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Abstract

Let G be a nontrivial connected graph of order n, and k an integer with 2 ≤
k ≤ n. For a set S of k vertices of G, let κ(S) denote the maximum number ` of
edge-disjoint trees T1, T2, . . . , T` in G such that V (Ti) ∩ V (Tj) = S for every pair
i, j of distinct integers with 1 ≤ i, j ≤ `. Chartrand et al. generalized the concept
of connectivity as follows: The k-connectivity, denoted by κk(G), of G is defined
by κk(G) =min{κ(S)}, where the minimum is taken over all k-subsets S of V (G).
Thus κ2(G) = κ(G), where κ(G) is the connectivity of G. Moreover, κn(G) is the
maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs Ka,b,
where 1 ≤ a ≤ b. First, we obtain the number of edge-disjoint spanning trees of
Ka,b, which is b ab

a+b−1c, and specifically give the b ab
a+b−1c edge-disjoint spanning

trees. Then based on this result, we get the k-connectivity of Ka,b for all 2 ≤
k ≤ a + b. Namely, if k > b − a + 2 and a − b + k is odd then κk(Ka,b) =
a+b−k+1

2 +b (a−b+k−1)(b−a+k−1)
4(k−1) c, if k > b−a+2 and a−b+k is even then κk(Ka,b) =

a+b−k
2 + b (a−b+k)(b−a+k)

4(k−1) c, and if k ≤ b− a + 2 then κk(Ka,b) = a.
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1 Introduction

We follow the terminology and notation of [1]. As usual, denote by Ka,b the complete

bipartite graph with bipartition of sizes a and b. The connectivity κ(G) of a graph

G is defined as the minimum cardinality of a set Q of vertices of G such that G − Q

is disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent

definition of the connectivity. For each 2-subset S = {u, v} of vertices of G, let κ(S) denote

the maximum number of internally disjoint uv-paths in G. Then κ(G) =min{κ(S)}, where

the minimum is taken over all 2-subsets S of V (G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial

connected graph of order n, and k an integer with 2 ≤ k ≤ n. For a set S of k vertices of

G, let κ(S) denote the maximum number ` of edge-disjoint trees T1, T2, . . . , T` in G such

that V (Ti)∩ V (Tj) = S for every pair i, j of distinct integers with 1 ≤ i, j ≤ ` (Note that

the trees are vertex-disjoint in G\S). A collection {T1, T2, . . . , T`} of trees in G with this

property is called an internally disjoint set of trees connecting S. The k-connectivity,

denoted by κk(G), of G is then defined as κk(G) =min{κ(S)}, where the minimum is

taken over all k-subsets S of V (G). Thus, κ2(G) = κ(G) and κn(G) is the maximum

number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of κ3(G) and mainly studied the rela-

tionship between the 2-connectivity and the 3-connectivity of a graph. They gave sharp

upper and lower bounds for κ3(G) for general graphs G, and showed that if G is a con-

nected planar graph, then κ(G) − 1 ≤ κ3(G) ≤ κ(G). Moreover, they studied the algo-

rithmic aspects for κ3(G) and gave an algorithm to determine κ3(G) for a general graph

G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph K3,4,5, then

κ3(G) = 6. They also gave a general result for the complete graph Kn:

Theorem 1.1. For every two integers n and k with 2 ≤ k ≤ n,

κk(Kn) = n− dk/2e.

Okamoto and Zhang in [5] investigated the generalized connectivity for regular com-

plete bipartite graphs Ka,a. In this paper, we consider this connectivity for general com-

plete bipartite graphs Ka,b. First, we give the number of edge-disjoint spanning trees of

Ka,b, namely κa+b(Ka,b).

Theorem 1.2. For any two integers a and b,

κa+b(Ka,b) = b ab

a + b− 1
c.
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Actually, we specifically give the b ab
a+b−1

c edge-disjoint spanning trees of Ka,b. Then

based on Theorem 1.2, we obtain the k-connectivity of Ka,b for all 2 ≤ k ≤ a + b.

