Rainbow number of matchings in regular bipartite graphs *

Xueliang Li^{1} and Zhixia $\mathrm{Xu}^{1,2}$
${ }^{1}$ Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China. Email: lxl@nankai.edu.cn
${ }^{2}$ College of Mathematics and System Sciences, Xinjiang University
Urumuqi, 830046, China. Email: irisxuzx@gmail.com

Abstract

Given a graph G and a subgraph H of G, let $r b(G, H)$ be the minimum number r for which any edge-coloring of G with r colors has a rainbow subgraph H. The number $r b(G, H)$ is called the rainbow number of H with respect to G. Denote $m K_{2}$ a matching of size m and $B_{n, k}$ the set of all the k-regular bipartite graphs with bipartition (X, Y) such that $|X|=|Y|=n$ and $k \leq n$. Let k, m, n be given positive integers, where $k \geq 3, m \geq 2$ and $n>3(m-1)$. We show that for every $G \in B_{n, k}, r b\left(G, m K_{2}\right)=k(m-2)+2$. We also determine the rainbow numbers of matchings in paths and cycles.

Keywords: edge-colored graph, rainbow subgraph, rainbow number, matching, regular bipartite graph

AMS Subject Classification 2000: 05C15, 05C35, 05C55, 05C70.

1 Introduction

We use Bondy and Murty [3] for terminology and notations not defined here and consider simple, finite graphs only.

[^0]The Ramsey problem asks for the optimal total number of colors used on the edges of a graph without creating a monochromatic subgraph. In antiRamsey problems, we are interested in heterochromatic or rainbow subgraphs instead of monochromatic subgraphs in edge-colorings. Given a graph G and a subgraph H of G, if G is edge-colored and H contains no two edges of the same color, then H is called a rainbow subgraph of G and we say that G contains rainbow H. Let $f(G, H)$ denote the maximum number of colors in an edge-coloring of G with no rainbow H. Define $r b(G, H)$ the minimum number of colors such that any edge-coloring of G with at least $r b(G, H)=f(G, H)+1$ colors contains a rainbow subgraph $H \cdot r b(G, H)$ is called the rainbow number of H with respect to G.

When $G=K_{n}, f(G, H)$ is called the anti-Ramsey number of H. AntiRamsey numbers were introduced by Erdős, Simonovits and Sós in the 1970s. Let P_{k} and C_{k} denote the path and the cycle with k edges, respectively. Simonovits and Sós [10] determined $f\left(K_{n}, P_{k}\right)$ for large enough n. Erdős et al. [5] conjectured that for every fixed $k \geq 3, f\left(K_{n}, C_{k}\right)=n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$, and proved it for $k=3$ by showing that $f\left(K_{n}, C_{3}\right)=n-1$. Alon [1] showed that $f\left(K_{n}, C_{4}\right)=\left\lfloor\frac{4 n}{3}\right\rfloor-1$, and the conjecture is thus proved for $k=4$. Jiang and West [6] verified the conjecture for k at most 6 . Recently the conjecture is proved for all $k \geq 3$ by Montellano-Ballesteros and Neumann-Lara [8]. Axenovich, Jiang and Kündgen [2] determined $f\left(K_{m, n}, C_{2 k}\right)$ for all $k \geq 2$.

In 2004, Schiermeyer [9] determined the rainbow numbers $r b\left(K_{n}, K_{k}\right)$ for all $n \geq k \geq 4$, and the rainbow numbers $r b\left(K_{n}, m K_{2}\right)$ for all $m \geq 2$ and $n \geq 3 m+3$, where $m K_{2}$ is a matching of size m. Li, Tu and Jin [7] proved that $r b\left(K_{m, n}, p K_{2}\right)=m(p-2)+2$ for all $m \geq n \geq p \geq 3$. Chen, Li and Tu [4] determined $r b\left(K_{n}, m K_{2}\right)$.

Let $B_{n, k}$ be the set of all the k-regular bipartite graphs with bipartition (X, Y) such that $|X|=|Y|=n$ and $k \leq n$. In this paper we give an upper and lower bound for $r b\left(G, m K_{2}\right)$, where $G \in B_{n, k}$. Let k, m, n be given positive integers, where $k \geq 3, m \geq 2$ and $n>3(m-1)$. We show that for every $G \in B_{n, k}, r b\left(G, m K_{2}\right)=k(m-2)+2$. We also determine the rainbow numbers of matchings in paths and cycles.

