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Abstract. In this paper, we extend the notion of labeled partitions with ordinary permutations
to colored permutations in the sense that the colors are endowed with a cyclic structure. We
use labeled partitions with colored permutations to derive the generating function of the fmajk

indices of colored permutations. The second result is a combinatorial treatment of a relation on
the q-derangement numbers with respect to colored permutations which leads to the formula
of Chow for signed permutations and the formula of Faliharimalala and Zeng [10] on colored
permutations. The third result is an involution on permutations that implies the generating
function formula for the signed q-counting of the major indices due to Gessel and Simon. This
involution can be extended to signed permutations. In this way, we obtain a combinatorial
interpretation of a formula of Adin, Gessel and Roichman.
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1 Introduction

In this paper, we will be concerned with the wreath product Sk
n = Ck oSn of the symmetric group

on [n] = {1, 2, . . . , n} and the cyclic group Ck on {0, 1, . . . , k−1} whose elements are considered
being arranged on a cycle, see Adin and Roichman [2] and Wagner [16]. The elements in S k

n

are also called colored permutations [5]. The derangements with respect to the group S k
n are

studied by Faliharimalala and Zeng [9, 10].

We will extend the notion of labeled partitions with ordinary permutations to colored per-
mutations. A k-colored permutation is written as π(1)c1 π(2)c2 · · · π(n)cn , where π(1)π(2) · · · π(n)
is a permutation on [n] and ci ∈ {0, 1, . . . , k − 1}. For example, 42 30 12 50 21 is a colored per-
mutation in S3

5 . We define a total order on the elements of Sk
n as follows

1k−1 < 2k−1 < · · · < nk−1 < 1k−2 < 2k−2 < · · · < nk−2 < · · · < 10 < 20 < · · · < n0. (1.1)

We now recall the following definitions:

D(σ) := {i ∈ [n − 1] : σ(i) > σ(i + 1)},

maj(σ) :=
∑

i∈D(σ)

i,

Nj(σ) := #{i ∈ [n] : σ(i) has subscript j}, j = 1, . . . , k − 1,

fmajk(σ) := kmaj(σ) + N1(σ) + 2N2(σ) + · · · + (k − 1)Nk−1(σ). (1.2)
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The set D(σ) is called the descent set of σ ∈ Sk
n. It should be noted that Adin and Roichman

[2] give the definition of flag major index of an element in Sk
n by the unique factorization into

Coxeter elements, and they prove that fmajk has the above expression (1.2). In this paper, we
will consider the formula (1.2) as the definition of the fmajk index. From this point of view,
our approach may be regarded as purely combinatorial.

For k = 1, S1
n is usually written as Sn. For k = 2, S2

n becomes the group of signed
permutations on [n], often denoted by Bn, and the minus sign is often denoted by a bar.
Moreover, the fmajk index reduces to the fmaj index for signed permutations as defined by

fmaj(π) = 2maj(π) + N(π),

where N(π) denotes the number of negative elements of π and maj(π) is defined with respect
to the following order

1̄ < 2̄ < · · · < n̄ < 1 < 2 < · · · < n.

Using labeled partitions with colored permutations, we get the generating function of the
fmajk indices on Sk

n,

∑

π∈Sk
n

qfmajk(π) = [k]q[2k]q · · · [nk]q, (1.3)

where [k]q = 1 + q + q2 + · · · + qk−1. The above formula is a natural extension of the formulas
for the generating functions for the major index and the fmaj index, see Faliharimalala and
Zeng [10]. Recall that for the cases of ordinary permutations and signed permutations we have

∑

π∈Sn

qmaj(π) = [n]! (1.4)

and

∑

π∈Bn

qfmaj(π) = [2]q[4]q · · · [2n]q. (1.5)

The second result is a combinatorial treatment of a relation on the q-derangement num-
bers Dk

n(q) with respect to Sk
n. This relation implies the formula for dk

n(q) by the q-binomial
inversion, as given by Faliharimalala and Zeng [10]. For n ≥ 1, let

Dn := {σ ∈ Sn : σ(i) 6= i for all i ∈ [n]}

be the set of derangements on Sn. Gessel defined the q-derangement numbers by

dn(q) :=
∑

σ∈Dn

qmaj(σ)

and proved that

dn(q) = [n]q!

n
∑

k=0

(−1)kq(
k

2)

[k]q!
, (1.6)
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where [n]q! = [1]q[2]q · · · [n]q. Wachs [14] found a combinatorial proof of the above formula.
Later, Chow [8] generalized Wachs’s argument to type B derangements. Similarly, Chow
defined

D
B
n := {σ ∈ Bn : σ(i) 6= i for all i ∈ [n]}

as the set of derangements in Bn and

dB
n (q) :=

∑

σ∈DB
n

qfmaj(σ).