2 Proof of Theorem 1.2

Without loss of generality, we may assume that a ≤ b. Since Ka,b contains ab edges

and a spanning tree needs a + b − 1 edges, the number of edge-disjoint spanning trees

of Ka,b is at most b ab
a+b−1

c, namely, κa+b(Ka,b) ≤ b ab
a+b−1

c. Thus, it suffices to prove that

κa+b(Ka,b) ≥ b ab
a+b−1

c. To this end, we want to find out all the b ab
a+b−1

c edge-disjoint

spanning trees. K1,b is a star which has exactly b ab
a+b−1

c = 1 spanning tree. So we can

restrict our attention to Ka,b for a ≥ 2. Hence, b ab
a+b−1

c < a. Let X = {x1, x2, . . . , xa}
and Y = {y1, y2, . . . , yb} be the bipartition of Ka,b.

We can describe a spanning tree in Ka,b by giving the set of neighbors of xj for

1 ≤ j ≤ a. Now we give the first spanning tree T1 we find:

vertex neighbors degree

x1 y1, y2, . . . , yd1 d1

x2 yd1 , yd1+1, . . . , yd1+d2−1 d2

x3 yd1+d2−1, yd1+d2 , . . . , yd1+d2+d3−2 d3

. . . . . . . . .

xj yd1+d2+···+dj−1−(j−2), yd1+d2+···+dj−1−(j−2)+1, . . . , yd1+d2+···+dj−(j−1) dj

. . . . . . . . .

xa yd1+d2+···+da−1−(a−2), yd1+d2+···+da−1−(a−2)+1, . . . , yd1+d2+···+da−(a−1) da

where dj denotes the degree of xj in T1, and d1 + d2 + · · ·+ da = a + b− 1.

To simplify the subscript, we denote i0 = 1, i1 = d1, i2 = d1 + d2 − 1, . . ., ij =

d1 + d2 + · · · + dj − (j − 1), . . ., ia = d1 + d2 + · · · + da − (a − 1) = b. Note that,

ij − ij−1 = dj − 1. So in T1, the set of neighbors of xj is {yij−1
, yij−1+1, . . . , yij} for

1 ≤ j ≤ a.

Here and in what follows, the subscript j of yj ∈ Y is expressed modulo b as one of

1, 2, . . . , b. The subscript j 6= 0 of ij is expressed modulo a as one of 1, 2, . . . , a. And the

subscript j of dj is expressed modulo a as one of 1, 2, . . . , a.

Then we can describe the second spanning tree T2 we find. In T2, the set of neighbors

of xj is {yij+1, yij+2, . . . , yij+1+1} for 1 ≤ j ≤ a − 1 and the set of neighbors of xa is

{yia+1, yia+2, . . . , yia+1}. Note that yia+1 = y1. Therefore dT2(xj) = ij+1 − ij + 1 = dj+1

for 1 ≤ j ≤ a− 1 and dT2(xa) = ia+1 − 1 + 1 = d1.

We can see that T2 and T1 are edge-disjoint, if and only if for every vertex xj, dj+dj+1 ≤
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b. If T2 and T1 are edge-disjoint, then we continue to find T3. In T3, the set of neighbors

of xj is {yij+1+2, yij+1+3, . . . , yij+2+2} for 1 ≤ j ≤ a − 2, the set of neighbors of xa−1 is

{yia+2, yia+3, . . . , yia+1+1} and the set of neighbors of xa is {yia+1+1, yia+1+2, . . . , yia+2+1}.
Note that yia+2 = y2. Therefore dT3(xj) = ij+2 − ij+1 + 1 = dj+2 for 1 ≤ j ≤ a − 2,

dT3(xa−1) = ia+1 + 1− 2 + 1 = d1 and dT3(xa) = ia+2 − ia+1 + 1 = i2 − i1 + 1 = d2.