2 Rainbow number of matchings in regular bipartite graphs

Denote by $m K_{2}$ a matching of size m and $B_{n, k}$ the set of all the k-regular bipartite graphs with bipartition (X, Y) such that $|X|=|Y|=n$ and $k \leq n$. From a result of Li, Tu and Jin in [7] we know that if $n \geq 3$ and $2 \leq m \leq n$, then $r b\left(B_{n, n}, m K_{2}\right)=n(m-2)+2$. In this section we discuss the rainbow numbers of matchings in a k-regular bipartite graph $G \in B_{n, k}$.

A vertex cover of G is a set S of vertices such that S contains at least one end-vertex of every edge of G. For any $U \subset V(G)$, denote by $N_{G}(U)$ the neighborhood of U in G, we abbreviate it as $N(U)$ when there is no ambiguity.

Lemma 2.1. [3] For any bipartite graph G, the size of a maximum matching equals the size of a minimum vertex cover. Let P be a minimum vertex cover of G, then every maximum matching of G saturates P.

Let $\operatorname{ext}(G, H)$ denote the maximum number of edges that G can have with no subgraph isomorphic to H.

Theorem 2.2. For any subgraph H of a graph $G \in B_{n, k}$, if $|E(H)|>k(m-1)$ and $2 \leq m \leq n$, then $m K_{2} \subset H$. That is

$$
\operatorname{ext}\left(G, m K_{2}\right)=k(m-1)
$$

Proof. By contradiction. Suppose H is a subgraph of $B_{n, k}$ with $|E(H)|>$ $k(m-1)$ and contains no $m K_{2}$. Then H is bipartite and the maximum degree of the vertices in H is k. By Lemma $2.1 H$ has a vertex cover of size at most $m-1$, which can cover at most $(m-1) k$ edges, contrary to $|E(H)|>k(m-1)$.

Theorem 2.3. If $G \in B_{n, k}$ and $1 \leq m \leq n$, then

$$
k(m-2)+2 \leq r b\left(G, m K_{2}\right) \leq k(m-1)+1
$$

Proof. The upper bound is obvious from Theorem 2.3. For the lower bound, let $G=(X, Y)$ and $Y_{1} \subset Y$ with $\left|Y_{1}\right|=m-2$, color the $k(m-2)$ edges between Y_{1} and X with $k(m-2)$ distinct colors and the remaining edges with one extra color. It is easy to check that $k(m-2)+1$ colors are used and there is no rainbow $m K_{2}$ in such a coloring.

The following lemma may already exist. However, we cannot find it in the literature. For the convenience of the reader, we give a full proof of it.

Lemma 2.4. Let G be a bipartite graph. Then there exists a maximum matching that saturates all the vertices of maximum degree.

Proof. Let Δ denote the maximum degree of G. Among all maximum matchings of G, let M be one that saturates the largest number of vertices of degree Δ. Suppose some vertex v of degree Δ is not saturated by M, we derive a contradiction. Let (X, Y) be a bipartition of G. Without loss of generality, suppose v is in X. Let S denote the set of all the vertices in X reachable from v by an M-alternating path and T the set of vertices in Y reachable from v by an M-alternating path. If some vertex w in S has degree less than Δ, then let M^{\prime} be obtained from M by switching the M-edges along an M-alternating path from v to w. We can check that M^{\prime} is a maximum matching in which v is saturated instead of w, and M and M^{\prime} saturate the set of vertices besides v and w. This contradicts our choice of M.

So all the vertices in S have degree Δ. Since M is a maximum matching in G, there is no M-augment path in G, all the vertices in $S \cup T$ are M-saturated and there exists a natural bijection between S and T through M (see for instance the proof of Hall's Theorem in [11]). So $|S|=|T|$. Furthermore $N(\{v\} \cup S)=T$. But there are $\Delta|S|+\Delta$ edges from $\{v\} \cup S$ to T while T can be incident to at most $\Delta|T|$ edges in G, a contradiction.

Corollary 2.5. If G is a bipartite graph with maximum degree $k,|E(G)| \geq$ $k(m-2)+j$ with $1 \leq j \leq k$ and G has no matching of size m, then G contains j pairwise edge disjoint matchings $M_{1}, M_{2}, \cdots, M_{j}$ of size $m-1$. Furthermore, for any $1 \leq s \leq j$, the maximum degree of $G \backslash \cup_{i=1}^{s} M_{i}$ is $k-s$.

