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Abstract

Given a graph G and a subgraph H of G, let rb(G,H) be the min-

imum number r for which any edge-coloring of G with r colors has a

rainbow subgraph H. The number rb(G,H) is called the rainbow num-

ber of H with respect to G. Denote mK2 a matching of size m and

Bn,k the set of all the k-regular bipartite graphs with bipartition (X,Y )

such that |X| = |Y | = n and k ≤ n. Let k,m, n be given positive inte-

gers, where k ≥ 3, m ≥ 2 and n > 3(m − 1). We show that for every

G ∈ Bn,k, rb(G,mK2) = k(m − 2) + 2. We also determine the rainbow

numbers of matchings in paths and cycles.
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1 Introduction

We use Bondy and Murty [3] for terminology and notations not defined here

and consider simple, finite graphs only.
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The Ramsey problem asks for the optimal total number of colors used on

the edges of a graph without creating a monochromatic subgraph. In anti-

Ramsey problems, we are interested in heterochromatic or rainbow subgraphs

instead of monochromatic subgraphs in edge-colorings. Given a graph G and

a subgraph H of G, if G is edge-colored and H contains no two edges of the

same color, then H is called a rainbow subgraph of G and we say that G

contains rainbow H . Let f(G, H) denote the maximum number of colors in an

edge-coloring of G with no rainbow H . Define rb(G, H) the minimum number

of colors such that any edge-coloring of G with at least rb(G, H) = f(G, H)+1

colors contains a rainbow subgraph H . rb(G, H) is called the rainbow number

of H with respect to G.

When G = Kn, f(G, H) is called the anti-Ramsey number of H . Anti-

Ramsey numbers were introduced by Erdős, Simonovits and Sós in the 1970s.

Let Pk and Ck denote the path and the cycle with k edges, respectively. Si-

monovits and Sós [10] determined f(Kn, Pk) for large enough n. Erdős et al.

[5] conjectured that for every fixed k ≥ 3, f(Kn, Ck) = n(k−2

2
+ 1

k−1
) + O(1),

and proved it for k = 3 by showing that f(Kn, C3) = n − 1. Alon [1] showed

that f(Kn, C4) = ⌊4n
3
⌋ − 1, and the conjecture is thus proved for k = 4. Jiang

and West [6] verified the conjecture for k at most 6. Recently the conjec-

ture is proved for all k ≥ 3 by Montellano-Ballesteros and Neumann-Lara [8].

Axenovich, Jiang and Kündgen [2] determined f(Km,n, C2k) for all k ≥ 2.

In 2004, Schiermeyer [9] determined the rainbow numbers rb(Kn, Kk) for

all n ≥ k ≥ 4, and the rainbow numbers rb(Kn, mK2) for all m ≥ 2 and

n ≥ 3m + 3, where mK2 is a matching of size m. Li, Tu and Jin [7] proved

that rb(Km,n, pK2) = m(p − 2) + 2 for all m ≥ n ≥ p ≥ 3. Chen, Li and Tu

[4] determined rb(Kn, mK2).

Let Bn,k be the set of all the k-regular bipartite graphs with bipartition

(X, Y ) such that |X| = |Y | = n and k ≤ n. In this paper we give an upper and

lower bound for rb(G, mK2), where G ∈ Bn,k. Let k, m, n be given positive

integers, where k ≥ 3, m ≥ 2 and n > 3(m − 1). We show that for every

G ∈ Bn,k, rb(G, mK2) = k(m−2)+2. We also determine the rainbow numbers

of matchings in paths and cycles.
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2 Rainbow number of matchings in regular bipartite

graphs

Denote by mK2 a matching of size m and Bn,k the set of all the k-regular

bipartite graphs with bipartition (X, Y ) such that |X| = |Y | = n and k ≤ n.

From a result of Li, Tu and Jin in [7] we know that if n ≥ 3 and 2 ≤ m ≤ n,

then rb(Bn,n, mK2) = n(m − 2) + 2. In this section we discuss the rainbow

numbers of matchings in a k-regular bipartite graph G ∈ Bn,k.

A vertex cover of G is a set S of vertices such that S contains at least

one end-vertex of every edge of G. For any U ⊂ V (G), denote by NG(U) the

neighborhood of U in G, we abbreviate it as N(U) when there is no ambiguity.

Lemma 2.1. [3] For any bipartite graph G, the size of a maximum matching

equals the size of a minimum vertex cover. Let P be a minimum vertex cover

of G, then every maximum matching of G saturates P .

Let ext(G, H) denote the maximum number of edges that G can have with

no subgraph isomorphic to H .

Theorem 2.2. For any subgraph H of a graph G ∈ Bn,k, if |E(H)| > k(m−1)

and 2 ≤ m ≤ n, then mK2 ⊂ H. That is

ext(G, mK2) = k(m − 1).

