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Abstract

Let T ∆
n denote the set of trees of order n, in which the degree of each

vertex is bounded by some integer ∆. Suppose that every tree in T ∆
n is

equally likely. For any given subtree H, we first show that the number

of occurrences of H in trees of T ∆
n has mean (µH + o(1))n and vari-

ance (σH + o(1))n, where µH , σH are some constants. Then we apply

this result to estimate the value of the Estrada index EE for almost

all trees in T ∆
n , and give a theoretical explanation to the approximate

linear correlation between EE and the first Zagreb index obtained by

quantitative analysis.

1 Introduction

We denote the set of trees with n vertices and maximum degree at most ∆ by T ∆
n .

Setting tn = |T ∆
n |, we introduce a generating function for these trees:

t(x) =
∑
n≥1

tnx
n.

Let H be a given small tree. For a tree T∆
n ∈ T ∆

n , we say that H occurs in T∆
n if there is

a subtree of T∆
n isomorphic to H. Denote the number of occurrences of H in a tree T∆

n

by tT∆
n ,H . To count the occurrences, we introduce a generating function in two variables

as follows:

t(x, u) =
∑

n≥1,T∆
n ∈T ∆

n

xnu
t
T∆

n ,H .

It can be simplified into

t(x, u) =
∑

n≥1,k≥0

tn,kx
nuk,

where tn,k denotes the number of trees in T ∆
n such that the number of occurrences of H

in each of these trees is k. Note that t(x, 1) = t(x), i.e., tn =
∑

k≥0 tn,k.

∗Supported by NSFC No.10831001.

1



Furthermore, suppose that every tree in T ∆
n is equally likely. Then, we can regard

tT∆
n ,H as a random variable Xn(T∆

n ) in T∆
n on the space T ∆

n , simply denoted by Xn.

Clearly, the probability distribution of Xn is given by

Pr[Xn = k] =
tn,k

tn
.

If H occurs in a tree and the degrees of the internal vertices (vertices of degrees

greater than 1) coincide with those of the corresponding vertices in the tree, then the

corresponding subtree of the tree is called a pattern of H. If there is no degree restriction

on the trees, many results have been established for the number of occurrences of a

pattern. Kok [9] showed that the number Xn for any pattern in trees without degree

restriction has mean E(Xn) = (µ + o(1))n and variance V ar(Xn) = (σ + o(1))n, and
Xn−E(Xn)√

V ar(Xn)
is asymptotic to a distribution with density (A + Bx2)e−Cx2

for some constants

A,B,C ≥ 0. Moreover, if the pattern is a star, then the number for this pattern in a

tree is exactly the number of vertices with degrees equal to the degree of the internal

vertex of the star. It has been shown that for the number Xn of vertices of a given

degree, Xn−E(Xn)√
V ar(Xn)

is asymptotically normally distributed. We refer the readers to [5, 12]

for more details. And, analogous results have been obtained for other classes of trees,

such as simply generated trees, rooted trees, et al. (see [2], [5], [9], [10]). However, for

the number of occurrences of H in general trees, similar results have not been obtained

so far. It seems that this is very difficult.

In this paper, we will first show that the number of occurrences of H in planted trees

and rooted trees with bounded degree is also asymptotically normally distributed with

mean and variance in Θ(n), but for T ∆
n , we can only get a weak result. Then, we will use

this result to estimate the Estrada index EE for the trees in T ∆
n , and give a theoretical

explanation to the approximate linear correlation between EE and the first Zagreb index

[7] obtained by quantitative analysis. The definition of EE will be introduced in Section

3, and we refer the readers to a survey [3] for more information on the Estrada index.

Section 2 is devoted to a systematic treatment of the number of occurrences of a given

small tree H. In Section 3, we investigate the Estrada index for the trees in T ∆
n .

2 The number of occurrences of a given small tree

In this section, we show that the number of occurrences of H in T ∆
n has mean (µH +

o(1))n and variance (σH + o(1))n for some constants µH and σH . In the procedure of our

discussion, we get related results for planted trees and rooted trees first.

In what follows, we introduce some terminology and notations which will be used in

2



the sequel. For the others not defined here, we refer to book [8].