Chow has shown that

dB
n (q) = [2]q[4]q · · · [2n]q

n
∑

k=0

(−1)kq2(k

2)

[2]q[4]q · · · [2k]q
. (1.7)

The notion of derangements of type B can be generalized to Sk
n, as given by Faliharimalala

and Zeng [10]. We define

D
k
n := {σ ∈ Sk

n : σ(i) 6= i0 for all i ∈ [n]}

and
dk

n(q) :=
∑

σ∈Dk
n

qfmajk(σ).

Faliharimalala and Zeng have shown that

dk
n(q) = [k]q[2k]q · · · [nk]q

n
∑

j=0

(−1)jqk(j

2)

[k]q[2k]q · · · [jk]q
. (1.8)

The argument of Chow for dB
n (q) can be extended to the case of dk

n(q). Our proof is based
on the structure of labeled partitions with colored permutations, which is an extension of the
combinatorial approach of Chen and Xu [7] for ordinary permutations. We will present the
proof for the case k = 3, which is essentially a proof for the general case.

The third result is concerned the following formula of Gessel and Simon [15] on the signed
q-counting of permutations with respect to the major index:

∑

π∈Sn

sign(π)qmaj(π) = [1]q[2]−q[3]q[4]−q · · · [n](−1)n−1q.

Note that a combinatorial proof of the above formula has been given by Wachs [15] based on
permutations. We will present an involution on labeled partitions that leads to a combinatorial
interpretation of the above formula. Moreover, our involution can be extended to signed permu-
tations. This gives a combinatorial proof of the following formula of Adin-Gessel-Roichman [3]
for the signed q-counting of signed permutations with respect to the fmaj index:

∑

π∈Bn

sign(π)qfmaj(π) = [2]−q[4]q · · · [2n](−1)nq.
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2 Labeled Partitions and the fmajk Index

In this section, we introduce the notion of labeled partitions with colored permutations. Using
labeled partitions, we give a combinatorial proof of the following formula for the generating
function of the fmajk indices of colored permutations in Sk

n, given by Haglund, Loehr and
Remmel [12], see also, Faliharimalala and Zeng [10].

Theorem 2.1. We have
∑

π∈Sk
n

qfmajk(π) = [k]q[2k]q · · · [nk]q.

Recall that given a colored permutation π ∈ Sk
n, Nj(π) denotes the number of elements

π(i) ∈ π with subscript j, where j = 1, 2, . . . , k−1. The fmajk index which is originally defined
algebraically by Adin and Roichman has the following equivalent form

fmajk(π) = kmaj(π) + N1(π) + 2N2(π) + · · · + (k − 1)Nk−1(π).

Clearly, Theorem 2.1 is a generalization of the formulas (1.4) and (1.5) for permutations
and signed permutations. We now proceed to give a combinatorial proof of Theorem 2.1 by
using labeled partitions with colored permutations.

Let λ = (λ1, λ2, . . . , λn) be an integer partition with at most n parts where λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0. We adopt the notation in Andrews [4]. We write |λ| = λ1 + λ2 + · · · + λn. A
labeled partition associated with S3

n is defined as a pair (λ, π), where λ is a partition with at
most n parts and π = π(1)π(2) · · · π(n) is a colored permutation in S3

n. We can also employ
the two-row notation to represent a labeled partition

(

λ1 λ2 · · · λn

π(1) π(2) · · · π(n)

)

.

A labeled partition (λ, π) is said to be standard if π(i) > π(i + 1) implies λi > λi+1. It is
easy to see that a labeled partition (λ, π) is standard if λi = λi+1 implies π(i) < π(i + 1).

Given a colored element wi, we use c(wi) to denote the color or subscript i, and use d(wi)
to denote the element w after removing the color i.

Let P 3
n denote the set of partitions with at most n parts such that each part is divisible by

3. Given π ∈ S3
n, we denote by Qπ the set of standard labeled partitions such that λi − c(π(i))

is divisible by 3.

Lemma 2.2. Given π ∈ S3
n, there is a bijection gπ : λ → (µ, π) from P 3

n to Qπ such that

|λ| + fmaj3(π) = |µ|.

