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Abstract

The energy E(G) of a graph G is defined as the sum of the absolute values

of its eigenvalues. Let S2 be the star of order 2 (or K2) and Q be the graph

obtained from S2 by attaching two pendent edges to each of the end vertices

of S2. Majstorović et al. conjectured that S2, Q and the complete bipartite

graphs K2,2 and K3,3 are the only 4 connected graphs with maximum degree

∆ ≤ 3 whose energies are equal to the number of vertices. This paper is devoted

to giving a confirmative proof to the conjecture.

1 Introduction

We use Bondy and Murty [2] for terminology and notations not defined here. Let G

be a simple graph with n vertices and m edges. The cyclomatic number of a connected

graph G is defined as c(G) = m − n + 1. A graph G with c(G) = k is called a k-

cyclic graph. In particular, for c(G) = 0, 1 or 2 we call G a tree, unicyclic or bicyclic

graph, respectively. Denote by ∆ the maximum degree of a graph. The eigenvalues

λ1, λ2, . . . , λn of the adjacency matrix A(G) of G are said to be the eigenvalues of the

graph G. The energy of G is defined as

E = E(G) =
n

∑

i=1

|λi|.

1Supported by NSFC No.10831001, PCSIRT and the “973” program.
2Supported by NSFC No.10871166, NSFJS and NSFUJS.



For several classes of graphs it has been demonstrated that the energy exceeds

the number of vertices (see, [6]). In 2007, Nikiforov [12] showed that for almost all

graphs,

E =

(

4

3π
+ o(1)

)

n3/2.

Thus the number of graphs G satisfying the condition E(G) < n is relatively small.

In [8], a connected graph G of order n is called hypoenergetic if E(G) < n. For

hypoenergetic graphs with ∆ ≤ 3, we have the following well known results.

Lemma 1.1. [7] There exist only four hypoenergetic trees with ∆ ≤ 3, dipicted in

Figure 1.

S1 S3 S4 W

Figure 1: The hypoenergetic trees with maximum degree at most 3.

Lemma 1.2. [13] Let G be a graph of order n with at least n edges and with no

isolated vertices. If G is quadrangle-free and ∆(G) ≤ 3, then E(G) > n.

The present authors first in [9] showed that complete bipartite graph K2,3 is the

only hypoenergetic graph among all unicyclic and bicyclic graphs with ∆ ≤ 3, and

then recently they obtained the following general result:

Lemma 1.3. [10] Complete bipartite graph K2,3 is the only hypoenergetic connected

cycle-containing (or cyclic) graph with ∆ ≤ 3.

Therefore, all connected hypoenergetic graphs with maximum degree at most 3

have been characterized.

Lemma 1.4. [10] S1, S3, S4, W and K2,3 are the only 5 hypoenergetic connected graphs

with ∆ ≤ 3.

In [11] Majstorović et al. proposed the following conjecture, which is the second

half of their Conjecture 3.7.

Conjecture 1.5. [11] There are exactly four connected graphs G with order n and

∆ ≤ 3 for which the equality E(G) = n holds, which are dipicted in Figure 2.

In this paper, we will prove this conjecture.
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Figure 2: All connected graphs with maximum degree at most 3 and E = n.

2 Main results

The following results are needed in the sequel.

Lemma 2.1. [5] If F is an edge cut of a graph G, then E(G − F ) ≤ E(G), where

G − F is the subgraph obtained from G by deleting the edges in F .

Lemma 2.2. [5] Let F = [S, V \ S] be an edge cut of a graph G with vertex set V ,

where S is a nonempty proper subset of V . Suppose that F is not empty and all edges

in F are incident to one and only one vertex in S, i.e., the edges in F form a star.

Then E(G − F ) < E(G).

Lemma 2.3. [1] The energy of a graph can not be an odd integer.

In the following we first show that Conjecture 1.5 holds for trees, unicyclic and

bicyclic graphs, respectively. Then we show that Conjecture 1.5 holds in general.

Let F be an edge cut of a connected graph F . If G−F has exactly two components

G1 and G2, then we denote G − F = G1 + G2 for convenience. The following lemma

is needed.

Lemma 2.4. Let F be an edge cut of a connected graph G of order n such that

G − F = G1 + G2. If E(G1) ≥ |V (G1)|, E(G2) ≥ |V (G2)| and either at least one of

the above inequalities is strict or the edges in F form a star or both, then E(G) > n.

Proof. If E(G1) > |V (G1)| or E(G2) > |V (G2)|, then by Lemma 2.1, we have

E(G) ≥ E(G − F ) = E(G1) + E(G2) > |V (G1)| + |V (G2)| = n.

Otherwise by Lemma 2.2, we have

E(G) > E(G − F ) = E(G1) + E(G2) ≥ |V (G1)| + |V (G2)| = n,

which completes the proof.