Analogous to trees, we introduce the generating functions for rooted trees and planted

trees. Let R∆
n denote the set of rooted trees of order n with degrees bounded by an integer

∆. Setting rn = |R∆
n |, we have

r(x) =
∑
n≥1

rnx
n

and

r(x, u) =
∑

n≥1,k≥0

rn,kx
nuk,

where rn,k denotes the number of trees in R∆
n such that H occurs k times in each of these

trees. A planted tree is formed by adding a vertex to the root of a rooted tree. The new

vertex is called the plant, and we never count it in the sequel. Analogously, let P∆
n denote

the set of planted trees of order n with degrees bounded by ∆. Setting pn = |P∆
n |, we

have

p(x) =
∑
n≥1

pnx
n

and

p(x, u) =
∑

n≥1,k≥0

pn,kx
nuk,

where pn,k denotes the number of trees in P∆
n such that H occurs k times in each of

these trees. By the definition of planted trees, one can readily see that p(x, 1) = p(x) =

r(x, 1) = r(x).

Moreover, in [11], it has been shown that there exists a number x0 such that

p(x) = b1 + b2

√
x0 − x + b3(x0 − x) + · · · , (1)

where b1, b2, b3 are some constants not equal to zero; for any |x| ≤ x0, p(x) is convergent

(evidently, p(x0) = b1); and for any ∆ ≥ 2, x0 ≤ 1/2.

Let p(∆−1)(x) be the generating function of planted trees such that the degrees of the

roots are not more than ∆ − 1, while the degrees of the other vertices are still bounded

by ∆. Then, we have (see [11])

p(∆−1)(x0) = 1. (2)

And, this fact will play an important role in the following proof.

Let y(x, u) = (y1(x, u), . . . , yN(x, u))T be a column vector. We suppose that G(x,y, u)

is an analytic function with non-negative Taylor coefficients. G(x,y, u) can be expanded

as

G(x,y, u) =
∑

n≥1,k≥0

gn,kx
nuk.
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Let Xn denote a random variable with probability

Pr[Xn = k] =
gn,k

gn

, (3)

where gn =
∑

k gn,k. First, we introduce a useful lemma [2, 4].

Lemma 2.1. Let F(x,y, u) = (F 1(x,y, u), . . . , FN(x,y, u))T be functions analytic around

x = 0, y = (y1, . . . , yN)T = 0, u = 0, with Taylor coefficients all are non-negative.

Suppose F(0,y, u) = 0, F(x,0, u) 6= 0, Fx(x,y, u) 6= 0, and for some j, Fyjyj
(x,y, u) 6= 0.

Furthermore, assume that x = x0 together with y = y0 is a non-negative solution of the

system of equations

y = F(x,y, 1) (4)

0 = det(I− Fy(x,y, 1)) (5)

inside the region of convergence of F, I is the unit matrix. Let y = (y1(x, u), . . . , yN(x, u))T

denote the analytic solution of the system

y = F(x,y, u) (6)

with y(0, u) = 0.

If the dependency graph GF of the function system Equ.(6) is strongly connected, then

there exist functions f(u) and gi(x, u), hi(x, u) (1 ≤ i ≤ N) which are analytic around

x = x0, u = 1, such that

yi(x, u) = gi(x, u)− hi(x, u)

√
1− x

f(u)
(7)

is analytically continued around u = 1, x = f(u) with arg(x− f(u)) 6= 0, where x = f(u)

together with y = y(f(u), u) is the solution of the extended system

y = F(x,y, u) (8)

0 = det(I− Fy(x,y, u)). (9)

Moreover, let G(x,y, u) be an analytic function with non-negative Taylor coefficients

such that the point (x0,y(x0, 1), 1) is contained in the region of convergence. Finally, let

Xn be the random variable defined in Equ.(3). Then the random variable Xn is asymp-

totically normal with mean

E(Xn) = µn + O(1) (n →∞),

and variance

V ar(Xn) = σn + O(1) (n →∞)

with µ = −f ′(1)
f(1)

.
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Remark 1: We say that the dependency graph GF of y = F(x,y, u) is strongly connected

if there is no subsystem of equations that can be solved independently from others. If GF

is strongly connected, then I−Fy(x0,y0, 1) has rank N − 1. Suppose that vT is a vector

with vT (I− Fy(x0,y0, 1)) = 0. Then, µ = vT (Fu(x0,y0,1))
x0vT (Fx(x0,y0,1))

. We refer the readers to [2, 4]

for more details.

Now, we focus our attention on the generating function p(x, u).