Proof. We prove by induction on j.
If $j=1$ and $|E(G)| \geq k(m-2)+1$, since G has no matching of size m, by Lemma $2.1 G$ contains a maximum matching M_{1} of size $m-1$ which saturates all the vertices of degree k and the maximum degree of $G \backslash M_{1}$ is $k-1$. Suppose that when $j=t$ the result is true. Let $j=t+1$ and $|E(G)| \geq k(m-2)+t+1$. By the induction hypothesis G has t pairwise edge disjoint matchings $M_{1}, M_{2}, \cdots, M_{t}$ of size $m-1$ and the maximum degree in $G \backslash \cup_{i=1}^{t} M_{i}$ is $k-t$. Now there are $k(m-2)+t+1-t(m-1)=(k-t)(m-2)+1$ edges in $G \backslash \cup_{i=1}^{t} M_{i}$, by Lemma 2.1 and Lemma 2.4, there is a matching M_{t+1} of size $m-1$ which saturates all the vertices of degree $k-t$ in $G \backslash \cup_{i=1}^{t} M_{i}$ and this completes the proof.

The following theorem shows that for given k and m, if n is large enough, $r b\left(B_{n, k}, m K_{2}\right)$ will always be equal to the lower bound $k(m-2)+2$.

Theorem 2.6. For all $m \geq 2, k \geq 3, n>3(m-1)$, if G is a k-regular bipartite graph with n vertices in each partite set, then

$$
r b\left(G, m K_{2}\right)=k(m-2)+2 .
$$

Proof. From Theorem 2.4 it suffices to show that for any $m \geq 2, k \geq 3$, if $n>3(m-1)$, any coloring c of G with $k(m-2)+2$ colors contains a rainbow $m K_{2}$. By contradiction, suppose there is no rainbow $m K_{2}$ in G. Let H be a subgraph of G formed by taking one edge of each color from G. We have $|E(H)|=k(m-2)+2$ and there is no $m K_{2}$ in H. From Corollary 2.5, let M and M^{\prime} be two edge-disjoint matchings of size $m-1$ in H.

Since M and M^{\prime} are both maximum matchings in H, by Lemma 2.1 the edges in $M \cup M^{\prime}$ are incident to at most $3(m-1)$ vertices, which can be incident to at most $3 k(m-1)$ edges. If $n>3(m-1)$, then $|E(G)|>3 k(m-1)$ and there is at least one edge, say e, in G that is independent of $E(M) \cup E\left(G^{\prime}\right)$. Without loss of generality, suppose $c(e) \in C(M)$, then $M^{\prime} \cup\{e\}$ is a rainbow $m K_{2}$ in G.

3 Rainbow numbers of matchings in paths and cycles

In this section we suppose $n \geq 3$. Let P_{n} be the path with n edges with $V\left(P_{n}\right)=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{i} \mid e_{i}=x_{i-1} x_{i}, 1 \leq i \leq n\right\}$, and let C_{n} be the cycle with n edges.

Theorem 3.1. For any $1 \leq m \leq\left\lceil\frac{n}{2}\right\rceil$,

$$
2 m-2 \leq r b\left(P_{n}, m K_{2}\right) \leq 2 m-1
$$

Proof. For the upper bound, let c be any coloring of P_{n} with $2 m-1$ colors, and G be the spanning subgraph formed by taking one edge of each color from P_{n}. Then G is a bipartite graph, and so the size of its maximum matchings equals the size of its minimum vertex covers. Since one vertex can cover at most two edges in G, the size of a minimum vertex cover of G is at least m, and so there is a matching of size m in G and hence there is a rainbow $m K_{2}$ in P_{n}.

To obtain the lower bound we need to show that there is a coloring c of P_{n} with $2 m-3$ colors without rainbow $m K_{2}$. Let $c\left(e_{i}\right)=i$ for $i=1, \cdots, 2 m-4$ and color all the other edges with $2 m-3$. It is easy to see that there is no rainbow $m K_{2}$ in such a coloring.