The result Lemma 2.4 is easy but useful in our proofs.

Theorem 2.5. S2 and Q are the only two trees T with order n and ∆ ≤ 3 for which

the equality E(T ) = n holds.



Proof. Let T be a tree with n vertices and ∆ ≤ 3. From Table 2 of [3], we know

that S2 and Q are the only two trees with ∆ ≤ 3 and n ≤ 10 for which the equality

E = n holds. By Lemma 2.3, we may assume that n ≥ 12 is even. We will prove that

E(T ) > n.

We divide the trees with ∆ ≤ 3 into two classes: Class 1 contains the trees T

that have an edge e, such that T − e = T1 + T2 and T1, T2 6∼= S1, S3, S4, W . Class 2

contains the trees T in which there exists no edge e, such that T − e = T1 + T2 and

T1, T2 6∼= S1, S3, S4, W , i.e., for any edge e of T at least one of components of T − e is

isomorphic to a tree in {S1, S3, S4, W}.

Case 1. T belongs to Class 1. Then there exists an edge e such that T − e = T1 +T2

and T1, T2 6∼= S1, S3, S4, W . Hence by Lemmas 1.1 and 2.2, we have E(T ) > E(T−e) =

E(T1) + E(T2) ≥ |V (T1)| + |V (T2)| = n, which completes the proof.

Case 2. T belongs to Class 2. Consider the center of T . There are two subcases:

either T has a (unique) center edge e or a (unique) center vertex v.

Subcase 2.1. T has a center edge e. The two fragments attached to e will be denoted

by T1 and T2, i.e., T − e = T1 + T2.

Without loss of generality, we assume that T1 is isomorphic to a tree in {S1, S3, S4,

W}.

If T1 is isomorphic to a tree in {S1, S3, S4}, then it is easy to see that n ≤ 11,

which is a contradiction.

If T1
∼= W and it is attached to the center edge e through the vertex of degree

2, then it is easy to see that T must be the tree as given in Figure 3 (a) or (b). By

direct computing, we have that E(T ) = 12.61708 > 12 = n in the former case while

E(T ) = 14.91128 > 14 = n in the latter case. If T1
∼= W and it is attached to the

center edge e through a pendent vertex, see Figure 3 (c). Since T belongs to Class 2,

deleting the edge f , we then have that T2∪e is isomorphic to a tree in {S1, S3, S4, W},

which contradicts to the fact that e is the center edge of T .

Subcase 2.2. T has a center vertex v. If v is of degree 2, then the two fragments

attached to it will be denoted by T1 and T2. If v is of degree 3, then the three

fragments attached to it will be denoted by T1, T2 and T3.

Let vi be the adjacent vertex of v in Ti. Denote T − vv1 = T1 + T ′

2. Since T

belongs to Class 2, either T1 or T ′

2 is isomorphic to a tree in {S1, S3, S4, W}.

Subsubcase 2.2.1. T ′

2 is isomorphic to a tree in {S1, S3, S4, W}.

Clearly T ′

2 6∼= S1. If T ′

2
∼= S3 or S4, then it is easy to see that n ≤ 7, which is a

contradiction. If T ′

2
∼= W and v is of degree 3, then it is easy to see that n ≤ 10, which

is a contradiction. If T ′

2
∼= W and v is of degree 2, i.e., N(v) = {v1, v2}. Consider

T − vv2, since T belongs to Class 2, we have that T1 ∪ vv1 is isomorphic to a tree in

{S1, S3, S4, W}. By the fact that v is the center of T , we have that T1 ∪ vv1
∼= W ,

and so n = 13, which is a contradiction.
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Figure 3: The graphs in the proof of Theorem 2.5.

Subsubcase 2.2.2. T1 is isomorphic to a tree in {S1, S3, S4, W}.

If T1
∼= S1, then it is easy to see that n ≤ 4, which is a contradiction.

If T1
∼= S3 and v1 is of degree 2 in T1, then it is easy to see that n ≤ 10, which is

a contradiction. If T1
∼= S3 and v1 is a pendent vertex in T1, denote by u the unique

adjacent vertex of v1 in T1. Since T belongs to Class 2, deleting the edge uv1, we then

have that T ′

2 ∪ vv1 is isomorphic to a tree in {S1, S3, S4, W}, and so n ≤ 9, which is

a contradiction.

If T1
∼= S4 or T1

∼= W and v1 is of degree 2 in T1, then by the facts that T belongs

to Class 2, v is the center of T and n is even, it is not hard to obtain that T2, T3 must

be isomorphic to a tree in {S1, S3, S4, W}, and at least one of T2 and T3 is isomorphic

to a tree in {S4, W}, and if T2 (T3, respectively) is isomorphic to W , then v2 (v3,

respectively) is of degree 2 in T2 (T3, respectively). Hence there are 6 such trees, as

given in Figure 3 (d), (e), (f), (g), (h) and (i). The energy of these trees are 12.72729

(> 12 = n), 12.65406 (> 12 = n), 16.81987 (> 16 = n), 16.77215 (> 16 = n),

19.18674 (> 18 = n) and 23.38426 (> 22 = n), respectively.