For the subtree H, we suppose that the diameter of H is h. The height of a vertex in a

planted tree is the distance from the vertex to the root. The height of a planted tree is the

largest distance from the vertices to the root. We split up P∆
n into two sets W0 and W ,

which denotes the set of trees with height not more than h− 1 and the trees with height

greater than h− 1, respectively. We can see that if H occurs in the planted tree and the

corresponding subtree contains the root, then the height of the subtree is not more than

h. Moreover, since we mainly consider the asymptotic number of subtrees, the trees in

W0 will contribute nothing to the coefficient of xnuk for any k when n is large enough.

Therefore, in this paper, we do not need to know the exact expression of the generating

function for the trees in W0, and we denote it by φ(x, u). Now, we focus on the trees in

W .

First, we introduce some concepts. For a planted tree in W , the planted subtree

formed by the vertices with height not more than ` is called `-height subtree of this tree.

Now, we split up W according to the h-height subtree. That is, the trees in W having

the same h-height subtree wi form a subset Hi of W . Since the degrees of the vertices

in W are bounded by ∆, there are finite number N∆ of different h-height subtrees. So,

1 ≤ i ≤ N∆. Therefore, we obtain that

p(x, u) = φ(x, u) +

N∆∑
i=1

awi,h(x, u), (10)

where awi,h(x, u) denotes the generating function of Hi.

To establish the system of functional equations for awi,h(x, u), we need other functions

aw′i,h−1(x, u) as follows. For some tree w′
i of height h− 1, we denote H′

i to be the subset

of W such that the (h − 1)-height subtree of each planted tree in H′
i is w′

i. Note that

w′
i /∈ H′

i. Then, we use aw′i,h−1(x, u) to denote the generating function of H′
i ∪ {w′

i}, it

follows that

aw′i,h−1(x, u) =
∑

wi∈H′i

awi,h(x, u) + w′
i(x, u), (11)

where w′
i(x, u) serves to count the occurrences of H on w′

i.

There will appear an expression of the form Z(Sn, f(x, u)) (or f(x)), which is the

substitution of the counting series f(x, u) (or f(x)) into the cycle index Z(Sn) of the
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symmetric group Sn. This involves replacing each variable si in Z(Sn) by f(xi, ui) (or

f(xi)). For instance, if n = 3, then Z(S3) = (1/3!)(s3
1 +3s1s2 +2s3), and Z(S3, f(x, u)) =

(1/3!)(f(x, u)3 + 3f(x, u)f(x2, u2) + 2f(x3, u3)). We refer the readers to [8] for details.

Note that a planted tree can be seen as a root attached to some branches, and each

branch is also a planted subtree. Employing the classic Pólya enumeration theorem, we

have Z(Sj−1; p(x)) as the counting series of the planted trees whose roots have degree j,

and the coefficient of xp in x ·Z(Sj−1; p(x)) is the number of planted trees with p vertices

(see [8] p.51–54). Therefore,

p(x) = x ·
∆−1∑
j=0

Z(Sj; p(x)),

and

p(∆−1)(x) = x ·
∆−2∑
j=0

Z(Sj; p(x)).

By means of the same method, awi,h(x, u) can be expressed in terms of aw′i,h−1(x, u).

Suppose that the roots of the trees in Hi have degree j, and each has j′ planted subtrees

with height at least h− 1 attached to it. Clearly, j′ belongs to {1, . . . , j − 1}, and some

of these subtrees may have the same w′
i. Denote these different (h − 1)-height subtrees

by {w′
s} and suppose w′

s happens `s times. Evidently,
∑

`s = j′. It follows that

awi,h(x, u) = x ·
∏

s

Z(S`s ; aw′s,h−1) · φwi
(x, u) · uk(`s,φwi ), (1 ≤ i ≤ N∆). (12)

Here, φwi
(x, u) denotes the counting function of the other j − 1− j′ branches of wi. The

factor uk(`s,φwi ) serves to count the number of occurrences of H using the root of the new

tree, and k(`s, φwi
) denotes the corresponding number. In this case, all the vertices of the

new tree corresponding the vertices of H have height not more than h. And, since we

know that the h-height subtree of the new tree is wi, the number of occurrences including

the root can be calculated, that is, the exponent k(ls, φwi
) can be calculated. Therefore,

combining with Equ.(11), the functions system of awi,h(x, u) has been established.

Now, we start to show that all the conditions of Lemma 2.1 hold for awi,h(x, u).

For convenience, we still use F to denote the functions system. Set vector a(x, u) =

(aw1,h, . . . , awN∆
,h)

T . We suppose that the i-th component F i(x, a, u) of F equals awi,h(x, u).

