
Note on the hardness of generalized

connectivity∗

Shasha Li, Xueliang Li

Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, China.

Email: lss@cfc.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected graph of order n and let k be an integer with

2 ≤ k ≤ n. For a set S of k vertices of G, let κ(S) denote the maximum number `

of edge-disjoint trees T1, T2, . . . , T` in G such that V (Ti) ∩ V (Tj) = S for every pair

i, j of distinct integers with 1 ≤ i, j ≤ `. Chartrand et al. generalized the concept

of connectivity as follows: The k-connectivity, denoted by κk(G), of G is defined by

κk(G) =min{κ(S)}, where the minimum is taken over all k-subsets S of V (G). Thus

κ2(G) = κ(G), where κ(G) is the connectivity of G, for which there are polynomial-time

algorithms to solve it.

This paper mainly focus on the complexity of determining the generalized con-

nectivity of a graph. At first, we obtain that for two fixed positive integers k1 and

k2, given a graph G and a k1-subset S of V (G), the problem of deciding whether G

contains k2 internally disjoint trees connecting S can be solved by a polynomial-time

algorithm. Then, we show that when k1 is a fixed integer of at least 4, but k2 is not a

fixed integer, the problem turns out to be NP-complete. On the other hand, when k2

is a fixed integer of at least 2, but k1 is not a fixed integer, we show that the problem

also becomes NP-complete.

Keywords: k-connectivity, internally disjoint trees, complexity, polynomial-time, NP-

complete

AMS Subject Classification 2010: 05C40, 05C05, 68Q25, 68R10.

∗Supported by NSFC No.11071130.

1

1 Introduction

We follow the terminology and notation of [1] and all graphs considered here are always

simple. As usual, the subgraph of G whose vertex set is X and whose edge set is the set

of those edges of G that have both ends in X is called the subgraph of G induced by X

and is denoted by G[X]. For X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk}, an XY -linkage

is defined as a set of k vertex-disjoint paths xiPiyi, 1 ≤ i ≤ k. The linkage problem is

the problem of deciding whether there exists an XY -linkage for given sets X and Y . The

connectivity κ(G) of a graph G is defined as the minimum cardinality of a set Q of vertices

of G such that G − Q is disconnected or trivial. A well-known theorem of Whitney [8]

provides an equivalent definition of connectivity. For each 2-subset S = {u, v} of vertices

of G, let κ(S) denote the maximum number of internally disjoint uv-paths in G. Then

κ(G) =min{κ(S)}, where the minimum is taken over all 2-subsets S of V (G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial connected

graph of order n and let k be an integer with 2 ≤ k ≤ n. For a set S of k vertices of G,

let κ(S) denote the maximum number ` of edge-disjoint trees T1, T2, . . . , T` in G such that

V (Ti)∩V (Tj) = S for every pair i, j of distinct integers with 1 ≤ i, j ≤ ` (Note that the trees

are vertex-disjoint in G\S). A collection {T1, T2, . . . , T`} of trees in G with this property is

called an internally disjoint set of trees connecting S. The k-connectivity, denoted by κk(G),

of G is then defined by κk(G) =min{κ(S)}, where the minimum is taken over all k-subsets

S of V (G). Thus, κ2(G) = κ(G). Moreover, κn(G) is the maximum number of edge-disjoint

spanning trees of G.

In addition to being a natural combinatorial measure, generalized connectivity can be

motivated by its interesting interpretation in practice. For example, suppose that G rep-

resents a network. If one considers to connect a pair of vertices of G, then a path is used

to connect them. However, if one wants to connect a set S of vertices of G with |S| ≥ 3,

then a tree must be used to connect them. This kind of tree for connecting a set of vertices

is usually called a Steiner tree, and popularly used in the physical design of VLSI, see [7].

Usually, one wants to consider how tough a network can be, for the connection of a set of

vertices. Then, the number of totally independent ways to connect them is a measure for

this purpose. The generalized k-connectivity can serve for measuring the capability of a

network G to connect any k vertices in G.