If T1
∼= W and v1 is a pendent vertex in T1, denote by u the unique adjacent



vertex of v1 in T1. Since T belongs to Class 2, deleting the edge uv1, we then have

that T ′

2 ∪ vv1 is isomorphic to a tree in {S1, S3, S4, W}, which contradicts to the fact

that v is the center vertex of T . The proof is thus complete.

From Table 1 of [3], we know that K2,2 is the only connected graph of order 4

with ∆ ≤ 3 and E = 4. From Tables 1 and 2 of [4], we know that K3,3 is the only

connected cycle-containing graph of order 6 with ∆ ≤ 3 and E = 6.

Theorem 2.6. K2,2 is the only unicyclic graph with ∆ ≤ 3 for which the equality

E = n holds.

Proof. Let G 6∼= K2,2 be a unicyclic graph of order n with ∆ ≤ 3. It is sufficient to

show that E(G) > n. By Lemmas 1.2 and 2.3, we can assume that n ≥ 8 is even and

G contains a quadrangle C = x1x2x3x4x1. We distinguish the following four cases:

Case 1. There exists an edge e on C such that the end vertices of e are of degree 2.

Without loss of generality, we assume that d(x1) = d(x4) = 2. Let F = {x1x2, x4x3},

then G − F = G1 + G2, where G1
∼= S2 and G2 is a tree of order at least 6 since

n ≥ 8. Since ∆(G) ≤ 3, G2 can not be isomorphic to W or Q. Therefore we have

E(G1) = |V (G1)| and E(G2) > |V (G2)| by Lemma 1.1 and Theorem 2.5. It follows

from Lemma 2.4 that E(G) > n.

Case 2. There exist exactly two nonadjacent vertices xi and xj on C such that

d(xi) = d(xj) = 2.

Without loss of generality, we assume that d(x2) = d(x4) = 2, d(x1) = d(x3) = 3.

Let y3 be the adjacent vertex of x3 outside C. Then G − x3y3 = G1 + G2, where

G1 is a unicyclic graph and G2 is a tree. Notice that E(G1) ≥ |V (G1)| by Lemma

1.3. If G2 6∼= S1, S3, S4, W , then we have E(G2) ≥ |V (G2)| by Lemma 1.1 and so

E(G) > E(G − x3y3) ≥ n by Lemma 2.4. Therefore we only need to consider the

following four subcases.

Subcase 2.1. G2
∼= S1. Let F = {x2x3, x3x4}, then G−F = G′

1+G′

2, where G′

2
∼= S2

and G′

1 is a tree of order at least 6 since n ≥ 8. If G′

1
∼= W , then n = 9, which is a

contradiction. Otherwise, it follows from Lemmas 1.1 and 2.4 that E(G) > n.

Subcase 2.2. G2
∼= S3. Then G must have the structure as given in Figure 4 (a)

or (b). In the former case, G − y3z = G′

1 + G′

2, where G′

1 is a unicyclic graph and

G′

2
∼= S2. It follows from Lemmas 1.4 and 2.4 that E(G) > n. In the latter case,

G−{x1x2, x4x3} = G′

1 +G′

2, where G′

2 is the tree of order 5 containing x3 and G′

1 is a

tree of order at least 3. By Lemma 1.1 and Theorem 2.5, we have E(G′

2) > |V (G′

2)|.

If G′

1 6
∼= S3, S4, W , then we have E(G) > n by Lemmas 1.1 and 2.4. Since ∆(G) ≤ 3,

G′

1 can not be isomorphic to S4 or W . If G′

1
∼= S3, then G must be the graph as given

in Figure 4 (c). By choosing the edge cut {x1x2, x1x4}, we can similarly obtain that

E(G) > n.
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Figure 4: The graphs in the proof of Theorem 2.6.

Subcase 2.3. G2
∼= S4. Then G must have the structure as given in Figure 4 (d). Let

F = {x2x3, x3x4}, then G − F = G′

1 + G′

2, where G′

2 is the tree of order 5 containing

x3 and G′

1 is a tree of order at least 4. By Lemma 1.1 and Theorem 2.5, we have

E(G′

2) > |V (G′

2)|. If G′

1 6
∼= S4, W , then we have E(G) > n by Lemmas 1.1 and 2.4. If

G′

1
∼= S4, then n = 9, which is a contradiction. If G′

1
∼= W , then G must be the graph

as given in Figure 4 (e). By choosing the edge cut {x1x2, x3x4}, we can similarly

obtain that E(G) > n.