Since p(x, 1) = p(x) and p(x0) = b1, one can see that awi,h(x0, 1) is convergent. So,

x0 and a(x0, 1) are inside the region of convergence of F. Clearly, the other condi-

tions are easy to verify except for Equ.(5). In what follows, we shall show that the

sum Sawi,h
of every column of Fa(x0, a(x0, 1), 1) equals 1. Consequently, the equation

det(I− Fa(x0, a(x0, 1), 1)) = 0 holds.
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We consider the derivative to awi0
,h. Suppose the degree of the root of wi0 is j. If

F i(x, a, u) is not a function of awi0
,h, then F i

awi0
,h
(x, a, u) will contribute nothing to the

sum Sawi0
,h
. Thus, we just need to consider the functions F i(x, a, u) with some aw′s,h−1

having the term awi0
,h. In Equ.(12), if both aw′s1 ,h−1 and aw′s2 ,h−1 have the term awi0

,h,

which implies that the trees corresponding to aw′s1 ,h−1, aw′s2 ,h−1 have the same (h−1)-height

subtree, then by the definition of aw′s,h−1, we get that aw′s1 ,h−1 = aw′s2 ,h−1. Therefore, there

exists exactly one product factor, say Z(S`s0
; aw′s0 ,h−1), that is a function of awi0

,h.

Moreover, it is well-known that the partial derivative of Z(Sn; ·) enjoys (see [5])

∂

∂s1

Z(Sn; s1, . . . , sn) = Z(Sn−1; s1, . . . , sn−1). (13)

For the planted tree, we have ∂Z(Sn;p(x,1))
∂p(x,1)

= Z(Sn−1; p(x, 1)), which corresponds to the

generating function obtained by deleting one branch from the root. Analogously, we have

F i
awi0

,h
= x ·

∏

s 6=s0

Z(S`s ; aw′s,h−1) · Z(S`s0−1; aw′s0 ,h−1) · φwi0
(x, u) · uk(`s,φwi0

)
,

and it is exactly the new generating function produced by deleting one brahch ofH′
s0
∪w′

s0
.

Clearly, the root of the new planted tree is of degree j − 1. Particularly, if `s0 = 1, after

taking the derivative, the yielded function corresponds to the trees with roots of degree j−
1 such that every branch does not belong toH′

s0
∪{w′

s0
}. Hence, Sawi0

,h
(x, a(x, u), u) counts

the number of occurrences in all planted trees with roots of degree not more than ∆− 1.

Set u = 1. Generally, it follows that Sawi,h
(x, a(x, 1), 1) equals the generating function

p(∆−1)(x, 1). Combining with the fact p(∆−1)(x0, 1) = 1, we obtain Sawi,h
(x0, a(x0, 1), 1) =

1. Immediately, the Equ.(5)

det(I− Fa(x0, a(x0, 1), 1)) = 0

follows.

Employing Lemma 2.1, we have that awi,h(x, u) is in the form of Equ.(7), namely, for

some f(u) and gwi,h(x, u), hwi,h(x, u) which are analytic around x = x0, u = 1, it follows

that

awi,h(x, u) = gwi,h(x, u)− hwi,h(x, u)

√
1− x

f(u)

is analytically continued around u = 1, x = f(u) with arg(x − f(u)) 6= 0. From

Equ.(10), we can see that p(x, u) can be written into a function of a(x, u), and denote it

by P (x, a(x, u), u). Clearly, all the coefficients of P (x, a(x, u), u) are non-negative. There-

fore, p(x, u) is also in the form of Equ.(7). Moreover, recalling Equ.(1), we can see that

f(1) = x0. Apply Lemma 2.1 to P (x, a(x, u), u), the following result is obtained.

Theorem 2.2. For any given subtree H, the number Xn of occurrences of H in P∆
n is

asymptotical to be normal with mean E(Xn) = µHn + O(1) and variance V ar(Xn) =

σp
Hn + O(1) for some constants µH and σp

H .
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A rooted tree in R∆
n can also be seen as a root attached by some planted trees.

That is, by the classic Pólya enumeration theorem, analogous to Equ.(12), the generating

function of R∆
n is also a function in a(x, u). We denote the function by R(x, a(x, u), u),

and r(x, u) = R(x, a(x, u), u). By means of the above analysis, it is not difficult to see

that the Taylor coefficients of R(x, a(x, u), u) are non-negative. Thus, r(x, u) also has

the form of Equ.(7). And, apply Lemma 2.1 to R(x, a(x, u), u), the following result is

obtained.

