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Abstract. We prove the reverse ultra log-concavity of the Boros-Moll polynomials. We
further establish an inequality which implies the log-concavity of the sequence {i!di(m)}
for any m ≥ 2, where di(m) are the coefficients of the Boros-Moll polynomials Pm(a). This
inequality also leads to the fact that in the asymptotic sense, the Boros-Moll sequences
are just on the borderline between ultra log-concavity and reverse ultra log-concavity.
We propose two conjectures on the log-concavity and reverse ultra log-concavity of the
sequence {di−1(m)di+1(m)/di(m)2} for m ≥ 2.
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1 Introduction

This paper is concerned with the reverse ultra log-concavity of the Boros-Moll polynomi-
als. A sequence {ak}k≥0 of real numbers is said to be log-concave if a2

k ≥ ak+1ak−1 holds
for all k ≥ 1. A polynomial is said to be log-concave if the sequence of its coefficients
is log-concave, see Brenti [7] and Stanley [10]. Furthermore, a sequence {ak}0≤k≤n is
called ultra log-concave if

{
ak

/(
n
k

)}
is log-concave, see Liggett [9]. This condition can be

restated as
k(n− k)a2

k − (n− k + 1)(k + 1)ak−1ak+1 ≥ 0. (1.1)

It is well known that if a polynomial has only real zeros, then its coefficients form an
ultra log-concave sequence. As noticed by Liggett [9], if a sequence {ak}0≤k≤n is ultra
log-concave, then the sequence {k!ak}0≤k≤n is log-concave.

A sequence is said to be reverse ultra log-concave if it satisfies the reverse relation of
(1.1), that is,

k(n− k)a2
k − (n− k + 1)(k + 1)ak−1ak+1 ≤ 0. (1.2)

For example, it is easy to verify that for n ≥ 2, the Bessel polynomial [11]

yn(x) =
n∑

k=0

(n + k)!

2kk!(n− k)!
xk
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is log-concave and reverse ultra log-concave.

The Boros and Moll polynomials, denoted Pm(a), arise in the following evaluation of
a quartic integral

∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a + 1)m+1/2
Pm(a),

where

Pm(a) = 2−2m
∑

k

2k

(
2m− 2k

m− k

)(
m + k

k

)
(a + 1)k, (1.3)

see, [1, 2, 3, 5]. Write

Pm(a) =
m∑

i=0

di(m)ai.

The sequence {di(m)}0≤i≤m is called a Boros-Moll sequence. The expression (1.3) gives
the following formula for the coefficients di(m),

di(m) = 2−2m

m∑

k=0

2k

(
2m− 2k

m− k

)(
m + k

m

)(
k

i

)
.

Clearly, the coefficients di(m) are positive. Moll conjectured that the sequence {di(m)}i is
log-concave for m ≥ 2, that is, di(m)2 ≥ di−1(m)di+1(m) (1 ≤ i ≤ m−1). This conjecture
has been proved by Kauers and Paule [8].

Despite the log-concavity of {di(m)}, we find that the inverse ultra log-concavity holds.

Theorem 1.1 For m ≥ 2 and 1 ≤ i ≤ m− 1, we have

(
di−1(m)(

m
i−1

)
)
·
(

di+1(m)(
m

i+1

)
)

>

(
di(m)(

m
i

)
)2

, (1.4)

or, equivalently,
di(m)2

di−1(m)di+1(m)
<

(m− i + 1)(i + 1)

(m− i)i
. (1.5)

On the other hand, it can be shown that the coefficients di(m) satisfy an inequality
stronger than the log-concavity. To be more specific, we will give a lower bound of
di(m)2/ (di−1(m)di+1(m)), which is very close to the above upper bound in (1.5).

Theorem 1.2 For m ≥ 2 and 1 ≤ i ≤ m− 1, we have

di(m)2

di−1(m)di+1(m)
>

(m− i + 1)(i + 1)(m + i)

(m− i)i(m + i + 1)
. (1.6)
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This paper is organized as follows. We establish an upper bound of di(m+1)/di(m) in
Section 2, which leads to the reverse ultra log-concavity of {di(m)}. In Section 4 we give
the proof of Theorem 1.2. We conclude this paper with two conjectures concerning the
log-concavity and the reverse ultra log-concavity of the sequence {di−1(m)di+1(m)/d2

i (m)}
for m ≥ 2.