Proof. By contradiction. Suppose H is a subgraph of Bn,k with |E(H)| >

k(m−1) and contains no mK2. Then H is bipartite and the maximum degree of

the vertices in H is k. By Lemma 2.1 H has a vertex cover of size at most m−1,

which can cover at most (m − 1)k edges, contrary to |E(H)| > k(m − 1).

Theorem 2.3. If G ∈ Bn,k and 1 ≤ m ≤ n, then

k(m − 2) + 2 ≤ rb(G, mK2) ≤ k(m − 1) + 1.

Proof. The upper bound is obvious from Theorem 2.3. For the lower bound,

let G = (X, Y ) and Y1 ⊂ Y with |Y1| = m − 2, color the k(m − 2) edges

between Y1 and X with k(m− 2) distinct colors and the remaining edges with

one extra color. It is easy to check that k(m− 2)+1 colors are used and there

is no rainbow mK2 in such a coloring.

The following lemma may already exist. However, we cannot find it in the

literature. For the convenience of the reader, we give a full proof of it.
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Lemma 2.4. Let G be a bipartite graph. Then there exists a maximum match-

ing that saturates all the vertices of maximum degree.

Proof. Let ∆ denote the maximum degree of G. Among all maximum match-

ings of G, let M be one that saturates the largest number of vertices of degree

∆. Suppose some vertex v of degree ∆ is not saturated by M , we derive a

contradiction. Let (X, Y ) be a bipartition of G. Without loss of generality,

suppose v is in X. Let S denote the set of all the vertices in X reachable from

v by an M-alternating path and T the set of vertices in Y reachable from v

by an M-alternating path. If some vertex w in S has degree less than ∆, then

let M ′ be obtained from M by switching the M-edges along an M-alternating

path from v to w. We can check that M ′ is a maximum matching in which v

is saturated instead of w, and M and M ′ saturate the set of vertices besides v

and w. This contradicts our choice of M .

So all the vertices in S have degree ∆. Since M is a maximum matching in

G, there is no M-augment path in G, all the vertices in S∪T are M-saturated

and there exists a natural bijection between S and T through M (see for

instance the proof of Hall’s Theorem in [11]). So |S| = |T |. Furthermore

N({v}∪S) = T . But there are ∆|S|+∆ edges from {v}∪S to T while T can

be incident to at most ∆|T | edges in G, a contradiction.

Corollary 2.5. If G is a bipartite graph with maximum degree k, |E(G)| ≥

k(m−2)+j with 1 ≤ j ≤ k and G has no matching of size m, then G contains

j pairwise edge disjoint matchings M1, M2, · · · , Mj of size m−1. Furthermore,

for any 1 ≤ s ≤ j, the maximum degree of G\ ∪s
i=1 Mi is k − s.

Proof. We prove by induction on j.

If j = 1 and |E(G)| ≥ k(m − 2) + 1, since G has no matching of size

m, by Lemma 2.1 G contains a maximum matching M1 of size m − 1 which

saturates all the vertices of degree k and the maximum degree of G\M1 is

k − 1. Suppose that when j = t the result is true. Let j = t + 1 and

|E(G)| ≥ k(m− 2) + t + 1. By the induction hypothesis G has t pairwise edge

disjoint matchings M1, M2, · · · , Mt of size m − 1 and the maximum degree in

G\∪t
i=1Mi is k−t. Now there are k(m−2)+t+1−t(m−1) = (k−t)(m−2)+1

edges in G\ ∪t
i=1 Mi, by Lemma 2.1 and Lemma 2.4, there is a matching Mt+1

of size m− 1 which saturates all the vertices of degree k− t in G\∪t
i=1 Mi and

this completes the proof.
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The following theorem shows that for given k and m, if n is large enough,

rb(Bn,k, mK2) will always be equal to the lower bound k(m − 2) + 2.

Theorem 2.6. For all m ≥ 2, k ≥ 3, n > 3(m − 1), if G is a k-regular

bipartite graph with n vertices in each partite set, then

rb(G, mK2) = k(m − 2) + 2.

Proof. From Theorem 2.4 it suffices to show that for any m ≥ 2, k ≥ 3, if

n > 3(m− 1), any coloring c of G with k(m− 2)+ 2 colors contains a rainbow

mK2. By contradiction, suppose there is no rainbow mK2 in G. Let H be

a subgraph of G formed by taking one edge of each color from G. We have

|E(H)| = k(m − 2) + 2 and there is no mK2 in H . From Corollary 2.5, let M

and M ′ be two edge-disjoint matchings of size m − 1 in H .

Since M and M ′ are both maximum matchings in H , by Lemma 2.1 the

edges in M∪M ′ are incident to at most 3(m−1) vertices, which can be incident

to at most 3k(m − 1) edges. If n > 3(m − 1), then |E(G)| > 3k(m − 1) and

there is at least one edge, say e, in G that is independent of E(M) ∪ E(G′).

