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Abstract. Let G be a non-cyclic finite solvable group of order n, and let S = (g1, · · · , gk) be a
sequence of k elements (repetition allowed) in G. In this paper we prove that if k ≥ 7

4
n − 1, then

there exist some distinct indices i1, i2, · · · , in such that the product gi1gi2 · · · gin = 1. This result
substantially improves the Erdős-Ginzburg-Ziv Theorem and other existing results.

1. Introduction and Notations

Let G be a finite group of order n, and let S = (g1, · · · , gk) be a sequence of k elements in G

(repetition allowed). We call S a 1-product sequence if 1 =
∏k

i=1 gτ(i) holds for some permutation
τ of {1, · · · , k}. We denote by

∏
(S) the product

∏k
i=1 gi. We call T = (gi1 , · · · , gi`) a subsequence

of S if 1 ≤ ij ≤ k for each j and ij 6= it when j 6= t. Furthermore, if 1 ≤ i1 < · · · < i` ≤ k,
we call T a main subsequence of S. Clearly, every subsequence of S can be reordered to form
a unique main subsequence of S. For example, the subsequence (g2, g1) of S can be reordered
to a main subsequence (g1, g2) of S. We denote by IT the index set IT = {i1, · · · , i`} of T . If
T1 = (gj1 , · · · , gju) and T2 = (gh1 , · · · , ghv) are two disjoint subsequences of S (i.e., IT1 ∩ IT2 = ∅),
we denote by T1T2 the sequence (gj1 , · · · , gju , gh1 , · · · , ghv) and call it the concatenation of T1 and
T2. Similarly, we can define the concatenation of any finite number of disjointed subsequences of
S. For every g ∈ G, let o(g) denote the order of g. Let H be a normal subgroup of G, and let φ be
the natural homomorphism from G onto G/H. Denote by φ(S) the sequence (φ(g1), · · · , φ(gk)) of
elements in G/H.

Let D(G) be Davenport’s constant of G (i.e. the smallest integer d such that every sequence
of d elements in G contains a nonempty 1-product subsequence). We denote by s(G) the smallest
integer t such that every sequence of t elements in G contains a 1-product subsequence of length
n. In 1961, Erdős, Ginzburg and Ziv [4] proved that s(G) ≤ 2n − 1 for every finite solvable group
G and this result is well known as the Erdős-Ginzburg-Ziv Theorem. In 1976, Olson [13] showed
that s(G) ≤ 2n− 1 holds for every finite group G. Davenport’s constant and the Erdős-Ginzburg-
Ziv Theorem have received a greater amount of attention in the recent twenty years, and more
information regarding these topics can be found in [7, 8, 12, 18] and their references.

For a finite abelian group G of order n, the first author [5] showed that s(G) = n − 1 + D(G).
We note that s(G) ≥ n− 1 + D(G) for any group G of order n (see [21]). It is plausible to suggest
the following.

Conjecture 1. [21] s(G) = n− 1 + D(G) holds for every finite group G of order n.
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Recently, this conjecture has been verified for Dihedral groups, dicyclic groups and all non-cyclic
groups of order pq with p and q primes ([1], [9]).

Let G be a finite non-cyclic solvable group of order n. In 1984, Yuster and Peterson [19] proved
that s(G) ≤ 2n − 2. In 1988, Yuster [20] proved that s(G) ≤ 2n − r with the restriction that
n ≥ 600((r − 1)!)2, and in 1996, the first author [6] proved that s(G) ≤ 11

6 n − 1. For some related
recent work, we refer the reader to [11]. In this paper, using some new techniques we are able to
provide a much better upper bound for s(G), and our main result is the following.

Theorem 2. If G is a non-cyclic solvable group of order n, then s(G) ≤ 7
4n− 1.

Conjecture 3. The best upper bound for s(G) is 3
2n.

2. Preliminaries

In order to prove Theorem 2, we need some preliminaries.

Lemma 4. [13] If G is a finite group of order n, then s(G) ≤ 2n− 1.

Lemma 5. [6] Let c ∈ (1, 2] be a constant. Let H be a normal subgroup of a finite group G. If
s(H) ≤ c|H| − 1, then s(G) ≤ c|G| − 1.

Since the original proof of Lemma 5 in [6] was written in Chinese, we include a simplified English
version of the proof here for the convenience of the reader.

Proof. Let s = bc|G| − 1c, and let t = bc|H| − 1c, where for any real number x, bxc denotes the
largest integer not exceeding x . Let S = (g1, · · · , gs) be any sequence of s elements in G. We want
to prove that S contains a nonempty 1-product subsequence of length n.

Let φ be the natural homomorphism from G onto G/H and let f = |G/H|.

Note that

s− (t− 1)f = bc|G|c − 1− (bc|H| − 2c)f = 2f − 1 + bc|G|c − bc|H|c |G|
|H|

≥ 2f − 1.

By applying Lemma 4 repeatedly to the sequence φ(S) = (φ(g1), · · · , φ(gs)) of elements in G/H,
we can find t disjoint subsequences S1, · · · , St of S such that

∏
(φ(Sj)) = 1 and |Sj | = f

for every j ∈ {1, · · · , t}. Thus,

∏
(Sj) ∈ H

for every j ∈ {1, · · · , t}.

Since s(H) ≤ c|H| − 1, we have s(H) ≤ bc|H| − 1c = t. Hence, we can find |H| distinct indices
`1, · · · , `|H| such that the product

|H|∏
j=1

∏
(S`j

) = 1.
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Therefore, T contains a 1-product subsequence of length n, namely, the concatenation S`1S`2 · · ·S`|H| .
�

Recall that A group is said to be supersolvable if it has a normal cyclic series (i.e., a series of
normal subgroups whose factors are cyclic).

The following lemma follows from [10, Corollary 10.5.2].

Lemma 6. Let G be a finite supersolvable group and p the smallest prime divisor of |G|. Then
there exists a normal subgroup H of index p.

Lemma 7. [2] Let S be a sequence of elements in a cyclic group Cn of order n such that |S| ≥ n+1
2 .

If S contains no nonempty 1-product subsequence, then there is an element such that it occurs at
least 2|S| − n + 1 times in S.

If an element a occurs t times in a sequence S, we call t the multiplicity of a in S. The sum of
multiplicities of a and b in S is referred as to the combined multiplicity of a and b in S.