2 An Upper Bound for di(m + 1)/di(m)

In this section, we establish an upper bound for the ratio di(m + 1)/di(m) that will lead
to the reverse ultra log-concavity of the sequence of {di(m)}. For m ≥ 1 and 0 ≤ i ≤ m,
set

T (m, i) =
4m2 + 7m + 3 + i

√
4m + 4i2 + 1− 2i2

2(m− i + 1)(m + 1)
. (2.1)

Theorem 2.1 For all m ≥ 2, 1 ≤ i ≤ m− 1, we have

di(m + 1)

di(m)
< T (m, i), (2.2)

and for m ≥ 1, we have

d0(m + 1)

d0(m)
= T (m, 0),

dm(m + 1)

dm(m)
= T (m,m). (2.3)

The following lemma will be needed in the proof of Theorem 2.1.

Lemma 2.2 For m ≥ 2 and 1 ≤ i ≤ m− 1,

T (m, i) < F (m, i), (2.4)

where

F (m, i) =
(m + i + 1)(4m + 3)(4m + 5)

2(m + 1)(4m2 − 2i2 + 9m + 5− i
√

4m + 4i2 + 5)
.

Proof. Let A =
√

4m + 4i2 + 1 and B =
√

4m + 4i2 + 5. It is easy to check that

F (m, i)− T (m, i) =
i(X − Y )

2(m + 1)(m− i + 1)(4m2 + 9m + 5− 2i2 − iB)
, (2.5)

where

X =(i− 4i3) + iAB

Y =(5 + 4m2 + 9m− 2i2)A− (3 + 4m2 + 7m− 2i2)B.
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Since (4m2 + 9m + 5− 2i2)2 − (iB)2 = (4m + 5)2(m + i + 1)(m− i + 1) > 0, it remains
to show that the numerator of (2.5) is also positive. We claim that X > 0 and X2 > Y 2.

Since m > i, we have A > 2i + 1 and B > 2i + 1. Moreover, since i ≥ 1, we find that

X = (i− 4i3) + iAB ≥ i− 4i3 + i(2i + 1)2 = 4i2 + 2i > 0.

It is routine to check X2 − Y 2 = G(m, i)−H(m, i), where

G(m, i) = (32m4 − 32m2i2 + 128m3 − 64mi2 + 190m2 − 30i2 + 124m + 30)AB,

H(m, i) = 128m5 + 608m4 + 1128m3 + 1014m2 + 436m + 128m4i2 + 384m3i2

+ 408m2i2 − 128m2i4 + 200mi2 − 256mi4 − 120i4 + 50i2 + 70.

Since i < m, it is easily seen that G(m, i) > 0 and H(m, i) > 0. To prove G(m, i) >
H(m, i), it suffices to show that G(m, i)2 > H(m, i)2. In fact, for 1 ≤ i ≤ m− 1,

G(m, i)2 −H(m, i)2 = 16(4m + 5)2(16mi2 + 12i2 − 1)(m + i + 1)2(m− i + 1)2 > 0.

This yields X2 > Y 2. Since X > 0, we see that X > Y , and hence (2.4) holds for
1 ≤ i ≤ m− 1.

Proof of Theorem 2.1. It is easy to check (2.3). To prove (2.2), we proceed by induction
on m. For m = 2 and i = 1, we have d1(3)/d1(2) = 43/15 < T (2, 1) = (31 +

√
13)/12.

We now assume that (2.2) is true for m, that is,

di(m + 1) < T (m, i)di(m), 1 ≤ i ≤ m− 1. (2.6)

It will be shown that

di(m + 2) < T (m + 1, i)di(m + 1), 1 ≤ i ≤ m− 1. (2.7)

Using the recurrence (3.3), we may write (2.7) in the following form

−4i2 + 8m2 + 24m + 19

2(m− i + 2)(m + 2)
di(m + 1)− (m + i + 1)(4m + 3)(4m + 5)

4(m + 1)(m + 2)(m− i + 2)
di(m)

< T (m + 1, i)di(m + 1). (2.8)

Since m > i, we have 4m + 4i2 + 5 < 12m + 4m2 + 9. It follows that

R(m, i) =
−4i2 + 8m2 + 24m + 19

2(m− i + 2)(m + 2)
− T (m + 1, i)

=
4m2 + 9m + 5− 2i2 − i

√
4m + 4i2 + 5

2(m− i + 2)(m + 2)

≥ 4m2 + 9m + 5− 2i2 − i(2m + 3)

2(m− i + 2)(m + 2)
> 0.
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Therefore, (2.8) is equivalent to the following inequality

di(m + 1)

di(m)
< F (m, i), (2.9)

which is a consequence of (2.6) and Lemma 2.2.

