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Abstract

Let G be a nontrivial connected graph of order n, and k an integer with 2 <
k < n. For a set S of k vertices of G, let k(S) denote the maximum number ¢ of
edge-disjoint trees 17,75,...,T; in G such that V(T;) NV (Tj) = S for every pair
1,7 of distinct integers with 1 < 4,5 < £. Chartrand et al. generalized the concept
of connectivity as follows: The k-connectivity, denoted by ki(G), of G is defined
by kx(G) =min{k(S)}, where the minimum is taken over all k-subsets S of V(G).
Thus k2(G) = k(G), where £(G) is the connectivity of G. Moreover, k,(G) is the
maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs K, ,

where 1 < a < b. First, we obtain the number of edge-disjoint spanning trees of

ab
a+b—1

trees. Then based on this result, we get the k-connectivity of K, for all 2 <
E < a+0b Namely, if £ > b—a+2and a — b+ k is odd then r(Kyp) =

atb_kitl | U“—b“‘f;(l,jﬁbl‘)“*’“‘” |,if k> b—a+2and a—b+k is even then ry(Kqp) =

atbk 4 L(“"’Z(’Q(_bl‘)a““) |, and if k < b—a+ 2 then rg(Kqp) = a.

K, p, which is L#bb_lj, and specifically give the | | edge-disjoint spanning
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1 Introduction

We follow the terminology and notation of [1]. As usual, denote by K,; the complete
bipartite graph with bipartition of sizes a and b. The connectivity k(G) of a graph
G is defined as the minimum cardinality of a set () of vertices of GG such that G — @
is disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent
definition of the connectivity. For each 2-subset S = {u, v} of vertices of G, let £(.S) denote
the maximum number of internally disjoint uv-paths in G. Then x(G) =min{x(S)}, where

the minimum is taken over all 2-subsets S of V(G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial
connected graph of order n, and k an integer with 2 < k < n. For a set S of k vertices of
G, let k(S) denote the maximum number ¢ of edge-disjoint trees 11,75, ..., T; in G such
that V(T;) NV (1) = S for every pair 7, j of distinct integers with 1 <, j < ¢ (Note that
the trees are vertex-disjoint in G\S). A collection {T},T5,...,T;} of trees in G with this
property is called an internally disjoint set of trees connecting S. The k-connectivity,
denoted by k(G), of G is then defined as ki(G) =min{x(S5)}, where the minimum is
taken over all k-subsets S of V(G). Thus, ko(G) = k(G) and k,(G) is the maximum

number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of k3(G) and mainly studied the rela-
tionship between the 2-connectivity and the 3-connectivity of a graph. They gave sharp
upper and lower bounds for k3(G) for general graphs G, and showed that if G is a con-
nected planar graph, then x(G) — 1 < k3(G) < k(G). Moreover, they studied the algo-
rithmic aspects for k3(G) and gave an algorithm to determine k3(G) for a general graph

G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph K345, then
k3(G) = 6. They also gave a general result for the complete graph K,:

Theorem 1.1. For every two integers n and k with 2 < k < n,
ri(Kp) =n—[k/2].

Okamoto and Zhang in [5] investigated the generalized connectivity for regular com-
plete bipartite graphs K, ,. In this paper, we consider this connectivity for general com-
plete bipartite graphs K,;. First, we give the number of edge-disjoint spanning trees of

Ka,ba namely Ka+b (Ka,b> .

Theorem 1.2. For any two integers a and b,

ab

Karp(Kap) = |27

|.



ab
a+b—1

based on Theorem 1.2, we obtain the k-connectivity of K, for all 2 <k <a +b.

Actually, we specifically give the | | edge-disjoint spanning trees of K,;. Then

2 Proof of Theorem 1.2

Without loss of generality, we may assume that a < b. Since K,; contains ab edges

and a spanning tree needs a + b — 1 edges, the number of edge-disjoint spanning trees

of K, is at most [%J, namely, Kqip(Kap) < Laﬁb_ﬁ' Thus, it suffices to prove that
Kato(Kap) > Laﬁbfﬂ‘ To this end, we want to find out all the Laﬁ,b,lJ edge-disjoint
spanning trees. K1 is a star which has exactly |- +abb71J = 1 spanning tree. So we can
restrict our attention to K,; for a > 2. Hence, Lafbb_lj < a. Let X = {x1,29,...,2,}

and Y = {y1,9a,...,ys} be the bipartition of K.

We can describe a spanning tree in K,; by giving the set of neighbors of z; for

1 < j < a. Now we give the first spanning tree T} we find:

vertex | neighbors degree
1 Yi, Y2, -5 Ydy d,
To Ydys Ydyt1s -+ Ydytdp—1 da
T3 Ydi+da—1y Ydi+das -+ -5 Ydi+da+ds—2 ds
€T Ydi+-dot-Adj—1—(—2)» Ydi+dot-Adj_1—(G—2)+1s -+ Ydi+dot+dj—(i—1) d;
I Ydi+do+-+de—1—(a—2)s Ydi+dot++de—1—(a—2)+1y - -5 Ydi+dot++de—(a—1) do

where d; denotes the degree of z; in T3, and dy +dy +--- +dg =a+b— 1.