Lemma 8. Let k be an integer satisfying n/2 < k < n, and let S be a sequence of n+k−1 elements
in Cn. If S contains no 1-product subsequence of length n, then there exist two distinct elements
a and b in S such that the combined multiplicity of a and b in S is at least 2k. Furthermore, if
k ≥ 2n/3, then ab−1 generates Cn.

Proof. The first part of the lemma was proved in [16]. It remains to prove that ab−1 generates Cn

when k ≥ 2n/3.

Assume to the contrary that k ≥ 2n/3, but ab−1 does not generate Cn. Let l be the order of
ab−1. Then l|n and l ≤ n

2 . We will show that the subsequence

T = (a, · · · , a︸ ︷︷ ︸
k

, b, · · · , b︸ ︷︷ ︸
k

)

contains a 1-product subsequence of length n, and so does S, which yields a contradiction.

Multiplying every term of T by b−1, we get a new sequence

T ′ = (ab−1, · · · , ab−1︸ ︷︷ ︸
k

, 1, · · · , 1︸ ︷︷ ︸
k

).

It suffices to prove that T ′ contains a 1-product subsequence of length n. If l = n
2 < k, then

(ab−1, · · · , ab−1︸ ︷︷ ︸
l

, 1, · · · , 1︸ ︷︷ ︸
l

)

is a 1-product subsequence of T ′ of length n. Next assume that l < n
2 , so l ≤ n

3 . It is not hard to
check that n− lbk

l c ≤ k, and therefore, the following sequence

(ab−1, · · · , ab−1︸ ︷︷ ︸
lb k

l
c

, 1, · · · , 1︸ ︷︷ ︸
n−lb k

l
c

)

is a 1-product subsequence of T ′ of length n. This completes the proof. �

We use the following generators and relations for the dihedral group D2m of order 2m and the
dicyclic group Q4m of order 4m respectively.
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D2m = 〈a, b|a2 = bm = 1, ba = ab−1〉,
and

Q4m = 〈x, y|x2 = ym, y2m = 1, yx = xy−1〉.

Lemma 9. The following statements hold.

(a) If G = D2m is the dihedral group of order 2m, then s(G) = 3m = 3
2 |G|.

(b) If G = Q4m is the dicyclic group of order 4m, then s(G) = 6m = 3
2 |G|.

(c) If G is a non-abelian group of order pq with p, q primes, then s(G) = pq + p+ q− 2 ≤ 3
2 |G|.

(d) If G is a non-cyclic abelian group of order n, then s(G) ≤ 3n/2.
(e) If G is a finite non-cyclic p-group for some prime p, then s(G) ≤ 7

4 |G| − 1.

Proof. Proofs for parts (a), (b), (c) and (d) can be found in [1, 5, 9]. We will prove only the last
statement here.

Let G be a finite non-cyclic p-group of order pr. We will prove the result by induction on r. Since
G is non-cyclic, we have r ≥ 2. If r = 2, then G is abelian, so s(G) ≤ 3

2 |G| ≤ 7
4 |G| − 1. Suppose

that s(G) ≤ 7
4 |G| − 1 holds for r = ` (≥ 2). We want to show that s(G) ≤ 7

4 |G| − 1 holds for
r = ` + 1. If p ≥ 3 and ` + 1 ≥ 3 or p = 2 and ` + 1 ≥ 4, then since G is a non-cyclic group of order
p`+1, it follows easily from [17, page 59, (4.4)] (or [15, page 141, 5.3.4]) that G contains a non-cyclic
maximal normal subgroup H of order p`. By the induction assumption, s(H) ≤ 7

4 |H|−1. It follows
from Lemma 5 that s(G) ≤ 7

4 |G| − 1. It remains to check the case where ` + 1 = 3 and p = 2. By
(d), we may assume that G is not abelian. Thus, G is either a dihedral group or a dicyclic group.
It follows from (a) or (b) that s(G) = 3

2 |G| < 7
4 |G| − 1. �

3. Main Result

We will prove our main result by using the minimal counterexample method. Throughout this
section, we always assume that G is a minimal counterexample (i.e., G is a non-cyclic solvable
group of minimal order n such that s(G) > 7

4n − 1), p is the smallest prime divisor of n, and let
m = n

p . We will divide our proof into a series of Lemmas.

Lemma 10. Let G be the minimal counterexample group of order n. Then every proper normal
subgroup of G must be cyclic. Furthermore, G has a cyclic normal subgroup H of order m and
index p. If p = 2, then 4|m and m ≥ 12. If p ≥ 3, then m ≥ p(p + 2).

Proof. The first statement follows from Lemma 5. Since G is solvable, G has a proper normal
subgroup G0 of prime index and G0 is cyclic by Lemma 5. Since every subgroup of G0 is a normal
subgroup of G, we conclude that G is supersolvable. By Lemma 6, there exists a normal subgroup
H of index p the smallest prime divisor of n, and as mentioned earlier H is cyclic.

As before, let m = |H| = n/p. By Lemma 9, we know that m is a composite number and m is
not a power of p. If p ≥ 3, then m ≥ p(p + 2).

Next, let p = 2. If 4 does not divide m, then we claim that G is either a dihedral group if 2 6 |m,
or a dicyclic group if 2|m. So s(G) ≤ 7

4n− 1 by Lemma 9, which yields a contradiction.

Let H = 〈a〉 / G and G = 〈H, b〉, where b is a 2- element in G. We first show that 〈b〉 is a Sylow
2-subgroup of G. For otherwise, the order o(b) of b must be 2, and any Sylow 2-subgroup of G
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must be isomorphic to the 4-group. Thus, the Sylow 2-subgroup H2 of H is a central subgroup of
G, and therefore, 〈H ′

2, b〉 is a proper non-cyclic normal subgroup, contradicting the first statement
of the lemma. Here H

′
2 denotes the complement of H2 in H. Now, we have G = 〈H ′

2, b〉 = 〈x, b〉,
where x = a2 and xb = xs. Since b2 is a central element, we have s2 ≡ 1 (mod o(x)). If o(x) is a
prime power, than s ≡ 1 (mod o(x)) or ≡ −1 (mod o(x)). The former implies that G is abelian,
which is impossible. The latter implies that G is a dihedral group or a dicyclic group. Next, assume
that o(x) = pl1

1 · · · plk
k is not a prime power, where all pj > p are all primes for 1 ≤ j ≤ k. Let

Hpj be the Sylow pj-subgroup of H and Kj = 〈Hpj , b〉. If Kj is abelian for some j, then Hpj

must be a central subgroup of G, so 〈H ′
pj

, b〉 is a proper non-cyclic normal subgroup of G, which
yields a contradiction. Thus, as proved earlier, all Kj are either dihedral groups or dicyclic groups.
Therefore, G is either a dihedral group or a dicyclic group, proving the claim. Hence,

(1) m ≥
{

p(p + 2), if p > 2
12, and 4|m if p = 2

�

The following notations will be used throughout this section. Let H be the same cyclic normal
subgroup of G, of order m as used in the above lemma, s = b7

4n − 1c and t = b7
4m − 1c. Let S be

a sequence of s elements in G that contains no 1-product subsequence of length n.