We can see that T3 and T1, T2 are edge-disjoint, if and only if for every vertex xj, dj +

dj+1+dj+2 ≤ b. If T3 and T1, T2 are edge-disjoint, then we continue to find T4. Continuing

the procedure, our goal is to find the maximum l, such that Tl and T1, T2, . . . , Tl−1 are

edge-disjoint. In Tl, the set of neighbors of xj is {yij+l−2+(l−1), yij+l−2+l, . . . , yij+l−1+(l−1)}
for 1 ≤ j ≤ a− l+1, the set of neighbors of xa−l+2 is {yia+(l−1), yia+l, . . . , yia+1+(l−2)} and

the set of neighbors of xj is {yij+l−2+(l−2), yij+l−2+(l−1), . . . , yij+l−1+(l−2)} for a − l + 3 ≤
j ≤ a. Note that yia+(l−1) = yl−1. Therefore dTl

(xj) = ij+l−1 − ij+l−2 + 1 = dj+l−1

for 1 ≤ j ≤ a − l + 1, dTl
(xa−l+2) = ia+1 + (l − 2) − (l − 1) + 1 = d1 and dTl

(xj) =

ij+l−1 − ij+l−2 + 1 = ij+l−1−a − ij+l−2−a + 1 = dj+l−1−a, for a− l + 3 ≤ j ≤ a. That is, we

want to find the maximum l, such that dj + dj+1 + · · ·+ dj+l−1 ≤ b for any 1 ≤ j ≤ a.

Let Dt
j = dj + dj+1 + · · · + dj+t−1. It can be observed that Dt

j = Dt
j+1 if and only if

dj = dj+t. We will show that for any fixed integer t, 1 ≤ t < a, by assigning appropriate

values to dj, we can make | Dt
i − Dt

j |≤ 1 for any integers 1 ≤ i, j ≤ a. We describe

the method for assigning values to dj and prove its validity for two cases. Consider the

numbers 1, t + 1, 2t + 1, . . . , (a− 1)t + 1, where addition is performed modulo a.

Case 1. 1, t + 1, 2t + 1, . . . , (a− 1)t + 1 are pairwise distinct.

Then we can assign the values to dj as follows: Let a + b− 1 = ka + c, where k, c are

integers, and 0 ≤ c ≤ a− 1. Then a + b− 1 = (k + 1)c + k(a− c). If c = 0, let dj = k for

all 1 ≤ j ≤ a. If c > 0, let d(i−1)t+1 = k + 1 for all 1 ≤ i ≤ c, and let the other dj = k.

If c = 0, dj = k for all 1 ≤ j ≤ a. Then Dt
i = Dt

j for any integers 1 ≤ i, j ≤ a.

If c > 0, we construct a weighted cycle: C = x1xt+1x2t+1 . . . x(a−1)t+1x1 and w(x(i−1)t+1) =

d(i−1)t+1 for 1 ≤ i ≤ a. According to the assignment, we have w(x1) = w(xt+1) = · · · =

w(x(c−1)t+1) = k + 1 and w(xct+1) = w(x(c+1)t+1) = · · · = w(x(a−1)t+1) = k.

Since Dt
i = Dt

i+1 if and only if di = di+t, then Dt
(i−1)t+1 = Dt

(i−1)t+1+1 if and only if

w(x(i−1)t+1) = w(xit+1). Similarly, Dt
(i−1)t+1 = Dt

(i−1)t+1+1 + 1 if and only if w(x(i−1)t+1) =

w(xit+1) + 1, and Dt
(i−1)t+1 = Dt

(i−1)t+1+1 − 1 if and only if w(x(i−1)t+1) = w(xit+1) − 1.

We know that w(x(c−1)t+1) = w(xct+1) + 1, w(x(a−1)t+1) = w(x1) − 1, and w(x(i−1)t+1) =

w(xit+1) for 1 ≤ i ≤ a − 1 and i 6= c. For simplicity, let (c − 1)t + 1 = α (mod a),

(a − 1)t + 1 = β (mod a). Therefore we can get Dt
α = Dt

α+1 + 1, Dt
β = Dt

β+1 − 1

and D(i−1)t+1 = D(i−1)t+1+1, for 1 ≤ i ≤ a − 1 and i 6= c, namely, if α < β, then

Dt
1 = Dt

2 = · · · = Dt
α = Dt

α+1 +1 = Dt
α+2 +1 = · · · = Dt

β +1 = Dt
β+1 = Dt

β+2 = · · · = Dt
a;
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if α > β, then Dt
1 = Dt

2 = · · · = Dt
β = Dt

β+1 − 1 = Dt
β+2 − 1 = · · · = Dt

α − 1 = Dt
α+1 =

Dt
α+2 = · · · = Dt

a.