In [2], Chartrand et al. obtained the exact value of κk for a complete graph. Okamoto

and Zhang in [5] investigated the generalized connectivity for a regular complete bipartite

graph Ka,a. Recently, Li et al. [3] got the exact value of κk for a general complete bipartite

2

graph Ka,b. But, for a general graph G and a general positive integer k, to get the exact

value of κk(G) is very difficult. In [4], we focused on the investigation of κ3(G) and mainly

studied the relationship between the 2-connectivity and the 3-connectivity of a graph. We

gave sharp upper and lower bounds for κ3(G) for general graphs G, and constructed two

kinds of graphs which attain the upper and lower bounds, respectively. We also showed that

if G is a connected planar graph, then κ(G) − 1 ≤ κ3(G) ≤ κ(G), and gave some classes

of graphs which attain the bounds. Moreover, we studied algorithmic aspects for κ3(G)

and gave an algorithm to determine κ3(G) for a general graph G. This algorithm runs in

polynomial time for graphs with a fixed value of connectivity, which implies that the problem

of determining κ3(G) for graphs with small minimum degree or small connectivity can be

solved in polynomial time, in particular, the problem whether κ(G) = κ3(G) for a planar

graph G can be solved in polynomial time.

By the definition of κk(G), it is natural to study κ(S) first, where S is a k-subset of

V (G). A question is then raised: for any two positive integers k1 and k2, given a k1- subset

S of V (G), is there a polynomial-time algorithm to determine whether κ(S) ≥ k2? In this

paper, we mainly focus on this problem. At first, by generalizing the algorithm of [4], we

obtain that if k1 and k2 are two fixed positive integers, given a graph G and a k1-subset S

of V (G), the problem of deciding whether G contains k2 internally disjoint trees connecting

S can be solved by a polynomial-time algorithm. But when k1 is a fixed integer of at least

4, and k2 is not a fixed integer, we show that the problem turns out to be NP-complete.

Theorem 1.1. For any fixed integer k1 ≥ 4, given a graph G, a k1-subset S of V (G) and

an integer 2 ≤ k2 ≤ n− 1, deciding whether there are k2 internally disjoint trees connecting

S, namely deciding whether κ(S) ≥ k2, is NP-complete.

On the other hand, when k2 is a fixed integer of at least 2, but k1 is not a fixed integer,

we show that the problem also becomes NP-complete.

Theorem 1.2. For any fixed integer k ≥ 2, given a graph G and a subset S of V (G),

deciding whether there are k internally disjoint trees connecting S, namely deciding whether

κ(S) ≥ k, is NP-complete.

The rest of this paper is organized as follows. The next section simply generalizes the

algorithm of [4] and makes some preparations. Sections 3 and 4 prove Theorem 1.1 and

Theorem 1.2, respectively.

3

2 Preliminaries

At first, we introduce the following result of [4].

Lemma 2.1. Given a fixed positive integer k, for any graph G the problem of deciding

whether G contains k internally disjoint trees connecting {v1, v2, v3} can be solved by a

polynomial-time algorithm, where v1, v2, v3 are any three vertices of V (G).

In [4], we first showed that the trees we really want have only two types. Then we proved

that if there are k internally disjoint trees connecting {v1, v2, v3}, then the union of the k

trees has at most f(k)nk types, where f(k) is a function on k. For every i ∈ [f(k)nk],

we can convert the problem of deciding whether G contains a union of k trees of type i

into a k′-linkage problem. Since the k′-linkage problem can be solved by an algorithm with

running time O(n3), see [6], and since k is a fixed integer, we finally obtain that the problem

of deciding whether κ{v1, v2, v3} ≥ k can be solved by a polynomial-time algorithm. We

refer the readers to [4] for details.

By the similar method, we can also show that given a fixed positive integer k, for any

graph G the problem of deciding whether G contains k internally disjoint trees connecting

{v1, v2, v3, v4} can be solved by a polynomial-time algorithm, where v1, v2, v3, v4 are any four

vertices of V (G).

