5 7)(6 34)(8 17)(18 21)(19 40)(22 23)(24 36)(33 39)(37 38)
(9 11)(13 16)(14 15)(25 41)(26 44)(27 43)(28 42)(29 46)(30 45)(31 48)(32 47),
G5,3 = 〈τ5,3, σ5,3〉 = 〈τ5,3, τ5,3σ5,3, τ5,3τ

σ5,3

5,3 〉 = 〈ρ, (τ5,3σ5,3)6, µ, ω〉
= 〈ρ, (τ5,3σ5,3)6µ, µ, ω〉 = 〈ρ, ν, υ, µ, ω〉.

Further, ωυ = ω12, ωρ = ω−1, υρ = υ, µρ = µ−1 and νρ = µ9ν(µ2ν2)2µνµ.
Set L = 〈ω, υ〉 and N = 〈µ, ν〉. Then L〈ρ〉 ∼= Z23 o Z22 and LN = L ×
N ¢ G5,3. Note that LN has exactly two orbits on Ω \ {1} given as in
the proof of Lemma 4.4.2, say ∆1 and Θ. Considering the restrictions of



CUBIC CAYLEY GRAPHS 17

ρ, L and N on ∆1 and Θ, we have ρ 6∈ LN . Thus G5,3 = (L × N) o 〈ρ〉.
Let π = (µν)2ν4µ4 and $ = µ8ν2µ4ν4µ2. Then µ = π17$π7$π2$π3$
and ν = π20$π9$π, and hence N = 〈π, $〉. Further, calculation shows
that π23 = (π4$π12$)2 = (π$)3 = $2 = 1. Then N ∼= PSL(2, 23) and
N〈ρ〉 ∼= PGL(2, 23). Thus G5,3

∼= (Z23 o Z11 × PSL(2, 23))o Z2.

Let M = 〈N, N δ〉. Then δ 6∈ M and M = N × N δ has index 4 in X5,3,
and then M ¢X5,3. Consider the restrictions of M on ∆ = ∆1∪{1} and on
Θ. We conclude that all elements of M∆ and MΘ are even permutations. It
implies that ρ 6∈ M . Note that 〈ρ, δ〉 ∼= D92 and |M ∩ 〈ρ, δ〉| = 23. It follows
that X5,3 = M〈ρ, δ〉 = M o 〈(ρδ)23, δ〉 ∼= (PSL(2, 23)× PSL(2, 23))o Z2

2.

Lemma 4.4.4. G5,4
∼= (Z6

3 o (Z7 o Z3)× Z7
3 o PSL(2, 7))o Z2 and X5,4

∼=
(Z7

3 o PSL(2, 7)× Z7
3 o PSL(2, 7))o Z2

2.

Proof. Let ζ = τ5,4σ5,4 and ξ = τ5,4τ
σ5,4

5,4 . Then, by calculation, we have

ζ = (2 24 5 37 3 34 23 38 20)(6 19 18 17 33 36 35 8 7)
(9 45 44 28 30 10 15 42 48 31 26 13)(11 14 12 27 46 43 47 16 32 25 29 41),

ξ = (2 24 39 33 35 5 7)(3 21 19 17 34 36 37)(4 8 6 20 18 23 38)(9 30 48)
(10 43 44 31 14 15 45 25 26)(11 32 46)(12 42 27)(13 41 29)(16 47 28).

Then G5,4 = 〈τ5,4, σ5,4〉 = 〈τ5,4, τ5,4σ5,4, τ5,4τ
σ5,4

5,4 〉 = 〈τ5,4, ζ, ξ〉. Further,
ξτ5,4 = ξ−1 and ζτ5,4 = ζξ−1. Set L = 〈ζ, ξ〉. Then L ¢ G5,4. Since both
ζ and ξ fix 22 and 40, we have τ5,4 6∈ L. Thus G5,4 = L o 〈τ5,4, 〉. Let
υ = (ξ2ζξ)4, ω = ξ9, µ = (ξ2ζξ)9, ν = ξ7, K = 〈υ, ω〉 and N = 〈µ, ν〉. Then