Proof. We define µ as follows:

µ = (λ1 + 3a1 + c(π(1)), λ2 + 3a2 + c(π(2)), . . . , λn + 3an + c(π(n))),

where ai is the number of descents in π(i)π(i + 1) · · · π(n). From the above definition, it is
clear that µ is a partition and µi − c(π(i)) is divisible by 3. We only need to show that (µ, π)
is standard. We have the following cases.
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Case 1: λi > λi+1. In this case, we have λi+3ai+c(π(i)) = µi > µi+1 = λi+1+3ai+1+c(π(i+1)),
since λi − λi+1 ≥ 3, ai ≥ ai+1 and |c(π(i)) − c(π(i + 1))| < 3.

Case 2: λi = λi+1. We further consider the following two subcases:

(i) If π(i) > π(i + 1), then it is easy to verify that

λi + 3ai + c(π(i)) = µi > µi+1 = λi+1 + 3ai+1 + c(π(i + 1)).

(ii) If π(i) < π(i + 1) and π(i), π(i + 1) have the same subscript, then we have

λi + 3ai + c(π(i)) = µi = µi+1 = λi+1 + 3ai+1 + c(π(i + 1)).

Otherwise, if π(i) and π(i + 1) have different subscripts, then we see that the subscript
of π(i) is greater than that of π(i + 1). This implies that

λi + 3ai + c(π(i)) = µi > µi+1 = λi+1 + 3ai+1 + c(π(i + 1)).

Now we see that the labeled partition (µ, π) is standard. Conversely, given a labeled
partition (µ, π) ∈ Qπ , we can uniquely recover the partition λ ∈ P 3

n .

Consequently, we obtain the following formula.

Theorem 2.3. For n ≥ 1, we have

∑

π∈S3
n

qfmaj3(π) = [3]q[6]q · · · [3n]q.

Proof. We consider the following equivalent form of (1.3):

1

(q3; q3)n

∑

π∈S3
n

qfmaj3(π) =
1

(1 − q)n
,

where
(q3; q3)n = (1 − q3)(1 − q6) · · · (1 − q3n).

Let Wn be the set of sequences of n nonnegative integers. It is clear that 1
(q3;q3)n

and 1
(1−q)n are

the generating functions for numbers of partitions in P 3
n and Wn, respectively. Therefore, it

suffices to construct a bijection φ : (λ , π) → s from (P 3
n , S3

n) to Wn such that |λ|+fmaj3(π) = |s|,
where |s| denotes the sum of entries of s. The bijection φ can be described as follows:

Step 1. Use the bijection in Lemma 2.2 to derive a standard labeled partition (µ, π) from (λ, π).

Step 2. Based on the two row representation of the labeled partition (µ, π), we permute the
columns to make the second row become the identity permutation by ignoring the subscripts
of the elements in π. Let s denote the first row of the array.

It is not difficult to see that the above procedure is reversible. The inverse of φ consists of
four steps.

Step 1. For a sequence s = (s(1), s(2), . . . , s(n)) ∈ Wn, we construct a two row array
(

s(1) s(2) · · · s(n)
1 2 · · · n

)

.
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Step 2. For each element i ∈ [n], we may construct a colored permutation 1c12c2 · · ·ncn , where
ci = s(i) (mod 3). Clearly, we have s∗(i) = s(i) − ci is divisible by 3. So we are led to the
following array

(

s∗(1) s∗(2) · · · s∗(n)
1c1 2c2 · · · ncn

)

.

Step 3. Permute the columns of the above array to make the first row s∗(j1)s
∗(j2) · · · s

∗(jn) in
decreasing order. Moreover, we order the elements in the second row in increasing order if they
correspond to the same elements in the first row. We denote the resulted labeled partition by

(

s∗(j1) s∗(j2) · · · s∗(jn)

δ(1)e1
δ(2)e2

· · · δ(n)en

)

.

Step 4. Recover the initial labeled partition (λ, π) from the array produced in Step 3 by the
following rule:

(λ∗, π) =

(

s∗(j1) − 3a1 s∗(j2) − 3a2 · · · s∗(jn) − 3an

δ(1)e1
δ(2)e2

· · · δ(n)en

)

,

where ak is the number of descents in δ(k)ek
· · · δ(n)en

.

It is easy to see that the above procedure is feasible. Moreover, one can verify that φ ·φ−1 =
id and φ−1 · φ = id, where id denotes the identity map. This completes the proof.

