The generalized connectivity of complete bipartite graphs*

Shasha Li, Wei Li, Xueliang Li
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China.
Email: lss@cfc.nankai.edu.cn, liwei@cfc.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq$ $k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{\ell}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair i, j of distinct integers with $1 \leq i, j \leq \ell$. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by $\kappa_{k}(G)$, of G is defined by $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-subsets S of $V(G)$. Thus $\kappa_{2}(G)=\kappa(G)$, where $\kappa(G)$ is the connectivity of G. Moreover, $\kappa_{n}(G)$ is the maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs $K_{a, b}$, where $1 \leq a \leq b$. First, we obtain the number of edge-disjoint spanning trees of $K_{a, b}$, which is $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$, and specifically give the $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees. Then based on this result, we get the k-connectivity of $K_{a, b}$ for all $2 \leq$ $k \leq a+b$. Namely, if $k>b-a+2$ and $a-b+k$ is odd then $\kappa_{k}\left(K_{a, b}\right)=$ $\frac{a+b-k+1}{2}+\left\lfloor\frac{(a-b+k-1)(b-a+k-1)}{4(k-1)}\right\rfloor$, if $k>b-a+2$ and $a-b+k$ is even then $\kappa_{k}\left(K_{a, b}\right)=$ $\frac{a+b-k}{2}+\left\lfloor\frac{(a-b+k)(b-a+k)}{4(k-1)}\right\rfloor$, and if $k \leq b-a+2$ then $\kappa_{k}\left(K_{a, b}\right)=a$.

Keywords: k-connectivity, complete bipartite graph, edge-disjoint spanning trees
AMS Subject Classification 2010: 05C40, 05C05.

[^0]
1 Introduction

We follow the terminology and notation of [1]. As usual, denote by $K_{a, b}$ the complete bipartite graph with bipartition of sizes a and b. The connectivity $\kappa(G)$ of a graph G is defined as the minimum cardinality of a set Q of vertices of G such that $G-Q$ is disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent definition of the connectivity. For each 2 -subset $S=\{u, v\}$ of vertices of G, let $\kappa(S)$ denote the maximum number of internally disjoint $u v$-paths in G. Then $\kappa(G)=\min \{\kappa(S)\}$, where the minimum is taken over all 2-subsets S of $V(G)$.

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{\ell}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair i, j of distinct integers with $1 \leq i, j \leq \ell$ (Note that the trees are vertex-disjoint in $G \backslash S)$. A collection $\left\{T_{1}, T_{2}, \ldots, T_{\ell}\right\}$ of trees in G with this property is called an internally disjoint set of trees connecting S. The k-connectivity, denoted by $\kappa_{k}(G)$, of G is then defined as $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-subsets S of $V(G)$. Thus, $\kappa_{2}(G)=\kappa(G)$ and $\kappa_{n}(G)$ is the maximum number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of $\kappa_{3}(G)$ and mainly studied the relationship between the 2-connectivity and the 3-connectivity of a graph. They gave sharp upper and lower bounds for $\kappa_{3}(G)$ for general graphs G, and showed that if G is a connected planar graph, then $\kappa(G)-1 \leq \kappa_{3}(G) \leq \kappa(G)$. Moreover, they studied the algorithmic aspects for $\kappa_{3}(G)$ and gave an algorithm to determine $\kappa_{3}(G)$ for a general graph G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph $K_{3,4,5}$, then $\kappa_{3}(G)=6$. They also gave a general result for the complete graph K_{n} :

Theorem 1.1. For every two integers n and k with $2 \leq k \leq n$,

$$
\kappa_{k}\left(K_{n}\right)=n-\lceil k / 2\rceil .
$$

Okamoto and Zhang in [5] investigated the generalized connectivity for regular complete bipartite graphs $K_{a, a}$. In this paper, we consider this connectivity for general complete bipartite graphs $K_{a, b}$. First, we give the number of edge-disjoint spanning trees of $K_{a, b}$, namely $\kappa_{a+b}\left(K_{a, b}\right)$.

Theorem 1.2. For any two integers a and b,

$$
\kappa_{a+b}\left(K_{a, b}\right)=\left\lfloor\frac{a b}{a+b-1}\right\rfloor .
$$

Actually, we specifically give the $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees of $K_{a, b}$. Then based on Theorem 1.2, we obtain the k-connectivity of $K_{a, b}$ for all $2 \leq k \leq a+b$.

2 Proof of Theorem 1.2

Without loss of generality, we may assume that $a \leq b$. Since $K_{a, b}$ contains $a b$ edges and a spanning tree needs $a+b-1$ edges, the number of edge-disjoint spanning trees of $K_{a, b}$ is at most $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$, namely, $\kappa_{a+b}\left(K_{a, b}\right) \leq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. Thus, it suffices to prove that $\kappa_{a+b}\left(K_{a, b}\right) \geq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. To this end, we want to find out all the $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees. $K_{1, b}$ is a star which has exactly $\left\lfloor\frac{a b}{a+b-1}\right\rfloor=1$ spanning tree. So we can restrict our attention to $K_{a, b}$ for $a \geq 2$. Hence, $\left\lfloor\frac{a b}{a+b-1}\right\rfloor<a$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}$ be the bipartition of $K_{a, b}$.

We can describe a spanning tree in $K_{a, b}$ by giving the set of neighbors of x_{j} for $1 \leq j \leq a$. Now we give the first spanning tree T_{1} we find:

vertex	neighbors	degree
x_{1}	$y_{1}, y_{2}, \ldots, y_{d_{1}}$	d_{1}
x_{2}	$y_{d_{1}}, y_{d_{1}+1}, \ldots, y_{d_{1}+d_{2}-1}$	d_{2}
x_{3}	$y_{d_{1}+d_{2}-1}, y_{d_{1}+d_{2}}, \ldots, y_{d_{1}+d_{2}+d_{3}-2}$	d_{3}
\ldots	\cdots	\ldots
x_{j}	$y_{d_{1}+d_{2}+\cdots+d_{j-1}-(j-2)}, y_{d_{1}+d_{2}+\cdots+d_{j-1}-(j-2)+1}, \ldots, y_{d_{1}+d_{2}+\cdots+d_{j}-(j-1)}$	d_{j}
\ldots	\cdots	\ldots
x_{a}	$y_{d_{1}+d_{2}+\cdots+d_{a-1}-(a-2)}, y_{d_{1}+d_{2}+\cdots+d_{a-1}-(a-2)+1}, \ldots, y_{d_{1}+d_{2}+\cdots+d_{a}-(a-1)}$	d_{a}

where d_{j} denotes the degree of x_{j} in T_{1}, and $d_{1}+d_{2}+\cdots+d_{a}=a+b-1$.
To simplify the subscript, we denote $i_{0}=1, i_{1}=d_{1}, i_{2}=d_{1}+d_{2}-1, \ldots, i_{j}=$ $d_{1}+d_{2}+\cdots+d_{j}-(j-1), \ldots, i_{a}=d_{1}+d_{2}+\cdots+d_{a}-(a-1)=b$. Note that, $i_{j}-i_{j-1}=d_{j}-1$. So in T_{1}, the set of neighbors of x_{j} is $\left\{y_{i_{j-1}}, y_{i_{j-1}+1}, \ldots, y_{i_{j}}\right\}$ for $1 \leq j \leq a$.

Here and in what follows, the subscript j of $y_{j} \in Y$ is expressed modulo b as one of $1,2, \ldots, b$. The subscript $j \neq 0$ of i_{j} is expressed modulo a as one of $1,2, \ldots, a$. And the subscript j of d_{j} is expressed modulo a as one of $1,2, \ldots, a$.