Let φ be the natural homomorphism from G onto G/H. Just as in the proof of Lemma 5, applying
Lemma 4 repeatedly on the sequence φ(S) results in a set A consisting of t disjoint subsequences
S1, · · · , St of S such that

(I) each sequence Sj in A is of length p and
(II)

∏
(Sj) ∈ H for each j ∈ {1, · · · , t}.

The above method of finding disjoint subsequences of length p with products in H will also be
used in proofs of the next few lemmas.

Let Ω denote the collection of all such A′s (i.e., each member of Ω consists of t disjoint subse-
quences of S and satisfies Conditions (I) and (II) above). Let A = {Sj}t

j=1 be any member of Ω
and hj =

∏
(Sj) ∈ H for every j ∈ {1, · · · , t}. For every element h ∈ H, we denote by A(h) the

multiplicity of h occurring in h1, · · · , ht.

Lemma 11. Let k = t−m + 1. Then for each A ∈ Ω, there exists a unique pair of x, y ∈ H such
that

A(x) + A(y) ≥ 2k.

Furthermore, xy−1 generates H.

Proof. Since the sequence S contains no 1-product subsequence of length n, we infer that the
sequence (h1, · · · , ht) in H contains no 1-product subsequence of length m. Note that t = m+k−1
and k = t − m + 1 = b7

4mc − m ≥ 2m/3. It follows from Lemma 8 that there exist two distinct
elements x, y such that their combined multiplicity in (h1, · · · , ht) is at least 2k, so

A(x) + A(y) ≥ 2k.

Moreover, xy−1 generates H.
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Next, we show the uniqueness of such a pair. Assume that there is another pair of two distinct
elements u and v in H such that {u, v} 6= {x, y} and

A(u) + A(v) ≥ 2k.

Without loss of generality, we may assume that u 6∈ {x, y}. Since (h1, · · · , ht) contains no 1-product
subsequence of length m, A(v) ≤ m− 1. Therefore, A(u) ≥ 2k −m + 1 and thus

A(u) + A(x) + A(y) ≥ 4k −m + 1 = (m + k − 1) + (3k − 2m + 2) > m− k + 1 = t,

which yields a contradiction. This proves the lemma. �

Choose A ∈ Ω such that the sum A(x) + A(y) attains the minimal possible value, where (x, y) is
the unique pair obtained in Lemma 11 corresponding to the given A. Let

B =
{

Sij ∈ A |
∏

(Sij ) ∈ {x, y}
}

.

Clearly, f = |B| = A(x) + A(y). Let
∏f

j=1 Sij denote the concatenation of disjoint subsequences
Si1 , · · · , Sif of S. We may rearrange this subsequence to form a main subsequence T of S of length
|T | = p|B| = p(A(x) + A(y)) = pf . In what follows, we will describe the structure of T , and
then use it to show that T , and therefore, S, contains a 1-product subsequence of length n. This
contradiction will lead to the desired result.

Lemma 12. If the product of some subsequence of T of length p is in H, then the product of terms
of the subsequence in any order is in {x, y}.

Proof. Assume to the contrary that there is a subsequence U of T , of length p, such that the
product

∏
(U) ∈ H, but the product of terms of U in some order does not belong to the set {x, y}.

Note that since
∏

(U) ∈ H and G/H is abelian, the product of terms of U in any order is in H.
Without loss generality, we may assume that

∏
(U) ∈ H \ {x, y}. Let

C =
{

Sij ∈ B | ISij
∩ IU 6= ∅

}
.

Thus, |C| ≤ p. By concatenating the subsequences in C, we get a sequence of length p|C|. Deleting
U from the resulting sequence, we obtain a sequence W of length p(|C|− 1). Since G/H is abelian,
in G/H the image of the product of W in any order under the natural mapping is 1. Thus the
product of W in any order is in H. As mentioned earlier, by using Lemma 4 repeatedly on W we
can choose |C| − 2 disjoint subsequences from W of each length p and each product in H. Deleting
these subsequences from W , we get a remaining subsequence of length p with its product in H
(because both the product of W and the multiplication of products of first |C| − 2 subsequences
are in H). In this way, can divide W into |C| − 1 disjoint subsequences W1, · · · ,W|C|−1| with each
of length p and each product in H. Now, let A′ be a member of Ω as follows:

A′ = (A \ C) ∪ {U,W1, · · · ,W|C|−1}.
By Lemma 11, there exists a unique pair of elements x′, y′ ∈ H such that

A′(x′) + A′(y′) ≥ 2k.

Let D = {U,W1, · · · ,W|C|−1}, and as before, let D(x) (resp. D(y)) denote the multiplicity of x
(resp. y) occurring in the sequence (h0, h1, · · · , h|C|−1), where

h0 =
∏

(U), h1 =
∏

(W1), · · · , h|C|−1 =
∏

(W|C|−1).

Since h0 =
∏

(U) ∈ H \{x, y}, we have D(x)+D(y) ≤ |C|−1. Since A′(x)+A′(y) = A(x)+A(y)−
|C|+ D(x) + D(y) < A(x) + A(y), it follows from the minimality of A that

{x′, y′} 6= {x, y}.
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Without loss of generality, we may assume that x′ 6∈ {x, y}. Thus

A(x′) ≥ A′(x′)− |C| ≥ 2k −A′(y′)− p ≥ 2k −m + 1− p.

It follows that
t = m + k − 1 ≥ A(x′) + A(x) + A(y) ≥ 4k −m + 1− p.

Therefore,
m + k − 1 ≥ 4k −m + 1− p.