Let G be a graph, $x^{\prime}, x^{\prime \prime} \in V(G)$ with $N\left(x^{\prime}\right) \cap N\left(x^{\prime \prime}\right)=\emptyset$. Identify x^{\prime} and $x^{\prime \prime}$ into one vertex x and let the resultant graph be H, that is $V(H)=$ $V(G) \cup\{x\} \backslash\left\{x^{\prime}, x^{\prime \prime}\right\}$ and $E(H)=\left\{u v \mid u v \in E(G)\right.$ and $\left.\{u, v\} \cap\left\{x^{\prime}, x^{\prime \prime}\right\}=\emptyset\right\} \cup$ $\left\{x u \mid x^{\prime} u \in E(G)\right.$ or $\left.x^{\prime \prime} u \in E(G)\right\}$. Let $r b\left(H, m K_{2}\right)=p$ and c be any coloring of G with p colors. For each edge in G, color the corresponding edge in H with the same color. Then there is a rainbow $m K_{2}$ in H. Since the corresponding edge set in G of an independent edge set in H is still independent, we have a rainbow $m K_{2}$ in G, and so $r b\left(G, m K_{2}\right) \leq r b\left(H, m K_{2}\right)$.

Notice that C_{n} can be obtained from P_{n} by identifying the two ends of P_{n}. Thus from above observation we have

Theorem 3.2. $r b\left(P_{n}, m K_{2}\right) \leq r b\left(C_{n}, m K_{2}\right)$.
In Theorem 3.1, if we replace P_{n} by C_{n} and $m \leq\left\lceil\frac{n}{2}\right\rceil$ by $m \leq\left\lfloor\frac{n}{2}\right\rfloor$, then from Theorem 3.2 we get the following theorem.

Theorem 3.3. For any $1 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
2 m-2 \leq r b\left(C_{n}, m K_{2}\right) \leq 2 m-1
$$

Theorem 3.4. For any $2 \leq m \leq\left\lceil\frac{n}{2}\right\rceil$,

$$
r b\left(P_{n}, m K_{2}\right)= \begin{cases}2 m-1, & n \leq 3 m-3 \\ 2 m-2, & n>3 m-3 .\end{cases}
$$

Proof. For $n \leq 3 m-3$, since $2 m-2 \leq r b\left(P_{n}, m K_{2}\right) \leq 2 m-1$, we can construct a coloring of P_{n} with $2 m-2$ colors that contains no rainbow $m K_{2}$. In fact, let $p=n-(2 m-2)$, and for $1 \leq i \leq p$ let $c\left(e_{3 i-2}\right)=c\left(e_{3 i}\right)=2 i$ and $c\left(e_{3 i-1}\right)=2 i-1$, and for $1 \leq j \leq n-3 p$ let $c\left(e_{3 p+j}\right)=2 p+j$. It is easy to check that for such a coloring, in any rainbow matching of P_{n} only one color of $2 i-1$ and $2 i(1 \leq i \leq m-1)$ may appear, and so there is no rainbow $m K_{2}$ in P_{n}.

For $n>3 m-3$, let c be any coloring of P_{n} with $2 m-2$ colors. We will prove that there is a rainbow $m K_{2}$ in P_{n}. By contradiction, suppose
there is no rainbow $m K_{2}$ in P_{n}. Let G be the spanning subgraph of P_{n} formed by taking one edge of each color in $P_{n}, E(G)=\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{2 m-2}}\right\}$, $1 \leq i_{1}<i_{2}<\cdots<i_{2 m-2} \leq n$ with $c\left(e_{i_{j}}\right)=j, 1 \leq j \leq 2 m-2$. There is no $m K_{2}$ in G. Notice that G is bipartite, and so the size of maximum matchings equals the size of minimum vertex covers. Since one vertex of G can cover at most two edges, there is a vertex cover of size $m-1$ in G, and so $e_{i_{2 l-1}}$ is adjacent to $e_{i_{2 l}}, 1 \leq l \leq m-1$.

Claim 1. Every edge e in $P_{n} \backslash E(G)$ is adjacent to an edge in $E(G)$. Otherwise suppose there is an edge $e \in E\left(P_{n}\right) \backslash E(G)$ independent of $E(G)$. Notice that $M_{1}=\left\{e_{i_{1}}, e_{i_{3}}, \cdots, e_{i_{2 m-3}}\right\}$ and $M_{2}=\left\{e_{i_{2}}, e_{i_{4}}, \cdots, e_{i_{2 m-2}}\right\}$ are two disjoint matchings of size $m-1$ in G. Let $c(e)=c\left(e_{i_{l}}\right)$, and without loss of generality, let $e_{i_{l}} \in M_{1}$. Then $M_{2} \cup\{e\}$ is a rainbow $m K_{2}$ in P_{n}, a contradiction.