Then we can describe the second spanning tree T_{2} we find. In T_{2}, the set of neighbors of x_{j} is $\left\{y_{i_{j}+1}, y_{i_{j}+2}, \ldots, y_{i_{j+1}+1}\right\}$ for $1 \leq j \leq a-1$ and the set of neighbors of x_{a} is $\left\{y_{i_{a}+1}, y_{i_{a}+2}, \ldots, y_{i_{a+1}}\right\}$. Note that $y_{i_{a}+1}=y_{1}$. Therefore $d_{T_{2}}\left(x_{j}\right)=i_{j+1}-i_{j}+1=d_{j+1}$ for $1 \leq j \leq a-1$ and $d_{T_{2}}\left(x_{a}\right)=i_{a+1}-1+1=d_{1}$.

We can see that T_{2} and T_{1} are edge-disjoint, if and only if for every vertex $x_{j}, d_{j}+d_{j+1} \leq$
b. If T_{2} and T_{1} are edge-disjoint, then we continue to find T_{3}. In T_{3}, the set of neighbors of x_{j} is $\left\{y_{i_{j+1}+2}, y_{i_{j+1}+3}, \ldots, y_{i_{j+2}+2}\right\}$ for $1 \leq j \leq a-2$, the set of neighbors of x_{a-1} is $\left\{y_{i_{a}+2}, y_{i_{a}+3}, \ldots, y_{i_{a+1}+1}\right\}$ and the set of neighbors of x_{a} is $\left\{y_{i_{a+1}+1}, y_{i_{a+1}+2}, \ldots, y_{i_{a+2}+1}\right\}$. Note that $y_{i_{a}+2}=y_{2}$. Therefore $d_{T_{3}}\left(x_{j}\right)=i_{j+2}-i_{j+1}+1=d_{j+2}$ for $1 \leq j \leq a-2$, $d_{T_{3}}\left(x_{a-1}\right)=i_{a+1}+1-2+1=d_{1}$ and $d_{T_{3}}\left(x_{a}\right)=i_{a+2}-i_{a+1}+1=i_{2}-i_{1}+1=d_{2}$.

We can see that T_{3} and T_{1}, T_{2} are edge-disjoint, if and only if for every vertex $x_{j}, d_{j}+$ $d_{j+1}+d_{j+2} \leq b$. If T_{3} and T_{1}, T_{2} are edge-disjoint, then we continue to find T_{4}. Continuing the procedure, our goal is to find the maximum l, such that T_{l} and $T_{1}, T_{2}, \ldots, T_{l-1}$ are edge-disjoint. In T_{l}, the set of neighbors of x_{j} is $\left\{y_{i_{j+l-2}+(l-1)}, y_{i_{j+l-2}+l}, \ldots, y_{i_{j+l-1}+(l-1)}\right\}$ for $1 \leq j \leq a-l+1$, the set of neighbors of x_{a-l+2} is $\left\{y_{i_{a}+(l-1)}, y_{i_{a}+l}, \ldots, y_{i_{a+1}+(l-2)}\right\}$ and the set of neighbors of x_{j} is $\left\{y_{i_{j+l-2}+(l-2)}, y_{i_{j+l-2}+(l-1)}, \ldots, y_{i_{j+l-1}+(l-2)}\right\}$ for $a-l+3 \leq$ $j \leq a$. Note that $y_{i_{a}+(l-1)}=y_{l-1}$. Therefore $d_{T_{l}}\left(x_{j}\right)=i_{j+l-1}-i_{j+l-2}+1=d_{j+l-1}$ for $1 \leq j \leq a-l+1, d_{T_{l}}\left(x_{a-l+2}\right)=i_{a+1}+(l-2)-(l-1)+1=d_{1}$ and $d_{T_{l}}\left(x_{j}\right)=$ $i_{j+l-1}-i_{j+l-2}+1=i_{j+l-1-a}-i_{j+l-2-a}+1=d_{j+l-1-a}$, for $a-l+3 \leq j \leq a$. That is, we want to find the maximum l, such that $d_{j}+d_{j+1}+\cdots+d_{j+l-1} \leq b$ for any $1 \leq j \leq a$.

Let $D_{j}^{t}=d_{j}+d_{j+1}+\cdots+d_{j+t-1}$. It can be observed that $D_{j}^{t}=D_{j+1}^{t}$ if and only if $d_{j}=d_{j+t}$. We will show that for any fixed integer $t, 1 \leq t<a$, by assigning appropriate values to d_{j}, we can make $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$ for any integers $1 \leq i, j \leq a$. We describe the method for assigning values to d_{j} and prove its validity for two cases. Consider the numbers $1, t+1,2 t+1, \ldots,(a-1) t+1$, where addition is performed modulo a.

Case 1. $1, t+1,2 t+1, \ldots,(a-1) t+1$ are pairwise distinct.
Then we can assign the values to d_{j} as follows: Let $a+b-1=k a+c$, where k, c are integers, and $0 \leq c \leq a-1$. Then $a+b-1=(k+1) c+k(a-c)$. If $c=0$, let $d_{j}=k$ for all $1 \leq j \leq a$. If $c>0$, let $d_{(i-1) t+1}=k+1$ for all $1 \leq i \leq c$, and let the other $d_{j}=k$.

If $c=0, d_{j}=k$ for all $1 \leq j \leq a$. Then $D_{i}^{t}=D_{j}^{t}$ for any integers $1 \leq i, j \leq a$.
If $c>0$, we construct a weighted cycle: $C=x_{1} x_{t+1} x_{2 t+1} \ldots x_{(a-1) t+1} x_{1}$ and $w\left(x_{(i-1) t+1}\right)=$ $d_{(i-1) t+1}$ for $1 \leq i \leq a$. According to the assignment, we have $w\left(x_{1}\right)=w\left(x_{t+1}\right)=\cdots=$ $w\left(x_{(c-1) t+1}\right)=k+1$ and $w\left(x_{c t+1}\right)=w\left(x_{(c+1) t+1}\right)=\cdots=w\left(x_{(a-1) t+1}\right)=k$.

Since $D_{i}^{t}=D_{i+1}^{t}$ if and only if $d_{i}=d_{i+t}$, then $D_{(i-1) t+1}^{t}=D_{(i-1) t+1+1}^{t}$ if and only if $w\left(x_{(i-1) t+1}\right)=w\left(x_{i t+1}\right)$. Similarly, $D_{(i-1) t+1}^{t}=D_{(i-1) t+1+1}^{t}+1$ if and only if $w\left(x_{(i-1) t+1}\right)=$ $w\left(x_{i t+1}\right)+1$, and $D_{(i-1) t+1}^{t}=D_{(i-1) t+1+1}^{t}-1$ if and only if $w\left(x_{(i-1) t+1}\right)=w\left(x_{i t+1}\right)-1$. We know that $w\left(x_{(c-1) t+1}\right)=w\left(x_{c t+1}\right)+1, w\left(x_{(a-1) t+1}\right)=w\left(x_{1}\right)-1$, and $w\left(x_{(i-1) t+1}\right)=$ $w\left(x_{i t+1}\right)$ for $1 \leq i \leq a-1$ and $i \neq c$. For simplicity, let $(c-1) t+1=\alpha(\bmod a)$, $(a-1) t+1=\beta(\bmod a)$. Therefore we can get $D_{\alpha}^{t}=D_{\alpha+1}^{t}+1, D_{\beta}^{t}=D_{\beta+1}^{t}-1$ and $D_{(i-1) t+1}=D_{(i-1) t+1+1}$, for $1 \leq i \leq a-1$ and $i \neq c$, namely, if $\alpha<\beta$, then $D_{1}^{t}=D_{2}^{t}=\cdots=D_{\alpha}^{t}=D_{\alpha+1}^{t}+1=D_{\alpha+2}^{t}+1=\cdots=D_{\beta}^{t}+1=D_{\beta+1}^{t}=D_{\beta+2}^{t}=\cdots=D_{a}^{t} ;$
if $\alpha>\beta$, then $D_{1}^{t}=D_{2}^{t}=\cdots=D_{\beta}^{t}=D_{\beta+1}^{t}-1=D_{\beta+2}^{t}-1=\cdots=D_{\alpha}^{t}-1=D_{\alpha+1}^{t}=$ $D_{\alpha+2}^{t}=\cdots=D_{a}^{t}$.