Let us give an example. Let n = 7, λ = (18, 18, 18, 9, 9, 6, 3) and π = 32 42 60 51 72 21 12.
Then we obtain s = (5, 10, 29, 29, 16, 27, 14) via the following steps:

(

18 18 18 9 9 6 3
32 42 60 51 72 21 12

)

Step 1
−→

(

29 29 27 16 14 10 5
32 42 60 51 72 21 12

)

Step 2
−→ (5, 10, 29, 29, 16, 27, 14).

The reverse process from s to (λ, π) are demonstrated as follows:

(5, 10, 29, 29, 16, 27, 14)

Step 1
−→

(

5 10 29 29 16 27 14
1 2 3 4 5 6 7

)

Step 2
−→

(

3 9 27 27 15 27 12
12 21 32 42 51 60 72

)

Step 3
−→

(

27 27 27 15 12 9 3
32 42 60 51 72 21 12

)

Step 4
−→

(

18 18 18 9 9 6 3
32 42 60 51 72 21 12

)

.

3 Labeled Partitions and q-Derangements Numbers

In this section, we give a combinatorial treatment of a relation on the q-derangement numbers
for Sk

n. This relation leads to the formula of Faliharimalala and Zeng for dk
n(q). We will give

the proof for the case k = 3. It is easy to see that the argument applies to the general case.

Following Wachs [14] and Chow [8], we define the reduction of a colored permutation σ on
a set of positive integers A = {a1 < a2 < · · · < ak} by substituting the element ai with i while
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keeping the color. Keep in mind that a positin i is called a fixed point of a colored permutation
π(1)π(2) · · · π(n) if π(i) = i0. Then the derangement part of a colored permutation σ ∈ S3

n,
denoted by dp(σ), is the reduction of the sequence obtained from σ by removing the fixed
elements. For example, dp(80 12 51 40 31 60 71 22) = 60 12 41 31 51 22.

Then we have the following extension of the relation due to Wachs [14]:

Theorem 3.1. Given α ∈ D 3
k , for 0 ≤ k ≤ n we have

∑

dp(σ)=α,σ∈S3
n

qfmaj3(σ) = qfmaj3(α)

[

n

k

]

q3

. (3.9)

It should be noted that the above theorem can be proved by the method of Wachs [14]
which has been extended by Chow [8] to signed permutations. We will give a combinatorial
proof based on labeled partitions with colored permutations.

For any π = π(1)π(2) · · · π(k) ∈ S3
k , we can insert a fixed point j with 1 ≤ j ≤ k + 1 into π

to obtain a permutation π̄ in S3
k+1 given by

π̄ = π′(1)π′(2) · · · π′(j − 1)j0π
′(j) · · · π′(k),

where

π′(i) =

{

(c(π(i)))d(π(i)), if d(π(i)) < j,

(c(π(i)))(d(π(i)) + 1), otherwise.

In other words, π̄ is the unique permutation with i being a fixed point such that the
reduction of the sequence obtained from π̄ by deleting the element at position i equals π. For
example, let π = 42 10 20 61 51 32. Then we get 52 10 30 20 71 61 42 when we insert 3 into π.

Proof of Theorem 3.1. First, we reformulate the relation (3.9) in the equivalent form

1

(q3; q3)n

∑

dp(σ)=α,σ∈S3
n

qfmaj3(σ) =
1

(q3; q3)k(q3; q3)n−k

qfmaj3(α), (3.10)

and use labeled partitions to give combinatorial proof of the above relation. Let Rα be the
set of colored permutations σ ∈ S3

n such that dp(σ) = α. We proceed to establish a bijection
θ : (λ, σ) → (β, γ) from (P 3

n , Rα) to (P 3
k , P 3

n−k) such that

|λ| + fmaj3(σ) = |β| + |γ| + fmaj3(α). (3.11)

The bijection consists of the following steps.

Step 1. Apply the bijection gσ given in Lemma 2.2 to get a standard labeled partition (λ∗, σ)
from λ.

Step 2. Let the fixed points and non-fixed points of σ be σ(i1), σ(i2), . . . , σ(in−k) and σ(j1), σ(j2),
. . . , σ(jk). We decompose λ∗ into two parts, namely, λ∗(i1), λ

∗(i2), . . . , λ
∗(in−k) and λ∗(j1), λ

∗(j2),
. . . , λ∗(jk).

Let γ = (λ∗(i1), λ
∗(i2), . . . , λ

∗(in−k)) and β∗ = (λ∗(j1), λ
∗(j2), . . . , λ

∗(jk)).
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Step 3. Apply g−1
α to (β∗, α) and denote the resulted partition by β.