Subcase 2.4. G2
∼= W . Then G must have the structure as given in Figure 4 (f)

or (g). In the former case, G − y3z = G′

1 + G′

2, where G′

1 is a unicyclic graph and

G′

2 is a tree of order 6. It follows from Lemmas 1.4 and 2.4 that E(G) > n. In the

latter case, G − {x2x3, x3x4} = G′

1 + G′

2, where G′

2 is the tree of order 8 containing

x3 and G′

1 is a tree of order at least 4. If G′

1 6∼= S4, W , then we have E(G) > n by

Lemmas 1.1 and 2.4. If G′

1
∼= S4, then G must be the graph as given in Figure 4 (h).

By choosing the edge cut {x1x2, x1x4}, we can similarly obtain that E(G) > n. If

G′

1
∼= W , then n = 15, which is a contradiction.

Case 3. There exists exactly one vertices xi on C such that d(xi) = 2.

Without loss of generality, we assume that d(x1) = 2. Let F = {x1x4, x2x3}, then

G − F = G1 + G2, where G1 is the tree of order at least 3 containing x1 and G2 is

a tree of order at least 4. Since ∆(G) ≤ 3, G1, G2 can not be isomorphic to S4, W



or Q. If G1 6∼= S3, then we have E(G) > n by Lemmas 1.1, 2.4 and Theorem 2.5. If

G1
∼= S3, then G − {x1x2, x2x3} = G′

1 + G′

2, where G′

1 is the tree of order at least 5

containing x1 and G′

2
∼= S2. If G′

1 6
∼= W , then we have E(G) > n by Lemmas 1.1 and

2.4. If G′

1
∼= W , then n = 9, which is a contradiction.

Case 4. d(x1) = d(x2) = d(x3) = d(x4) = 3.

Let F = {x1x4, x2x3}, then G−F = G1 + G2, where G1 and G2 are trees of order

at least 4 and it is easy to see that G1, G2 can not be isomorphic to S4, W or Q. So

it follows from Lemmas 1.1, 2.4 and Theorem 2.5 that E(G) > n. The proof is thus

complete.

Theorem 2.7. There does not exist any bicyclic graph with ∆ ≤ 3 for which the

equality E = n holds.

Proof. Let G be a bicyclic graph of order n with ∆ ≤ 3. We know that E(G) 6= n

for n = 4 or 6. By Lemmas 1.2 and 2.3, we may assume that n ≥ 8 is even and G

contains a quadrangle. Then we will show that E(G) > n.

If the cycles in G are disjoint, then it is clear that there exists a path P connecting

the two cycles in G. For any edge e on P , we have G−e = G1 +G2, where G1 and G2

are unicyclic graphs. By Lemma 1.3, we have E(G1) ≥ |V (G1)| and E(G2) ≥ |V (G2)|.

Therefore we have E(G) > n by Lemma 2.4. Otherwise, the cycles in G have two

or more common vertices. Then we can assume that G contains a subgraph as given

in Figure 5 (a), where P1, P2, P3 are paths in G. We distinguish the following three

cases:

Case 1. At least one of P1, P2 and P3, say P2 has length not less than 3.

Let e1 and e2 be the edges on P2 incident with u and v, respectively. Then

G − {e1, e2} = G1 + G2, where G1 is a unicyclic graph and G2 is a tree of order at

least 2. It follows from Lemma 1.3 that E(G1) ≥ |V (G1)|. If G2 6∼= S3, S4, W, S2, Q,

then we have E(G2) > |V (G2)| by Lemma 1.1 and Theorem 2.5, and so E(G) > n by

Lemma 2.4. Hence we only need to consider the following five subcases.

Subcase 1.1. G2
∼= S3. Then G must have the structure as given in Figure 5 (b)

or (c). In either case, G − {e2, e3} = G′

1 + G′

2, where G′

1 is a unicyclic graph and

G′

2
∼= S2. Obviously, G′

1 6
∼= K2,2. Then E(G′

1) > |V (G′

1)| by Lemma 1.3 and Theorems

2.6. Since E(G′

2) = |V (G′

2)|, we have E(G) > n by Lemma 2.4.

Subcase 1.2. G2
∼= S4. Then G must have the structure as given in Figure 5

(d). Obviously, G − {e3, e4} = G′

1 + G′

2, where G′

1 is a unicyclic graph which is

not isomorphic to K2,2 and G′

2
∼= S2. Similar to the proof of Subcase 1.1, we have

E(G) > n.

Subcase 1.3. G2
∼= W . Then G must have the structure as given in Figure 5 (e),

(f) or (g). Obviously, G − {xy, yz} = G′

1 + G′

2, where G′

1 is a unicyclic graph which
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Figure 5: The graphs in the proof of Theorem 2.7.



is not isomorphic to K2,2 and G′

2 is a tree of order 5 or 2. Similarly, we can obtain

that E(G) > n.