This gives that 3k− 2m + 2 ≤ p. Substituting k by b7m
4 c−m in the last inequality, we obtain that

3b7m

4
c − 5m + 2 ≤ p.

Hence,

3(
7m− 3

4
)− 5m + 2 ≤ p.

This implies that m ≤ 4p + 1, which yields a contradiction to (1). �

Lemma 13. Let G/H = {H, bH, · · · , bp−1H} be the collection of all distinct left cosets of H,
and Ti be the main subsequence of T consisting of all terms of T that are in biH for each i ∈
{0, 1, · · · , p − 1}. If |Ti| ≥ p + 2 for some i ∈ {0, 1, · · · , p − 1}, then Ti can be rearranged in the
following way.

α, · · · , α︸ ︷︷ ︸
u

, β, · · · , β︸ ︷︷ ︸
v

,

where α 6= β, u ≥ v ≥ 0 and u + v = |Ti|. Moreover, v ≤ 1 if p > 2.

We remark that the order of terms in T does not affect whether or not T has a 1-product
subsequence of length n. Without loss of generality, we may always assume that T = T0T1 · · ·Tp−1.

Proof. If |Ti| ≥ p + 2, we show that for any three terms in Ti, two of them must be equal. Thus, Ti

contains at most two distinct group elements of G, so the first part of the lemma follows.

Choose three arbitrary terms γ1, γ2, γ3 from Ti, and then choose p − 1 terms θ1, · · · , θp−1 from
the remaining |Ti| − 3 terms of Ti. Since all terms of Ti are in the same coset biH and [G : H] = p,
products γ`θ1 · · · θp−1 ∈ H for all ` ∈ {1, 2, 3}. By Lemma 12, we conclude that at least two of
the above products are equal, and thus at least two of γ1, γ2, and γ3 are equal. This completes the
proof for the first part.

Next, assume that p > 2 and v ≥ 2. Choose four terms α, α, β, β from Ti, and then choose any
p − 2 terms δ1, · · · , δp−2 from the remaining |Ti| − 4 terms of Ti. As before, we conclude that the
following products

α2δ1 · · · δp−2, αβδ1 · · · δp−2, and β2δ1 · · · δp−2

are all in H, and it follows from Lemma 12 again that at least two of α2, αβ, and β2 are equal.
Since (|G|, 2) = 1, this implies that α = β, which yields a contradiction. �

Lemma 14. let α and β be two distinct elements of G such that they both appear at least p times in
T . If α 6∈ H and β 6∈ H, then αp = βp. If α 6∈ H and β ∈ H, then αp 6= βp. Moreover, |T0| ≥ p+2
and |Tj | ≥ p + 2 for some j ∈ {1, · · · , p− 1}.
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Proof. Applying Lemma 12 on the subsequence (α, · · · , α) of T , of length p, we conclude that
αp ∈ {x, y}. Similarly, we have βp ∈ {x, y}. If αp 6= βp, then {αp, βp} = {x, y}, so by Lemma 11,
αp(βp)−1 generates H. Note that αp commutes with α, and αp commutes with αp(βp)−1 (since
both αp and βp are in H). Since α and αp(βp)−1 generate G, we conclude that αp is a central
element. Similarly, we can prove that βp is also a central element. Therefore, αp(βp)−1 is a central
element of G, and thus G = 〈α, αp(βp)−1〉 is abelian, which yields a contradiction. So we must
have αp = βp.

Next, we prove the second part of the lemma. Assume to the contrary that α 6∈ H and β ∈ H,
but αp = βp. We will show that T has a 1-product subsequence of length n, which yields a
contradiction. To do so, we distinguish two cases according to if p = 2 or not.

Case 1. If p = 2, we have α ∈ T1, β ∈ T0, and α2 = β2. Let w, z be any two elements of G such
that they both occur at least twice in T . We first show that w2 = z2.

If w, z are in the same Ti, as we mentioned earlier in the proof of Lemma 13, at least two of
w2, wz and z2 are equal, so we must have w2 = z2.

If w, z are not in the same Ti, without loss generality, we may assume that w ∈ T1 and z ∈ T0,
Since w,α ∈ T1 and they both occur at least twice in T , by what we just proved, w2 = α2. Similarly,
we have z2 = β2. Therefore, w2 = α2 = β2 = z2.

Since |T | ≥ 4k ≥ 7, there exists an i ∈ {0, 1} such that |Ti| ≥ 4. If |Ti| ≥ 4, then by Lemma 13,
we can rearrange Ti to the following form

αi, · · · , αi︸ ︷︷ ︸
ui

, βi, · · · , βi︸ ︷︷ ︸
vi

,

where αi 6= βi, ui ≥ vi ≥ 0 and ui + vi = |Ti|. As we proved earlier, α2
i = α2. Moreover, if vi ≥ 2,

we have α2
i = β2

i = α2.

Note that for each i with |Ti| ≥ 4, we have

2bui

2
c+ 2bvi

2
c ≥ |Ti| − 2.

Thus

∑
|Ti|≥4 2(bui

2 c+ bvi
2 c) ≥ |T0|+ |T1| − 3− 2

≥ 4k − 5 = 4b3m
4 c − 5

≥ 3m− 3− 5 = 2m + m− 8
> 2m (since m ≥ 12).

Hence, for each i such that |Ti| ≥ 4, there exist si ∈ {0, 1, · · · , bui
2 c} and ti ∈ {0, 1, · · · , bvi

2 c}
such that ∑

|Ti|≥4

2(si + ti) = 2m.

Therefore, ∏
|Ti|≥4

(α2
i )

si(β2
i )ti = (α2)m = 1

(note that if vi ≤ 1, then ti = 0, so such a term (β2
i )ti can be ignored from the above product). We

just showed that T has a 1-product subsequence of length 2m = n, which yields a contradiction.
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Case 2. If p > 2, we have α 6∈ T0, β ∈ T0 and αp = βp. Let w, z be any two elements of G
such that they both occur at least p times in T . We remark that w, z cannot occur in the same Ti.
Using a similar method to Case 1, we can easily show that wp = zp = αp.

If |Ti| ≥ p + 2 for some i ∈ {0, 1, · · · , p − 1}, then by Lemma 13, we can rearrange Ti to the
following form

αi, · · · , αi︸ ︷︷ ︸
ui

, βi, · · · , βi︸ ︷︷ ︸
vi

,

where αi 6= βi, 0 ≤ vi ≤ 1 and ui + vi = |Ti|.