To show that the above procedure is feasible, we need to show that β∗ generated in Step 2
satisfies the condition that (β∗, α) belongs to Qα so that one can apply g−1

α .

Observe that for any 1 ≤ q ≤ k, σ(jq) and α(q) have the same subscript since α(q) is
obtained by the reduction operation. It follows that

β∗(q) − c(α(q)) = λ∗(jq) − c(α(q))

is divisible by 3 for any 1 ≤ q ≤ k. To prove that (β∗, α) is standard, it suffices to show if
σ(p) > σ(q) with σ(p + 1), . . . , σ(q − 1) being at the positions of fixed points, then λ∗

p > λ∗
q.

When q = p + 1, we conclude that λ∗
p > λ∗

q from the fact that (λ∗, σ) is standard. When
q > p + 1, it is easy to see that we have either σ(p) > σ(p + 1) or σ(q − 1) > σ(q). Therefore,
we have either λ∗

p > λ∗
p+1 or λ∗

q−1 > λ∗
q. Since λ∗ is a partition, we find that λ∗

p > λ∗
q. Hence

the bijection is well defined.

It remains to show that the above procedure is reversible. We proceed to construct the
inverse map η from (P 3

k , P 3
n−k) to (P 3

n , Rα), which consists of three steps.

Step 1. Apply gα to β and denote the resulted partition by (β̃, α).

Step 2. Let (λ̃0, σ0) = (β̃, α). We insert γi into (λ̃i−1, σi−1) to get (λ̃i, σi). Find the first position
r in λ̃i−1 such that the insertion of γi to this position will produce a partition. We denote this
partition by λ̃i. Obviously, we have λ̃i

r−1 > λ̃i
r = γi. Suppose that λ̃i

r = · · · = λ̃i
t > λ̃i

t+1 for
some t ≥ r. If r = t then we set s = r. Otherwise, from left to right, we look for a position s

satisfying σi−1(s− 1) < s0 ≤ σi−1(s) (here we treat σi−1(r − 1) as −∞ and σi−1(t + 1) as ∞).
In this way, we obtain σi from σi−1 by inserting s0 as a fixed point. In fact, this procedure
guarantees that the subsequence σi(r), σi(r + 1), . . . , σi(t) is increasing. That is, (λ̃i, σi) is
a standard labeled partition. On the other hand, since γ ∈ P 3

n−k and each fixed point has

subscript 0, we have γi is divisible by 3 for each 1 ≤ i ≤ n − k and thus (λ̃i, σi) ∈ Qσi .

Step 3. Apply g−1
σn−k to (λ̃n−k, σn−k) and denote the resulted partition by λn−k.

We claim that λn−k and σn−k equal λ and σ respectively. Then we see that η is the inverse
of θ. From Lemma 2.2, it is easily seen that β∗ = β̃. Since λ̃n−k is the partition obtained from
β̃ by inserting γ1, . . . , γn−k, we have λ∗ = λ̃n−k.

It is now necessary to show that σn−k = σ. It suffices to verify σn−k and σ have the same
fixed points. By removing the common fixed points, we may assume that the first fixed point
f (f0) of σ is different from that of f ′ (f ′

0) of σn−k. We have

σ(f − 1) < f0 ≤ σ(f + 1) − 1.

Since f ′ is the first position we aim to find, we have f ′ < f . On the other hand, it is clear that
λ∗(f) = λ∗(f ′). Since (λ∗, σ) and (λ∗, σn−k) are both standard labeled partitions, we find

σ(f ′) < σ(f ′ + 1) < · · · < σ(f),

and
σn−k(f ′) < σn−k(f ′ + 1) < · · · < σn−k(f).

Based on the fact that λ∗(f) = λ∗(f ′), σn−k(f) and σn−k(f ′) have the same subscript, we
conclude that σn−k(f) has the subscript 0 as σn−k(f ′).
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Now we see that σ(f) = f and σn−k(f ′) = f ′. Since

σ(f ′) < σ(f ′ + 1) < · · · < σ(f)

and σ(f) = f , we can deduce that σ(f ′) ≤ f ′. Since f is the first fixed point of σ, we obtain
α(f ′) = σ(f ′) < f ′. From the construction of σn−k, if follows that σn−k(f ′) ≤ α(f ′) < f ′ which
contradicts the assumption that σn−k(f ′) = f ′ (f ′ is a fixed point of σn−k).