Without loss of generality, suppose c(e) ∈ C(M), then M ′ ∪ {e} is a rainbow

mK2 in G.

3 Rainbow numbers of matchings in paths and cycles

In this section we suppose n ≥ 3. Let Pn be the path with n edges with

V (Pn) = {x0, x1, · · · , xn} and E(Pn) = {ei|ei = xi−1xi, 1 ≤ i ≤ n}, and let Cn

be the cycle with n edges.

Theorem 3.1. For any 1 ≤ m ≤ ⌈n
2
⌉,

2m − 2 ≤ rb(Pn, mK2) ≤ 2m − 1.

Proof. For the upper bound, let c be any coloring of Pn with 2m − 1 colors,

and G be the spanning subgraph formed by taking one edge of each color from

Pn. Then G is a bipartite graph, and so the size of its maximum matchings

equals the size of its minimum vertex covers. Since one vertex can cover at

most two edges in G, the size of a minimum vertex cover of G is at least m,

and so there is a matching of size m in G and hence there is a rainbow mK2

in Pn.
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To obtain the lower bound we need to show that there is a coloring c of Pn

with 2m− 3 colors without rainbow mK2. Let c(ei) = i for i = 1, · · · , 2m− 4

and color all the other edges with 2m − 3. It is easy to see that there is no

rainbow mK2 in such a coloring.

Let G be a graph, x′, x′′ ∈ V (G) with N(x′) ∩ N(x′′) = ∅. Identify x′

and x′′ into one vertex x and let the resultant graph be H , that is V (H) =

V (G)∪ {x}\{x′, x′′} and E(H) = {uv|uv ∈ E(G) and {u, v}∩ {x′, x′′} = ∅} ∪

{xu|x′u ∈ E(G) or x′′u ∈ E(G)}. Let rb(H, mK2) = p and c be any coloring

of G with p colors. For each edge in G, color the corresponding edge in H with

the same color. Then there is a rainbow mK2 in H . Since the corresponding

edge set in G of an independent edge set in H is still independent, we have a

rainbow mK2 in G, and so rb(G, mK2) ≤ rb(H, mK2).

Notice that Cn can be obtained from Pn by identifying the two ends of Pn.

Thus from above observation we have

Theorem 3.2. rb(Pn, mK2) ≤ rb(Cn, mK2).

In Theorem 3.1, if we replace Pn by Cn and m ≤ ⌈n
2
⌉ by m ≤ ⌊n

2
⌋, then

from Theorem 3.2 we get the following theorem.

Theorem 3.3. For any 1 ≤ m ≤ ⌊n
2
⌋,

2m − 2 ≤ rb(Cn, mK2) ≤ 2m − 1.

Theorem 3.4. For any 2 ≤ m ≤ ⌈n
2
⌉,

rb(Pn, mK2) = {
2m − 1, n ≤ 3m − 3;

2m − 2, n > 3m − 3.

Proof. For n ≤ 3m − 3, since 2m − 2 ≤ rb(Pn, mK2) ≤ 2m − 1, we can

construct a coloring of Pn with 2m − 2 colors that contains no rainbow mK2.

In fact, let p = n − (2m − 2), and for 1 ≤ i ≤ p let c(e3i−2) = c(e3i) = 2i and

c(e3i−1) = 2i − 1, and for 1 ≤ j ≤ n − 3p let c(e3p+j) = 2p + j. It is easy to

check that for such a coloring, in any rainbow matching of Pn only one color

of 2i− 1 and 2i (1 ≤ i ≤ m− 1) may appear, and so there is no rainbow mK2

in Pn.

For n > 3m − 3, let c be any coloring of Pn with 2m − 2 colors. We

will prove that there is a rainbow mK2 in Pn. By contradiction, suppose

6



there is no rainbow mK2 in Pn. Let G be the spanning subgraph of Pn

formed by taking one edge of each color in Pn, E(G) = {ei1 , ei2 , · · · , ei2m−2
},

1 ≤ i1 < i2 < · · · < i2m−2 ≤ n with c(eij ) = j, 1 ≤ j ≤ 2m − 2. There is no

mK2 in G. Notice that G is bipartite, and so the size of maximum matchings

equals the size of minimum vertex covers. Since one vertex of G can cover

at most two edges, there is a vertex cover of size m − 1 in G, and so ei2l−1
is

adjacent to ei2l
, 1 ≤ l ≤ m − 1.