We have | Dt
i −Dt

j |≤ 1 for any integers 1 ≤ i, j ≤ a.

Case 2. Some of the numbers 1, t + 1, 2t + 1, . . . , (a− 1)t + 1 are equal.

Suppose that it + 1 = jt + 1(mod a) such that 0 ≤ i < j ≤ a − 1 and 1, t + 1, 2t +

1, . . . , (j − 1)t + 1 are pairwise distinct integers (in Za). We claim that i = 0. Otherwise

(j − i)t + 1 = 1(mod a) and 0 < j − i ≤ j − 1, a contradiction. Then 1 ≤ j ≤ a− 1.

Claim 1. it + 1 6= 2 (mod a) for any integer i.

If it + 1 = 2 (mod a), then we have it = 1 (mod a). Thus λit + 1 = λ + 1 (mod a)

for any integer λ. So jit + 1 = j + 1 (mod a). Since 1 ≤ j ≤ a − 1, 2 ≤ j + 1 ≤ a. On

the other hand jt + 1 = 1 (mod a), namely jit + 1 = 1 (mod a), a contradiction. Thus,

it + 1 6= 2 (mod a) for any integer i.

Claim 2. 2, t + 2, 2t + 2, . . . , (j − 1)t + 2 are pairwise distinct.

If j1t+2 = j2t+2 (mod a), where 0 ≤ j1 < j2 ≤ j− 1, then j1t+1 = j2t+1 (mod a).

But 1, t + 1, 2t + 1, . . . , (j − 1)t + 1 are pairwise distinct, a contradiction.

Claim 3. {1, t + 1, 2t + 1, . . . , (j − 1)t + 1} ∩ {2, t + 2, 2t + 2, . . . , (j − 1)t + 2} = ∅.
If i1t + 1 = i2t + 2 (mod a), then (i1 − i2)t + 1 = 2 (mod a). But it + 1 6= 2 (mod a)

for any integer i, a contradiction by Claim 1. Thus, 1, t + 1, 2t + 1, . . . , (j − 1)t + 1, 2, t +

2, 2t + 2, . . . , (j − 1)t + 2 are pairwise distinct.

Now, if 2 = a
j
, then we order 1, . . . , a by 1, t + 1, 2t + 1, . . . , (j − 1)t + 1, 2, t + 2, 2t +

2, . . . , (j − 1)t + 2. If 2 < a
j
, we will prove that 1 + it 6= 3 (mod a) and 2 + it 6= 3 (mod a)

for any integer i.

Claim 4. If 2 < a
j
, then 1 + it 6= 3 (mod a) and 2 + it 6= 3 (mod a) for any integer i.

If 2 + it = 3 (mod a), then 1 + it = 2 (mod a), a contradiction by Claim 1. If

1 + it = 3 (mod a), then we have it = 2 (mod a). Thus λit + 1 = 2λ + 1 (mod a) for any

integer λ. So jit + 1 = 2j + 1 (mod a). Since 2 ≤ 2j < a, 3 ≤ 2j + 1 ≤ a. On the other

hand jt + 1 = 1 (mod a), namely jit + 1 = 1 (mod a), a contradiction. Hence, if 2 < a
j
,

then 1 + it 6= 3 (mod a) and 2 + it 6= 3 (mod a) for any integer i.

If 3 = a
j
, then we order 1, . . . , a by 1, t+1, 2t+1, . . . , (j−1)t+1, 2, t+2, 2t+2, . . . , (j−

1)t + 2, 3, t + 3, 2t + 3, . . . , (j − 1)t + 3. If 3 < a
j
, then continue the similar discussion

until we reach some integer s = a
j
. Similarly, we can prove that p + it 6= q (mod a) for

1 ≤ p < q ≤ s. Thus we can get the following claim:

Claim 5. 1, t+1, 2t+1, . . . , (j−1)t+1, 2, t+2, 2t+2, . . . , (j−1)t+2, . . . , s, t+s, 2t+
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s, . . . , (j − 1)t + s are pairwise distinct. And hence {1, t + 1, 2t + 1, . . . , (j − 1)t + 1} ∪
{2, t + 2, 2t + 2, . . . , (j − 1)t + 2} ∪ · · · ∪ {a

j
, t + a

j
, 2t + a

j
, . . . , (j − 1)t + a

j
} = {1, 2, . . . , a}.