Subcase 1.4. G2
∼= S2. Since G1 is a unicyclic graph, if G1 6∼= K2,2, then we can

similarly obtain that E(G) > n. If G1
∼= K2,2, then n = 6, which is a contradiction.

Subcase 1.5. G2
∼= Q. Then G must have the structure as given in Figure 5 (h) or

(i). In the former case, G−{e3, e4} = G′

1 + G′

2, where G′

2 is a path of order 4 and G′

1

is a unicyclic graph which is not isomorphic to K2,2. Similarly, we can obtain that

E(G) > n. In the latter case, G − {e2, e3} = G′

1 + G′

2, where G′

2 is a tree of order 5

and G′

1 is a unicyclic graph which is not isomorphic to K2,2. Similarly, we can obtain

that E(G) > n.

Case 2. All the paths P1, P2 and P3 have length 2.

We assume that P1 = uxv, P = uzv and P2 = uyv. Let F = {uy, vy}, then

G−F = G1+G2, where G1 is a unicyclic graph and G2 is a tree. It follows from Lemma

1.3 that E(G1) ≥ |V (G1)|. If G2 6∼= S1, S3, S4, W , then we have E(G2) ≥ |V (G2)| by

Lemma 1.1 and so E(G) > n by Lemma 2.4. Hence we only need to consider the

following four subcases.

Subcase 2.1. G2
∼= S1. Let F ′ = {uy, zv, xv}, then G−F ′ = G′

1+G′

2, where G′

2
∼= S2

and G′

1 is a tree of order at least 6 since n ≥ 8. It is easy to see that G′

1 can not be

isomorphic to Q or W . Therefore we have E(G′

1) > |V (G′

1)| and E(G′

2) = |V (G′

2)|

by Lemma 1.1 and Theorem 2.5. It follows from Lemma 2.4 that E(G) > n.

Subcase 2.2. G2
∼= S3. Then G must have the structure as given in Figure 5 (j). Let

F ′ = {uy, zv, xv}, then G−F ′ = G′

1 +G′

2, where G′

2 is the path of order 4 containing

y and G′

1 is a tree of order at least 4 since n ≥ 8. Clearly, G′

1 can not be isomorphic

to S4, Q or W . Similar to the proof of Subcase 2.1, we have E(G) > n.

Subcase 2.3. G2
∼= S4. Then G must have the structure as given in Figure 5 (k). Let

F ′ = {uy, zv, xv}, then G−F ′ = G′

1 + G′

2, where G′

2 is the tree of order 5 containing

y and G′

1 is a tree of order at least 3. Clearly, G′

1 can not be isomorphic to S4 or W .

If G′

1 6∼= S3, then we can similarly obtain that E(G) > n. If G′

1
∼= S3, then G must

be the graph as given in Figure 5 (l). By choosing the edge cut {uy, uz, xv}, we can

also obtain that E(G) > n.

Subcase 2.4. G2
∼= W . Then G must have the structure as given in Figure 5 (m).

Let F ′ = {uy, zv, xv}, then G − F ′ = G′

1 + G′

2, where G′

2 is the tree of order 8

containing y and G′

1 is a tree of order at least 3. Clearly, G′

1 can not be isomorphic

to S4 or W . If G′

1
∼= S3, then n = 11, which is a contradiction. If G′

1 6∼= S3, then we

can similarly obtain that E(G) > n.

Case 3. One of the paths P1, P2 and P3 has length 1, and the other two paths have

length 2.

Without loss of generality, we assume that P = uv, P1 = uxv and P2 = uyv. Let

F = {uy, vy}, then G − F = G1 + G2, where G1 is a unicyclic graph and G2 is a



tree. Similarly, if G2 6∼= S1, S3, S4, W , then we have E(G) > n. Hence we also need to

consider the following four subcases.

Subcase 3.1. G2
∼= S1. Let F ′ = {uy, uv, xv}, then G − F ′ = G′

1 + G′

2, where

G′

2
∼= S2 and G′

1 is a tree of order at least 6 since n ≥ 8. Since ∆(G) ≤ 3, G′

1 can not

be isomorphic to Q or W . Similar to the proof of Subcase 2.1, we have E(G) > n.

Subcase 3.2. G2
∼= S3. Then G must have the structure as given in Figure 5 (n).

Let F ′ = {uy, uv, xv}, then G − F ′ = G′

1 + G′

2, where G′

2 is the path of order 4

containing y and G′

1 is a tree of order at least 4 since n ≥ 8. Clearly, G′

1 can not be

isomorphic to S4 or W . Similarly, we have E(G) > n.

Subcase 3.3. G2
∼= S4. Then G must have the structure as given in Figure 5 (o). Let

F ′ = {uy, uv, xv}, then G−F ′ = G′

1 + G′

2, where G′

2 is the tree of order 5 containing

y and G′

1 is a tree of order at least 3. Clearly, G′

1 can not be isomorphic to S4 or W .