For the tree T connecting {v1, v2, v3, v4}, we only need T belonging to one of the five types

in Figure 1. Then if there are k internally disjoint trees connecting {v1, v2, v3, v4}, consider

the union of the k trees and it is not hard to obtain that the number of types is at most

f(k)n2k, where f(k) is a function on k and f(k)n2k is only a rough upper bound. Now for

every i ∈ [f(k)n2k], we can convert the problem of deciding whether G contains a union of k

trees of type i into a k′-linkage problem. Since the k′-linkage problem has a polynomial-time

algorithm and since k is a fixed integer, we obtain that the problem of deciding whether

κ{v1, v2, v3, v4} ≥ k can be solved by a polynomial-time algorithm.

Now, for two fixed positive integers k1 and k2, if we replace the set {v1, v2, v3, v4} with a

k1-subset S of V (G) and replace k with k2, the problem can still be solved by a polynomial-

time algorithm. The method is similar.

For the tree T connecting the k1-subset S of V (G), the number of types of T we really

want is at most f1(k1), where f1(k1) is a function on k1. Then if there are k2 internally

disjoint trees connecting S, consider the union of the k2 trees and it is not hard to obtain

that the number of types is at most f2(k1, k2)n
(k1−2)k2 , where f2(k1, k2) is a function on k1

and k2 and f2(k1, k2)n
(k1−2)k2 is only a rough upper bound. Next, by the same way, for every

4

t

vi1 vi2 vi3 vi4 vi1 vi2 vi3 vi4

t1 t2

t

vi1 vi2 vi3

vi4

vi1

vi2 vi3
vi4

vi1 vi2 vi3 vi4

Type1 Type2

Type3 Type4 Type5

Figure 1: Five types of trees we really want, where {vi1 , vi2 , vi3 , vi4} = {v1, v2, v3, v4}.

i ∈ [f2(k1, k2)n
(k1−2)k2], convert the problem of deciding whether G contains a union of k2

trees of type i into a k′-linkage problem and a polynomial-time algorithm is then obtained.

Therefore, we have the following lemma.

Lemma 2.2. For two fixed positive integers k1 and k2, given a graph G and a k1-subset S

of V (G), the problem of deciding whether G contains k2 internally disjoint trees connecting

S can be solved by a polynomial-time algorithm.

Note that Lemma 2.2 is a generalization of Lemma 2.1. When k1 = 3 and k2 = k, Lemma

2.2 is exactly Lemma 2.1.

Before proceeding, we recall the following two basic NP-complete problems.

3-DIMENSIONAL MATCHING (3-DM)

Given three sets U , V , and W of equal cardinality, and a subset T of U × V ×W , decide

whether there is a subset M of T with |M | = |U | such that whenever (u, v, w) and (u′, v′, w′)

are distinct triples in M , u 6= u′, v 6= v′, and w 6= w′ ?

BOOLEAN 3-SATISFIABILITY (3-SAT)

Given a boolean formula φ in conjunctive normal form with three literals per clause, decide

whether φ is satisfiable ?

5

3 Proof of Theorem 1.1

For the problem in Lemma 2.2, when k1 = 4 and k2 is not a fixed integer, we denote this

case by Problem 1.

Problem 1. Given a graph G, a 4-subset S of V (G) and an integer 2 ≤ k ≤ n− 1, decide

whether there are k internally disjoint trees connecting S, namely decide whether κ(S) ≥ k

?

At first, we will show that Problem 1 is NP-complete by reducing 3-DM to it, as follows.

Lemma 3.1. Given a graph G, a 4-subset S of V (G) and an integer 2 ≤ k ≤ n−1, deciding

whether there are k internally disjoint trees connecting S, namely deciding whether κ(S) ≥ k,

is NP-complete.

Proof. It is clear that Problem 1 is in NP. So it suffices to show that 3-DM is polynomially

reducible to this problem.