L = 〈ζ, ξ〉 = 〈ξ2ζξ, ξ〉 = 〈υ, ω, µ, ν〉 = 〈υ, ω〉 × 〈µ, ν〉 = K ×N,
υ = (2 8 38 23 19 3 37 33 24)(4 6 20 39 35 5 21 17 34),
ω = (2 39 35 7 24 33 5)(3 19 34 37 21 17 36)(4 6 18 38 8 20 23),
µ = (9 14 31 27)(10 16 48 43)(11 44 42 12)(13 29 32 15)(25 45 41 30)(26 28 47 46),
ν = (9 30 48)(10 25 15 31 43 26 45 14 44)(11 32 46)(12 42 27)(13 41 29)(16 47 28).

Let η = υ7ω−1υ3ω2υ3ω and ε = υ3. Then εη = εω2
, ωη = ω4 and

εεωεω2
εω3

εω4
εω5

εω6
= 1. It follows that B := 〈εσ

∣∣ σ ∈ L〉 ∼= Z6
3, Q :=

〈ω, η〉 ∼= Z7 o Z3. Noting that Q has no normal subgroups of order 3, we
have B ∩Q = 1. Thus K = 〈υ, ω〉 = 〈υ7, υ3, ω〉 = 〈υ7ω−1υ3ω2υ3ω, υ3, ω〉 =
〈ε, η, ω〉 = B oQ ∼= Z6

3 o (Z7 o Z3).

Let ε = ν3, π = (ν−1νµ)3 and o = (ε2)µπε2π−1νπ−1. Then

ε = (10 31 45)(14 25 43)(15 26 44),
π = (9 31 13 47 25 32 15)(10 42 29 14 11 44 48)(12 43 46 26 30 45 28),
o = (9 15)(10 29)(11 14)(12 45)(13 27)(16 42)(25 32)(26 30)(28 41)

(31 47)(43 46)(44 48).

Then π7 = o2 = (π4o)4 = (πo)3 = 1, µ = (π−1ε)2επ5(επ−1)2επ2oπ4o

and ν = επ−1
εµoπ. It follows that 〈π, o〉 ∼= PSL(2, 7) and N = 〈εσ

∣∣ σ ∈
N〉〈π, o〉 = 〈ε, επ, επ2

, επ3
, επ4

, επ5
, εµ〉o 〈π, o〉 ∼= Z7

3 o PSL(2, 7).
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The above argument yields G5,4
∼= (Z6

3o (Z7oZ3)×Z7
3oPSL(2, 7))oZ2.

Set M = 〈N, N δ〉. Then δ 6∈ M , M = N × N δ and |X5,4 : M | = 4.
Considering the transitive permutation representation of X5,4 on the right
cosets of M , we have X5,4/CoreX5,4(M) . S4. It is easily shown that M =
CoreX5,4(M) ¢ X5,4. Let ρ = σ5,4δσ

−1
5,4. Then ρδ = δρ, and ρ 6∈ M by

considering the restrictions of M on its orbits on Ω. Thus X5,4 = Mo〈ρ, δ〉 ∼=
(Z7

3 o PSL(2, 7)× Z7
3 o PSL(2, 7))o Z2

2.

Lemma 4.4.5. G5,5 = G5,6
∼= A47 and X5,5 = X5,6 = A48.

Proof. Let ı = 5 or 6. Consider the actions of G5,ı and of 〈σ−1
5,ı σ

τ5,ı

5,ı , (σ2
5,ıτ5,ı)2〉

on Ω \ {1}. Then G5,ı is a 2-transitive permutation group of degree 47.
Since all generators of G5,ı are even permutations (on Ω \ {1}), we have
G5,ı ≤ Alt(Ω \ {1}). Note that (τ5,5σ

7
5,5)

36 is a 5-cycle and (τ5,6σ
9
5,6)

32 is a
7-cycle. It follows from [9, Theorem 3.3E] that G5,ı = Alt(Ω \ {1}) ∼= A47,
and hence X5,5 = X5,6 = A48.