If G′

1 6∼= S3, then we can similarly obtain that E(G) > n. If G′

1
∼= S3, then G must

be the graph as given in Figure 5 (p). By choosing the edge cut {xu, xv}, we can

similarly obtain that E(G) > n.

Subcase 3.4. G2
∼= W . Then G must have the structure as given in Figure 5 (q). Let

F ′ = {uy, uv, xv}, then G−F ′ = G′

1 + G′

2, where G′

2 is the tree of order 8 containing

y and G′

1 is a tree of order at least 2. Clearly, G′

1 can not be isomorphic to S4 or W .

If G′

1
∼= S3, then n = 11, which is a contradiction. If G′

1 6
∼= S3, then we can similarly

obtain that E(G) > n. The proof is thus complete.

Proof of Conjecture 1.5: Let G be a connected graph of order n with ∆ ≤ 3.

Clearly, if G is isomorphic to a graph in {S2, Q, K2,2, K3,3}, then E(G) = n. We will

prove that E(G) 6= n if G 6∼= S2, Q, K2,2 or K3,3 by induction on the cyclomatic

number c(G). It follows from Theorems 2.5, 2.6 and 2.7 that the result holds for

c(G) ≤ 2. Let k ≥ 3 be an integer. We assume that the result holds for c(G) < k.

Now let G be a graph with c(G) = k ≥ 3. We will show that E(G) 6= n.

By Lemma 2.3, the result holds if n is odd. By the fact that K3,3 is the only

connected cycle-containing graph of order 6 with ∆ ≤ 3 and E = 6, we know that

the result holds for n ≤ 6. So in the following we assume that n ≥ 8 is even. In our

proof we will repeatedly make use of the following claim:

Claim 1. Let F be an edge cut of G such that G−F = G1+G2 with c(G1), c(G2) < k.

If G1, G2 6∼= S1, S3, S4, W or K2,3 and either the edges in F form a star or at least one

of G1 and G2 is not isomorphic to S2, Q or K2,2, then we are done.

Proof. By Lemma 1.4, we have E(G1) ≥ |V (G1)| and E(G2) ≥ |V (G2)|. Clearly,

G1, G2 6∼= K3,3. If Gi 6∼= S2, Q or K2,2, then by induction hypothesis, we have E(Gi) 6=

|V (Gi)|. Therefore we have E(G) > n by Lemma 2.4.

In what follows, we use Ĝ to denote the graph obtained from G by repeatedly

deleting the pendent vertices. Clearly, c(Ĝ) = c(G). Denote by κ′(Ĝ) the edge



connectivity of Ĝ. Since ∆(Ĝ) ≤ 3, we have 1 ≤ κ′(Ĝ) ≤ 3. Therefore we only need

to consider the following three cases.

Case 1. κ′(Ĝ) = 1.

Let e be a cut edge of Ĝ. Then Ĝ−e has exactly two components, say, H1 and H2.

It is clear that c(H1) ≥ 1, c(H2) ≥ 1 and c(H1)+ c(H2) = k. Consequently, G− e has

exactly two components G1 and G2 with c(G1) ≥ 1, c(G2) ≥ 1 and c(G1)+c(G2) = k,

where Hi is a subgraph of Gi for i = 1, 2. If neither G1 nor G2 is isomorphic to K2,3,

then we are done by Claim 1. Otherwise, without loss of generality, we assume that

G1
∼= K2,3. Then G must have the structure as given in Figure 6 (a). Now, let

F = {e1, e2}. Then G − F = G′

1 + G′

2, where G′

1
∼= K2,2 and G′

2 = G2 ∪ e. Therefore

we have that c(G′

2) = k − 2 ≥ 1 and G′

2 6
∼= K2,2, K2,3, and so we are done by Claim 1.

e
e1

e2
G2

e3

e1

e2
G2

e4

(a) (b)

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

(c) (d) (e)

Figure 6: The graphs in the proof of Case 1 and Subcase 2.1 of Conjecture 1.5.

Case 2. κ′(Ĝ) = 2.

Let F = {e1, e2} be an edge cut of Ĝ. Then Ĝ − F has exactly two components,

say, H1 and H2. Clearly, c(H1) + c(H2) = k − 1 ≥ 2.