To simplify the subscript, we denote 7g = 1, 4 = di, 99 = dy +day — 1, ..., i; =
di+do+---+dj—(j—1), ...,0, =dy+da+---+d, — (a — 1) = b. Note that,
ij —ij—1 = dj — 1. So in Ty, the set of neighbors of x; is {wi,_,,¥i,_,41,..., ¥} for
I1<j<a.

Here and in what follows, the subscript j of y; € Y is expressed modulo b as one of
1,2,...,b. The subscript j # 0 of 7; is expressed modulo a as one of 1,2,...,a. And the

subscript j of d; is expressed modulo a as one of 1,2,...,a.

Then we can describe the second spanning tree 75 we find. In 75, the set of neighbors
of z; is {Yi;+1,Yi+2,- -+ Yi;a41y for 1 < j < a — 1 and the set of neighbors of z, is
{Yiut1s Yiar2, -5 Yiay t- Note that y;, 11 = y1. Therefore dp, () =141 — i +1 = djq
for 1 <j<a-—1anddp(x,) =ig1 —1+1=4d;.

We can see that T, and T} are edge-disjoint, if and only if for every vertex z;, dj+d;41 <



b. If T, and T are edge-disjoint, then we continue to find 75. In T3, the set of neighbors
of &; is {Wi;s142: Yijrat3s -+ Yijpor2) for 1 < j < a—2, the set of neighbors of z,_ is
{Yiut2s Yia+3> -+ Yior1+1) and the set of neighbors of 4 is {Yi,, 1115 Yier142) - -5 Yiasot1)-
Note that y;, 1o = y2. Therefore dp,(x;) = ij40 —ij11 + 1 = djg for 1 < j < a—2,
dry(Ta-1) =tgr1 +1—2+1=d; and dp,(,) = tgro — lar1 + 1 =12 — i3 + 1 = db.

We can see that T3 and 17, T5 are edge-disjoint, if and only if for every vertex x;, d; +
djp1+djpo < b. If T3 and T, T are edge-disjoint, then we continue to find 7. Continuing
the procedure, our goal is to find the maximum [/, such that 7; and T},75,...,T;_, are
edge-disjoint. In Tj, the set of neighbors of z; is {Yi, ., ,+(-1)s Yijsratts -+ Yijsri+(-1))
for 1 < j <a—1+1, the set of neighbors of x4 142 18 {Yi,+1-1), Yietis - - Yierr+a—-2)} and
the set of neighbors of x; is {yi,,, ,4+(-2)s Yi;s1at-1)> > Yijp1ra-2) for a —1+3 <
j < a. Note that y;,+q-1) = yi—1. Therefore dp,(z;) = ij4-1 — G- + 1 = djp
for 1 <j<a—-1+1 dp(ra—iz2) = tar1 + (1 —2) = (1 —-1)+1 = d; and dp(z;) =
Ujgpi—1 — ljp—2 + 1 =t 1-q — tjpi—2-q + 1 = dj11_1-4, for a =1 + 3 < j < a. That is, we
want to find the maximum [, such that d; +d; 1 +--- +djp—1 <bforany 1 < j <a.

Let D} = dj +dj1 +--- 4+ dj4—1. Tt can be observed that D} = D%, if and only if
d; = dj4;. We will show that for any fixed integer ¢, 1 <t < a, by assigning appropriate
values to d;, we can make | D} — D |< 1 for any integers 1 < i,j < a. We describe
the method for assigning values to d; and prove its validity for two cases. Consider the
numbers 1,¢+ 1,2t +1,...,(a — 1)t + 1, where addition is performed modulo a.

Case 1. 1,t+ 1,2t +1,...,(a — 1)t + 1 are pairwise distinct.

Then we can assign the values to d; as follows: Let a +b— 1 = ka + ¢, where £, c are
integers, and 0 <c<a—1. Thena+b—1=(k+1)c+k(a—c). lf c=0, let d; = k for
all 1 <j<a. Ifc>0,let di_1y41 =k +1forall 1 <i <c, and let the other d; = k.

Ifc=0,d;=Fkforall 1 <j<a Then D= Dj for any integers 1 <1i,j < a.

If ¢ > 0, we construct a weighted cycle: C' = x12411%2¢41 - - - T(a—1)e4121 and W(T(i—1)e41)

dii—1)41 for 1 <4 < a. According to the assignment, we have w(z;) = w(2441)

w(T(e1yrr1) =k + 1 and w(Te1) = W(T(ey1ye1) = - = W(T(@-1)e11) = k-
Since D} = D!, if and only if d; = d;14, then D’(‘/Fl)wrl = D’(‘/Fl)HlJrl if and only if

w(T(i—1)41) = W(Ti41). Similarly, Dl(tifl)t+1 = Di(sifl)t+1+1 + 1 if and only if w(z;_1y41) =
w(ipt1) + 1, and Dl(fi—l)t-&-l = Dl(tz‘—l)t-&-l-&-l
We know that w(z—1y14+1) = W(Ze41) + 1, W(@(@-1)e41) = w(z1) — 1, and w(xG-1ye41) =
w(zys1) for 1 < i < a—1and i # ¢. For simplicity, let (¢ — 1)t + 1 = « (mod a),
(@ —1)t+1 = f (mod a). Therefore we can get D!, = D}, +1, Dy = Dj,, —1
and Dg_1y+1 = Dg—1y4141, for 1 <7 < a — 1 and 7 # ¢, namely, if o < [, then
Di=Dy=--=D =D, +1=D} h+1=---=Dp+1=Dj,, =Dj,=---= D