Given three sets of equal cardinality, denoted by U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn}
and W = {w1, w2, . . . , wn}, and a subset T = {T1, T2, . . . , Tm} of U × V ×W , we will con-

struct a graph G′, a 4-subset S of V (G′) and an integer k ≤ |V (G′)| − 1 such that there are

k internally disjoint trees connecting S in G′ if and only if there is a subset M of T with

|M | = |U | = n such that whenever (ui, vj, wk) and (ui′ , vj′ , wk′) are distinct triples in M ,

ui 6= ui′ , vj 6= vj′ and wk 6= wk′ .

We define G′ as follows:

V (G′) = {û, v̂, ŵ, t̂} ∪ {ui : 1 ≤ i ≤ n} ∪ {vi : 1 ≤ i ≤ n}
∪ {wi : 1 ≤ i ≤ n} ∪ {ti : 1 ≤ i ≤ m} ∪ {ai : 1 ≤ i ≤ m− n};

E(G′) = {ûui : 1 ≤ i ≤ n} ∪ {v̂vi : 1 ≤ i ≤ n} ∪ {ŵwi : 1 ≤ i ≤ n}
∪ {t̂ti : 1 ≤ i ≤ m} ∪ {ûai : 1 ≤ i ≤ m− n} ∪ {v̂ai : 1 ≤ i ≤ m− n}
∪ {ŵai : 1 ≤ i ≤ m− n} ∪ {tiaj : 1 ≤ i ≤ m, 1 ≤ j ≤ m− n}
∪ {tiuj : uj ∈ Ti} ∪ {tivj : vj ∈ Ti} ∪ {tiwj : wj ∈ Ti}.

Each vertex ti corresponds to the triple Ti, where 1 ≤ i ≤ m. Note that |V (G′)| =

2n + 2m + 4 and |E(G′)| = m(7 + m− n). Now let S = {û, v̂, ŵ, t̂} and k = m.

Suppose that there is a subset M of T with |M | = |U | = n such that whenever (ui, vj, wk)

and (ui′ , vj′ , wk′) are distinct triples in M , ui 6= ui′ , vj 6= vj′ and wk 6= wk′ . Then for

6

every Ti ∈ M , we can construct a tree whose vertex set consists of S, ti and three vertices

corresponding to three elements in Ti. For each Ti /∈ M , G[ti, aj, û, v̂, ŵ, t̂] is a tree connecting

S, for some 1 ≤ j ≤ m− n. So we can easily find out k internally disjoint trees connecting

S in G′.

Now suppose that there are k = m internally disjoint trees connecting S in G′. Since

û, v̂, ŵ and t̂ all have degree m, then among the m trees, there are n trees, each of which

contains the vertices in S, a vertex from {ti : 1 ≤ i ≤ m}, a vertex from {ui : 1 ≤ i ≤ n}, a

vertex from {vi : 1 ≤ i ≤ n} and a vertex from {wi : 1 ≤ i ≤ n} and can not contain any

other vertex. Since the n trees are internally disjoint, it can be easily checked that n triples

Ti ∈ U × V ×W corresponding to n vertices ti in the n trees form a subset M of T with

|M | = |U | = n such that whenever (ui, vj, wk) and (ui′ , vj′ , wk′) are distinct triples in M ,

ui 6= ui′ , vj 6= vj′ and wk 6= wk′ . The proof is complete.

Now we show that for a fixed integer k1 ≥ 5, in Problem 1 replacing the 4-subset of V (G)

with a k1-subset of V (G), the problem is still NP-complete, which can easily be proved by

reducing Problem 1 to it.

Lemma 3.2. For any fixed integer k1 ≥ 5, given a graph G, a k1-subset S of V (G) and an

integer 2 ≤ k2 ≤ n− 1, deciding whether there are k2 internally disjoint trees connecting S,

namely deciding whether κ(S) ≥ k2, is NP-complete.

Proof. Clearly, the problem is in NP. We will prove that Problem 1 is polynomially reducible

to it.