Therefore, we have σ = σn−k. Again by Lemma 2.2, we conclude that λ = λn−k. Hence η

is the inverse map of θ. This completes the proof.

For example, let n = 8, λ = (18, 12, 12, 12, 9, 9, 6, 3) and σ = 52 10 20 40 81 60 71 32. Then we
have

gσ(λ) =

(

29 21 21 21 16 10 5
52 10 20 40 71 61 32

)

.

The fixed points of σ are 40 and 60, and α = dp(σ) = 42 10 20 61 51 32. Decomposing (29, 21, 21, 21,
16, 15, 10, 5), we get ((29, 21, 21, 16, 10, 5), (21, 15)). Applying g−1

α to β∗ = (29, 21, 21, 16, 10, 5)
gives β = (18, 12, 12, 9, 6, 3) and γ = (21, 15).

Conversely, given α = 42 10 20 61 51 32 and (β, γ) = ((18, 12, 12, 9, 6, 3), (21, 15)), we have
β̃ = (29, 21, 21, 16, 10, 5). The insertion process is illustrated as follows:

(

29 21 21 16 10 5
42 10 20 61 51 32

)

γ1=21
−→

(

29 21 21 21 16 10 5
52 10 20 40 71 61 32

)

γ2=15
−→

(

29 21 21 21 16 15 10 5
52 10 20 40 81 60 71 32

)

.

So we get λ̃n−k = (29, 21, 21, 21, 16, 15, 10, 5), σn−k = 52 10 20 40 81 60 71 32. Finally, we find
λn−k = g−1

σn−k = (18, 12, 12, 12, 9, 9, 6, 3).

4 Involutions on Labeled Partitions

In this section, we give a combinatorial interpretation of the formula of Gessel and Simon in
terms of an involution on labeled partitions. This involution can be easily extended to type B.
Hence we also give a combinatorial proof of a formula of Adin, Gessel and Roichman on the
signed q-counting of fmaj indices of signed permutations.

Recall that the sign of a signed permutations is defined in terms of generators of Bn as a
Coxeter group. Consider the generating set {s0, s1, s2, . . . , sn−1} of Bn, where

s0 := [−1, 2, 3, . . . , n], and si := [1, 2, . . . , i − 1, i + 1, i, i + 2, . . . , n]

for 1 ≤ i ≤ n − 1. Then the sign of a signed permutation π is defined by

sign(π) := (−1)l(π),

where l(π) is the standard length of π with respect to the generators of Bn.

The following theorem is due to Gessel and Simon [15].
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Theorem 4.1.
∑

π∈Sn

sign(π)qmaj(π) = [1]q[2]−q[3]q[4]−q · · · [n](−1)n−1q. (4.12)

A combinatorial proof of the above formula has been given by Wachs [15]. Here we will
give an involution on labeled partitions and we will show that this involution can be easily
extended to the following type B formula due to Adin, Gessel and Roichman [3].

Theorem 4.2.
∑

π∈Bn

sign(π)qfmaj(π) = [2]−q[4]q · · · [2n](−1)nq. (4.13)

To describe our involution on labeled partitions as a proof of the formula (4.12), we may
reformulate in an equivalent form:

∑

π∈Sn
sign(π)qmaj(π)

(q; q)n
=

1

(1 − q)(1 + q)(1 − q)(1 + q) · · · (1 − (−1)n−1q)
. (4.14)

Proof of Theorem 4.1. We consider two cases according to the parity of n.

Case 1. n is even, i.e., n = 2k. Then (4.14) takes the form
∑

π∈S2k
sign(π)qmaj(π)

(q; q)2k

=
1

(1 − q2)k
. (4.15)

Clearly, the right hand side of (4.15) is the generating function of sequences (a1, a2, . . . , a2k−1, a2k)
satisfying a2i−1 = a2i for i = 1, 2, . . . , k. It is also easy to see that the left hand side of (4.15) is
the generating function of labeled partitions on Sn with at most 2k parts under the assumption
that a labeled partition (λ, π) carries the sign of the permutation π. To be more specific, such
labeled partitions are called signed labeled partitions. We proceed to construct an involution
on the set H of signed labeled partitions (λ, π) such that the generating function of the fixed
points of this involution equals the right hand side of (4.15). This involution consists of three
steps.

Step 1. Let (λ, π) be a labeled partition such that π ∈ S2k and λ = (λ1, λ2, . . . , λ2k) with
λ1 ≥ λ2 ≥ · · · ≥ λ2k ≥ 0. If |π−1(1) − π−1(2)| 6= 1, then we define

φ1(π)(i) =











π(i), i 6= π−1(1) and π−1(2),

2, i = π−1(1),

1, i = π−1(2).