We have $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$ for any integers $1 \leq i, j \leq a$.
Case 2. Some of the numbers $1, t+1,2 t+1, \ldots,(a-1) t+1$ are equal.
Suppose that it $+1=j t+1(\bmod a)$ such that $0 \leq i<j \leq a-1$ and $1, t+1,2 t+$ $1, \ldots,(j-1) t+1$ are pairwise distinct integers (in $\left.\mathbb{Z}_{a}\right)$. We claim that $i=0$. Otherwise $(j-i) t+1=1(\bmod a)$ and $0<j-i \leq j-1$, a contradiction. Then $1 \leq j \leq a-1$.

Claim 1. it $+1 \neq 2(\bmod a)$ for any integer i.
If it $+1=2(\bmod a)$, then we have $i t=1(\bmod a)$. Thus $\lambda i t+1=\lambda+1(\bmod a)$ for any integer λ. So $j i t+1=j+1(\bmod a)$. Since $1 \leq j \leq a-1,2 \leq j+1 \leq a$. On the other hand $j t+1=1(\bmod a)$, namely $j i t+1=1(\bmod a)$, a contradiction. Thus, $i t+1 \neq 2(\bmod a)$ for any integer i.

Claim 2. $2, t+2,2 t+2, \ldots,(j-1) t+2$ are pairwise distinct.
If $j_{1} t+2=j_{2} t+2(\bmod a)$, where $0 \leq j_{1}<j_{2} \leq j-1$, then $j_{1} t+1=j_{2} t+1(\bmod a)$. But $1, t+1,2 t+1, \ldots,(j-1) t+1$ are pairwise distinct, a contradiction.

Claim 3. $\{1, t+1,2 t+1, \ldots,(j-1) t+1\} \cap\{2, t+2,2 t+2, \ldots,(j-1) t+2\}=\emptyset$.
If $i_{1} t+1=i_{2} t+2(\bmod a)$, then $\left(i_{1}-i_{2}\right) t+1=2(\bmod a)$. But $i t+1 \neq 2(\bmod a)$ for any integer i, a contradiction by Claim 1 . Thus, $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+$ $2,2 t+2, \ldots,(j-1) t+2$ are pairwise distinct.

Now, if $2=\frac{a}{j}$, then we order $1, \ldots, a$ by $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+2,2 t+$ $2, \ldots,(j-1) t+2$. If $2<\frac{a}{j}$, we will prove that $1+i t \neq 3(\bmod a)$ and $2+i t \neq 3(\bmod a)$ for any integer i.

Claim 4. If $2<\frac{a}{j}$, then $1+i t \neq 3(\bmod a)$ and $2+i t \neq 3(\bmod a)$ for any integer i.
If $2+i t=3(\bmod a)$, then $1+i t=2(\bmod a)$, a contradiction by Claim 1. If $1+i t=3(\bmod a)$, then we have $i t=2(\bmod a)$. Thus $\lambda i t+1=2 \lambda+1(\bmod a)$ for any integer λ. So $j i t+1=2 j+1(\bmod a)$. Since $2 \leq 2 j<a, 3 \leq 2 j+1 \leq a$. On the other hand $j t+1=1(\bmod a)$, namely $j i t+1=1(\bmod a)$, a contradiction. Hence, if $2<\frac{a}{j}$, then $1+i t \neq 3(\bmod a)$ and $2+i t \neq 3(\bmod a)$ for any integer i.

If $3=\frac{a}{j}$, then we order $1, \ldots, a$ by $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+2,2 t+2, \ldots,(j-$ 1) $t+2,3, t+3,2 t+3, \ldots,(j-1) t+3$. If $3<\frac{a}{j}$, then continue the similar discussion until we reach some integer $s=\frac{a}{j}$. Similarly, we can prove that $p+i t \neq q(\bmod a)$ for $1 \leq p<q \leq s$. Thus we can get the following claim:

Claim 5. $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+2,2 t+2, \ldots,(j-1) t+2, \ldots, s, t+s, 2 t+$
$s, \ldots,(j-1) t+s$ are pairwise distinct. And hence $\{1, t+1,2 t+1, \ldots,(j-1) t+1\} \cup$ $\{2, t+2,2 t+2, \ldots,(j-1) t+2\} \cup \cdots \cup\left\{\frac{a}{j}, t+\frac{a}{j}, 2 t+\frac{a}{j}, \ldots,(j-1) t+\frac{a}{j}\right\}=\{1,2, \ldots, a\}$.

The proof is similar to those of Claims 2, 3 and 4 . Then we order $1,2, \ldots, a$ by $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+2,2 t+2, \ldots,(j-1) t+2, \ldots, s, t+s, 2 t+s, \ldots,(j-1) t+s$. Now, we can assign the values of d_{j} as follows:

Let $a+b-1=k a+c$, where k, c are integers, and $0 \leq c \leq a-1$. Then $a+b-1=$ $(k+1) c+k(a-c)$. In the case that $c=0$, let $d_{j}=k$ for all $1 \leq j \leq a$. In the case that $c>0$ for the first c numbers of our ordering, if d_{j} uses one of them as subscript, then $d_{j}=k+1$, else $d_{j}=k$.

Next, we will show that $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$ for any integers $1 \leq i, j \leq a$.
If $c=0, d_{j}=k$ for all $1 \leq j \leq a$. Then $D_{i}^{t}=D_{j}^{t}$ for any integers $1 \leq i, j \leq a$.
If $c>0$, we construct s weighted cycles: $C_{i}=x_{i} x_{t+i} \ldots x_{(j-1) t+i} x_{i}, 1 \leq i \leq s$, and $w\left(x_{(p-1) t+i}\right)=d_{(p-1) t+i}, 1 \leq p \leq j$. Since $D_{i}^{t}=D_{i+1}^{t}$ if and only if $d_{i}=d_{i+t}$, then $D_{(p-1) t+i}^{t}=D_{(p-1) t+i+1}^{t}$ if and only if $w\left(x_{(p-1) t+i}\right)=w\left(x_{p t+i}\right)$. By the assignment, there is at most one cycle in which the vertices have two distinct weights. If such cycle does not exist, clearly, we have $D_{(p-1) t+i}^{t}=D_{(p-1) t+i+1}^{t}$ for all $1 \leq i \leq s$ and $1 \leq p \leq j$, namely, $D_{1}^{t}=D_{2}^{t}=\cdots=D_{a}^{t}$. So we may assume that for some cycle $C_{r}, w\left(x_{(\gamma-1) t+r}\right)=$ $w\left(x_{\gamma t+r}\right)+1$ and $w\left(x_{(j-1) t+r}\right)=w\left(x_{r}\right)-1$. Similar to the proof of Case 1, we can get that $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$ for any integers $1 \leq i, j \leq a$.