The proof is similar to those of Claims 2, 3 and 4. Then we order 1, 2, . . . , a by

1, t+1, 2t+1, . . . , (j−1)t+1, 2, t+2, 2t+2, . . . , (j−1)t+2, . . . , s, t+s, 2t+s, . . . , (j−1)t+s.

Now, we can assign the values of dj as follows:

Let a + b− 1 = ka + c, where k, c are integers, and 0 ≤ c ≤ a− 1. Then a + b− 1 =

(k + 1)c + k(a− c). In the case that c = 0, let dj = k for all 1 ≤ j ≤ a. In the case that

c > 0 for the first c numbers of our ordering, if dj uses one of them as subscript, then

dj = k + 1, else dj = k.

Next, we will show that | Dt
i −Dt

j |≤ 1 for any integers 1 ≤ i, j ≤ a.

If c = 0, dj = k for all 1 ≤ j ≤ a. Then Dt
i = Dt

j for any integers 1 ≤ i, j ≤ a.

If c > 0, we construct s weighted cycles: Ci = xixt+i . . . x(j−1)t+ixi, 1 ≤ i ≤ s, and

w(x(p−1)t+i) = d(p−1)t+i, 1 ≤ p ≤ j. Since Dt
i = Dt

i+1 if and only if di = di+t, then

Dt
(p−1)t+i = Dt

(p−1)t+i+1 if and only if w(x(p−1)t+i) = w(xpt+i). By the assignment, there

is at most one cycle in which the vertices have two distinct weights. If such cycle does

not exist, clearly, we have Dt
(p−1)t+i = Dt

(p−1)t+i+1 for all 1 ≤ i ≤ s and 1 ≤ p ≤ j,

namely, Dt
1 = Dt

2 = · · · = Dt
a. So we may assume that for some cycle Cr, w(x(γ−1)t+r) =

w(xγt+r)+1 and w(x(j−1)t+r) = w(xr)−1. Similar to the proof of Case 1, we can get that

| Dt
i −Dt

j |≤ 1 for any integers 1 ≤ i, j ≤ a.

Then, we can show that, with the assignment we can get l ≥ b ab
a+b−1

c.
Let t′ = b ab

a+b−1
c < a. We have Dt′

1 + Dt′
2 + · · · + Dt′

a = (d1 + d2 + · · · + dt′) + (d2 +

d3 + · · ·+ dt′+1) + · · ·+ (da + d1 + · · ·+ dt′−1) = t′(d1 + d2 + · · ·+ da) = t′(a + b− 1).

Since for fixed t′ = b ab
a+b−1

c, | Dt′
i −Dt′

j |≤ 1 for any integers 1 ≤ i, j ≤ a,

Dt′
j ≤ d t′(a+b−1)

a
e < t′(a+b−1)

a
+ 1 ≤ ab

a+b−1
a+b−1

a
+ 1 = b + 1.

The third inequality holds since t′ = b ab
a+b−1

c ≤ ab
a+b−1

. Since Dt′
j is an integer, we

have Dt′
j ≤ b for all 1 ≤ j ≤ a. Since l is the maximum integer such that Dl

j =

dj + dj+1 + · · · + dj+l−1 ≤ b for any 1 ≤ j ≤ a, then l ≥ t′ = b ab
a+b−1

c. So we can find at

least b ab
a+b−1

c edge-disjoint spanning trees of Ka,b. And hence κa+b(Ka,b) ≥ b ab
a+b−1

c. So

we have proved that κa+b(Ka,b) = b ab
a+b−1

c.