— 1 if and only if w(z_1)41) = w(Ti41) — 1.



ifa >, then D! = D= =Dy = DY, —1=DYy—1=- =D —1 =D, =
Dy =+ = Dt

We have | Di — D5 |< 1 for any integers 1 <i,j < a.
Case 2. Some of the numbers 1,t+ 1,2t +1,...,(a — 1)t + 1 are equal.

Suppose that it + 1 = jt + 1(mod a) such that 0 <i < j <a—1and 1,t 4+ 1,2t +
1,...,(j — 1)t + 1 are pairwise distinct integers (in Z,). We claim that i = 0. Otherwise
(j—i)t+1=1(mod a) and 0 < j —i < j — 1, a contradiction. Then 1 < j <a — 1.

Claim 1. it + 1 # 2 (mod a) for any integer 7.

If it +1 = 2 (mod a), then we have it = 1 (mod a). Thus Xit +1 = XA+ 1 (mod a)
for any integer A\. So jit+1=j+1 (mod a). Since 1 <j<a—1,2<j+1<a. On
the other hand jt + 1 =1 (mod a), namely jit + 1 = 1 (mod a), a contradiction. Thus,
it +1 # 2 (mod a) for any integer i.

Claim 2. 2,t+2,2t+2,...,(j — 1)t + 2 are pairwise distinct.

If jit 4+ 2 = jot +2 (mod a), where 0 < j; < jo < j—1, then jit+1 = jot + 1 (mod a).
But 1,t 4+ 1,2t +1,...,(j — 1)t + 1 are pairwise distinct, a contradiction.

Claim 3. {1,t+ 1,2t +1,...,(j — Dt +1}N{2,t +2,2t+2,...,(j — )t +2} = 0.

If i1t + 1 = ist + 2 (mod a), then (iy —iz)t +1 =2 (mod a). But it + 1 # 2 (mod a)
for any integer ¢, a contradiction by Claim 1. Thus, 1,t+ 1,2t +1,...,(j — Dt + 1,2t +
2,2t+2,...,(j — 1)t + 2 are pairwise distinct.

Now, if2:%,thenwe order 1, ..., aby L,t+1,2t+1,...,(j—Dt+1,2,t+2,2t +
2., —Dt+2. 12 < 5, we will prove that 1+t # 3 (mod a) and 2+t # 3 (mod a)

for any integer 1.
Claim 4. If 2 < %, then 1 + it # 3 (mod a) and 2 + it # 3 (mod a) for any integer «.

If 2+t = 3 (mod a), then 1 + it = 2 (mod a), a contradiction by Claim 1. If
1+ it =3 (mod a), then we have it =2 (mod a). Thus \it + 1 =2\ 4+ 1 (mod a) for any
integer A. So jit +1 =25+ 1 (mod a). Since 2 < 2j < a, 3 < 2j+ 1 < a. On the other
hand jt + 1 =1 (mod a), namely jit +1 =1 (mod a), a contradiction. Hence, if 2 < 2
then 1+ it # 3 (mod a) and 2 + it # 3 (mod a) for any integer i.

If3 = %, thenweorder 1, ..., aby 1t+1,2t+1,..., (J—Dt+1,2,t4+2,2t+2,...,(j—
Dt+2,3,t+3,2t+3,...,(J—1t+3. If3 < %, then continue the similar discussion
until we reach some integer s = % Similarly, we can prove that p + it # ¢ (mod a) for

1 <p < q<s. Thus we can get the following claim:

Claim 5. 1,t+1,2t+1,...,(j—1)t+1,2,t+2,2t+2,...,(j—1)t+2,...,s,t+s,2t+



S,...,(j — )t + s are pairwise distinct. And hence {1,t + 1,2t +1,...,(j — D)t + 1} U
{2t+2,2¢+2,...,(-Dt+23U- - U{5, 0+ 2,204+ %,..., (- Dt+ 5} ={1,2,...,a}.

The proof is similar to those of Claims 2, 3 and 4. Then we order 1,2,...,a by
Lt4+1,2t+1, ..., (j—1)t+1,2,t+2,2t42, ..., (j—1)t+2,...,s,t+s,2t+s,...,(j—1)t+s.
Now, we can assign the values of d; as follows:

Let a+b—1 = ka + ¢, where k, c are integers, and 0 < c<a—1. Thena+b—1=
(k+1)c+ k(a — ¢). In the case that ¢ =0, let d; = k for all 1 < j < a. In the case that
¢ > 0 for the first ¢ numbers of our ordering, if d; uses one of them as subscript, then
dj=Fk+1,elsed; = k.

Next, we will show that | Dj — D} |< 1 for any integers 1 <4, j < a.
If c=0,d; =Fkforall 1 <j<a Then Di = Dj for any integers 1 <i,j < a.

