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Abstract

We prove some results involving cross L-intersections of two families of subsets
of [n] = {1, 2, . . . , n}. As a consequence, we derive the following results: (1) Let
L = {l1, l2, . . . , ls} be a set of s positive integers. If F = {F1, F2, . . . , Fm} is a family
of subsets of X = [n] satisfying |Fi − Fj | ∈ L for i 6= j, then

m ≤
s
∑

i=0

(

n − 1

i

)

.

(2) Let p be a prime, k ≥ 2, and L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr} be two
disjoint subsets of {0, 1, . . . , p − 1}. Suppose F is a family of subsets of [n] such that
|Fi| (mod p) ∈ K for all Fi ∈ F and |F1 ∩ · · · ∩ Fk| (mod p) ∈ L for any collection of
k distinct sets from F . If n > (r + 1)(s − 2r + 2), then

|F| ≤ (k − 1)

s
∑

i=s−2r+1

(

n − 1

i

)

.

The first result improves a result of Frankl about families with given difference sizes
between subsets and the second result gives an improvement to a theorem by Grolmusz-
Sudakov and a theorem by W. Cao, K.W. Hwang, and D.B. West.
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1 Introduction

Throughout our paper, we use the set [n] = {1, 2, . . . , n}. A family F is t-uniform if it is
a set of t-subsets of [n]. We call a family F of subsets of [n] an intersecting family if every
pair of distinct subsets Fi, Fj ∈ F have a nonempty intersection. Let L = {l1, l2, . . . , ls} be
a set of nonnegative or positive integers. A family F of subsets of X = [n] is called k-wise
L-intersecting if |F1 ∩F2 ∩ · · · ∩Fk| ∈ L for every collection of k distinct members from F .
When k = 2, a 2-wise L-intersecting family is simply called L-intersecting.

In 1961, Erdös-Ko-Rado [7] proved the classical result as follows:

Theorem 1.1 Suppose F be a k-uniform intersecting family of subsets of [n] with n ≥ 2k.
Then |F| ≤

(

n−1

k−1

)

. And for n > 2k, equality holds only if F consists of all k-subsets
containing a common element.

Since then, many researchers have worked on various kinds of intersecting families, see
[1-3,6,4,5,8-13,15,16-18]. In 1981, Frankl and Wilson [10] obtained the following celebrated
result.

Theorem 1.2 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. If F is an L-
intersecting family of subsets of X, then

|F| ≤

(

n

s

)

+

(

n

s − 1

)

+ · · ·+

(

n

0

)

.

This result is best possible as shown by the set of all subsets of size at most s of an n-set.
In 1984, Frankl [8] proved the following similar result for set systems with given difference
sizes between subsets, where a Sperner family F is a family of subsets of X = [n] such that
E 6⊆ F for any two distinct subsets E, F ∈ F .

Theorem 1.3 Let p be a prime and L = {l1, l2, . . . , ls} be a subset of {1, 2, . . . , p − 1}.
Suppose that F is a Sperner family of subsets of [n] satisfying that |F −F ′| (mod p) ∈ L for
all distinct pair F, F ′ ∈ F . Then

|F| ≤

(

n

s

)

+

(

n

s − 1

)

+ · · ·+

(

n

0

)

.

Here, we will give the following improvement to Theorem 1.3.
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Theorem 1.4 Let p be a prime and L = {l1, l2, . . . , ls} be a subset of {1, 2, . . . , p − 1}.
Suppose that F is a family of subsets of [n] satisfying that |F − F ′| (mod p) ∈ L for all
distinct pair F, F ′ ∈ F . Then

m ≤

(

n − 1

s

)

+

(

n − 1

s − 1

)

+ · · · +

(

n − 1

0

)

.

Note that for any two sets A and B, A − B = A ∩ B, where B is the complement of B.
Theorem 1.4 follows directly from the following result about cross-intersecting two families
by taking A = F = {F1, F2, . . . , Fm} and B = {F1, F2, . . . , Fm}. The next theorem can also
be viewed as a variation to Bollobás’s Theorem on cross intersecting families in [2].