Clearly, pbui
p c ≥ |Ti| − p when |Ti| ≥ p + 2. Since |T | ≥ 2kp > p(p + 1), |Ti| ≥ p + 2 holds for at

least one i ∈ {0, 1, · · · , p− 1}. Thus,

∑
|Ti|≥p+2 pbui

p c ≥
∑p−1

i=0 |Ti| − p− (p− 1)(p + 1)
= |T | − p(p + 1) + 1 ≥ 2kp− p(p + 1) + 1
= 2p(b3m

4 c)− p(p + 1) + 1 ≥ 2p(3m−3
4 )− p(p + 1) + 1

= pm + m−3
2 p− p(p + 1) + 1 > pm (since m ≥ p(p + 2)).

Similar to Case 1, for each i with |Ti| ≥ p + 2 we can find si ∈ {0, 1, · · · , bui
p c} such that∑

|Ti|≥p+2

psi = mp.

Thus, ∏
|Ti|≥p+2

(αp
i )

si = (αp)m = 1.

Again, T has a 1-product subsequence of length pm = n, which yields a contradiction. This
completes the proof of the second part.

As we proved above, for each i with |Ti| ≥ p + 2, there exist si and ti (ti = 0 when p > 2) such
that ∑

|Ti|≥p+2

(psi + pti) = mp (∗).

If si > 0 (resp. ti > 0) for some i > 0, then we have αp
i = αp (resp. βp

i = αp). If |T0| ≤ p + 1, then∏
|Ti|≥p+2

(αp
i )

si(βp
i )ti =

∏
|Ti|≥p+2,i>0

(αp
i )

si(βp
i )ti = (αp)m = 1

Thus, T has a 1-product subsequence of length pm = n, which yields a contradiction. So, we must
have |T0| ≥ p + 2.

Next, assume that |Tj | ≤ p+1 for all j ∈ {1, · · · , p−1}. (∗) now reduces to p(s0 + t0) = mp = n.
If t0 = 0, then αps0

0 = 1, which yields a contradiction. So, we must have p = 2 and t0 > 0. As
we proved earlier in Case 1, α2

0 = β2
0 , so (α2

0)
s0(β2

0)t0 = (α2
0)

s0+t0 = 1, which yields a contradiction
again. Therefore, |Tj | ≥ p + 2 for some j ∈ {1, · · · , p− 1}. �

In the following lemma, we will describe the structure of T in detail.

Lemma 15. (I) If p = 2, then T = T0T1, and T0, T1 can be rearranged as follows:

T0 = (α0, · · · , α0︸ ︷︷ ︸
u0

, α′
0, · · · , α′

0︸ ︷︷ ︸
v0

), T1 = (α1, · · · , α1︸ ︷︷ ︸
u1

, α′
1, · · · , α′

1︸ ︷︷ ︸
v1

),

where ui ≥ vi, 0 ≤ vi ≤ 1, ui ≥ 2(2k −m) for every i ∈ {0, 1}, and
∑1

i=0(ui + vi) = |T |.
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(II) If p = 3, then T = T0T1T2. By replacing b with b2 if necessary, we may assume that
|T1| ≥ |T2|. T0, T1, T2 can be rearranged as follows:

T0 = (α0, · · · , α0︸ ︷︷ ︸
u0

, α′
0, · · · , α′

0︸ ︷︷ ︸
v0

), T1 = (α1, · · · , α1︸ ︷︷ ︸
u1

, α′
1, · · · , α′

1︸ ︷︷ ︸
v1

), T2 = (α2, · · · , α2︸ ︷︷ ︸
u2

),

where ui ≥ vi, ui ≥ 3(2k − m) − 1, 0 ≤ vi ≤ 1 for every i ∈ {0, 1},
∑1

i=0(ui + vi) + u2 = |T | and
v0 + v1 + u2 ≤ 2.

(III) If p ≥ 5, then there is some j ∈ {1, · · · , p − 1} such that T = T0Tj, or T = T0TjTp−j with
|Tp−j | = 1, where T0 = (α0, · · · , α0︸ ︷︷ ︸

u0

, α′
0, · · · , α′

0︸ ︷︷ ︸
v0

), Tj = (αj , · · · , αj︸ ︷︷ ︸
uj

, α′
j , · · · , α′

j︸ ︷︷ ︸
vj

) with 0 ≤ v0, vj ≤ 1

and u0, uj ≥ p(2k −m). Furthermore, if |Tp−j | = 1 then v0 = vj = 0.

Proof. By Lemma 14, we have |T0| ≥ p + 2 and |Tj | ≥ p + 2 holds for some j ∈ {1, · · · , p − 1}. It
follows from Lemma 13 that there exist α0 ∈ T0 and αj ∈ Tj such that α0 and αj occur at least p
times in T0 and Tj respectively. By Lemma 14, αp

0 6= αp
j , and thus, it follows from Lemma 12 that

{αp
0, α

p
j} = {x, y} and H = 〈αp

jα
−p
0 〉.

We first show the following:

(2) α0β 6= βα0 for all β ∈ G \H.

Assume to the contrary that α0 commutes with some element g ∈ G\H. Since g and H generate
G, we conclude that α0 is a central element in G. In particular, α0 commutes with αj . Since αj

and αp
jα

−p
0 generate G and they commute each other, we conclude that G is abelian, which yields

a contradiction. This proves our claim.

(I) Since p = 2, we have that T = T0T1. By Lemma 13, T0, T1 can be rearranged as follows:

T0 = (α0, · · · , α0︸ ︷︷ ︸
u0

, α′
0, · · · , α′

0︸ ︷︷ ︸
v0

), T1 = (α1, · · · , α1︸ ︷︷ ︸
u1

, α′
1, · · · , α′

1︸ ︷︷ ︸
v1

),

where u0 ≥ v0, u1 ≥ v1, and u0 + v0 + u1 + v1 = |T |.

We first prove that 0 ≤ v0 ≤ 1 and 0 ≤ v1 ≤ 1. If v1 ≥ 2, then by Lemma 12 and Lemma 14

α1α
′
1 = α′

1α1 = α2
0 = x, and α2

1 = (α′
1)

2 = y, where x, y ∈ H and H = 〈xy−1〉.