3 The k-connectivity of complete bipartite graphs

Next, we will calculate κk(Ka,b) for 2 ≤ k ≤ a + b.
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Recall that κk(G) = min{κ(S)}, where the minimum is taken over all k-element

subsets S of V (G). X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb} be the bipartition of

Ka,b. Actually, all vertices in X are equivalent and all vertices in Y are equivalent. So

instead of considering all k-element subsets S of V (G), we can restrict our attention to

the k-element subsets Si = {x1, x2, . . . , xi, y1, y2, . . . , yk−i} for 0 ≤ i ≤ k. Notice that,

if i > a or k − i > b, then Si does not exist. So, we need only to consider Si for

max{0, k − b} ≤ i ≤ min{a, k}.
Now, let A be a maximum set of internally disjoint trees connecting Si. Let A0 be the

set of trees connecting Si whose vertex set is Si, let A1 be the set of trees connecting Si

whose vertex set is Si ∪ {u}, where u /∈ Si and let A2 be the set of trees connecting Si

whose vertex set is Si ∪ {u, v}, where u, v /∈ Si and they belong to distinct partitions.

Lemma 3.1. Let A be a maximum set of internally disjoint trees connecting Si. Then we

can always find a set A′ of internally disjoint trees connecting Si, such that | A |=| A′ |
and A′ ⊂ A0 ∪ A1 ∪ A2.

Proof. Let A = {T1, T2, . . . , Tp}. If for some tree Tj in A, Tj /∈ A0 ∪ A1 ∪ A2, then

let V (Tj) = Si ∪ U ∪ V , where (U ∪ V ) ∩ Si = ∅, U ⊆ X and V ⊆ Y . One of

U and V can be empty but not both. If U and V are not empty, let u1 ∈ U and

v1 ∈ V . The tree T ′
j with vertex set V (T ′

j) = Si ∪ {u1, v1} and edge set E(T ′
j) =

{u1y1, . . . , u1yk−i, v1x1, . . . , v1xi, u1v1} is a tree in A0 ∪A1 ∪A2. Since V (Tj)∩V (Tk) = Si

and E(Tj) ∩ E(Tk) = ∅ for every tree Tk ∈ A, where k 6= j, Tk will not contain u1, v1 nor

the edges incident with u1, v1. Therefore, V (T ′
j) ∩ V (Tk) = Si and E(T ′

j) ∩E(Tk) = ∅ for

1 ≤ k ≤ p, k 6= j. If one of U and V is empty, say V , let U = {u1, u2, . . . , uq}. Then we

connect all neighbors of u2, . . . , uq to u1 by some new edges and delete u2, . . . , uq and any

resulting multiple edges. Obviously, the new graph we obtain is a tree T ′
j ∈ A0 ∪A1 ∪A2

that connects Si. For every tree Tk ∈ A, where k 6= j, Tk will not contain u1 nor the

edges incident with u1. Therefore, V (T ′
j) ∩ V (Tk) = Si and E(T ′

j) ∩ E(Tk) = ∅ for

1 ≤ k ≤ p, k 6= j. Replacing each Tj /∈ A0 ∪ A1 ∪ A2 by T ′
j , we finally get the set

A′ ⊂ A0 ∪ A1 ∪ A2 which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting Si

is contained in A0 ∪ A1 ∪ A2.

Next, we will define the standard structure of trees in A0, A1 and A2, respectively.

Every tree in A0 is of standard structure. A tree T in A1 with vertex set V (T ) =

Si ∪ {u}, where u ∈ X \ Si, is of standard structure, if u is adjacent to every vertex in

Si ∩ Y . Since |E(T )| = |V (T )| − 1 = k and dT (u) = |Si ∩ Y | = k − i, there remains i

edges incident with Si ∩X. We know that |Si ∩X| = i and each vertex must have degree

at least 1 in T . So every vertex in Si ∩X has degree 1. A tree T in A1 with vertex set
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V (T ) = Si ∪ {v}, where v ∈ Y \ Si, is of standard structure, if v is adjacent to every

vertex in Si ∩ X. Similarly, every vertex in Si ∩ Y has degree 1. A tree T in A2 with

vertex set V (T ) = Si ∪ {u, v}, where u ∈ X \ Si and v ∈ Y \ Si, is of standard structure,

if u is adjacent to every vertex in Si ∩ Y , v is adjacent to every vertex in Si ∩X, and u is

adjacent to v. We then denote the resulting tree T by Tu,v. Denote the set of trees in A0,

A1 and A2 with the standard structure by A0, A1 and A2, respectively. Clearly, A0 = A0.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connecting Si, A ⊂
A0 ∪A1 ∪A2. Then we can always find a set A′′ of internally disjoint trees connecting Si,

such that | A |=| A′′ | and A′′ ⊂ A0 ∪ A1 ∪ A2.