Then, we can show that, with the assignment we can get $l \geq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$.
Let $t^{\prime}=\left\lfloor\frac{a b}{a+b-1}\right\rfloor<a$. We have $D_{1}^{t^{\prime}}+D_{2}^{t^{\prime}}+\cdots+D_{a}^{t^{\prime}}=\left(d_{1}+d_{2}+\cdots+d_{t^{\prime}}\right)+\left(d_{2}+\right.$ $\left.d_{3}+\cdots+d_{t^{\prime}+1}\right)+\cdots+\left(d_{a}+d_{1}+\cdots+d_{t^{\prime}-1}\right)=t^{\prime}\left(d_{1}+d_{2}+\cdots+d_{a}\right)=t^{\prime}(a+b-1)$.

Since for fixed $t^{\prime}=\left\lfloor\frac{a b}{a+b-1}\right\rfloor,\left|D_{i}^{t^{\prime}}-D_{j}^{t^{\prime}}\right| \leq 1$ for any integers $1 \leq i, j \leq a$,

$$
D_{j}^{t^{\prime}} \leq\left\lceil\frac{t^{\prime}(a+b-1)}{a}\right\rceil<\frac{t^{\prime}(a+b-1)}{a}+1 \leq \frac{a b}{a+b-1} \frac{a+b-1}{a}+1=b+1 .
$$

The third inequality holds since $t^{\prime}=\left\lfloor\frac{a b}{a+b-1}\right\rfloor \leq \frac{a b}{a+b-1}$. Since $D_{j}^{t^{\prime}}$ is an integer, we have $D_{j}^{t^{\prime}} \leq b$ for all $1 \leq j \leq a$. Since l is the maximum integer such that $D_{j}^{l}=$ $d_{j}+d_{j+1}+\cdots+d_{j+l-1} \leq b$ for any $1 \leq j \leq a$, then $l \geq t^{\prime}=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. So we can find at least $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees of $K_{a, b}$. And hence $\kappa_{a+b}\left(K_{a, b}\right) \geq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. So we have proved that $\kappa_{a+b}\left(K_{a, b}\right)=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$.

3 The k-connectivity of complete bipartite graphs

Next, we will calculate $\kappa_{k}\left(K_{a, b}\right)$ for $2 \leq k \leq a+b$.

Recall that $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-element subsets S of $V(G)$. $X=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}$ be the bipartition of $K_{a, b}$. Actually, all vertices in X are equivalent and all vertices in Y are equivalent. So instead of considering all k-element subsets S of $V(G)$, we can restrict our attention to the k-element subsets $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{i}, y_{1}, y_{2}, \ldots, y_{k-i}\right\}$ for $0 \leq i \leq k$. Notice that, if $i>a$ or $k-i>b$, then S_{i} does not exist. So, we need only to consider S_{i} for $\max \{0, k-b\} \leq i \leq \min \{a, k\}$.

Now, let A be a maximum set of internally disjoint trees connecting S_{i}. Let \mathfrak{A}_{0} be the set of trees connecting S_{i} whose vertex set is S_{i}, let \mathfrak{A}_{1} be the set of trees connecting S_{i} whose vertex set is $S_{i} \cup\{u\}$, where $u \notin S_{i}$ and let \mathfrak{A}_{2} be the set of trees connecting S_{i} whose vertex set is $S_{i} \cup\{u, v\}$, where $u, v \notin S_{i}$ and they belong to distinct partitions.

Lemma 3.1. Let A be a maximum set of internally disjoint trees connecting S_{i}. Then we can always find a set A^{\prime} of internally disjoint trees connecting S_{i}, such that $|A|=\left|A^{\prime}\right|$ and $A^{\prime} \subset \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$.

Proof. Let $A=\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$. If for some tree T_{j} in $A, T_{j} \notin \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$, then let $V\left(T_{j}\right)=S_{i} \cup U \cup V$, where $(U \cup V) \cap S_{i}=\emptyset, U \subseteq X$ and $V \subseteq Y$. One of U and V can be empty but not both. If U and V are not empty, let $u_{1} \in U$ and $v_{1} \in V$. The tree T_{j}^{\prime} with vertex set $V\left(T_{j}^{\prime}\right)=S_{i} \cup\left\{u_{1}, v_{1}\right\}$ and edge set $E\left(T_{j}^{\prime}\right)=$ $\left\{u_{1} y_{1}, \ldots, u_{1} y_{k-i}, v_{1} x_{1}, \ldots, v_{1} x_{i}, u_{1} v_{1}\right\}$ is a tree in $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$. Since $V\left(T_{j}\right) \cap V\left(T_{k}\right)=S_{i}$ and $E\left(T_{j}\right) \cap E\left(T_{k}\right)=\emptyset$ for every tree $T_{k} \in A$, where $k \neq j, T_{k}$ will not contain u_{1}, v_{1} nor the edges incident with u_{1}, v_{1}. Therefore, $V\left(T_{j}^{\prime}\right) \cap V\left(T_{k}\right)=S_{i}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{k}\right)=\emptyset$ for $1 \leq k \leq p, k \neq j$. If one of U and V is empty, say V, let $U=\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}$. Then we connect all neighbors of u_{2}, \ldots, u_{q} to u_{1} by some new edges and delete u_{2}, \ldots, u_{q} and any resulting multiple edges. Obviously, the new graph we obtain is a tree $T_{j}^{\prime} \in \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ that connects S_{i}. For every tree $T_{k} \in A$, where $k \neq j, T_{k}$ will not contain u_{1} nor the edges incident with u_{1}. Therefore, $V\left(T_{j}^{\prime}\right) \cap V\left(T_{k}\right)=S_{i}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{k}\right)=\emptyset$ for $1 \leq k \leq p, k \neq j$. Replacing each $T_{j} \notin \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ by T_{j}^{\prime}, we finally get the set $A^{\prime} \subset \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_{i} is contained in $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$.

Next, we will define the standard structure of trees in $\mathfrak{A}_{0}, \mathfrak{A}_{1}$ and \mathfrak{A}_{2}, respectively.
Every tree in \mathfrak{A}_{0} is of standard structure. A tree T in \mathfrak{A}_{1} with vertex set $V(T)=$ $S_{i} \cup\{u\}$, where $u \in X \backslash S_{i}$, is of standard structure, if u is adjacent to every vertex in $S_{i} \cap Y$. Since $|E(T)|=|V(T)|-1=k$ and $d_{T}(u)=\left|S_{i} \cap Y\right|=k-i$, there remains i edges incident with $S_{i} \cap X$. We know that $\left|S_{i} \cap X\right|=i$ and each vertex must have degree at least 1 in T. So every vertex in $S_{i} \cap X$ has degree 1 . A tree T in \mathfrak{A}_{1} with vertex set
$V(T)=S_{i} \cup\{v\}$, where $v \in Y \backslash S_{i}$, is of standard structure, if v is adjacent to every vertex in $S_{i} \cap X$. Similarly, every vertex in $S_{i} \cap Y$ has degree 1. A tree T in \mathfrak{A}_{2} with vertex set $V(T)=S_{i} \cup\{u, v\}$, where $u \in X \backslash S_{i}$ and $v \in Y \backslash S_{i}$, is of standard structure, if u is adjacent to every vertex in $S_{i} \cap Y, v$ is adjacent to every vertex in $S_{i} \cap X$, and u is adjacent to v. We then denote the resulting tree T by $T_{u, v}$. Denote the set of trees in \mathfrak{A}_{0}, \mathfrak{A}_{1} and \mathfrak{A}_{2} with the standard structure by $\mathcal{A}_{0}, \mathcal{A}_{1}$ and \mathcal{A}_{2}, respectively. Clearly, $\mathcal{A}_{0}=\mathfrak{A}_{0}$.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connecting $S_{i}, A \subset$ $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$. Then we can always find a set $A^{\prime \prime}$ of internally disjoint trees connecting S_{i}, such that $|A|=\left|A^{\prime \prime}\right|$ and $A^{\prime \prime} \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$.