Theorem 1.5 Let p be a prime and L = {l1, l2, . . . , ls} be a subset of {1, 2, . . . , p − 1}.
Suppose that A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets
of [n] such that |Ai ∩ Bj | (mod p) ∈ L whenever i 6= j. If |Ai ∩ Bi| (mod p) 6∈ L and
n 6∈ Ai ∩ Bi for each i ≤ m, then

m ≤

(

n − 1

s

)

+

(

n − 1

s − 1

)

+ · · · +

(

n − 1

0

)

.

In section 3, we will prove the next result about cross-intersecting two families which can
be used to derive results about k-wise L-intersecting families.

Theorem 1.6 Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr} be
two disjoint subsets of {0, 1, 2, . . . , p − 1}. Suppose that A = {A1, A2, . . . , Am} and B =
{B1, B2, . . . , Bm} are two families of subsets of X satisfying that

(1) n 6∈ Ai ∩ Bi for 1 ≤ i ≤ b and n ∈ Ai for b < i ≤ m;
(2) |Ai ∩ Bj | (mod p) ∈ L for 1 ≤ j < i ≤ m;
(3) |Ai ∩ Bi| (mod p) 6∈ L for every 1 ≤ i ≤ m.
(4) |Ai| (mod p) ∈ K for every 1 ≤ i ≤ m.

If n > (r + 1)(s − 2r + 2), then

m ≤
s
∑

i=s−2r+1

(

n − 1

i

)

.

As a consequence, we can prove the following result about k-wise L-intersecting families
which improves both Theorem 2 in Grolmusz and Sudakov [13] and the main theorem in
Cao, Hwang and West [4]. The following result also gives a better bound than those in
[11,12] when |L| > |{l (mod p)|l ∈ L}|.
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Theorem 1.7 Let p be a prime, k ≥ 2, and L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr} be
two disjoint subsets of {0, 1, 2, . . . , p − 1}. Suppose F is a family of subsets of X such that
|F1 ∩ F2 ∩ · · · ∩ Fk| (mod p) ∈ L for every collection of k distinct members from F and |F |
(mod p) ∈ K for every F ∈ F . If n > (r + 1)(s − 2r + 2), then

|F| ≤ (k − 1)

s
∑

i=s−2r+1

(

n − 1

i

)

.

When K is a set of r consecutive integers, we can prove the following slightly better
bound for k-wise L-intersecting families than that in Theorem 1.7.

Theorem 1.8 Let p be a prime, k ≥ 2, and L = {l1, l2, . . . , ls} and K = {k, k + 1, . . . , k +
r−1} be two distinct subsets of {0, 1, . . . , p−1}. Suppose F is a family of subsets of X such
that |F1 ∩F2 ∩ · · · ∩ Fk| (mod p) ∈ L for every collection of k distinct members from F and
|F | (mod p) ∈ K for every F ∈ F . If n > (r + 1)(s − 2r + 2), then

|F| ≤ (k − 1)
s
∑

i=s−r

(

n − 1

i

)

.

2 Proof of Theorem 1.5

We will use x = (x1, x2, . . . , xn) to denote a vector of n variables with each variable xi taking
values 0 and 1. A polynomial f(x) in variables xi, 1 ≤ i ≤ n, is called multilinear if the
power of each variable xi in each term is at most one. Clearly, if each variable xi takes only
the value 0 or 1, then any polynomial in variables xi, 1 ≤ i ≤ n, is multilinear since any
positive power of a variable xi may be replaced by one. For any subset F of [n], we define
the characteristic vector of F to be the vector vF = (vF1

, vF2
, . . . , vFn

) ∈ Rn with vFi
= 1 if

i ∈ F and vFi
= 0 otherwise. For x, y ∈ Rn, let x · y =

∑n

i=1
xiyi denote their standard inner

product.