Therefore,
α2

1(α
′
1)

2 = (α1α
′
1)

2 = (α2
0)

2.

Hence, (α2
0α

−2
1 )2 = 1. Since xy−1 = α2

0α
−2
1 generates H, we have m = |H| ≤ 2, a contradiction.

This proves that v1 ≤ 1. Similarly, we can prove that v0 ≤ 1.

It remains to show that u0, u1 ≥ 2(2k − m). If v0 = 0 or v1 = 0, then u0 + u1 ≥ 4k − 1. If
u0 ≥ 2m, then α2m

0 = 1, so T has a 1-product subsequence of length n = 2m, which yields a
contradiction. Therefore, u0 ≤ 2m− 1, and hence, u1 ≥ 4k − 1− (2m− 1) = 2(2k −m). Similarly,
we can prove u0 ≥ 2(2k −m).

Now, assume that v0 = v1 = 1. Then, u0 + u1 ≥ 4k − 2. If u0 ≥ 2m − 2, then α2m−2
0 (α1α

′
1) =

α2m−2
0 α2

0 = 1, so again we derive a contradiction. Hence, u0 ≤ 2m−3. Now, u1 ≥ 4k−2−(2m−3) >
2(2k −m). Similarly, we can prove u0 ≥ 4k − 2− (2m− 3) > 2(2k −m).
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(II) p = 3. By Lemma 13, we have that

T0 = (α0, · · · , α0︸ ︷︷ ︸
u0

, α′
0, · · · , α′

0︸ ︷︷ ︸
v0

), T1 = (α1, · · · , α1︸ ︷︷ ︸
u1

, α′
1, · · · , α′

1︸ ︷︷ ︸
v1

), T2 = (α2, · · · , α2︸ ︷︷ ︸
u2

, α′
2, · · · , α′

2︸ ︷︷ ︸
v2

),

where ui ≥ vi and 0 ≤ vi ≤ 1 for every i ∈ {0, 1, 2}.

We first show that v2 = 0. Assume to the contrary that v2 = 1. Note that any product of three
elements from distinct cosets of H belongs to H. By Lemma 12, we may suppose α1α2α0 = x. By
(2) and Lemma 12, we have that

α1α0α2 = y, α1α0α
′
2 = x, α1α

′
2α0 = y.

Since α1α0α2 = y = α1α
′
2α0, we obtain that

α0α2α
−1
0 = α′

2.

Since α1α2α0 = x = α1α0α
′
2, we obtain that

α−1
0 α2α0 = α′

2.

Equating the above two equations and simplifying the result, we have

(3) α2
0α2 = α2α

2
0.

Since the order α0 is odd, it follows from (3) that α0α2 = α2α0, which yields a contradiction to
(2). Thus v2 = 0.

Next we show that v0 + v1 + u2 ≤ 2. Using the same argument as above, we can easily prove
that if u2 ≥ 1, then v0 = v1 = 0.

We now show that u2 ≤ 2. Assume to the contrary that u2 ≥ 3. We first assert that α1α2 6= α2α1.
If α1α2 = α2α1, then

(4) (α1α2)3 = (α2α1)3 = α3
1α

3
2 = α6

1 (by Lemma 14, α3
1 = α3

2).

By Lemma 14, α3
1 6= α3

0, and then by Lemma 12, α1α2α0 ∈ {α3
0, α

3
1}. If α1α2α0 = α3

0, then
(α1α2)3 = (α2

0)
3. This, together with (4), shows that α6

1 = α6
0. Hence, (α3

1α
−3
0 )2 = 1. Since α3

1α
−3
0

generates H, we have m = |H| ≤ 2, which yields a contradiction. Next, assume that α1α2α0 = α3
1.

Note that α0 commutes with α1α2 since both of them are in H. We obtain

(α1α2)3α3
0 = (α1α2α0)3 = (α3

1)
3.

This, together with (4), implies that α3
0 = α3

1, which yields a contradiction again. This proves the
assertion that α1α2 6= α2α1.

It follows from Lemma 12 that

{α1α2α0, α2α1α0} = {α3
0, α

3
1} = {x, y}.

We may suppose α0α1α2 = α3
0 (the other case where α2α1α0 = α3

0 can be dealt with similarly).
Then

(5) (α1α2)3 = α6
0.

By (2) and α0α1α2 = α3
0, we infer that α1α0α2 = α3

1 = α3
2. Therefore,

α1α0 = α2
2

and

(6) α0α2 = α2
1.
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Hence,

(7) (α1α0)3 = α6
1.

If u0 ≥ 3m − 6, then by (5), we have that α3m−6
0 (α1α2)3 = α3m

0 = 1, so T has a 1-product
subsequence of length n = 3m, which yields a contradiction. Thus, u0 ≤ 3m − 7. Note that we
have already proved that v0 = v1 = v2 = 0 (since u2 ≥ 1). Therefore,

u1 + u2 ≥ |T | − (3m− 7) ≥ 6k − (3m− 7) ≥ 3m + 5
2

.

Now, we can choose `1 ∈ {0, 1, · · · , bu1
3 c} and `2 ∈ {0, 1, · · · , bu2

3 c} so that

6`1 + 6`2 = 3m− 3.

Since (u1 − 3`1) + (u2 − 3`2) ≥ 3m+5
2 − 3m−3

2 = 4, we infer that either u1 − 3`1 = u2 − 3`2 = 2,
or u1 − 3`1 ≥ 3, or u2 − 3`2 ≥ 3. If u0 ≥ 3m−1

2 , then by (6) and (7), at least one of the following
equalities holds

(α1α0)3`1(α0α2)3`2(α0α2)α1 = α3m
1 = 1, (α1α0)3`1(α0α2)3`2α3

1 = 1 and (α1α0)3`1(α0α2)3`2α3
2 = 1.

This implies that T contains a 1-product subsequence of length n = 3m, which yields a contradic-
tion. So, we must have that u0 ≤ 3m−1

2 − 1. Thus u1 +u2 ≥ 6k−u0 ≥ 3m− 3. If u1 +u2 ≥ 3m+4,
then 3[u1

3 ] + 3[u2
3 ] ≥ 3m. Therefore, there exist f1 ∈ {0, 1, · · · , bu1

3 c} and f2 ∈ {0, 1, · · · , bu2
3 c} such

that 3f1 + 3f2 = 3m. So
α3f1

1 α3f2
2 = α3m

1 = 1,

and then, as before, we derive a contradiction. Therefore, we must have u1 + u2 ≤ 3m + 3. It
follows that u0 ≥ 6k − (u1 + u2) ≥ 3m−15

2 . We now have

3m− 15
2

≤ u0 ≤
3m− 3

2
.

and
3m− 3 ≤ u1 + u2 ≤ 3m + 3.