Proof. Let $A=\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$. Suppose that there is a tree T_{j} in A such that $T_{j} \in \mathfrak{A}_{1}$, but $T_{j} \notin \mathcal{A}_{1}$. Let $V\left(T_{j}\right)=S_{i} \cup\{u\}$, where $u \in X \backslash S_{i}$. Note that the case $u \in Y \backslash S_{i}$ is similar. Since $T_{j} \notin \mathcal{A}_{1}$, there are some vertices in $S_{i} \cap Y$, say $y_{i_{1}}, \ldots, y_{i_{t}}$, not adjacent to u. Then we can connect $y_{i_{1}}$ to u by a new edge. It will produce a unique cycle. Delete the other edge incident with $y_{i_{1}}$ on the cycle. The graph remains a tree. Do the same operation to $y_{i_{2}}, \ldots, y_{i_{t}}$ in turn. Finally we get a tree T_{j}^{\prime} whose vertex set is $S_{i} \cup\{u\}$ and u is adjacent to every vertex in $S_{i} \cap Y$, that is, T is of standard structure. For each tree $T_{n} \in A \backslash\left\{T_{j}\right\}$, clearly T_{n} does not contain u nor the edges incident with u. So $V\left(T_{j}^{\prime}\right) \cap V\left(T_{n}\right)=S_{i}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{n}\right)=\emptyset$. Suppose that there is a tree T_{j} in A such that $T_{j} \in \mathfrak{A}_{2}$, but $T_{j} \notin \mathcal{A}_{2}$. Let $V\left(T_{j}\right)=S_{i} \cup\{u, v\}$, where $u \in X \backslash S_{i}$ and $v \in Y \backslash S_{i}$. Then $T_{j}^{\prime}=T_{u, v}$ is the tree in \mathcal{A}_{2} whose vertex set is $S_{i} \cup\{u, v\}$. For each tree $T_{n} \in A \backslash\left\{T_{j}\right\}$, $V\left(T_{j}^{\prime}\right) \cap V\left(T_{n}\right)=S_{i}$ and $E\left(T_{j}^{\prime}\right) \cap E\left(T_{n}\right)=\emptyset$. Replacing each $T_{j} \notin \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ by T_{j}^{\prime}, we finally get the set $A^{\prime \prime} \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_{i} is contained in $\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by $V(A)$ and the union of the edge sets of all trees in set A by $E(A)$. Let $A_{0}:=A \cap \mathcal{A}_{0}, A_{1}:=A \cap \mathcal{A}_{1}$ and $A_{2}:=A \cap \mathcal{A}_{2}$. Then $A=A_{0} \cup A_{1} \cup A_{2}$.

Lemma 3.3. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting S_{i}. Then either $X \subseteq V(A)$ or $Y \subseteq V(A)$.

Proof. If $X \nsubseteq V(A)$ and $Y \nsubseteq V(A)$, let $x \in X \backslash V(A)$ and $y \in Y \backslash V(A)$. Then the tree $T_{x, y} \in \mathcal{A}_{2}$ with vertex set $S_{i} \cup\{x, y\}$ is a tree that connects S_{i}. Moreover, $V\left(T_{x, y}\right) \cap V(A)=S_{i}$ and since all edges of $T_{x, y}$ are incident with x or y, so $T_{x, y}$ and T are edge-disjoint for any tree $T \in A$. So, $A \cup\left\{T_{x, y}\right\}$ is also a set of internally disjoint trees connecting S_{i}, contradicting to the maximality of A.

So we conclude that if A is a maximum set of internally disjoint trees connecting S_{i}, then $X \subseteq V(A)$ or $Y \subseteq V(A)$.

Lemma 3.4. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting S_{i}, and $A=A_{0} \cup A_{1} \cup A_{2}$. If there is a vertex $x \in X \backslash V(A)$ and a tree $T \in A_{1}$ with vertex set $S_{i} \cup\{y\}$, where $y \in Y \backslash S_{i}$, then we can find a maximum set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting S_{i}, such that $A_{0}^{\prime}=A_{0},\left|A_{1}^{\prime}\right|=\left|A_{1}\right|-1$, and $\left|A_{2}^{\prime}\right|=\left|A_{2}\right|+1$.

Proof. Let $T_{x, y}$ be the tree in \mathcal{A}_{2} whose vertex set is $S_{i} \cup\{x, y\}$. Then $A^{\prime}=A \backslash T \cup\left\{T_{x, y}\right\}$ is just the set we want.

The case that there is a vertex $y \in Y \backslash V(A)$ and a tree $T \in A_{1}$ with vertex set $S_{i} \cup\{x\}$, where $x \in X \backslash S_{i}$, is similar.

Next, we will show that we can always find a maximum set A of internally disjoint trees connecting S_{i}, such that all vertices in $V\left(A_{1}\right) \backslash S_{i}$ belong to the same partition. To show this, we need the following lemma.

Lemma 3.5. Let p, q be two nonnegative integers. If $p(k-1)+q i \leq i(k-i)$, and there are q vertices $u_{1}, u_{2}, \ldots, u_{q} \in X \backslash S_{i}$, then we can always find p trees $T_{1}, T_{2}, \ldots, T_{p}$ in \mathcal{A}_{0} and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_{1}, such that $V\left(T_{j}\right)=S_{i}$ for $1 \leq j \leq p, V\left(T_{p+m}\right)=S_{i} \cup\left\{u_{m}\right\}$ for $1 \leq m \leq q$, and T_{r} and T_{s} are edge-disjoint for $1 \leq r<s \leq p+q$. Similarly, if $p(k-1)+q(k-i) \leq i(k-i)$, and there are q vertices $v_{1}, v_{2}, \ldots, v_{q} \in Y \backslash S_{i}$, then we can always find p trees $T_{1}, T_{2}, \ldots, T_{p}$ in \mathcal{A}_{0} and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_{1}, such that $V\left(T_{j}\right)=S_{i}$ for $1 \leq j \leq p, V\left(T_{p+m}\right)=S_{i} \cup\left\{v_{m}\right\}$ for $1 \leq m \leq q$, and T_{r} and T_{s} are edge-disjoint for $1 \leq r<s \leq p+q$.

Proof. If $p(k-1)+q i \leq i(k-i)$, then $p(k-1) \leq i(k-i)$, namely $p \leq\left\lfloor\frac{i(k-i)}{k-1}\right\rfloor$. Then with the method which we used to find edge-disjoint spanning trees in the proof of Theorem 1.2 , we can find p edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{p}$ in \mathcal{A}_{0}, just by taking $a=i, b=k-i$ and $t=p$. Moreover, let D_{s}^{p} denote the number of edges incident with x_{s} in all of the p trees. Then according to the method, $\left|D_{s}^{p}-D_{t}^{p}\right| \leq 1$ for $1 \leq s, t \leq i$. Now, denote by B_{s}^{p} the number of edges incident with x_{s} which we have not used in the p trees. Then $\left|B_{s}^{p}-B_{t}^{p}\right| \leq 1$ for $1 \leq s, t \leq i$. Since $B_{1}^{p}+B_{2}^{p}+\cdots+B_{i}^{p}=i(k-i)-p(k-1) \geq q i, B_{s}^{p} \geq q$. Because for each tree in \mathcal{A}_{1} with vertex set $S_{i} \cup\{u\}$, where $u \in X \backslash S_{i}$, the vertices in $S_{i} \cap X$ all have degree 1, we can find q edge-disjoint trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_{1}. Since the edges in $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ are not used in $T_{1}, T_{2}, \ldots, T_{p}$ for $1 \leq r<s \leq p+q, T_{r}$ and T_{s} are edge-disjoint. The proof of the second part of the lemma is similar.