Proof of Theorem 1.5 For each Bi ∈ B, we define the multilinear polynomial of degree at
most s by

fBi
=
∏

l∈L

(vBi
· x − l),

where vBi
is the characteristic vector of Bi. Then fBi

(vAj
) =

∏

l∈L(|Aj∩Bi|−l) = 0 (mod p)
for i 6= j and fBi

(vAi
) 6= 0 (mod p) as |Ai ∩ Bi| (mod p) 6∈ L for each i ≤ m.
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Let W be the family of subsets of [n] with size at most s which contain n. Now for each
I ∈ W , define

gI(x) =
∏

j∈I

xj ,

which is a multilinear polynomial with a degree at most s.
We now proceed to show that these polynomials in

{fBi
|1 ≤ i ≤ m} ∪ {gI |I ∈ W}

are linearly independent over the field Fp. Suppose that the following linear combination of
these polynomials are equal to zero:

m
∑

i=1

αifBi
(x) +

∑

I∈W

βIgI(x) = 0. (2.1)

Claim 1. αi = 0 for each i with n 6∈ Ai.
To the contrary, suppose that i′ is a subscript such that n 6∈ Ai′ and αi′ 6= 0. Since

n 6∈ Ai′ , gI(vAi′
) = 0 for each I ∈ W . By evaluating Eq. (2.1) with x = vAi′

, we have
αi′fBi′

(vAi′
) = 0 (mod p) which implies αi′ = 0, a contradiction. So the claim holds.

Claim 2. βI = 0 for every I ∈ W . By Claim 1, we obtain
∑

n∈Ai

αifBi
(x) +

∑

I∈W

βIgI(x) = 0. (2.2)

Since n ∈ Ai and n 6∈ Ai ∩Bi, we have n 6∈ Bi. Therefore, xn does not appear in the first
sum of Eq. (2.2). Setting xn = 0 in Eq. (2.2) gives us

∑

n∈Ai

αifBi
(x) = 0, (2.3)

and so
∑

I∈W

βIgI(x) = 0. (2.4)

Suppose that I ′ is the minimal subset such that βI′ 6= 0. Note that gI′(vI′) = 1 and
gI(vI′) = 0 (mod p) for any I ∈ W with I 6= I ′ and |I| ≥ |I ′|. Setting x = vI′ in Eq. (2.4),
we obtain βI′gI′(vI′) = 0 (mod p), which implies βI′ = 0, a contradiction. Thus the claim is
true.

By Claims 1 and 2, we only need to show that αi = 0 for each i with n ∈ Ai. To the
contrary, suppose i′ is a subscript that n ∈ Ai′ and αi′ 6= 0. Evaluating (2.3) with x = vAi′

,
we obtain αi′fBi′

(vAi′
) = 0 (mod p) which implies αi′ = 0, a contradiction.
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In summary, we have shown that fBi
’s and gI ’s are linearly independent over Fp. Since

the set of all monomials in variables xi, 1 ≤ i ≤ n, of degree at most s forms a basis for the
vector space of multilinear polynomials of degree at most s, it follows that

m +

s−1
∑

i=0

(

n − 1

i

)

≤
s
∑

i=0

(

n

i

)

,

which implies that

m ≤
s
∑

i=0

(

n − 1

i

)

.

This completes the proof. �

3 Proof of Theorems 1.6–1.8

To prove Theorem 1.6, we need the following lemma which is Lemma 3.6 in [1]. We say a
set H = {h1, h2, . . . , ht} ⊆ [n] has a gap of size ≥ d (where the hi are arranged in increasing
order) if either h1 ≥ d − 1, or n − ht ≥ d − 1, or hi+1 − hi ≥ d for some i (1 ≤ i ≤ t − 1).

Lemma 3.1. Let p be a prime and H ⊆ {0, 1, . . . , p − 1} be a set of integers such that the
set (H + pZ) ∩ {0, 1, . . . , n} has a gap ≥ d + 1, where d ≥ 0. Let f denote the following
polynomial in n variables

f(x) =
∏

h∈H

(

n
∑

j=1

xj − h

)

.

Then the set of polynomials {f(x)
∏

j∈I xj ||I| ≤ d − 1} is linearly independent over Fp.

The following proof is alone the same line as the proof of Theorem 1.11 in [5] with some
important differences.