Obviously, (λ, π) and (λ, φ1(π)) have opposite signs and maj(π) = maj(φ1(π)). Therefore,
we have maj(π) + |λ| = maj(φ1(π)) + |λ|, and so these two elements cancel each other. If
|π−1(1) − π−1(2)| = 1, then we see that maj(π) 6= maj(φ1(π)).

We now use H1 to denote the set of signed labeled partitions (λ, π) such that |π−1(1) −
π−1(2)| = 1. Repeating the above procedure, we continue to cancel out some elements in H 1. At
this time, we consider the positions of the elements 3 and 4. Similarly, if |π−1(3)−π−1(4)| 6= 1,
then we define

φ2(π)(i) =











π(i), i 6= π−1(3) and π−1(4),

4, i = π−1(3),

3, i = π−1(4).
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It follows that (λ, π) and (λ, φ2(π)) have the opposite signs and that

maj(π) + |λ| = maj(φ2(π)) + |λ|.

In other words, the two elements cancel out in the set H 1.

Now, we use H2 to denote the subset of H1 such that |π−1(3)− π−1(4)| = 1. Iterating this
process, we may consider the elements {5, 6}, {7, 8}, . . . , {2k−1, 2k} and denote the set obtained
at the last step by Hk. Finally, we obtain Hk ⊆ Hk−1 ⊆ · · · ⊆ H1. In the intermediate steps,
we can defined the functions φi for i = 1, 2, . . . , k. It is not difficult to see that the labeled
partition (λ, π) in Hk has the property that

|π−1(1) − π−1(2)| = 1, |π−1(3) − π−1(4)| = 1, . . . , |π−1(2k − 1) − π−1(2k)| = 1.

Namely, any odd number 2i − 1 is next to 2i in π for all i = 1, . . . , k.

Step 2. For any labeled partition

(λ, π) =

(

λ1 · · · λπ−1(2) λπ−1(1) · · · λ2k

π(1) · · · 2 1 · · · π(2k)

)

,

we define (f 1(λ), g1(π)) to be the labeled partition

(f1(λ), g1(π)) =

(

λ1 + 1 · · · λπ−1(2) + 1 λπ−1(1) · · · λ2k

π(1) · · · 1 2 · · · π(2k)

)

,

where f 1(λ) is the partition obtained from λ by adding 1 to the first π−1(2) parts of λ and
g1(π) is the permutation obtained from π by exchanging the positions of 1 and 2.

Clearly, (λ, π) and (f 1(λ), g1(π)) have opposite signs. Also, we have

maj(π) + |λ| = maj(g1(π)) + |f 1(λ)|.

Therefore (λ, π) and (f 1(λ), g1(π)) cancel out in Hk. Notice that the resulted labeled partition
(f1(λ), g1(π)) has the additional property that f 1(λ)π−1(1) is greater than f 1(λ)π−1(2). By

inspection, we see that after cancellation, the remaining elements in H k are of the following
form

(λ, π) =

(

λ1 · · · λπ−1(1) λπ−1(2) · · · λ2k

π(1) · · · 1 2 · · · π(2k)

)

where λπ−1(1) = λπ−1(2). Let Hk
1 denote the set of remaining elements in Hk that of the above

form.

We continue the above process for the Hk
1 with respect the relative positions of 3 and 4.

It is easy to check that for any labeled partition (λ, π) in H k
1 , 1 appears before 2 in π and

λπ−1(1) = λπ−1(2). Now, for any element (λ, π) ∈ Hk
1 , if

(λ, π) =

(

λ1 · · · λπ−1(4) λπ−1(3) · · · λ2k

π(1) · · · 4 3 · · · π(2k)

)

,
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then we can find another labeled partition (f 2(λ), g2(π)) ∈ Hk
1

(f2(λ), g2(π)) =

(

λ1 + 1 · · · λπ−1(4) + 1 λπ−1(3) · · · λ2k

π(1) · · · 3 4 · · · π(2k)

)

.