If ¢ > 0, we construct s weighted cycles: C; = x;74;... T(j_147i, 1 <7 < s, and
W(Tp-1y1+i) = dp-1y+i 1 < p < j. Since D! = D!, if and only if d; = d;;, then
t _ t
D(pfl)tJri = D(pfl)t+i+
is at most one cycle in which the vertices have two distinct weights. If such cycle does
b = Dfp—1)t+i+1 forall 1 <i<sand 1 < p < j,

namely, D{ = D} = --- = D!. So we may assume that for some cycle C;, w(z(y_1y11r) =

. if and only if w(x(p-1)14i) = w(Tp4i). By the assignment, there
not exist, clearly, we have Dy

W(Tqp4r) +1 and w(z(j—1)4,) = w(z,) — 1. Similar to the proof of Case 1, we can get that

| D! — D§. |< 1 for any integers 1 < i, j < a.

Then, we can show that, with the assignment we can get [ > |- f;’fJ.

Let t' = | =% ] < a. We have DY + D} + -+ Dl = (dy +da + -+ + dy) + (dy +

ds+ - +dpp1)+ -+ (do+di+---+dpy) =t'(di +do+ -+ dy) =t (a+b—1).

Since for fixed t' = [ =%~ ], | D! — DY |< 1 for any integers 1 < i,j < a,
4 t'(a+b—1 t'(a+b—1 ab  a+b—
Dy < ( a )W < (J; L+1< a—l—bb—l%_'—l:b—i_l'
The third inequality holds since ¢’ = |- J:;)bflj < - ﬁbfl. Since D;-' is an integer, we

have D;i/ < bfor all 1 < j < a. Since [ is the maximum integer such that Dé» =
di +djs1+ - +djpy <bforany 1 < j<a,thenl >t =| ab |. So we can find at

a+b—1
least |- +“bb_1j edge-disjoint spanning trees of K. And hence xqy5(Kqp) > |- +“bb_1j. So
we have proved that kqp(Kap) = Laﬁfﬁlj. ]

3 The k-connectivity of complete bipartite graphs

Next, we will calculate ry(K,p) for 2 < k <a+b.



Recall that xx(G) = min{x(S)}, where the minimum is taken over all k-element
subsets S of V(G). X = {z1,29,...,2,} and Y = {y1,¥y2,...,yp} be the bipartition of
K,p. Actually, all vertices in X are equivalent and all vertices in Y are equivalent. So
instead of considering all k-element subsets S of V(G), we can restrict our attention to
the k-element subsets S; = {x1, %2, ..., %, Y1,Y2, .-, Yr—i} for 0 < i < k. Notice that,
if © > aor k—14 > b, then S; does not exist. So, we need only to consider S; for
max{0, k£ — b} <i < min{a, k}.

Now, let A be a maximum set of internally disjoint trees connecting S;. Let 2(y be the
set of trees connecting S; whose vertex set is .S;, let 2; be the set of trees connecting S;
whose vertex set is S; U {u}, where u ¢ S; and let 2y be the set of trees connecting S;

whose vertex set is S; U {u, v}, where u,v ¢ S; and they belong to distinct partitions.

Lemma 3.1. Let A be a mazimum set of internally disjoint trees connecting S;. Then we
can always find a set A" of internally disjoint trees connecting S;, such that | A |=|] A" |
and A’ C 22[0 Ugll UQIQ.

Proof. Let A = {11, T5,...,T,}. If for some tree T; in A, T; ¢ Ay U A; U Ay, then
let V(T;) = S;UU UV, where (UUV)NS; =0, U C X and V C Y. One of
U and V can be empty but not both. If U and V are not empty, let u; € U and
v € V. The tree T} with vertex set V(Tj) = S; U {ui,v1} and edge set E(T}) =
{wiyr, ..., WYk, v121, . .., V125, w0 } s a tree in Ao Uy Uy, Since V(T;) NV (Ty) = S;
and E(T;) N E(Ty) = 0 for every tree Ty, € A, where k # j, T, will not contain u;, v, nor
the edges incident with u,v;. Therefore, V(T7) NV (T}) = S; and E(T}) N E(T}) = 0 for
1 <k<pk#yj. If one of U and V is empty, say V, let U = {uy,ug,...,u,}. Then we
connect all neighbors of us, ..., u, to u; by some new edges and delete us, ..., u, and any
resulting multiple edges. Obviously, the new graph we obtain is a tree T € (o U4, ULy
that connects S;. For every tree T, € A, where k # j, T} will not contain u; nor the
edges incident with u;. Therefore, V(T7) N V(T;) = S; and E(Tj) N E(T;) = 0 for
1 <k < pk # j. Replacing each T; ¢ 2, U2, U2y by T}, we finally get the set
A’ C 2y U Uy which has the same cardinality as A. |

So, we can assume that the maximum set A of internally disjoint trees connecting S;
is contained in Ay U Ay U As.

Next, we will define the standard structure of trees in 2y, 2, and 2y, respectively.