Lemma 3.6. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting S_{i}, and $A=A_{0} \cup A_{1} \cup A_{2}$. If there are s trees $T_{1}, T_{2}, \ldots, T_{s} \in A_{1}$ with vertex set
$S_{i} \cup\left\{u_{1}\right\}, S_{i} \cup\left\{u_{2}\right\}, \ldots, S_{i} \cup\left\{u_{s}\right\}$ respectively, where $u_{j} \in X \backslash S_{i}$ for $1 \leq j \leq s$, and t trees $T_{s+1}, T_{s+2}, \ldots, T_{s+t} \in A_{1}$ with vertex set $S_{i} \cup\left\{v_{1}\right\}, S_{i} \cup\left\{v_{2}\right\}, \ldots, S_{i} \cup\left\{v_{t}\right\}$ respectively, where $v_{j} \in Y \backslash S_{i}$ for $1 \leq j \leq t$. Then we can find a set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting S_{i}, such that $|A|=\left|A^{\prime}\right|$ and all vertices in $V\left(A_{1}^{\prime}\right) \backslash S_{i}$ belong to the same partition.

Proof. Let $\left|A_{0}\right|=p$. Since A is a set of internally disjoint trees connecting S_{i}, we have $p(k-1)+s i+t(k-i) \leq i(k-i)$, where si denote the si edges incident with x_{1}, \ldots, x_{i} in $T_{1}, T_{2}, \ldots, T_{s}$, and $t(k-i)$ denote the $t(k-i)$ edges incident with y_{1}, \ldots, y_{k-i} in $T_{s+1}, T_{s+2}, \ldots, T_{s+t}$. If $s \leq t$, then $p(k-1)+s i+s(k-i)+(t-s)(k-i) \leq i(k-i)$, and hence $(p+s)(k-1)+(t-s)(k-i) \leq i(k-i)$. Obviously, there are $t-s$ vertices $v_{s+1}, v_{s+2}, \ldots, v_{t} \in Y \backslash S_{i}$, and therefore by Lemma 3.5, we can find $p+s$ trees in \mathcal{A}_{0} and $t-s$ trees in \mathcal{A}_{1}, such that all these trees are internally disjoint trees connecting S_{i}. Now let A_{0}^{\prime} be the set of the $p+s$ trees in $\mathcal{A}_{0}, A_{1}^{\prime}$ be the set of the $t-s$ trees in \mathcal{A}_{1} and $A_{2}^{\prime}:=A_{2} \cup\left\{T_{u_{j}, v_{j}}, 1 \leq j \leq s\right\}$. Then $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ is just the set we want. The case that $s>t$ is similar.

From Lemmas 3.4 and 3.6, we can see that, if A^{\prime} is a set of internally disjoint trees connecting S_{i} which we find currently, $X \backslash V(A) \neq \emptyset$ and $Y \backslash V(A) \neq \emptyset$, then no matter how many edges there are in $E\left(K_{a, b}\left[S_{i}\right]\right) \backslash E\left(A^{\prime}\right)$, we always add to A^{\prime} the trees in \mathcal{A}_{2} rather than the trees in \mathcal{A}_{1} to form a larger set of internally disjoint trees connecting S_{i}.

Lemma 3.7. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting S_{i}, and $A=A_{0} \cup A_{1} \cup A_{2}$. If $V(A) \subset V(G)$ and $A_{0} \neq \emptyset$, then we can find a maximum set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting S_{i}, such that $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1$, $\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+1$, and $A_{2}^{\prime}=A_{2}$.

Proof. Let $u \in V(G) \backslash V(A)$ and $T \in A_{0}$. Without loss of generality, suppose $u \in X$. Then we can add the edge $u y_{1}$ to T and get a tree $T^{\prime} \in \mathfrak{A}_{1}$. Using the method in Lemma 3.2, we can transform T^{\prime} into a tree $T^{\prime \prime}$ of standard structure. Then $T^{\prime \prime} \in \mathcal{A}_{1}$. Let $A_{0}^{\prime}:=A_{0} \backslash T, A_{1}^{\prime}:=A_{1} \cup\left\{T^{\prime \prime}\right\}$ and $A_{2}^{\prime}=A_{2}$. It is easy to see that $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ is a set of internally disjoint trees connecting S_{i}. Since $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1,\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+1$, and $A_{2}^{\prime}=A_{2}, A^{\prime}$ is a maximum set of internally disjoint trees connecting S_{i}.

So, we can assume that for the maximum set A of internally disjoint trees connecting S_{i}, either $V(A)=V(G)$ or $A_{0}=\emptyset$. Moreover, if A^{\prime} is a set of internally disjoint trees connecting S_{i} which we find currently, $V\left(A^{\prime}\right) \subset V(G)$ and the edges in $E\left(K_{a, b}\left[S_{i}\right]\right) \backslash E\left(A^{\prime}\right)$ can form a tree T in \mathcal{A}_{0}, then we will add to A^{\prime} the tree $T^{\prime \prime}$ in Lemma 3.7 rather than the tree T to form a larger set of internally disjoint trees connecting S_{i}.

Next, let us state and prove our main result.

Theorem 3.1. Given any two positive integers $a \leq b$, let $K_{a, b}$ denote a complete bipartite graph with a bipartition of sizes a and b, respectively. Then we have the following results: if $k>b-a+2$ and $a-b+k$ is odd, then

$$
\kappa_{k}\left(K_{a, b}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(a-b+k-1)(b-a+k-1)}{4(k-1)}\right\rfloor ;
$$

if $k>b-a+2$ and $a-b+k$ is even, then

$$
\kappa_{k}\left(K_{a, b}\right)=\frac{a+b-k}{2}+\left\lfloor\frac{(a-b+k)(b-a+k)}{4(k-1)}\right\rfloor ;
$$

and if $k \leq b-a+2$, then

$$
\kappa_{k}\left(K_{a, b}\right)=a .
$$

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}$ be the bipartition of $K_{a, b}$. As we have mentioned, we can restrict our attention to the k-element subsets $S_{i}=$ $\left\{x_{1}, x_{2}, \ldots, x_{i}, y_{1}, y_{2}, \ldots, y_{k-i}\right\}$ for $\max \{0, k-b\} \leq i \leq \min \{a, k\}$.

From the above lemmas, we can decide our principle to find the maximum set of internally disjoint trees connecting S_{i}. Namely, first we find as many trees in \mathcal{A}_{2} as possible, next we find as many trees in \mathcal{A}_{1} as possible, and finally we find as many trees in \mathcal{A}_{0} as possible. Let A be the maximum set of internally disjoint trees connecting S_{i} we finally find. We now compute $|A|$.