For any given graph G, a 4-subset S = {v1, v2, v3, v4} of V (G) and an integer 2 ≤ k ≤
n − 1, we construct a new graph G′ = (V ′, E ′) and a k1-subset S ′ of V (G′) and let k2 = k

such that there are k2 = k internally disjoint trees connecting S ′ in G′ if and only if there

are k internally disjoint trees connecting S in G.

We construct G′ = (V ′, E ′) by adding k1−4 new vertices {â1, â2, . . . , âk1−4} to G and for

every i ≤ k1− 4, adding k2 internally disjoint âiv1-paths {âiai
jv1 : 1 ≤ j ≤ k2} of length two,

where ai
j is also a new vertex and if i1 6= i2, ai1

j1
6= ai2

j2
. We have |V (G′)| = (k1−4)(1+k2)+n

and |E(G′)| = 2k2(k1 − 4) + m. Now let S ′ = {v1, v2, v3, v4, â
1, â2, . . . , âk1−4}. It is not hard

to check that κG′(S
′) ≥ k2 = k if and only if κG(S) ≥ k. The proof is complete.

Combining Lemma 3.1 with Lemma 3.2, we obtain Theorem 1.1, namely, we complete

the proof of Theorem 1.1.

7

4 Proof of Theorem 1.2

For the problem in Lemma 2.2, when k2 = 2 and k1 is not a fixed integer, we denote this

case by Problem 2.

Problem 2. Given a graph G and a subset S of V (G), decide whether there are two

internally disjoint trees connecting S, namely decide whether κ(S) ≥ 2 ?

Firstly, the following lemma proves that Problem 2 is NP-complete by reducing 3-SAT

to it.

Lemma 4.1. Given a graph G and a subset S of V (G), deciding whether there are two

internally disjoint trees connecting S, namely deciding whether κ(S) ≥ 2, is NP-complete.

Proof. Clearly, Problem 2 is in NP. So it suffices to show that 3-SAT is polynomially reducible

to this problem.

Given a 3-CNF formula φ =
∧m

i=1 ci over variables x1, x2, . . . , xn, we construct a graph

Gφ and a subset S of V (Gφ) such that there are two internally disjoint trees connecting S if

and only if φ is satisfiable.

We define Gφ as follows:

V (Gφ) = {x̂i : 1 ≤ i ≤ n} ∪ {xi : 1 ≤ i ≤ n} ∪ { x̄i : 1 ≤ i ≤ n}
∪ {ci : 1 ≤ i ≤ m} ∪ {a};

E(Gφ) = {x̂ixi : 1 ≤ i ≤ n} ∪ {x̂ix̄i : 1 ≤ i ≤ n}
∪ {xicj : xi ∈ cj} ∪ {x̄icj : x̄i ∈ cj}
∪ {x1xi : 2 ≤ i ≤ n} ∪ {x1x̄i : 2 ≤ i ≤ n} ∪ {x̄1xi : 2 ≤ i ≤ n} ∪ {x̄1x̄i : 2 ≤ i ≤ n}
∪ {axi : 1 ≤ i ≤ n} ∪ {ax̄i : 1 ≤ i ≤ n} ∪ {aci : 1 ≤ i ≤ m},

where the notation xi ∈ cj(x̄i ∈ cj) signifies that xi(x̄i) is a literal of the clause cj. Note

that |V (G′)| = 3n + m + 1 and |E(G′)| = 4n + 4m + 4(n − 1). Now let S = {x̂i : 1 ≤ i ≤
n} ∪ {ci : 1 ≤ i ≤ m}.

Suppose that there is a true assignment t satisfying φ. Then for every clause ci(1 ≤ i ≤
m), there must exist a literal xj ∈ ci such that t(xj) = 1 or x̄j ∈ ci such that t(xj) = 0, for

some 1 ≤ j ≤ n. For such literals xj or x̄j, let T1 be a graph such that E(T1) = {cixj (or

cix̄j) : 1 ≤ i ≤ m}. Obviously, at most one of the two vertices xj and x̄j exists in V (T1). If

neither xj nor x̄j is in V (T1), we can add any one of them to V (T1). Now, if x1 ∈ V (T1), add

x1xi(if xi ∈ V (T1)) or x1x̄i(if x̄i ∈ V (T1)) to E(T1), for 2 ≤ i ≤ n. Otherwise, add x̄1xi(if

xi ∈ V (T1)) or x̄1x̄i(if x̄i ∈ V (T1)) to E(T1). Finally, add edges xix̂i(if xi ∈ V (T1)) or x̄ix̂i(if

8

x̄i ∈ V (T1)) to E(T1), for 1 ≤ i ≤ n. Now it is easy to check that T1 is a tree connecting S.