Theorem 2.3. For any given subtree H, the number Xn of occurrences of H in R∆
n

is asymptotically normally distributed with mean E(Xn) = µHn + O(1) and variance

V ar(Xn) = σr
Hn + O(1) for some constants µH and σr

H .

Remark 2: Since r(x, u) and p(x, u) correspond to the same function f(u), by Lemma

2.1 we can see that the means of Xn with respect to R∆
n and P∆

n are with the same con-

stant µH . Moreover, it has been shown that the sum of each column of Fa(x0, a(x0, 1), 1)

equals 1, then we have vT = (1, . . . , 1) such that vT (I− Fy(x0,y0, 1)) = 0. Therefore, it

is easy to see that µH is positive by Remark 1.

In what follows, we investigate the generating function of trees. Two edges in a tree

are similar, if they are the same under some automorphism of the tree. To join two

planted trees is to connect the two roots with a new edge and get rid of the two plants.

If the two panted trees are the same, we say that the new edge is symmetric. Then, we

have the following lemma due to [11].

Lemma 2.4. For any tree, the number of rooted trees corresponding to this tree minus

the number of nonsimilar edges (except for the symmetric edge) is the number 1.

Note that, if we delete any one edge from a similar set in a tree, the yielded trees are

the same two trees. Hence, different pairs of planted trees correspond to nonsimilar edges.

Now, we have

t(x, u) =r(x, u)− 1

2

( ∑
1≤i1,i2≤N∆

awi1
,h(x, u)awi2

,h(x, u) · uk(wi1
,wi2

)
)

+
1

2

∑
1≤i≤N∆

awi,h(x
2, u2) · uk(wi,wi), (14)

where k(wi1 , wi2) serves to count the subtrees taking vertices both in wi1 and wi2 . Con-

sequently, we obtain that t(x, u) is also in the form of Equ.(7), i.e., there exist some

functions g(x, u), h(x, u) which are analytic around x = x0, u = 1, such that

t(x, u) = g(x, u)− h(x, u)

√
1− x

f(u)
.
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is analytically continued around u = 1, x = f(u) with arg(x− f(u)) 6= 0. Here, we could

not get the result of trees likes planted trees and rooted trees. Some instances show that

t(x, u) does not have non-negative Taylor coefficients of awi1
,h and awi2

,h, so Lemma 2.1

fails in this case. However, we can use the following result due to [9] to get a weak result

for t(x, u).

Lemma 2.5. Suppose that t(x, u) has the form

t(x, u) = g(x, u)− h(x, u)

√
1− x

f(u)
,

where g(x, u), h(x, u) and f(u) are analytic functions around x = f(1) and u = 1 that

satisfy h(f(1), 1) = 0, hx(f(1), 1) 6= 0, f(1) > 0 and f ′(1) < 0. Furthermore, x = f(u)

is the only singularity on the circle |x| = |f(u)| for u is close to 1. Suppose that Xn is

defined as Equ.(3) to y(x, u). Then, E(Xn) = (µ + o(1))n and V ar(Xn) = (σ + o(1))n,

where µ = −f ′(1)/f(1) and σ is some constant.

Remark 3: If h(f(1), 1) 6= 0, this lemma is trivial by Lemma 2.1. But if h(f(u), u) = 0,

we can still get that the limiting distribution of Xn is normal by further analysis (see [5]).

For t(x), it has been obtained that [11]

t(x) = c0 + c1(x0 − x) + c2(x0 − x)3/2 + · · · ,

where c0, c1, c2 are some constants not equal to 0. Combining with the fact t(x, 1) = t(x),

we can see that h(f(1), 1) = 0 and hx(f(1), 1) 6= 0. Moreover, the other conditions in

Lemma 2.5 are easy to verify. Then, we formulate the following theorem.

Theorem 2.6. Let Xn be the number of occurrences of a given subtree H in the trees of

T ∆
n . Then it follows that

E(Xn) = (µH + o(1))n

and

V ar(Xn) = (σt
H + o(1))n,

where µH and σt
H are some constants with respect to the subtree H.

Following book [1], we will say that almost every (a.e.) graph in a random graph space

Gn has a certain property Q if the probability Pr(Q) in Gn converges to 1 as n tends to

infinity. Occasionally, we shall write almost all instead of almost every.

By Chebyshev inequality one can get that

Pr
[∣∣Xn − E(Xn)

∣∣ > n3/4
] ≤ V ar(Xn)

n3/2
→ 0 as n →∞.