Case 1. $k \leq b-a+2$.
Obviously, $\kappa\left(S_{0}\right)=a$. For S_{1}, since $k \leq b-a+2$, then $b-(k-1)=b-k+1 \geq$ $a-2+1=a-1$. So, $\left|A_{2}\right|=a-1$. If $b-k+1=a-1$, then $\left|A_{1}\right|=0$ and $\left|A_{0}\right|=1$. If $b-k+1>a-1$, then $\left|A_{1}\right|=1$ and $\left|A_{0}\right|=0$. No matter which case happens, we have $\kappa\left(S_{1}\right)=\left|A_{2}\right|+\left|A_{1}\right|+\left|A_{0}\right|=a$.

For $S_{i}, i \geq 2$, since $k \leq b-a+2$, then $b-(k-i)=b-k+i \geq a-2+i>a-i$. So, $\left|A_{2}\right|=a-i$. Since $b-k+i-(a-i)=b-a-k+2 i \geq-2+2 i \geq i$, then $\left|A_{1}\right|=i$ and $\left|A_{0}\right|=0$. Thus $\kappa\left(S_{i}\right)=\left|A_{2}\right|+\left|A_{1}\right|+\left|A_{0}\right|=a$.

In summary, if $k \leq b-a+2$, then $\kappa_{k}(G)=a$.
Case 2. $k>b-a+2$.
First, let us compare $\kappa\left(S_{i}\right)$ with $\kappa\left(S_{k-i}\right)$, for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$. If $a=b$, clearly, $\kappa\left(S_{i}\right)=$ $\kappa\left(S_{k-i}\right)$. So we may assume that $a<b$.

For $i=0, \kappa\left(S_{0}\right)=a<b=\kappa\left(S_{k}\right)$.
For $1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$, we will give the expressions of $\kappa\left(S_{i}\right)$ and $\kappa\left(S_{k-i}\right)$.

First for S_{i}, since every pair of vertices $u \in X \backslash S_{i}$ and $v \in Y \backslash S_{i}$ can form a tree $T_{u, v}$, then $\left|A_{2}\right|=\min \{a-i, b-(k-i)\}$. Namely,

$$
\left|A_{2}\right|= \begin{cases}a-i & \text { if } i \geq \frac{a-b+k}{2} ; \\ b-k+i & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

Next, since every tree T in A_{1} has a vertex in $V \backslash\left(S_{i} \cup V\left(A_{2}\right)\right)$, we have

$$
\left|A_{1}\right| \leq \begin{cases}b-k+i-(a-i) & \text { if } i \geq \frac{a-b+k}{2} ; \\ a-i-(b-k+i) & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

On the other hand, if the tree T has vertex set $S_{i} \cup\{u\}$, where $u \in X \backslash S_{i}$, then every vertex in $S_{i} \cap X$ is incident with one edge in $E\left(S_{i}\right)$, where $E\left(S_{i}\right)$ denotes the set of edges whose ends are both in S_{i}. And if the tree T has vertex set $S_{i} \cup\{v\}$, where $v \in Y \backslash S_{i}$, then every vertex in $S_{i} \cap Y$ is incident with one edge in $E\left(S_{i}\right)$. Since every vertex in $S_{i} \cap X$ is incident with $k-i$ edges in $E\left(S_{i}\right)$ and every vertex in $S_{i} \cap Y$ is incident with i edges in $E\left(S_{i}\right)$, we have

$$
\left|A_{1}\right| \leq \begin{cases}i & \text { if } i \geq \frac{a-b+k}{2} \\ k-i & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

Combining the two inequalities, we get

$$
\left|A_{1}\right|= \begin{cases}\min \{b-a-k+2 i, i\} & \text { if } i \geq \frac{a-b+k}{2} \\ \min \{a-b+k-2 i, k-i\} & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

Thus

$$
\left|A_{1}\right|= \begin{cases}i & \text { if } i \geq a-b+k \\ b-a-k+2 i & \text { if } \frac{a-b+k}{2} \leq i<a-b+k \\ a-b+k-2 i & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

Finally, by Lemma 3.5 we have

$$
\left|A_{0}\right|= \begin{cases}\left\lfloor\frac{i(k-i)-\left|A_{1}\right|(k-i)}{k-1}\right\rfloor & \text { if } i \geq \frac{a-b+k}{2} ; \\ \left\lfloor\frac{i(k-i)-\left|A_{1}\right| i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

Thus

$$
\left|A_{0}\right|= \begin{cases}0 & \text { if } i \geq a-b+k ; \\ \left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2} \leq i<a-b+k ; \\ \left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

Hence

$$
\kappa\left(S_{i}\right)= \begin{cases}a & \text { if } i \geq a-b+k ; \\ b-k+i+\left\lfloor\frac{[i-(b-a-k+2 i)\rfloor(k-i)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2} \leq i<a-b+k ; \\ a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

Notice that $i \geq 1$, and hence $k-i \leq k-1$.

If $\frac{a-b+k}{2} \leq i<a-b+k$, then $\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor \leq i-(b-a-k+2 i)=a-b+k-i$. So, $\kappa\left(S_{i}\right) \leq b-k+i+a-b+k-i=a$.

If $i<\frac{a-b+k}{2}$, then $a-b+k-2 i>0, k-i-(a-b+k-2 i)<k-i \leq k-1$, and hence $\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor \leq i$. So, $\kappa\left(S_{i}\right) \leq a-i+i=a$

Thus $\kappa\left(S_{i}\right) \leq a$ for $i \geq 1$.
Next, considering S_{k-i}, similarly, we have $\left|A_{2}\right|=\min \{a-(k-i), b-i\}$.
Since $a<b$ and $i \leq\left\lfloor\frac{k}{2}\right\rfloor \leq\left\lceil\frac{k}{2}\right\rceil \leq k-i$, then $b-i>a-(k-i)$. So $\left|A_{2}\right|=a-k+i$ and $\left|A_{1}\right|=\min \{b-i-(a-k+i), k-i\}$. Hence

$$
\left|A_{1}\right|= \begin{cases}k-i & \text { if } i \leq b-a \\ b-a+k-2 i & \text { if } i>b-a\end{cases}
$$

Moreover,

$$
\left|A_{0}\right|= \begin{cases}0 & \text { if } i \leq b-a ; \\ \left\lfloor\frac{[k-i-(b-a+k-2 i)] i}{k-1}\right\rfloor & \text { if } i>b-a .\end{cases}
$$

So,

$$
\kappa\left(S_{k-i}\right)= \begin{cases}a & \text { if } i \leq b-a \\ b-i+\left\lfloor\frac{[k-i-(b-a+k-2 i)]}{k-1}\right\rfloor & \text { if } i>b-a\end{cases}
$$

Now, we can compare $\kappa\left(S_{i}\right)$ with $\kappa\left(S_{k-i}\right)$. For $i \leq b-a, \kappa\left(S_{k-i}\right)=a \geq \kappa\left(S_{i}\right)$. For $i>b-a$, there must be $b-a<k-i$, that is, $i<a-b+k$. Note that for any two real numbers $s, t,\lfloor s+t\rfloor \geq\lfloor s\rfloor+\lfloor t\rfloor$.