It remains to consider the case i = m. We aim to show that

dm(m + 2)

dm(m + 1)
< T (m + 1,m). (2.10)

By easy computation, we find that

dm(m + 2)

dm(m + 1)
=

(m + 1)(4m2 + 18m + 21)

2(2m + 3)(m + 2)
,

T (m + 1,m) =
2m2 + 15m + 14 + m

√
4m2 + 4m + 5

4(m + 2)
.

Thus (2.10) can be rewritten as

(2m2 + 3m)
√

4m2 + 4m + 5 > 4m3 + 8m2 + 5m. (2.11)

Denote by U and V the left hand side and the right hand side of (2.11), respectively.
Then, U2 − V 2 = 4m2(4m + 5) > 0, and so (2.10) is verified. This completes the proof.

3 The Reverse Ultra Log-concavity

In this section, we give the proof of Theorem 1.1. Our approach can be described as
follows. Let f(x) = ax2 + bx + c be a quadratic function with a > 0. Suppose that the
equation f(x) = 0 has two distinct real zeros x1 and x2, where x1 < x2. Then f(x) > 0 if
x > x2 or x < x1 and f(x) < 0 if x1 < x < x2. The key step is to transform the inequality
(1.5), that is,

di(m)2

di−1(m)di+1(m)
<

(m− i + 1)(i + 1)

(m− i)i
,

into a quadratic inequality in the ratio di(m + 1)/di(m).

We will need the following recurrence relations for the coefficients di(m). For m ≥ 1
and 0 ≤ i ≤ m + 1,

2(m + 1)di(m + 1) = 2(m + i)di−1(m) + (4m + 2i + 3)di(m), (3.1)

2(m + 1)(m + 1− i)di(m + 1) = (4m− 2i + 3)(m + i + 1)di(m)

− 2i(i + 1)di+1(m), (3.2)

4(m + 2− i)(m + 1)(m + 2)di(m + 2) = 2(m + 1)(−4i2 + 8m2 + 24m + 19)di(m + 1)

− (m + i + 1)(4m + 3)(4m + 5)di(m). (3.3)
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These recurrences are derived by Kauers and Paule [8]. The relation (3.3) is also derived
independently by Moll [6]. Based on these recurrence relations, Kauers and Paule [8]
derived the following lower bound of di(m + 1)/di(m) in their proof of the log-concavity
of Boros-Moll polynomials

di(m + 1)

di(m)
≥ Q(m, i), 0 ≤ i ≤ m, (3.4)

where

Q(m, i) =
4m2 + 7m + i + 3

2(m + 1− i)(m + 1)
. (3.5)

Note that Chen and Xia [4] have shown that the above inequality (3.4) becomes strict for
m ≥ 2 and 1 ≤ i ≤ m− 1, that is,

di(m + 1)

di(m)
> Q(m, i). (3.6)

Now we are ready to prove the reverse ultra log-concavity of {di(m)}.
Proof of Theorem 1.1. Applying (3.1) and (3.2), we may reformulate (1.5) in the following
form

4(m− i + 1)2(m + 1)2

(
di(m + 1)

di(m)

)2

− 4(m− i + 1)(m + 1)(4m2 − 2i2 + 7m + 3)

(
di(m + 1)

di(m)

)

− (32mi2 − 56m3 − 73m2 − 42m + 13i2 − 9− 16m4 + 16i2m2) < 0. (3.7)

For 1 ≤ i ≤ m− 1, the discriminant of the above quadratic function in di(m + 1)/di(m)
equals

4 = 16i2(m + 1)2(4i2 + 4m + 1)(m− i + 1)2 > 0.