Every tree in 2y is of standard structure. A tree T in 2; with vertex set V(T') =
S; U A{u}, where u € X \ S, is of standard structure, if u is adjacent to every vertex in
S;NY. Since |[E(T)| = |V(T)| =1 = k and dp(u) = |S; NY| = k — i, there remains i
edges incident with S; N X. We know that |S; N X| = ¢ and each vertex must have degree
at least 1 in T. So every vertex in S; N X has degree 1. A tree T in 2A; with vertex set

7



V(T) = S; U{v}, where v € Y \ S}, is of standard structure, if v is adjacent to every
vertex in 5; N X. Similarly, every vertex in S; N'Y has degree 1. A tree T in 2, with
vertex set V(T') = S; U{u,v}, where u € X \ S; and v € Y\ S;, is of standard structure,
if u is adjacent to every vertex in S; MY, v is adjacent to every vertex in S; N X, and wu is
adjacent to v. We then denote the resulting tree 1" by T;, ,. Denote the set of trees in 2,
2, and %A, with the standard structure by Ay, A; and A, respectively. Clearly, Ay = 2

Lemma 3.2. Let A be a mazimum set of internally disjoint trees connecting S;, A C
Ao URAL URAy. Then we can always find a set A” of internally disjoint trees connecting S;,
such that | A |=| A” | and A” C Ay U A; U As.

Proof. Let A ={T},T5,...,T,}. Suppose that there is a tree 7, in A such that T; € 2;,
but T; ¢ Ay. Let V(T;) = 5; U {u}, where u € X \ S;. Note that the case u € Y\ S, is
similar. Since T} ¢ A;, there are some vertices in S; VY, say y;,,. .., ¥, not adjacent to
u. Then we can connect y;, to u by a new edge. It will produce a unique cycle. Delete
the other edge incident with y;, on the cycle. The graph remains a tree. Do the same
operation to ¥i,,...,y; in turn. Finally we get a tree T} whose vertex set is S; U {u}
and u is adjacent to every vertex in S; N'Y, that is, T is of standard structure. For each
tree T,, € A\ {T;}, clearly T,, does not contain w nor the edges incident with u. So
V(T))NV(T,) = S; and E(T;)NE(T,) = 0. Suppose that there is a tree T in A such that
T; € Ay, but T; ¢ Ay. Let V(T;) = S; U {u,v}, where u € X\ S; and v € Y\ S;. Then
T} = T, is the tree in Ay whose vertex set is S; U {u,v}. For each tree T,, € A\ {7}},
V(T/) NV(T,) = S; and E(T;) N E(T,) = 0. Replacing each T; ¢ Ay U A; U Ay by T}, we
finally get the set A” C Ay U .A; U Ay which has the same cardinality as A. |

So, we can assume that the maximum set A of internally disjoint trees connecting .S;

is contained in Ay U A; U A,. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by V(A) and
the union of the edge sets of all trees in set A by E(A). Let Ay := AN Ay, A := ANA
and Ay := AN A,. Then A = Ay U A; U As.

Lemma 3.3. Let A C Ay U A; U Ay be a maximum set of internally disjoint trees con-
necting S;. Then either X CV(A) orY CV(A).

Proof. If X € V(A) and Y € V(A4), let z € X \ V(A) and y € Y \ V(A). Then
the tree T, , € Ay with vertex set S; U {z,y} is a tree that connects S;. Moreover,
V(T,, ,) NV (A) =5; and since all edges of T}, , are incident with x or y, so T, , and T
are edge-disjoint for any tree 7' € A. So, AU {7}, ,} is also a set of internally disjoint

trees connecting .S;, contradicting to the maximality of A. 1



So we conclude that if A is a maximum set of internally disjoint trees connecting S;,
then X CV(A)or Y CV(A).

Lemma 3.4. Let A C AgUA1UA; be a mazimum set of internally disjoint trees connect-
ing S;, and A = Ay U Ay U Ay. If there is a vertex x € X \ V(A) and a tree T € Ay with
vertez set S; U{y}, where y € Y '\ S;, then we can find a mazimum set A’ = AjU A} U A
of internally disjoint trees connecting S;, such that Ay = Ao, |A}| = |Ai] — 1, and
|[Ay| = [Ag] + 1.

Proof. Let T, , be the tree in A, whose vertex set is S;U{x,y}. Then A" = A\TU{T,, ,}

is just the set we want. 1

The case that there is a vertex y € Y \V(A) and a tree T' € A; with vertex set S;U{x},

where € X \ S;, is similar.

Next, we will show that we can always find a maximum set A of internally disjoint
trees connecting S;, such that all vertices in V(A1) \ S; belong to the same partition. To

show this, we need the following lemma.

Lemma 3.5. Let p, q be two nonnegative integers. If p(k—1)+qi < i(k—1), and there are
q vertices uy, ug, . .., uy; € X\ S;, then we can always find p trees Ty, Ty, ..., T, in Ay and q
trees Tpi1, Ty, - ooy Tprq in Aq, such that V(1) = S; for 1 < j <p, V(Tpim) = SiU{tn}
for 1 < m < q, and T, and T are edge-disjoint for 1 < r < s < p+ q. Similarly, if
p(k — 1) + q(k — i) < i(k — 1), and there are q vertices v1,va,...,v, € Y \ S;, then we
can always find p trees Ty, Ty, ..., T, in Ay and q trees Tpi1, Tpio, ..., Tpiq in Aq, such
that V(1;) = S; for 1 < j <p, V(Tpim) = SiU{vn} for 1 <m <gq, and T, and T, are
edge-disjoint for 1 <r < s <p-+gq.