4.5. Conclusions. Now we prove Theorem 1.1 and 1.2.

Proof of Theorem 1.1. Let Γ be a connected core-free cubic (X, s)-
transitive Cayley graph. Then s ≥ 2 by Corollary 2.2. The argument in
Subsection 4.1 to 4.4 says that Γ is isomorphic to one of Γs,ı and Γt,1 6∼= Γt,2 ,
where 2 ≤ s, t ≤ 5, t 6= 5, 1 ≤ ı ≤ `s, 1 ≤ 1, 2 ≤ `t, 1 6= 2, `2 = 2, `3 = 3,
`4 = 4 and `5 = 6.

We claim that Γs, is not t-transitive for s < t. Suppose to the contrary
that Γs, is (X, t)-transitive for some Gs, ≤ X ≤ Aut(Γs,). By Corol-
lary 2.2, the quotient (Γs,)N induced by N = CoreX(Gs,) is isomorphic to
some Γt,ı, in particular, Gt,ı

∼= Gs,/N , which is impossible. It follows that
Aut(Γs,) = Xs, for 2 ≤ s ≤ 5 and 1 ≤  ≤ `s, and Γs, 6∼= Γt,ı for possible
s < t,  and ı. Thus it suffices to show that Γ5,5 6∼= Γ5,6 in the following.

Recall that Γ5,ı = Cos(X5,ı,H, τ5,ı) and Aut(Γ5,ı) = X5,ı = A48, where
H ∼= S4×Z2 is a regular subgroup of A48 under the natural action. Suppose
that Γ5,5

∼= Γ5,6. Then, by [20, Lemma 2.3], there is some σ ∈ Aut(A48) =
S48 with Hτσ

5,5H = Hτ5,6H such that Hτ 7→ Hτσ gives an isomorphism
from Γ5,5 to Γ5,6. Consider the neighborhood of H (as a vertex) in Γ5,ı.
Then {Hτσ

5,5,Hσσ
5,5,H(σ−1

5,5)
σ} = {Hτ5,6,Hσ5,6,Hσ−1

5,6}. In particular, one
of cosets Hτ5,5 ,Hσ5,5 and Hσ−1

5,5 must contain a permutation with the same
order 84 of σ5,6, which is impossible by calculation. Thus Γ5,5 6∼= Γ5,6.

Theorem 1.2 is a direct consequence of Corollary 2.2 and Theorem 1.1.

Finally, since a Cayley graph of a finite non-abelian simple group is either
normal or core-free, our argument leads to the following well-known result
which can be derived from [16, 28, 29].
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Theorem 4.1. Let Γ be a connected cubic arc-transitive Cayley graph of a
finite non-abelian simple group T . Then either Γ is normal with respect to
T , or Γ is isomorphic to one of Γ5,5 and Γ5,6.

Note: All calculational results in this paper were also confirmed by GAP.
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[10] D.Ž. Djoković and G.L. Miller, Regular groups of automorphisms of cubic graphs, J.

Combin. Theory Ser. B 29(1980), 195-230.
[11] X.G. Fang and C.E. Praeger. Finite two-arc transitive graphs admitting a Suzuki

simple group, Comm. Algebra 27(1999), 3727-3754.
[12] A. Gardiner, Doubly-primitive vertex stabilisers in graphs, Math. Z. 135(1974), 257-

266.
[13] A. Gardiner, Arc-transitivity in graphs.II, Quart. J. Math. Oxford Ser. 25(1974),

163-167.
[14] A. Gardiner, Arc-transitivity in graphs.III, Quart. J. Math. Oxford Ser. 27(1976),

313-323.
[15] B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, Heidelberg,

New York, 1982.
[16] C.H. Li, Isomorphisms of finite Cayley graphs, Ph.D. Thesis, The University of West-

ern Australia, 1996.
[17] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for

s ≥ 4, Trans. Amer. Math. Soc. 353(2001) 3511-3529.
[18] C.H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B

81(2001), 307-317.
[19] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes,

Proc. Amer. Math. Soc. 133(2005), 31-40.
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