Again, (λ, π) and (f 2(λ), g2(π)) cancel each other in Hk
1 . Notice that f 2(λ)π−1(3) is greater

than f2(λ)π−1(4). So the remaining labeled partitions after the above cancelation are of the
form

(λ, π) =

(

λ1 · · · λπ−1(3) λπ−1(4) · · · λ2k

π(1) · · · 3 4 · · · π(2k)

)

,

where λπ−1(3) = λπ−1(4). Then we can denote the set of the remaining labeled partitions by

Hk
2 and continue the above process. Eventually, we get Hk

k ⊆ Hk
k−1 ⊆ · · · ⊆ Hk

1 . Moreover, in
the process we have defined the functions f i and gi for i = 1, 2, . . . , k.

It is easy to see that for any labeled partition (λ, π) in H k
k and for any i ∈ {1, . . . , k}, 2i−1

appears immediately before 2i and λπ−1(2i−1) = λπ−1(2i). Clearly, all the labeled partitions in

Hk
k have positive signs.

Step 3. Permute the columns of the labeled partitions (λ, π) in H k
k so that the elements in

π are rearranged in increasing order. Taking the first row of the resulted two row array, we
will get a sequence (a1, a2, . . . , a2k−1, a2k) such that a2i−1 = a2i (i = 1, . . . , k) whose generating
function is the right hand side of (4.15).

It is easy to see that the relation (4.15) can be justified by the above algorithm. Hence
Theorem 4.1 holds when n is even.

Case 2. n is odd, i.e., n = 2k + 1. We need to show that

∑

π∈S2k+1
sign(π)qmaj(π)

(q; q)2k+1
=

1

(1 − q2)k(1 − q)
. (4.16)

This case is analogous to the case when n is even. We may employ the same operations in
Step 1 and Step 2 by ignoring the element 2k+1 while making the pairs {1, 2, }, {3, 4}, . . . , {2k−
1, 2k}. The only difference lies in Step 3 when we take the first row of the resulted two row
array, we get a sequence (a1, a2, . . . , a2k−1, a2k, a2k+1) such that a2i−1 = a2i (i = 1, . . . , k).
Moreover, a2k+1 can be any positive integer. This completes the proof of the relation (4.16).

In fact, we have constructed a sign reversing involution

(θ, χ) : (λ, π) → (θ(λ), χ(π)).
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Specifically, the map (θ, χ) is defined by

(θ(λ), χ(π)) =















































































(λ, φ1(π)), if(λ, π) ∈ H \ H1,

(λ, φ2(π)), if(λ, π) ∈ H1 \ H2,

· · ·

(λ, φk(π)), if(λ, π) ∈ Hk−1 \ Hk,

(f1(λ), g1(π)), if(λ, π) ∈ Hk \ Hk
1 ,

(f2(λ), g2(π)), if(λ, π) ∈ Hk
1 \ Hk

2 ,

· · ·

(fk(λ), gk(π)), if(λ, π) ∈ Hk
k−1 \ Hk

k ,

(λ, π), if(λ, π) ∈ Hk
k ,

where φi(π), f i(λ) and gi(π) are defined in the above algorithm. It is easy to verify that the
map induces sign reversing, that is, if (λ, π) is not a fixed point of the map (θ, χ), then we have
sign(θ(λ), χ(π)) = −sign(λ, π) and |θ(λ)| + maj(χ(π)) = |λ| + maj(π). The fixed points of the
map (θ, χ) correspond to the right hand side of (4.12). This completes the proof.

We now turn to the Theorem 4.2, and we need a characterization of the length function of
signed permutations [6, Propostion 3.1 and Corollary 3.2].

Lemma 4.3. Let σ ∈ Bn, we have

l(σ) = inv (σ) +
∑

{1≤i≤n|σ(i)<0}

|σ(i)|,

where inv (σ) is defined with respect to the order

n̄ < · · · < 1̄ < 1 < · · · < n.

Note that in the definition of the fmaj on Bn we have imposed the order

1̄ < · · · < n̄ < 1 < · · · < n

or in the notation of colored permutations,

11 < · · · < n1 < 10 < · · · < n0.

The above lemma is useful for the construction of a sign reversing involution for the formula
(4.13) for Bn. Given a signed permutation σ ∈ Bn, we may construct a signed permutation σ ′

as follows. If 1 and 2 have different signs or 1 and 2 have the same sign but are not adjacent
in σ, then we exchange 1 and 2 without changing the signs. By Lemma 4.3, we see that the σ ′

and σ have opposite signs and fmaj(σ) = fmaj(σ ′).

For example, let σ = 40 21 51 10 31. Then we have σ′ = 40 11 51 20 31. Clearly, σ and σ′ have
opposite signs.

Using the above sign change rule, we can extend the involution for Theorem 4.1 to Theorem
4.2. The detailed proof is omitted.
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