Claim 2. There is no subgraph isomorphic to P_{3} in $P_{n} \backslash E(G)$. Otherwise the middle edge of P_{3} is independent of $E(G)$, which is contrary to Claim 1.

From Claims 1 and 2 we know that every nontrivial component of $P_{n} \backslash E(G)$ is a single edge P_{1} or a P_{2}. We consider three cases and each leads to a contradiction.

Case 1. All the nontrivial components of $P_{n} \backslash E(G)$ are single edges. From Claim 1 and $n>3 m-3$, we can deduce that $n=3 m-2$ and $E(G)=$ $\left\{e_{2}, e_{3}, e_{5}, e_{6}, e_{8}, e_{9}, \cdots, e_{3 m-4}, e_{3 m-3}\right\}$ with $c\left(e_{3 i-1}\right)=2 i-1, c\left(e_{3 i}\right)=2 i, 1 \leq$ $i \leq m-1$. Now $M_{1}^{1}=\left\{e_{3 i} \mid 1 \leq i \leq m-1\right\}$ and $M_{2}^{1}=\left\{e_{3}\right\} \cup\left\{e_{3 i-1} \mid 2 \leq i \leq\right.$ $m-1\}$ have only e_{3} in common and both are independent of e_{1}. To avoid the existence of a rainbow $m K_{2}$ in P_{n}, we have $c\left(e_{1}\right)=c\left(e_{3}\right)=2$. Similarly, $M_{1}^{2}=\left\{e_{1}, e_{6}\right\} \cup\left\{e_{3 i-1} \mid 3 \leq i \leq m-1\right\}$ and $M_{2}^{2}=\left\{e_{2}, e_{6}\right\} \cup\left\{e_{3 i} \mid 3 \leq i \leq m-1\right\}$ have only e_{6} in common and both are independent of e_{4}, and $c\left(e_{4}\right)=c\left(e_{6}\right)=4$. By the same method, we know that $c\left(e_{3 i-2}\right)=c\left(e_{3 i}\right)=2 i, 1 \leq i \leq m-1$. Then, $M_{1}^{m}=\left\{e_{3 i-2} \mid 1 \leq i \leq m-1\right\}$ and $M_{2}^{m}=\left\{e_{3 i-1} \mid 1 \leq i \leq m-1\right\}$ are disjoint and both are independent of $e_{3 m-2}$. Whatever color $e_{3 m-2}$ receives, we will get a rainbow $m K_{2}$ in P_{n}, a contradiction.

Now at least one component of $P_{n} \backslash E(G)$ is isomorphic to P_{2}.

Case 2. At least one of the end edges of P_{n} is in $P_{n} \backslash E(G)$. Without loss of generality, let $E(G)=\left\{e_{2}, e_{3}, e_{6}, e_{7}, e_{9}, e_{10}, \cdots, e_{3 m-3}, e_{3 m-2}\right\}$ with $c\left(e_{2}\right)=1$, $c\left(e_{3}\right)=2, c\left(e_{3 i}\right)=2 i-1, c\left(e_{3 i+1}\right)=2 i, 2 \leq i \leq m-1$. Since $M_{1}^{\prime}=\left\{e_{3 i} \mid 1 \leq i \leq\right.$ $m-1\}$ and $M_{2}^{\prime}=\left\{e_{3}\right\} \cup\left\{e_{3 i+1} \mid 2 \leq i \leq m-1\right\}$ have only e_{3} in common and both are independent of $e_{1}, c\left(e_{1}\right)=c\left(e_{3}\right)=2$. Now $M_{1}^{\prime \prime}=\left\{e_{1}\right\} \cup\left\{e_{3 i} \mid 2 \leq i \leq m-1\right\}$ and $M_{2}^{\prime \prime}=\left\{e_{2}\right\} \cup\left\{e_{3 i+1} \mid 2 \leq i \leq m-1\right\}$ are disjoint and both are independent of e_{4}. Whatever color e_{4} receives, we will get a rainbow $m K_{2}$ in P_{n}.