Proof. Let A = {T1, T2, . . . , Tp}. Suppose that there is a tree Tj in A such that Tj ∈ A1,

but Tj /∈ A1. Let V (Tj) = Si ∪ {u}, where u ∈ X \ Si. Note that the case u ∈ Y \ Si is

similar. Since Tj /∈ A1, there are some vertices in Si ∩ Y , say yi1 , . . . , yit , not adjacent to

u. Then we can connect yi1 to u by a new edge. It will produce a unique cycle. Delete

the other edge incident with yi1 on the cycle. The graph remains a tree. Do the same

operation to yi2 , . . . , yit in turn. Finally we get a tree T ′
j whose vertex set is Si ∪ {u}

and u is adjacent to every vertex in Si ∩ Y , that is, T is of standard structure. For each

tree Tn ∈ A \ {Tj}, clearly Tn does not contain u nor the edges incident with u. So

V (T ′
j)∩V (Tn) = Si and E(T ′

j)∩E(Tn) = ∅. Suppose that there is a tree Tj in A such that

Tj ∈ A2, but Tj /∈ A2. Let V (Tj) = Si ∪ {u, v}, where u ∈ X \ Si and v ∈ Y \ Si. Then

T ′
j = Tu,v is the tree in A2 whose vertex set is Si ∪ {u, v}. For each tree Tn ∈ A \ {Tj},

V (T ′
j)∩ V (Tn) = Si and E(T ′

j)∩E(Tn) = ∅. Replacing each Tj /∈ A0 ∪A1 ∪A2 by T ′
j , we

finally get the set A′′ ⊂ A0 ∪ A1 ∪ A2 which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting Si

is contained in A0 ∪ A1 ∪ A2. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by V (A) and

the union of the edge sets of all trees in set A by E(A). Let A0 := A ∩A0, A1 := A ∩A1

and A2 := A ∩ A2. Then A = A0 ∪ A1 ∪ A2.

Lemma 3.3. Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees con-

necting Si. Then either X ⊆ V (A) or Y ⊆ V (A).

Proof. If X " V (A) and Y " V (A), let x ∈ X \ V (A) and y ∈ Y \ V (A). Then

the tree Tx, y ∈ A2 with vertex set Si ∪ {x, y} is a tree that connects Si. Moreover,

V (Tx, y) ∩ V (A) = Si and since all edges of Tx, y are incident with x or y, so Tx, y and T

are edge-disjoint for any tree T ∈ A. So, A ∪ {Tx, y} is also a set of internally disjoint

trees connecting Si, contradicting to the maximality of A.

8



So we conclude that if A is a maximum set of internally disjoint trees connecting Si,

then X ⊆ V (A) or Y ⊆ V (A).

Lemma 3.4. Let A ⊂ A0∪A1∪A2 be a maximum set of internally disjoint trees connect-

ing Si, and A = A0 ∪ A1 ∪ A2. If there is a vertex x ∈ X \ V (A) and a tree T ∈ A1 with

vertex set Si ∪ {y}, where y ∈ Y \Si, then we can find a maximum set A′ = A′
0 ∪A′

1 ∪A′
2

of internally disjoint trees connecting Si, such that A′
0 = A0, |A′

1| = |A1| − 1, and

|A′
2| = |A2|+ 1.

Proof. Let Tx, y be the tree in A2 whose vertex set is Si∪{x, y}. Then A′ = A\T ∪{Tx, y}
is just the set we want.

The case that there is a vertex y ∈ Y \V (A) and a tree T ∈ A1 with vertex set Si∪{x},
where x ∈ X \ Si, is similar.