Proof of Theorem 1.6. For each Bi ∈ B, we define

fBi
(x) =

s
∏

j=1

(vBi
· x − lj),

where x = (x1, x2, . . . , xn) with each xj taking values 0 or 1, vBi
is the characteristic vector

of Bi, and vBi
·x is the standard inner product. Then each fBi

(x) is a multilinear polynomial
of degree at most s. It is clear from condition (2) that fBj

(vAi
) = 0 (mod p) for i > j as

vBj
· vAi

= |Ai ∩ Bj | (mod p) ∈ L.
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Let Q be the family of subsets of X = [n] with size at most s which contain n. Then
|Q| =

∑s−1

i=0

(

n−1

i

)

. For each L ∈ Q, define

qL(x) = (1 − xn)
∏

j∈L,j 6=n

xj .

Then each qL(x) is a multilinear polynomial of degree at most s.
Let H = {ki − 1|ki ∈ K} ∪ K. Then |H| ≤ 2r. Set

f(x) =
∏

h∈H

(

n−1
∑

j=1

xj − h

)

.

Let W be the family of subsets of [n] with sizes at most s− 2r which do not contain n, then
|W | =

∑s−2r

i=0

(

n−1

i

)

. For each I ∈ W , define

AI(x) = f(x)
∏

j∈I

xj.

Then each AI(x) is a multilinear polynomial of degree at most s.
We now show that the polynomials in

{fBi
(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {AI(x)|I ∈ W}

are linearly independent over Fp. Suppose that we have a linear combination of these poly-
nomials that equals zero:

m
∑

i=1

αifBi
(x) +

∑

L∈Q

βLqL(x) +
∑

I∈W

µIAI(x) = 0. (3.1)

Claim 1. αi = 0 for each i > b (i.e., n ∈ Ai).
Suppose, to the contrary, that i′ is the largest subscript such that i′ > b and αi′ 6= 0.

Since n ∈ Ai′ , qL(vAi′
) = 0 for every L ∈ Q. Recall that fBj

(vAi′
) = 0 (mod p) for j < i′ and

f(vAi′
) = 0 (mod p). By evaluating Eq. (3.1) with x = vAi′

, we obtain that αi′fBi′
(vAi′

) = 0
(mod p). Since fBi′

(vAi′
) 6= 0 (mod p), we have αi′ = 0, a contradiction. Thus, Claim 1

holds.
Claim 2. αi = 0 for each i ≤ b.

Applying Claim 1, we get

∑

i≤b

αifBi
(x) +

∑

L∈Q

βLqL(x) +
∑

I∈W

µIAI(x) = 0. (3.2)
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Suppose, to the contrary, that i′ is the largest subscript subscript such that i′ ≤ b and
αi′ 6= 0. Let v∗

Ai′
= vAi′

+(0, 0, . . . , 0, 0, 1) (namely, making xn = 1 in v∗
Ai′

). Then qL(v∗
Ai′

) = 0
for every L ∈ Q. Note that fBj

(v∗
Ai′

) = fBj
(vAi′

) for each j ≤ b as n 6∈ Bj . For each I ∈ W ,
since f(v∗

Ai′
) = 0 (mod p), AI(v

∗
Ai′

) = 0 (mod p). By evaluating Eq. (3.2) with x = v∗
Ai′

,
we obtain αi′fBi′

(v∗
Ai′

) = αi′fBi′
(vAi′

) = 0 (mod p) which implies αi′ = 0, a contradiction.
Thus, the claim is verified.
Claim 3. βL = 0 for each L ∈ Q.

By Claims 1 and 2, we obtain

∑

L∈Q

βLqL(x) +
∑

I∈W

µIAI(x) = 0. (3.3)

Rewrite Eq. (3.3) as

[

∑

L∈Q

βLq′L(x) +
∑

I∈W

µIAI(x)

]

−

(

∑

L∈Q

βLq′L(x)

)

xn = 0, (3.4)

where q′L =
∏

j∈L,j 6=n xj . Note that xn does not appear in the first parenthesis of Eq. (3.4).
Setting xn = 0 in Eq. (3.4) gives us

∑

L∈Q

βLq′L(x) +
∑

I∈W

µIAI(x) = 0

and
(

∑

L∈Q

βLq′L(x)

)

xn = 0.