Since |T1| = u1 ≥ |T2| = u2, we have u1 ≥ 3m−3
2 = 3m−15

2 + 6. By (7), we have

(α1α0)
3m−15

2 α12
1 α3

2 = (α1α0)
3m−15

2 α9
1α

6
2 = (α1α0)

3m−15
2 α6

1α
9
2 = α3m

1 = 1.

As before, we derive a contradiction. So u2 ≤ 2, and hence, v0 + v1 + u2 ≤ 2.

It remains to prove that u0, u1 ≥ 3(2k − m). To do so, we will use an argument similar to
that used in (I) and present only an outline of the proof here. If u2 = 0 and one of v0 and v1

is 0, then u0 + u1 ≥ 6k − 1. As before, we can prove that u0, u1 ≤ 3m − 1, and then u0, u1 ≥
6k − 1 − (3m − 1) = 3(2k − m). If u2 = 0 and v0 = v1 = 1, then u0 + u1 ≥ 6k − 2. By
Lemma 12, {α1α

′
1α0, α1α

′
1α

′
0} = {α3

0, α
3
1}. If u1 ≥ 3m − 2, then either (α1α

′
1α0)α3m−3

1 = 1 or
(α1α

′
1α

′
0)α

3m−3
1 = 1 is equal to the product of a subsequence of T of length n = 3m, which yields

a contradiction. So we must have u1 ≤ 3m − 3, and thus u0 ≥ 6k − 2 − (3m − 3) ≥ 3(2k − m).
Similarly, we can prove that u0 ≤ 3m− 3 and thus u1 ≥ 3(2k −m) as desired.

Next, assume that u2 ∈ {1, 2}. As mentioned earlier, v0 = v1 = 0. If u2 = 1, then u0+u1 ≥ 6k−1;
if u2 = 2, then u0 + u1 ≥ 6k − 2. Using the same argument as above, we can easily show that
u0, u1 ≥ 3(2k −m) as desired.

(III) p ≥ 5. By Lemma 14 and Lemma 13, we know that |Tj | ≥ p + 2 for some j ≥ 1 and

Tj = (αj , · · · , αj︸ ︷︷ ︸
uj

, α′
j , · · · , α′

j︸ ︷︷ ︸
vj

)
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where 0 ≤ vj ≤ 1, and
T0 = (α0, · · · , α0︸ ︷︷ ︸

u0

, α′
0, · · · , α′

0︸ ︷︷ ︸
v0

)

where 0 ≤ v0 ≤ 1.

We first prove that |Ti| = 0 holds for all i ∈ {1, · · · , p − 1} \ {j, p − j}. Assume to the contrary
that |Ti| ≥ 1 holds for some i ∈ {1, · · · , p− 1} \ {j, p− j}. Take any αi ∈ Ti, and take (p− 1)′s αj

from Tj . By letting n = p and Cp = G/H in Lemma 7, we get the following subsequence of T ,

αi, αj , · · · , αj︸ ︷︷ ︸
p−1

,

which contains a nonempty subsequence such that its product is in H. Since i 6∈ {j, p− j}, such a
subsequence is of the form

αi, αj , · · · , αj︸ ︷︷ ︸
r

,

where 2 ≤ r ≤ p− 2. Hence,
αp−r−2

0 αr
jαiα0 ∈ H.

By Lemma 12, αp−r−2
0 αr

jαiα0, αp−r−2
0 αr

jα0αi and αp−r−2
0 αr−1

j α0αjαi are all in {x, y}. By (2), we
can show that the middle term is different from the first and the third, so we must have

αp−r−2
0 αr

jαiα0 = αp−r−2
0 αr−1

j α0αjαi.

Thus αjαiα0 = α0αjαi. This is a contradiction to (2) (since αjαi /∈ H). This proves that |Ti| = 0
for all i ∈ {1, · · · , p− 1} \ {j, p− j}.

Next, we prove that |Tp−j | ≤ 1. Assume to the contrary that |Tp−j | ≥ 2. Take any two terms
αp−j , α

′
p−j from Tp−j . Then αp−5

0 αp−jα
′
p−jα

2
jα0 ∈ H. Using a similar argument to the above, we

can show that α2
jα0 = α0α

2
j , which yields a contradiction to (2). In a similar way to (II), we can

prove that if |Tp−j | ≥ 1, then v0 = vj = 0, and show that u0, uj ≥ p(2k −m) as well. �

Lemma 16. Let |H| = m = prpr1
1 · · · prw

w , where p, p1, · · · , pw are pairwise distinct primes, w ≥ 1,
r ≥ 0 and ri ≥ 1 for every i ∈ {1, · · · , w}. Then the following statements hold.

(I) Every Sylow p-subgroup of G is cyclic.
(II) If g ∈ G and o(g)|pr then g is central. Moreover, if o(g)|m, then g ∈ H.

(III) If g is an element in G \H, then o(g)| n
p1···pw

.

Proof. (I) If r=0, clearly, the result is true. Assume that r ≥ 1. By Lemma 15, there are α ∈ G\H
and γ ∈ H such that both α and γ occur at least p times in T . By Lemma 14, αp 6= γp, and by
Lemma 12 and Lemma 11, αpγ−p generates H. Therefore, pr divides the order of αpγ−p. Hence,
pr divides either the order of αp or the order of γ−p. Since γ ∈ H, the order of γ−p divides
m
p = pr−1pr1

1 · · · prw
w , so the latter is impossible. Thus, pr divides the order of αp. Therefore, pr+1

divides the order of α. So, there exists an element b of order pr+1, and thus it generates a Sylow
p-subgroup 〈b〉. Hence, every Sylow p-subgroup of G is cyclic.