Proof. It p(k—1)+qi <i(k—1), then p(k—1) <i(k—1), namely p < LZ(:TT)J Then with
the method which we used to find edge-disjoint spanning trees in the proof of Theorem
1.2, we can find p edge-disjoint trees 11,75, ..., T, in Ay, just by taking a =i, b=k — 1
and t = p. Moreover, let D? denote the number of edges incident with z, in all of the p
trees. Then according to the method, |D? — DY| < 1 for 1 < s,¢t < i. Now, denote by
B? the number of edges incident with x; which we have not used in the p trees. Then
|BP —By| < 1for1<s,t<i. Since Bi+By+---+B] =i(k—i)—p(k—1) > qi, B > q.
Because for each tree in A; with vertex set S; U {u}, where u € X \ S;, the vertices in
S;NX all have degree 1, we can find ¢ edge-disjoint trees T},11,T,+2,. .., T4 in A;. Since
the edges in 1,41, Tpt2, ..., Tptq are not used in 77, 75,..., T, for 1 <r <s <p-+gq, T,

and T, are edge-disjoint. The proof of the second part of the lemma is similar. 1

Lemma 3.6. Let A C Ay U A; U Ay be a maximum set of internally disjoint trees con-
necting S;, and A = AgU Ay U Ay. If there are s trees T1,Ts, ..., T, € Ay with verter set
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S;U{u}, SiU{us}, ..., S;U{us} respectively, where u; € X\S; for1 < j <s, andt trees
Tsi1, Tsyoy .., Tsry € Ay with vertex set S; U{v1}, S;U{wve}, ..., S;U{v} respectively,
where v; € Y\ S; for 1 < j <t. Then we can find a set A" = AjU A} U A of internally
disjoint trees connecting S;, such that |A| = |A'| and all vertices in V(A}) \ S; belong to

the same partition.

Proof. Let |Ag] = p. Since A is a set of internally disjoint trees connecting S;, we
have p(k — 1) + si + t(k — i) < i(k — i), where si denote the si edges incident with
1, .., 2 in Ty, Ty, ..., Ty, and t(k — 1) denote the t(k —i) edges incident with yy, ..., yx_;
in Toiq, Tsyoy ooy Topy. I s <, then p(k — 1)+ si+s(k—1i)+ (t —s)(k—1) < i(k—1),
and hence (p+ s)(k — 1) + (t — s)(k — i) < i(k — ). Obviously, there are t — s vertices
Vst1,Ust2,---,0 € Y \'S;, and therefore by Lemma 3.5, we can find p 4+ s trees in Ay
and t — s trees in Ay, such that all these trees are internally disjoint trees connecting S;.
Now let Aj be the set of the p+ s trees in Ay, A} be the set of the t — s trees in A; and
Ay = Ay U{T,. ., 1 < j<s}. Then A" = AjU A} U A} is just the set we want. The case

that s > ¢ is similar. |

VELA RS

From Lemmas 3.4 and 3.6, we can see that, if A’ is a set of internally disjoint trees
connecting S; which we find currently, X \ V(A4) # 0 and Y \ V(A) # 0, then no matter
how many edges there are in E(K,;,[S;]) \ E(A), we always add to A’ the trees in A,

rather than the trees in A4; to form a larger set of internally disjoint trees connecting .S;.

Lemma 3.7. Let A C AgUA;UAy be a maximum set of internally disjoint trees connect-
ing Si, and A = AgU A UAy. IfV(A) C V(G) and Ay # 0, then we can find a mazimum
set A" = AU A U AL of internally disjoint trees connecting S;, such that |Ap| = |Ao| — 1,
|Al| = |Ai| + 1, and A, = A,.

Proof. Let u € V(G)\ V(A) and T € Ag. Without loss of generality, suppose u € X.
Then we can add the edge uy; to T and get a tree 7" € ;. Using the method in Lemma
3.2, we can transform 7" into a tree T" of standard structure. Then T” € A;. Let
Al = A\ T, A == Ay U{T"} and A}, = A,. It is easy to see that A" = AjU AU A} is a
set of internally disjoint trees connecting S;. Since |Aj| = |Ao| — 1, |A}| = |A1| + 1, and

Ay = Ay, A’ is a maximum set of internally disjoint trees connecting S;. |

So, we can assume that for the maximum set A of internally disjoint trees connecting
S;, either V(A) = V(G) or Ag = 0. Moreover, if A’ is a set of internally disjoint trees
connecting S; which we find currently, V(A") C V(G) and the edges in E(K,,[S:])\ E(4)
can form a tree T in Ay, then we will add to A’ the tree T” in Lemma 3.7 rather than

the tree T to form a larger set of internally disjoint trees connecting S;.