By setting xn = 1, we obtain
∑

L∈Q

βLq′L(x) = 0.

It is not difficult to see that the polynomials q′L(x), L ∈ Q, are linearly independent. There-
fore, we conclude that βL = 0 for each L ∈ Q.

By Claims 1-3, we now have
∑

I∈W

µIAI(x) = 0. (3.5)

Recall that H = {ki − 1|ki ∈ K} ∪ K, H ⊆ {0, 1, . . . , p − 1} with r pairs of consecutive
integers ki − 1 and ki, 1 ≤ i ≤ r. Since n > (r + 1)(s − 2r + 2), H has a gap at least
s − 2r + 2. By applying Lemma 3.1 with d = s − 2r + 1, we conclude that the set of
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polynomials {AI(x) = xIf(x)|I ∈ W} is linearly independent over Fp, and so µI = 0 for
each I ∈ W in Eq. (3.5).

In summary, we have shown that the polynomials in

{fBi
(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {AI(x)|I ∈ W}

are linearly independent. Since the set of all monomials in variables xi, 1 ≤ i ≤ n, of degree
at most s forms a basis for the vector space of multilinear polynomials of degree at most s,
it follows that

m +
s−1
∑

i=0

(

n − 1

i

)

+
s−2r
∑

i=0

(

n − 1

i

)

≤
s
∑

i=0

(

n

i

)

which implies that

m ≤

(

n − 1

s

)

+

(

n − 1

s − 1

)

+ · · ·+

(

n − 1

s − 2r + 1

)

.

This completes the proof. �

Before we proceed further, we give the following remark.

Remark 3.1. Note that if the set K = {k1, k2, . . . , kr} is a set of r consecutive integers,
then |H| = r + 1 for H = {ki − 1|1 ≤ i ≤ r} ∪ {ki|1 ≤ i ≤ r}. Therefore, if we replace W
in the proof of Theorem 1.6 by the family of all subsets of [n] with sizes at most s − r − 1
which do not contain n, then we get

m ≤
s
∑

i=s−r

(

n − 1

i

)

.

Proof of Theorem 1.7. Let L = {l1, l2, . . . , ls} be a set of s non-negative integers and
k ≥ 2. Suppose that F is a k-wise L-intersecting family of subsets of X. We repeat the
following procedure until F is empty to produce two families A = {A1, A2, . . . , Am} and
B = {B1, B2, . . . , Bm} satisfying the conditions in Theorem 1.6.

Suppose we have defined pairs {Aj , Bj} for j ≤ i−1. At round i, if F 6= ∅, then we define
pair {Ai, Bi} as follows: Whenever there exists F ∈ F such that n 6∈ F , choose F1 ∈ F with
n 6∈ F1; otherwise choose any F1 ∈ F . Let F1, F2, . . . , Fd be a maximal collection of subsets
from F such that | ∩d′

j=1 Fj | (mod p) 6∈ L for all 1 ≤ d′ ≤ d, but | ∩d
j=1 Fj ∩ F ′| (mod p) ∈ L

for any additional set F ′ ∈ F . Clearly, by the assumption, such collection always exists
and 1 ≤ d ≤ k − 1. Denote Ai = F1 and Bi = ∩d

j=1Fj and remove F1, F2, . . . , Fd from
F . Note that as a result of this process, we obtain two families A = {A1, A2, . . . , Am} and
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B = {B1, B2, . . . , Bm} satisfying the conditions in Theorem 1.6 and m ≥ |F|/(k − 1). Thus
it follows from Theorem 1.6 that

|F| ≤ (k − 1)m ≤ (k − 1)
s
∑

i=s−2r+1

(

n − 1

i

)

.

This completes the proof. �

Theorem 1.8 can be proved in exactly the same way as Theorem 1.7 by applying Remark
3.1 instead of Theorem 1.6.

Concluding remark. We remark here that with almost identical proofs, one can obtain
results similar to Theorems 1.6–1.8 by change the condition n > (r + 1)(s − 2r + 2) to the
condition min ki > max lj.
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