Then let T2 be a tree containing aci for 1 ≤ i ≤ m, axj and xjx̂j(if x̄j ∈ V (T1)) or ax̄j and

x̄jx̂j(if xj ∈ V (T1)) for 1 ≤ j ≤ n. T1 and T2 are two internally disjoint trees connecting S.

Now suppose that there are two internally disjoint trees T1, T2 connecting S. Since a /∈ S,

only one tree can contain the vertex a. Without loss of generality, assume that a /∈ V (T1).

Since for every 1 ≤ i ≤ n, x̂i ∈ S has degree two, V (T1) must contain one and only one

of its two neighbors xi and x̄i. Then let the value of a variable xi be 1 if its corresponding

vertex xi is contained in V (T1). Otherwise let the value be 0. Moreover, because a /∈ V (T1),

for every ci(1 ≤ i ≤ m), there must exist some vertex xj ∈ V (T1) such that cixj ∈ E(T1)

or x̄j ∈ V (T1) such that cix̄j ∈ E(T1). So, φ is obviously satisfiable by the above true

assignment. The proof is complete.

Now we show that for a fixed integer k ≥ 3, in Problem 2 if we want to decide whether

there are k internally disjoint trees connecting S rather than two, the problem is still NP-

complete, which can easily be proved by reducing Problem 2 to it.

Lemma 4.2. For any fixed integer k ≥ 3, given a graph G and a subset S of V (G), deciding

whether there are k internally disjoint trees connecting S, namely deciding whether κ(S) ≥ k,

is NP-complete.

Proof. Clearly, the problem is in NP. We will show that Problem 2 is polynomially reducible

to this problem.

Note that k is an fixed integer of at least 3. For any given graph G and a subset S of

V (G), we construct a graph G′ = (V ′, E ′) by adding k−2 new vertices to G and joining every

new vertex to all vertices in S. We have |V (G′)| = n+ k− 2 and |E(G′)| = m+(k− 2)|S| ≤
m + (k − 2)n. Now let S ′ be a subset of V (G′) such that S ′ = S.

If κG(S) ≥ 2, it is clear that κG′(S
′) ≥ k.

Suppose that there are k internally disjoint trees connecting S ′ in G′, namely κG′(S
′) ≥ k.

Since there are only k − 2 new vertices, at least two trees can not contain any new vertex,

which means the two trees are actually two internally disjoint trees connecting S ′ = S in G.

The proof is complete.

Combining Lemma 4.1 with Lemma 4.2, we obtain Theorem 1.2, namely, we complete

the proof of Theorem 1.2.

Acknowledgement. The authors are grateful to the referees for useful comments and

suggestions, which helped to improve the presentation of the paper.

9

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connec-

tivity, Networks 55(4)(2010), 360–367.

[3] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs,

arXiv:1012.5710v1 [math.CO].

[4] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity κ3(G), Discrete

Math. 310(2010), 2147–2163.

[5] F. Okamoto and P. Zhang, The tree connectivity of regular complete bipartite graphs,

Journal of Combinatorial Mathematics and Combinatorial Computing 74(2010), 279-

293.

[6] N. Robertson, P. Seymour, Graph minors XIII. The disjoint paths problem, J. Combin.

Theory Ser.B 63(1995), 65–110.

[7] N.A. Sherwani, Algorithms for VLSI physical design automation, 3rd Edition, Kluwer

Acad. Pub., London, 1999.

[8] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of

graphs, Amer. J. Math. 54(1932), 150–168.

10