Subcase 2.1. c(H1) ≥ 1 and c(H2) ≥ 1. Therefore, G − F has exactly two compo-

nents G1 and G2 with c(G1) ≥ 1, c(G2) ≥ 1 and c(G1) + c(G2) = k − 1, where Hi

is a subgraph of Gi for i = 1, 2. If G1, G2 6∼= K2,3 and at least one of G1 and G2 is

not isomorphic to K2,2, then we are done by Claim 1. If at least one of G1 and G2

is isomorphic to K2,3, say G1
∼= K2,3. Then G must have the structure as given in

Figure 6 (b). Now, let F ′ = {e2, e3, e4}, then G − F ′ = G′

1 + G′

2, where G′

1
∼= K2,2

and G′

2 = G2 ∪ e1. Therefore we have that c(G′

2) = k − 3 and G′

2 6∼= K2,2, K2,3, and

so we are done by Claim 1. If G1, G2
∼= K2,2, then G must be the graph as given in

Figure 6 (c), (d) or (e). Let F ′ = {e1, e3, e4}, then G−F ′ = G′

1 + G′

2, where G′

1
∼= S2

and G′

2 6
∼= K2,2 is a unicyclic graph. Hence we are done by Claim 1.

Subcase 2.2. One of H1 and H2, say H2 is a tree. Therefore, G−F has exactly two

components G1 and G2 with c(G1) = k − 1 and c(G2) = 0, where Hi is a subgraph of



Gi for i = 1, 2. Since k−1 ≥ 2, G1 6∼= S2, Q, K2,2. If G1 6∼= K2,3 and G2 6∼= S1, S3, S4, W ,

then we are done by Claim 1. So we assume that this is not true. We only need to

consider the following five subsubcases.

Subsubcase 2.2.1. G2
∼= S1. Let V (G2) = {x}, e1 = xx1 and e2 = xx2. It is clear

that dG1
(x2) = 1 or 2. If dG1

(x2) = 1, let NG1
(x2) = {y1} (see Figure 7 (a), where

y1 may be equal to x1). Let F ′ = {e1, x2y1}. Then G − F ′ = G′

1 + G′

2, where G′

1

is a graph obtained from G1 by deleting a pendent vertex and G′

2
∼= S2. Therefore,

c(G′

1) = k − 1 ≥ 2. If G′

1 6∼= K2,3, then we are done by Claim 1. Otherwise, n = 7,

which is a contradiction.
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Figure 7: The graphs in the proof of Subcase 2.2 of Conjecture 1.5.

If dG1
(x2) = 2, let NG1

(x2) = {y1, y2} (see Figure 7 (b), where one of y1 and y2

may be equal to x1). Let F ′ = {e1, x2y1, x2y2}. Then G−F ′ = G′

1 + G′

2, where G′

1 is



a graph obtained from G1 by deleting a vertex of degree 2 and G′

2
∼= S2. Therefore,

c(G′

1) = k − 2 ≥ 1. If G′

1 6∼= K2,2, K2,3, then we are done by Claim 1. Otherwise,

n = 6 or 7, which is a contradiction.

Subsubcase 2.2.2. G2
∼= S3. If e1, e2 are incident with a common vertex in G2, then

G must have the structure as given in Figure 7 (c). Similar to the proof of Subsubcase

2.2.1, we can obtain that there exists an edge cut F ′ such that G − F ′ = G′

1 + G′

2

satisfying that c(G′

1) = k − 1 if dG1
(x2) = 1 or c(G′

1) = k − 2 if dG1
(x2) = 2 and G′

2

is a path of order 4. If G′

1 6∼= K2,3, then we are done by Claim 1. Otherwise n = 9,

which is a contradiction.

If e1, e2 are incident with two different vertices in G2, then G must have the

structure as given in Figure 7 (d) or (e). Let F ′ = {e2, e3}, then G − F ′ = G′

1 + G′

2,

where G′

1 = G1 ∪ e1 and G′

2
∼= S2. Therefore we have that c(G′

1) = k − 1 ≥ 2 and

G′

2 6
∼= K2,3, and so we are done by Claim 1.

Subsubcase 2.2.3. G2
∼= S4. If e1, e2 are incident with a common vertex in G2, then

G must have the structure as given in Figure 7 (f). Similar to the proof of Subsubcase

2.2.1, we can obtain that there exists an edge cut F ′ such that G − F ′ = G′

1 + G′

2

satisfying that c(G′

1) = k− 1 if dG1
(x2) = 1 or c(G′

1) = k− 2 if dG1
(x2) = 2 and G′

2 is

a tree of order 5. If G′

1 6∼= K2,3, then we are done by Claim 1. Otherwise G must be

the graph as given in Figure 7 (h) or (i). In the former case let F ′′ = {e1, e3, e4} while

in the latter case let F ′′ = {e1, e3, e4, e5}. Then G−F ′′ = G′′

1 +G′′

2, where G′′

1
∼= K2,2,

G′′

2 is a tree of order 6 and G′′

2 6∼= Q. Therefore we are done by Claim 1.

If e1, e2 are incident with two different vertices in G2, then G must have the

structure as given in Figure 7 (g). Let F ′ = {xy, yz}, then G− F ′ = G′

1 + G′

2, where

G′

1 = G1 ∪ {e1, e2} and G′

2
∼= S2. Therefore we have that c(G′

1) = k − 1 ≥ 2 and

G′

2 6
∼= K2,3, and so we are done by Claim 1.