Claim 1. Every edge e in Pn\E(G) is adjacent to an edge in E(G). Other-

wise suppose there is an edge e ∈ E(Pn)\E(G) independent of E(G). Notice

that M1 = {ei1, ei3 , · · · , ei2m−3
} and M2 = {ei2, ei4 , · · · , ei2m−2

} are two disjoint

matchings of size m− 1 in G. Let c(e) = c(eil), and without loss of generality,

let eil ∈ M1. Then M2 ∪ {e} is a rainbow mK2 in Pn, a contradiction.

Claim 2. There is no subgraph isomorphic to P3 in Pn\E(G). Otherwise the

middle edge of P3 is independent of E(G), which is contrary to Claim 1.

From Claims 1 and 2 we know that every nontrivial component of Pn\E(G)

is a single edge P1 or a P2. We consider three cases and each leads to a con-

tradiction.

Case 1. All the nontrivial components of Pn\E(G) are single edges. From

Claim 1 and n > 3m − 3, we can deduce that n = 3m − 2 and E(G) =

{e2, e3, e5, e6, e8, e9, · · · , e3m−4, e3m−3} with c(e3i−1) = 2i − 1, c(e3i) = 2i, 1 ≤

i ≤ m − 1. Now M1
1 = {e3i|1 ≤ i ≤ m − 1} and M1

2 = {e3} ∪ {e3i−1|2 ≤ i ≤

m − 1} have only e3 in common and both are independent of e1. To avoid

the existence of a rainbow mK2 in Pn, we have c(e1) = c(e3) = 2. Similarly,

M2
1 = {e1, e6}∪{e3i−1|3 ≤ i ≤ m−1} and M2

2 = {e2, e6}∪{e3i|3 ≤ i ≤ m−1}

have only e6 in common and both are independent of e4, and c(e4) = c(e6) = 4.

By the same method, we know that c(e3i−2) = c(e3i) = 2i, 1 ≤ i ≤ m−1. Then,

Mm
1 = {e3i−2|1 ≤ i ≤ m − 1} and Mm

2 = {e3i−1|1 ≤ i ≤ m − 1} are disjoint

and both are independent of e3m−2. Whatever color e3m−2 receives, we will get

a rainbow mK2 in Pn, a contradiction.

Now at least one component of Pn\E(G) is isomorphic to P2.
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Case 2. At least one of the end edges of Pn is in Pn\E(G). Without loss of

generality, let E(G) = {e2, e3, e6, e7, e9, e10, · · · , e3m−3, e3m−2} with c(e2) = 1,

c(e3) = 2, c(e3i) = 2i−1, c(e3i+1) = 2i, 2 ≤ i ≤ m−1. Since M ′

1 = {e3i|1 ≤ i ≤

m−1} and M ′

2 = {e3}∪{e3i+1|2 ≤ i ≤ m−1} have only e3 in common and both

are independent of e1, c(e1) = c(e3) = 2. Now M ′′

1 = {e1}∪{e3i|2 ≤ i ≤ m−1}

and M ′′

2 = {e2} ∪ {e3i+1|2 ≤ i ≤ m− 1} are disjoint and both are independent

of e4. Whatever color e4 receives, we will get a rainbow mK2 in Pn.

Case 3. Since none of the end edges of Pn is in Pn\E(G), there are at least

two components in Pn\E(G) isomorphic to P2. Without loss of generality, let

E(G) = {e1, e2, e5, e6, e9, e10, e12, e13, · · · , e3m−3, e3m−2} with c(e2) = 1, c(e2) =

2, c(e5) = 3, c(e6) = 4, c(e3i) = 2i − 1, c(e3i+1) = 2i, 3 ≤ i ≤ m − 1. Since

M ′

1 = {e1, e3}∪{e3i|3 ≤ i ≤ m−1} and M ′

2 = {e1, e4}∪{e3i+1|2 ≤ i ≤ m−1}

have only e1 in common and both are independent of e3, we have c(e1) =

c(e3) = 1. M ′′

1 = {e1, e6}∪{e3i|3 ≤ i ≤ m− 1} and M ′′

2 = {e2, e6}∪{e3i+1|2 ≤

i ≤ m − 1} have only e6 in common and both are independent of e4, we

have c(e4) = c(e6) = 4. Now M1 = {e1, e4} ∪ {e3i|3 ≤ i ≤ m − 1} and

M2 = {e2, e5} ∪ {e3i+1|2 ≤ i ≤ m − 1} are disjoint and both are independent

of e7. Whatever color e7 receives, we will get a rainbow mK2 in Pn.

From Theorem 3.2 and Theorem 3.4, we have rb(Cn, mK2) = 2m− 1, n ≤

3m − 3. For n > 3m − 3, by a similar proof in Theorem 3.4, we have

rb(Cn, mK2) = 2m − 2. Thus we have

Theorem 3.5. For any m ≤ ⌊n
2
⌋,

rb(Cn, mK2) = {
2m − 1, n ≤ 3m − 3;

2m − 2, n > 3m − 3.
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