(II) Let g ∈ G with o(g)|pr. Since g is conjugate to an element g0 ∈ 〈b〉 and o(g0) = o(g) divides
pr, we have g0 ∈ 〈bp〉 ⊆ H, so it is central. Hence, g is central. Next, assume that the order of g
divides m. Then we may write g = g1g2 such that (o(g1), p) = 1 and o(g2) divides pr. As proved
above, g2 ∈ H, and clearly, g1 ∈ H, so g ∈ H.
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(III) Let g ∈ G \ H and o(g) = pm
l , where l is a positive divisor of n. If (p, l) 6= 1, then o(g)

divides m. By part (II), g must be in H, which yields a contradiction. Thus, we have (p, l) = 1,
and then l = ps1

1 · · · psw
w . If si = 0 for some i ∈ {1, · · · , w}, then pri

i |o(g). Let Mi be the Sylow
pi-subgroup of G and let η = gm0 where m0 = o(g)

p
ri
i

. Then η has order pri
i , so η generates Mi and

gη = ηg. Since G = 〈H, g〉, η is central and so is Mi. Since G is not abelian, G 6= 〈Mi, b〉. As
proved earlier in Lemma 10, 〈M ′

i , b〉 is a proper non-cyclic normal subgroup of G, which yields a
contradiction to Lemma 10. Therefore, l = ps1

1 · · · psw
w and si ≥ 1 for all i ∈ {1, · · · , w}. �

We are now in position to complete the proof of our main result.

Proof of Theorem 2. Let n = pr+1pr1
1 · · · prw

w as in Lemma 16 and l = p1 · · · pw. By Lemma 16,
for every element g ∈ G \H we have

(8) g
n
l = 1.

We distinguish two cases according to if p = 2 or not.

Case 1. If p = 2, then l ≥ 3. We will show that T contains a 1-product subsequence of length
n, which yields a contradiction.

We know from Lemma 15 that T = T0T1, and T0, T1 can be rearranged as follows:

T0 = (α0, · · · , α0︸ ︷︷ ︸
u0

, α′
0, · · · , α′

0︸ ︷︷ ︸
v0

), T1 = (α1, · · · , α1︸ ︷︷ ︸
u1

, α′
1, · · · , α′

1︸ ︷︷ ︸
v1

),

where ui ≥ vi, 0 ≤ vi ≤ 1, ui ≥ 2(2k −m) for every i ∈ {0, 1}, and
∑1

i=0(ui + vi) = |T |.

It follows from Lemma 10 and Lemma 15 that 4|m, and u0, u1 ≥ 2(2k−m) ≥ 2(2b3m
4 c−m) = m.

We first show that u1 < 4m
3 . If u1 ≥ 4m

3 , then

u1 ≥
4m

3
≥ l − 1

2
2m

l
+

2m

l
( since l ≥ 3).

and
u0 ≥ m >

l − 1
2

2m

l
.

Since (α1α0)
2m
l = (α1)

2m
l = 1 by (8), we have (α1α0)

l−1
2

2m
l α

2m
l

1 = 1, so we conclude that T has
a 1-product of subsequence of length n = 2m, which yields a contradiction. So, we must have that
u1 < 4m

3 . Thus, u0 ≥ 4k − 2− (4m
3 − 1

3) ≥ 5m−5
3 > 4m

3 .

If l 6= 5, since l ≥ 3 and l is odd, we can easily check that

[
l

3
]
2m

l
+ 2(m− 3[

l

3
]
m

l
) = 2m− 4[

l

3
]
m

l
≤ m ≤ u1 and 2[

l

3
]
2m

l
≤ 4m

3
≤ u0.

Since (α1α
2
0)

2m
l = (α1)2

m
l = 1 by (8), we have

(α1α
2
0)

[ l
3
] 2m

l (α2
1)

m−3[ l
3
]m

l = 1.

As before, we can obtain a 1-product subsequence of T of length n, deriving a contradiction.
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Next, assume that l = 5. Clearly, 22m
5 + 2m

5 ≤ 4m
3 ≤ u0 and 2m

5 + 2m
5 < m ≤ u1. Using (8), we

have
(α1α

2
0)

2m
5 (α1α0)

2m
5 = 1.

As before, we can obtain a 1-product subsequence of T , deriving a contradiction.

Case 2. If p ≥ 3, then by Lemma 15 we have

u0, uj ≥ p(2k −m) ≥ m− 3
2

p.

We first show that uj < 2pm
3 and u0 ≥ 5pm

6 − 3p
2 − 19

6 . Assume to the contrary that uj ≥ 2pm
3 . If

m
l ≥ 3, then

u0 ≥
m− 3

2
p ≥ l − 1

2
pm

l
.

Note that
uj ≥

2pm

3
≥ l − 1

2
pm

l
+

pm

l
( since l ≥ 5).

Since
(αjα0)

l−1
2

pm
l α

pm
l

j = 1,

as before, we can derive a contradiction.

If m
l < 3, since both m and l are odd, we have m

l = 1. Therefore, (αjα0)p = αp
j = 1 by (8). Let

`0 = [m3 + 1]p ≤ u0, and let `j = pm− 2`0. Then `0 + `j = pm− `0 < 2pm
3 ≤ uj . Since

(αjα0)`0α
`j

j = 1,

we derive a contradiction again. Thus, we always have that

uj <
2pm

3
.

Therefore,

u0 ≥ 2kp− 2− uj ≥
5pm

6
− 3p

2
− 19

6
.

If l ≥ 7, similar to Case 1, we have

(αjα
2
0)

[ l
3
] pm

l α
pm−3[ l

3
] pm

l
j = 1.

As before, we can derive a contradiction.

So, we have l < 7. Since l is odd, we have l ≤ 5. Since p < l, we must have p = 3 and l = 5.
Since

(αjα
2
0)

pm
5 (αjα0)

pm
5 = 1,

we derive a contradiction.

In all cases, we are able to derive a contradiction. Therefore, such a minimal counterexample G
does not exist. This completes the proof of our main result. �



16 WEIDONG GAO AND YUANLIN LI*

ACKNOWLEDGEMENTS

We would like to thank the referee for some useful comments which help improve the readability
of the paper. The research was carried out during a visit by the first author to Brock University as
an international visiting scholar. He would like to gratefully acknowledge the kind hospitality from
the host institution. The research was supported under the auspices of the 973 Program with grant
no. 2006CB805900, the Ministry of Education, the Ministry of Science and Technology, the National
Science Foundation of China, the Foundation of Nankai University, and was also supported in part
by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

References
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[4] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961)

41-43.
[5] W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100-103.
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