Case 3. Since none of the end edges of P_{n} is in $P_{n} \backslash E(G)$, there are at least two components in $P_{n} \backslash E(G)$ isomorphic to P_{2}. Without loss of generality, let $E(G)=\left\{e_{1}, e_{2}, e_{5}, e_{6}, e_{9}, e_{10}, e_{12}, e_{13}, \cdots, e_{3 m-3}, e_{3 m-2}\right\}$ with $c\left(e_{2}\right)=1, c\left(e_{2}\right)=$ $2, c\left(e_{5}\right)=3, c\left(e_{6}\right)=4, c\left(e_{3 i}\right)=2 i-1, c\left(e_{3 i+1}\right)=2 i, 3 \leq i \leq m-1$. Since $M_{1}^{\prime}=\left\{e_{1}, e_{3}\right\} \cup\left\{e_{3 i} \mid 3 \leq i \leq m-1\right\}$ and $M_{2}^{\prime}=\left\{e_{1}, e_{4}\right\} \cup\left\{e_{3 i+1} \mid 2 \leq i \leq m-1\right\}$ have only e_{1} in common and both are independent of e_{3}, we have $c\left(e_{1}\right)=$ $c\left(e_{3}\right)=1 . M_{1}^{\prime \prime}=\left\{e_{1}, e_{6}\right\} \cup\left\{e_{3 i} \mid 3 \leq i \leq m-1\right\}$ and $M_{2}^{\prime \prime}=\left\{e_{2}, e_{6}\right\} \cup\left\{e_{3 i+1} \mid 2 \leq\right.$ $i \leq m-1\}$ have only e_{6} in common and both are independent of e_{4}, we have $c\left(e_{4}\right)=c\left(e_{6}\right)=4$. Now $M_{1}=\left\{e_{1}, e_{4}\right\} \cup\left\{e_{3 i} \mid 3 \leq i \leq m-1\right\}$ and $M_{2}=\left\{e_{2}, e_{5}\right\} \cup\left\{e_{3 i+1} \mid 2 \leq i \leq m-1\right\}$ are disjoint and both are independent of e_{7}. Whatever color e_{7} receives, we will get a rainbow $m K_{2}$ in P_{n}.

From Theorem 3.2 and Theorem 3.4, we have $\operatorname{rb}\left(C_{n}, m K_{2}\right)=2 m-1, n \leq$ $3 m-3$. For $n>3 m-3$, by a similar proof in Theorem 3.4, we have $r b\left(C_{n}, m K_{2}\right)=2 m-2$. Thus we have

Theorem 3.5. For any $m \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
r b\left(C_{n}, m K_{2}\right)= \begin{cases}2 m-1, & n \leq 3 m-3 \\ 2 m-2, & n>3 m-3 .\end{cases}
$$

Acknowledgement: The authors are very grateful to the reviewers for helpful comments and suggestions.

References

[1] N. Alon, On a conjecture of Erdős, Simonovits and Sós concerning antiRamsey theorems, J. Graph Theory 7(1983), 91-94.
[2] M. Axenovich, T. Jiang and A. Kündgen, Bipartite anti-Ramsey numbers of cycles, J. Graph Theory 47(2004), 9-28.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[4] H. Chen, X. Li and J. Tu, Complete solution for the rainbow numbers of matchings, Discrete Math. doi:10.1016/j.disc.2008.10.002. in press.
[5] P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey theorems, in: A. Hajnal, R. Rado, V.T. Sós (Eds), Infinite and Finite Sets, Vol.II, Colloq. Math. Soc. János Bolvai 10(1975), 633-643.
[6] T. Jiang and D.B. West, On the Erdós-Simonovits-Sós conjecture about the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12(2003), 585598.
[7] X. Li, J. Tu and Z. Jin, Bipartite rainbow numbers of matchings, Discrete Math. doi:10.1016/j.disc.2008.05.011. in press.
[8] J.J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs and Combin. 21(2005), 343C354.
[9] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286(2004), 157-162.
[10] M. Simonovits and V.T. Sós, On restricted colourings of K_{n}, Combinatorica 4(1984), 101-110.
[11] D.B. West, Introduction to Graph Theory (2nd edition), Prentice Hall, 2001.

[^0]: *Supported by NSFC, PCSIRT and the " 973 " program.