If $\frac{a-b+k}{2} \leq i<a-b+k$, then

$$
\begin{aligned}
\kappa\left(S_{k-i}\right)-\kappa\left(S_{i}\right)= & b-i+\left\lfloor\frac{[k-i-(b-a+k-2 i)] i}{k-1}\right\rfloor \\
& -\left\{b-k+i+\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor\right\} \\
\geq & (k-2 i)+\left\lfloor\frac{(k-2 i)(b-a-k)}{k-1}\right\rfloor \\
\geq & (k-2 i)+\left\lfloor\frac{(k-2 i)(1-k)}{k-1}\right\rfloor \geq(k-2 i)-(k-2 i)=0 .
\end{aligned}
$$

So, $\kappa\left(S_{k-i}\right) \geq \kappa\left(S_{i}\right)$.
If $i<\frac{a-b+k}{2}$, then

$$
\begin{aligned}
\kappa\left(S_{k-i}\right)-\kappa\left(S_{i}\right)= & b-i+\left\lfloor\frac{[k-i-(b-a+k-2 i)] i}{k-1}\right\rfloor \\
& -\left\{a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor\right\} \\
\geq & (b-a)+\left\lfloor\frac{(2 i)(a-b)}{k-1}\right\rfloor .
\end{aligned}
$$

Since $i<\frac{a-b+k}{2}$, then $2 i \leq k-1$, and hence $\frac{(2 i)(a-b)}{k-1} \geq a-b$. So, $\kappa\left(S_{k-i}\right)-\kappa\left(S_{i}\right) \geq$ $b-a+a-b=0$. Thus, $\kappa\left(S_{k-i}\right) \geq \kappa\left(S_{i}\right)$.

In summary, $\kappa\left(S_{k-i}\right) \geq \kappa\left(S_{i}\right)$ for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$. So, in order to get $\kappa_{k}(G)$, it is enough to consider $\kappa\left(S_{i}\right)$ for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$.

Next, let us compare $\kappa\left(S_{i}\right)$ with $\kappa\left(S_{i+1}\right)$, for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor-1$. For $i=0, \kappa\left(S_{i}\right)=a \geq$ $\kappa\left(S_{i+1}\right)$. For $1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor-1$,

$$
\kappa\left(S_{i}\right)= \begin{cases}a & \text { if } i \geq a-b+k ; \\ b-k+i+\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2} \leq i<a-b+k ; \\ a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

and
$\kappa\left(S_{i+1}\right)= \begin{cases}a & \text { if } i \geq a-b+k-1 ; \\ b-k+i+1+\left\lfloor\frac{[i+1-(b-a-k+2 i+2)\rfloor(k-i-1)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2}-1 \leq i<a-b+k-1 ; \\ a-i-1+\left\lfloor\frac{[k-i-1-(a-b+k-2 i-2)\rfloor(i+1)}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2}-1 .\end{cases}$
So, $\kappa\left(S_{a-b+k}\right)=\kappa\left(S_{a-b+k+1}\right)=\cdots=\kappa\left(S_{\min \{a, k\}}\right)=a$.
If $i<\frac{a-b+k}{2}-1$, then

$$
\begin{aligned}
\kappa\left(S_{i}\right)-\kappa\left(S_{i+1}\right)= & a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor \\
& -\left\{a-i-1+\left\lfloor\frac{[k-i-1-(a-b+k-2 i-2)] i+1}{k-1}\right\rfloor\right\} \\
\geq & 1+\left\lfloor\frac{(a-b-2 i-1)}{k-1}\right\rfloor \geq 1+\left\lfloor\frac{1-k}{k-1}\right\rfloor \geq 1-1=0 .
\end{aligned}
$$

So, $\kappa\left(S_{i}\right) \geq \kappa\left(S_{i+1}\right)$. Namely, if $a-b+k$ is odd, we have $\kappa\left(S_{0}\right) \geq \kappa\left(S_{1}\right) \geq \cdots \geq$ $\kappa\left(S_{\frac{a-b+k-3}{2}}\right) \geq \kappa\left(S_{\frac{a-b+k-1}{2}}\right)$; and if $a-b+k$ is even, we have $\kappa\left(S_{0}\right) \geq \kappa\left(S_{1}\right) \geq \cdots \geq$ $\kappa\left(S_{\frac{a-b+k-4}{2}}\right) \geq \kappa\left(S_{\frac{a-b+k-2}{2}}\right)$.

If $a-b+k$ is even, then $\kappa\left(S_{\frac{a-b+k}{2}-1}\right)=\frac{a+b-k}{2}+1+\left\lfloor\frac{(b-a+k-2)(a-b+k-2)}{4(k-1)}\right\rfloor$ and $\kappa\left(S_{\frac{a-b+k}{2}}\right)=$ $\frac{a+b-k}{2}+\left\lfloor\frac{(b-a+k)(a-b+k)}{4(k-1)}\right\rfloor$. Since $(a-b+k)(b-a+k)-(b-a+k-2)(a-b+k-2)=$ $(a-b+k)(b-a+k)-[(a-b+k)(b-a+k)-2(b-a+k)-2(a-b+k-2)]=4(k-1)$, we have $\kappa\left(S_{\frac{a-b+k}{2}-1}\right)=\kappa\left(S_{\frac{a-b+k}{2}}\right)$.

If $a-b+k$ is odd, we have $\kappa\left(S_{\frac{a-b+k-1}{2}}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(b-a+k-1)(a-b+k-1)}{4(k-1)}\right\rfloor=\kappa\left(S_{\frac{a-b+k+1}{2}}\right)$.
If $\frac{a-b+k}{2} \leq i<a-b+k-1$, then

$$
\begin{aligned}
\kappa\left(S_{i+1}\right)-\kappa\left(S_{i}\right)= & b-k+i+1+\left\lfloor\frac{[i+1-(b-a-k+2 i+2)](k-i-1)}{k-1}\right\rfloor \\
& -\left\{b-k+i+\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor\right\} \\
\geq & 1+\left\lfloor\frac{(b-a-2 k+2 i+1)}{k-1}\right\rfloor \geq 1+\left\lfloor\frac{1-k}{k-1}\right\rfloor \geq 1-1=0
\end{aligned}
$$

So, $\kappa\left(S_{i+1}\right) \geq \kappa\left(S_{i}\right)$. Namely, if $a-b+k$ is odd, we have $\kappa\left(S_{\frac{a-b+k+1}{2}}\right) \leq \kappa\left(S_{\frac{a-b+k+3}{2}}\right) \leq \cdots \leq$ $\kappa\left(S_{a-b+k-1}\right) \leq a=\kappa\left(S_{a-b+k}\right)$, and if $a-b+k$ is even, we have $\kappa\left(S_{\frac{a-b+k}{2}}\right) \leq \kappa\left(S_{\frac{a-b+k+2}{2}}\right) \leq$ $\cdots \leq \kappa\left(S_{a-b+k-1}\right) \leq a=\kappa\left(S_{a-b+k}\right)$.

Thus, if $k>b-a+2$ and $a-b+k$ is odd,

$$
\kappa_{k}\left(K_{a, b}\right)=\kappa\left(S_{\frac{a-b+k-1}{2}}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(a-b+k-1)(b-a+k-1)}{4(k-1)}\right\rfloor,
$$

and if $k>b-a+2$ and $a-b+k$ is even,

$$
\kappa_{k}\left(K_{a, b}\right)=\kappa\left(S_{\frac{a-b+k}{2}}\right)=\frac{a+b-k}{2}+\left\lfloor\frac{(a-b+k)(b-a+k)}{4(k-1)}\right\rfloor .
$$

The proof is complete.

Notice that, when $k=a+b$, the result coincides with Theorem 1.2.

Acknowledgement: The authors are grateful to the referees for useful comments and suggestions, which helped to improve the presentation of the paper.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
[3] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310(2010), 2147C2163.
[4] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of graphs, Amer. J. Math. 54(1932), 150-168.
[5] F. Okamoto and P. Zhang, The tree connectivity of regular complete bipartite graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 74(2010), 279-293.

[^0]: *Supported by NSFC No. 11071130.