Next, let us state and prove our main result.
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Theorem 3.1. Given any two positive integers a < b, let K, denote a complete bipartite
graph with a bipartition of sizes a and b, respectively. Then we have the following results:
ifk>b—a+2 and a—b+ k is odd, then

a+b—k+1+ (a—b+k—-1)(0b—a+k—-1)

o (Hap) = 2 L Ak — 1) )

ifk>b—a+2 and a— b+ k is even, then

at+b—k (a=b+k)b—a+k),
;L 2k —1) J;

ki (Kap) =

and if k < b—a+ 2, then
/ik(Ka,b) = a.

Proof. Let X = {x1,29,...,2,} and Y = {y1,¥2,...,yp} be the bipartition of K.
As we have mentioned, we can restrict our attention to the k-element subsets S; =

{x1,29,. .., 5, Y1, Y2, - - -, Yr—i } Tor max{0, k — b} < i < min{a, k}.

From the above lemmas, we can decide our principle to find the maximum set of
internally disjoint trees connecting S;. Namely, first we find as many trees in A, as
possible, next we find as many trees in 4; as possible, and finally we find as many trees
in Ay as possible. Let A be the maximum set of internally disjoint trees connecting S; we

finally find. We now compute |A|.
Case 1. k<b—a+2.

Obviously, x(Sp) = a. For Sy, since k <b—a+2, thenb—(k—1)=b—-k+1>
a—2+1=a—1. S0, |[As]=a—1. Ifb—k+1=a—1, then |[A;] =0 and |4 = 1. If
b—k+1>a—1,then |A;| =1 and |Ap] = 0. No matter which case happens, we have
K(S1) = [Az| + |A1] + [Ao| = a.

For S;,i>2,since k <b—a+2,thenb—(k—i)=b—k+i>a—2+1>a—1. So,
| Aol =a—1. Sinceb—k+i—(a—i)=b—a—k+2i > —2+2i >4, then |A;| =i and
|A0| = 0. Thus K(SJ = |A2|+|A1‘+|A0| = a.

In summary, if & < b —a+ 2, then £,(G) = a.
Case 2. k>b—a+ 2.

First, let us compare £(S;) with £(Sk_;), for 0 < i < |E]. If a = b, clearly, k(S;) =

k(Sk—i). So we may assume that a < b.
For i =0, k(Sp) = a < b= k(Sk).

For 1 <i < |%], we will give the expressions of x(S;) and £(S_;).

11



First for S;, since every pair of vertices v € X \ S; and v € Y\ S; can form a tree T, ,,
then |Ay| = min{a —i,b — (k —4)}. Namely,

b—k+i if i <Lk

Next, since every tree T in A; has a vertex in V' \ (S; UV (Ay)), we have

|A1|§{b—k3—|—i—(a—i) if > e=bth

2
a—i—(b—k+i) if i<

On the other hand, if the tree T" has vertex set S; U {u}, where u € X \ S;, then every
vertex in S; N X is incident with one edge in E(S;), where E(S;) denotes the set of edges
whose ends are both in S;. And if the tree 7" has vertex set S; U {v}, where v € Y '\ S;,
then every vertex in S;NY is incident with one edge in E(S;). Since every vertex in S; N X

is incident with k& — 7 edges in F(S;) and every vertex in S; N'Y is incident with i edges

in E(S;), we have
) if > a=btk
k—i if @<=,

Combining the two inequalities, we get

A = min{b —a — k + 24,1} if §> a=btk .
U minfa— b4k — 20k — i} if i< o=tk

Thus
i if i>a—-0b+Fk;
Al =X b—a—k+2i if “BE<j<ca—btk;
a—b+k—2i if i< o=

Finally, by Lemma 3.5 we have

i(k—9)—|A1[(k=9) | ¢ -~ a—btk .
|Ao|:{L k-1 I it iz 2

Li(k—]i)_—l\AﬂiJ if i< a—g-i—k ]
Thus
0 if i>a—b+Fk;
|Ag| = | ERme ME2OIE0) | jf abik < < g —p ke
L[k;—i—(ak—_bi‘rk—%)]iJ if i< a—12)+k’ )
Hence
a if 1>a—-b+k;
K(S;))=< b—k+i+ L[i_(b_a_kk_fzj)](k_i” if % <i<a—b+k:;
a—i+ L[k—z—(a];_l)jk—Zz)]ZJ if 4 < a—g-i—k .

Notice that ¢ > 1, and hence k — 7 < k — 1.
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If 9=tk < < g — b+ k, then |20 | <y (h g —k4+2i) =a—b+k—i.
So, k(S;)) <b—k+i+a—-b+k—i=a.

Ifi < @2 thena—b+k—2 >0, k—i—(a—b+k—2i) <k—i<k—1, and
hence L[k_i_(a];bfk_m]ij <i.S0,k(S;) <a—i+i=ua

Thus x(5;) < a for i > 1.
Next, considering Sy_;, similarly, we have |Ay| = min{a — (k —7),b — i}.

Since a < band i < [5] <[5 <k—i thenb—i>a— (k—i). So || =a—k+i
and |A;| = min{b—1i — (a — k +1),k — i¢}. Hence

k—1 if i<b—oa;
|A1|: A
b—a+k—2i if i>b—a.