We see that the quadratic function on the left hand side of (3.7) has two real roots

x1 =
4m2 − 2i2 + 7m + 3− i

√
4m + 4i2 + 1

2(m− i + 1)(m + 1)
,

x2 =
4m2 − 2i2 + 7m + 3 + i

√
4m + 4i2 + 1

2(m− i + 1)(m + 1)
.

Clearly, Q(m, i) > x1. In view of (3.4), we deduce that di(m + 1)/di(m) ≥ Q(m, i) > x1.
Observe that x2 coincides with the upper bound T (m, i) in Theorem 2.1. Thus we have
di(m + 1)/di(m) < x2. So we have shown that for 1 ≤ i ≤ m− 1,

x1 <
di(m + 1)

di(m)
< x2,

which implies (3.7). This completes the proof of Theorem 1.1.
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4 A Lower Bound for di(m)2/(di−1(m)di+1(m))

In this section, we give the proof of Theorem 1.2 on a lower bound of di(m)2/(di−1(m)di+1(m)).
As will be seen, the lower bound for di(m)2/(di−1(m)di+1(m)) is very close to the upper
bound (1.5) for the reverse ultra log-concavity. So in the asymptotic sense, we may say
that the Boros-Moll polynomials are just on the borderline between ultra log-concavity
and reverse ultra log-concavity. We conclude this paper with two conjectures.

Proof of Theorem 1.2. Utilizing the recurrence relations (3.1) and (3.2), the inequality
(1.6) can be restated as

4(m + 1)2(m− i + 1)2

(
di(m + 1)

di(m)

)2

− 4(m− i + 1)(m + 1)(4m2 + 7m− 2i2 + 3)
di(m + 1)

di(m)

+ (4m2 + 7m + 3)(−4i + 3 + 4m)(m + i + 1) > 0.

For 1 ≤ i ≤ m− 1, the discriminant of the above quadratic function in di(m + 1)/di(m)
equals

δ = 16i2(2i + 1)2(m + 1)2(m− i + 1)2 > 0. (4.1)

Hence the above quadratic function has two real roots,

x1 =
4m2 + 7m− 4i2 − i + 3

2(m + 1)(m− i + 1)
,

x2 =
4m2 + 7m + i + 3

2(m + 1)(m− i + 1)
.

As x2 = Q(m, i), it follows from (3.6) that di(m + 1)/di(m) > x2. So we arrive at (1.6).
This completes the proof.

Notice that for 1 ≤ i ≤ m− 1,

(m− i + 1)(i + 1)(m + i)

(m− i)i(m + i + 1)
>

i + 1

i
.

As a consequence of Theorem 1.2 , we obtain the log-concavity of the sequence {i!di(m)}.

Corollary 4.1 For m ≥ 2 and 1 ≤ i ≤ m− 1,

d2
i (m)

di−1(m)di+1(m)
>

i + 1

i
, (4.2)

or equivalently, the sequences {i!di(m)} is log-concave.
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Corollary 4.2 For 1 ≤ i ≤ m− 1, let

ci(m) =
d2

i (m)

di−1(m)di+1(m)
and ui(m) =

(
1 +

1

i

)(
1 +

1

m− i

)
.

Then for any i ≥ 1,

lim
m→∞

ci(m)

ui(m)
= 1. (4.3)

Proof. By Theorems 1.1 and 1.2, we find that

m + i

m + i + 1
<

ci(m)

ui(m)
< 1,

which implies (4.3).

We remark that even when m is small, ci(m) is quite close to ui(m) for any 1 ≤ i ≤
m − 1. Numerical evidence indicates that ci(m)/ui(m) is increasing for given m. For
example, when m = 8, the values of ci(m)/ui(m) for 1 ≤ i ≤ 7 are given below

0.956593, 0.969751, 0.978293, 0.983956, 0.987811, 0.990507, 0.992445.

We propose the following two conjectures on the log-concavity and reverse ultra log-
concavity of the sequence {di+1(m)di−1(m)/di(m)2}.

Conjecture 4.3 For m ≥ 2, the sequence {di+1(m)di−1(m)/di(m)2}2≤i≤m−2 is log-concave.

Conjecture 4.4 For m ≥ 2, the sequence {di+1(m)di−1(m)/di(m)2}2≤i≤m−2 is reverse
ultra log-concave.
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