Subsubcase 2.2.4. G2
∼= W . If e1, e2 are incident with a common vertex in G2, then

G must have the structure as given in Figure 7 (j). Similar to the proof of Subsubcase

2.2.1, we can obtain that there exists an edge cut F ′ such that G − F ′ = G′

1 + G′

2

satisfying that c(G′

1) = k − 1 if dG1
(x2) = 1 or c(G′

1) = k − 2 if dG1
(x2) = 2 and G′

2

is a tree of order 8. If G′

1 6∼= K2,3, then we are done by Claim 1. Otherwise, n = 13,

which is a contradiction.

If e1, e2 are incident with two different vertices in G2, then G must have the

structure as given in Figure 5 (e), (f) or (g) (e1, e2 may be incident with a common

vertex in G1). Let F ′ = {xy, yz}, then G − F ′ = G′

1 + G′

2, where G′

2 is the tree of

order 5 or 2 containing y. Clearly, c(G′

1) = k − 1 ≥ 2 and G′

1 6∼= K2,3. Therefore we

are done by Claim 1.

Subsubcase 2.2.5. G1
∼= K2,3 and G2 6∼= S1, S3, S4, W . It is easy to see that G

must have the structure as given in Figure 7 (k). Let F ′ = {e1, e3, e4, e5}. Then

G−F ′ = G′

1 + G′

2, where G′

1
∼= S2 and G′

2 is a tree of order at least 6 since n ≥ 8. It



is easy to see that G′

2 can not be isomorphic to W or Q. Therefore we are done by

Claim 1.

Case 3. κ′(Ĝ) = 3.

Noticing that ∆(Ĝ) ≤ 3 and ∆(G) ≤ 3, we obtain that G = Ĝ is a connected

3-regular graph. Hence we have n + k − 1 = m = 3
2
n, i.e., n = 2k − 2. Since n ≥ 8,

we have k ≥ 5.

Let F = {e1, e2, e3} be an edge cut of G. Then G−F has exactly two components,

say, G1 and G2. Clearly, c(G1)+ c(G2) = k−2 ≥ 3. Let c(G1) ≥ c(G2). If c(G2) ≥ 3,

then we are done by Claim 1. Hence we only need to consider the following three

subcases.

Subcase 3.1. c(G2) = 0 and c(G1) = k − 2. Let |V (G2)| = n2. Then we have

3n2 =
∑

v∈V (G2) dG(v) = 2(n2 − 1) + 3 = 2n2 + 1. Therefore, n2 = 1, i.e., G2 = S1.

Let V (G2) = {x}, e1 = xx1, e2 = xx2 and e3 = xx3. Let NG1
(x2) = {y1, y2} (see

Figure 8 (a)). Let F ′ = {e1, e3, x2y1, x2y2}. Then G − F ′ = G′

1 + G′

2, where G′

2
∼= S2

and G′

1 is a graph obtained from G1 by deleting a vertex of degree 2. Therefore,

c(G′

1) = k − 3 ≥ 2. If G′

1 6∼= K2,3, then we are done by Claim 1. If G′

1
∼= K2,3, then

n = 7, which is a contradiction.
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e3

e6

e2

(b)

e4

Figure 8: The graphs in the proof of Case 3 of Conjecture 1.5.

Subcase 3.2. c(G2) = 1 and c(G1) = k − 3. Let |V (G2)| = n2. Then we have

3n2 =
∑

v∈V (G2) dG(v) = 2n2 + 3. Therefore, n2 = 3, i.e., G2 is a triangle. If

G1 6∼= K2,3, then we are done by Claim 1. If G1
∼= K2,3, then G must be the graph

as given in Figure 8 (b). Let F ′ = {e1, e4, e5, e6}. Then G − F ′ = G′

1 + G′

2, where

G′

1
∼= S2 and G′

2 is a bicyclic graph which is not isomorphic to K2,3. Then we are

done by Claim 1.

Subcase 3.3. c(G2) = 2 and c(G1) = k − 4. Let |V (G2)| = n2. Then we have

3n2 =
∑

v∈V (G2) dG(v) = 2(n2 + 1) + 3 = 2n2 + 5. Therefore, n2 = 5. If neither G1

nor G2 is isomorphic to K2,3, then we are done by Claim 1. Otherwise, we assume

that G2
∼= K2,3 (similar for G1

∼= K2,3). Then G must have the structure as given in

Figure 8 (c). Let F ′ = {e1, e2, e4, e5}. Then G− F ′ = G′

1 + G′

2, where G′

2
∼= K2,2 and

G′

1 is a (k − 4)-cyclic graph which is not isomorphic to K2,3. Then we are done by

Claim 1. The proof is thus complete.
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