Moreover,

Ao = 0 if i<b—a;
R L= T

So,

(Ski) a if i1<b—a;
K —i) = T 9N\,
g b—i+ |Eiloath 20l e g

Now, we can compare x(S;) with k(Sx—;). For i < b — a, k(Sk—i) = a > k(S;). For
1 > b — a, there must be b —a < k — i, that is, i < a — b+ k. Note that for any two real
numbers s,t, [s+1t] > [s| + |t].

Ifa’—g““§i<a—b+k, then

k—i—(b—a+k—2i)i

H(Sk_i)—li<5i) = b—Z—i‘L L —1 J
_{b_k+i+L[i—(b—a;ﬁi—Qi)](k—i)J}
k=20 —a—k)
R
> (k2 + |22 R S e (k-2 =0,

kE—1
So, K(Sk_i) > K(S5).
Ifi < %, then

k—i—(b—a+k—2i)i

H(Sk,i)—li(si) = b—Z—i‘L L—1 J
iy ikl
> (b-a)+ [ 2202Y)
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Since i < 2=2E then 2i < k — 1, and hence @i(fa;b) > a—0b. So, k(Sk_i) — k(S;) >
b—a+a—0b=0. Thus, k(Sk—;) > K(S5;).

In summary, £(Sp—;) > K(S;) for 0 < i < |£]. So, in order to get xx(G), it is enough
to consider x(S;) for 0 <i < |%].

Next, let us compare £(S;) with £(S;41), for 0 <i < [£] — 1. For i =0, x(S;) = a >
K(Si1). For 1 <i < [E]—1,

a if i>a—b+k;

K(S;) b— ki PO B2ED | etk <y <
a—i4 L[k—i—(ak—ib;-k—%)}iJ if < o= b+k '
and
a if i>a—-0+k—-1;
K(Sip1) = b—k i+ 14 [[HOmeh 20 Nkin]) | p abth < jcq—btk—1;

1
a_Z_l_i_'-[kzl(a 1;:—76121 2)](z+1)J ifi<a_g+k—1.

SO, /ﬁ:(Sa—b—i-k) = H(Sa—b—i—k—‘rl) == /Q(Smin{a,k}) =a

If i < ¢ — 1, then

k(S;) — k(Siy1) = a—i+ L[k — = (ak—_b1+ k— 2@)]ZJ

fa—ioqg kil esbrko2i— )i+l

| -t B
> 1+L(a—b—22—1)

1—k
A U
Namely, if a — b+ k is odd, we have k(Sy) >

> K(S%); and if @ — b+ k is even, we have k(Sy) > k(S)
> K(S%)

So, k(Si) = K(Sit1).
H(Safb;rkf?,)
K(Sa—b;k—zl)

AVAAY
(A\VARVS

If a—b+k is even, then /{(Sa—Tb-{—k_1> = otk 414 L(b_a+k2(2,€)(_a1;b+k_2)J and R(S#) =
athok o [t OER | Since (o — b+ k) (b—a+k) —(b—a+k—2)(a—b+k—2) =
(a—b+k)b—a+k)—[(a=b+k)(b—a+k)—2(b—a+k)—2(a—b+k—2)] =4(k—1),
we have K(S#A) = m(S#).

If a—b+Fk is odd, we have /{(Safbgk71) = atbohtl 4 | &= “+k 1 (a— b+’f V] =

F(Sazbpin ).
If «=bE <j<a—b+k—1, then

k(Sit1) — k(S;) = b—k—l—z’—l—l—i—L[i+1_(b_a_k+2i+2)](k_i—1)

k—1 J
= (b—a—k+20](k— i)
—{b—k+i+| e I}
> 1+L(b—a—k25—11—22+1)J 21+[HJ21—1=0-
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SO, KJ(SZ‘_H) > IQ(S,) Namely, ifa—b+kis Odd, we have /{](Sa—b;—lﬂ—l) < /{(Sa—b;k+3) <.
K(Sa—pir—1) < a = K(Sa_psk), and if a — b+ k is even, we have K(Sa—g-ﬁ-k) < H(Sa—b-;—k-m)
o < R(Sambib—1) < a = K(Sa—bk)-

(VANVAN

Thus, if k >b—a+ 2 and a — b+ k is odd,

a+b— a—b+k—1)(b—a+k—1
ke(Kop) = ﬁ(S%) — +b2k+1 4 L( + 4(1]3£1) + )L

and if £k >b—a+2and a— b+ k is even,

a+b— a—b+k)(b—a+k

The proof is complete. 1

Notice that, when & = a + b, the result coincides with Theorem 1.2.

Acknowledgement: The authors are grateful to the referees for useful comments and

suggestions, which helped to improve the presentation of the paper.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized con-
nectivity, Networks 55(4)(2010), 360-367 .

[3] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity k3(G), Discrete
Math. 310(2010), 2147C2163.

[4] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity
of graphs, Amer. J. Math. 54(1932), 150-168.

[5] F. Okamoto and P. Zhang, The tree connectivity of regular complete bipartite graphs,
Journal of Combinatorial Mathematics and Combinatorial Computing, 74(2010),
279-293.

15