Therefore, for any subtree H, Xn = (µH + o(1))n a.e. in T ∆
n . Then, an immediate

consequence is the following.
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Corollary 2.7. For almost all trees in T ∆
n , the number of occurrences of H equals (µH +

o(1))n.

3 The Estrada index

In this section, we investigate the Estrada index for trees in T ∆
n . Let G be a simple

graph with n vertices. The eigenvalues of the adjacency matrix of G are said to be the

eigenvalues of G and to form the spectrum. Suppose that the eigenvalues of G are λi,

1 ≤ i ≤ n. The Estrada index was defined as

EE(G) =
n∑

i=1

eλi .

This index was invented in year 2000, and is nowadays widely accepted and used in the

information-theoretical and network-theoretical applications. For this graph invariant,

many results have been established. We refer the readers to a survey [3] for more details.

Furthermore, for trees with n vertices, it has been shown that the path has the min-

imum Estrada index and the star has the maximum. By quantitative analysis, there is

an approximate linear correlation between EE and the first Zagreb index, i.e.,
∑

d2
i for

trees. Denote
∑

d2
i by D. That is,

EE ≈ aD + b, (15)

where a and b are some constants. We refer the readers to [3] and [7].

In what follows, we shall get the estimate of EE for almost all trees in T ∆
n and give

theoretical explanation to the correlation (15).

Denoting by Mk = Mk(G) =
∑n

i=1 λk
i the k-th spectral moment of G, and bearing in

mind the power-series expansion of ex, we have

EE(G) =
∞∑

k=0

Mk(G)

k!
.

Note that Mk(G) is equal to the number of closed walks of length k. For trees, one can

readily see that

EE(T ) =
∞∑

k=0

M2k

(2k)!
. (16)

Then, in a tree, the closed walk of length 2k forms a subtree with at most k+1 vertices.

We have got that, for any given subtree, the number of occurrences of the subtree in T ∆
n

equals (µH + o(1))n a.e. Since there are finitely many different subtrees with at most
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k + 1 vertices, and each subtree corresponds to finite numbers of 2k closed walks, we

can obtain that there exists a constant µ2k such that the number of 2k closed walks is

(µ2k + o(1))n a.e., namely,

M2k = (µ2k + o(1))n a.e.

in T ∆
n . Moreover, we introduce a lemma due to Fiol and Garriga [6].

Lemma 3.1. For any graph G, M2k ≤
∑n

i=1 d2k
i

Recall that the degrees of a tree in T ∆
n are bounded by ∆. So,

∑n
i=1 d2k

i ≤ ∆2kn and

thus EE(T∆
n ) ≤ e∆n. Moreover, since

∑
k=0

∆2k

(2k)!
is convergent, for any positive number

ε, there exists an integer j0 such that for any j > j0,
∑

k=j+1
M2k

(2k)!
< εn. Evidently, it is

uniform for all the trees in T ∆
n . Therefore, we have

j∑

k=0

M2k

(2k)!
≤ EE(T∆

n ) ≤
j∑

k=0

M2k

(2k)!
+ εn.

Hence, we just have to consider the closed walks of length at most j0.

For any integer j, we have
∑j

k=0
µ2k

(2k)!
≤ e∆. Therefore,

∑
k=0

µ2k

(2k)!
is convergent, and

denote the limit by µ∆. It follows that

(µ∆ − ε)n <

j∑

k=0

M2k

(2k)!
=

j∑

k=0

(µ2k + o(1))n

(2k)!
≤ (µ∆ + o(1))n a.e.

Then, we have that (µ∆ − ε)n < EE(T∆
n ) < (µ∆ + ε)n a.e. Now, we can formulate the

following theorem.

Theorem 3.2. For any ε > 0, the Estrada index of a tree in T ∆
n enjoys

(µ∆ − ε)n < EE(T∆
n ) < (µ∆ + ε)n a.e.,

where µ∆ is some constant.

If we suppose that the given subtree H is a path L of length 2, then there exists some

constant uL such that in T ∆
n , the number of occurrences Xn of L is (uL + o(1))n a.e. In

this case, it is easy to see that for each tree T∆
n , Xn(T∆

n ) =
∑

i

(
di

2

)
= 1

2
D(T∆

n ) − n + 1.

Therefore, the value of D also enjoys (uD + o(1))n a.e. for some constant uD. Then,

combining with Theorem 3.2, we can see that, for trees in T ∆
n , the correlation between

EE and D is approximately linear.
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