Next, we will show that we can always find a maximum set A of internally disjoint

trees connecting Si, such that all vertices in V (A1) \ Si belong to the same partition. To

show this, we need the following lemma.

Lemma 3.5. Let p, q be two nonnegative integers. If p(k−1)+qi ≤ i(k−i), and there are

q vertices u1, u2, . . . , uq ∈ X \Si, then we can always find p trees T1, T2, . . . , Tp in A0 and q

trees Tp+1, Tp+2, . . . , Tp+q in A1, such that V (Tj) = Si for 1 ≤ j ≤ p, V (Tp+m) = Si∪{um}
for 1 ≤ m ≤ q, and Tr and Ts are edge-disjoint for 1 ≤ r < s ≤ p + q. Similarly, if

p(k − 1) + q(k − i) ≤ i(k − i), and there are q vertices v1, v2, . . . , vq ∈ Y \ Si, then we

can always find p trees T1, T2, . . . , Tp in A0 and q trees Tp+1, Tp+2, . . . , Tp+q in A1, such

that V (Tj) = Si for 1 ≤ j ≤ p, V (Tp+m) = Si ∪ {vm} for 1 ≤ m ≤ q, and Tr and Ts are

edge-disjoint for 1 ≤ r < s ≤ p + q.

Proof. If p(k−1)+ qi ≤ i(k− i), then p(k−1) ≤ i(k− i), namely p ≤ b i(k−i)
k−1

c. Then with

the method which we used to find edge-disjoint spanning trees in the proof of Theorem

1.2, we can find p edge-disjoint trees T1, T2, . . . , Tp in A0, just by taking a = i, b = k − i

and t = p. Moreover, let Dp
s denote the number of edges incident with xs in all of the p

trees. Then according to the method, |Dp
s − Dp

t | ≤ 1 for 1 ≤ s, t ≤ i. Now, denote by

Bp
s the number of edges incident with xs which we have not used in the p trees. Then

|Bp
s −Bp

t | ≤ 1 for 1 ≤ s, t ≤ i. Since Bp
1 +Bp

2 + · · ·+Bp
i = i(k− i)−p(k−1) ≥ qi, Bp

s ≥ q.

Because for each tree in A1 with vertex set Si ∪ {u}, where u ∈ X \ Si, the vertices in

Si∩X all have degree 1, we can find q edge-disjoint trees Tp+1, Tp+2, . . . , Tp+q in A1. Since

the edges in Tp+1, Tp+2, . . . , Tp+q are not used in T1, T2, . . . , Tp for 1 ≤ r < s ≤ p + q, Tr

and Ts are edge-disjoint. The proof of the second part of the lemma is similar.

Lemma 3.6. Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees con-

necting Si, and A = A0 ∪ A1 ∪ A2. If there are s trees T1, T2, . . . , Ts ∈ A1 with vertex set

9



Si∪{u1}, Si∪{u2}, . . ., Si∪{us} respectively, where uj ∈ X \Si for 1 ≤ j ≤ s, and t trees

Ts+1, Ts+2, . . . , Ts+t ∈ A1 with vertex set Si ∪ {v1}, Si ∪ {v2}, . . ., Si ∪ {vt} respectively,

where vj ∈ Y \ Si for 1 ≤ j ≤ t. Then we can find a set A′ = A′
0 ∪ A′

1 ∪ A′
2 of internally

disjoint trees connecting Si, such that |A| = |A′| and all vertices in V (A′
1) \ Si belong to

the same partition.

Proof. Let |A0| = p. Since A is a set of internally disjoint trees connecting Si, we

have p(k − 1) + si + t(k − i) ≤ i(k − i), where si denote the si edges incident with

x1, . . . , xi in T1, T2, . . . , Ts, and t(k− i) denote the t(k− i) edges incident with y1, . . . , yk−i

in Ts+1, Ts+2, . . . , Ts+t. If s ≤ t, then p(k − 1) + si + s(k − i) + (t− s)(k − i) ≤ i(k − i),

and hence (p + s)(k − 1) + (t − s)(k − i) ≤ i(k − i). Obviously, there are t − s vertices

vs+1, vs+2, . . . , vt ∈ Y \ Si, and therefore by Lemma 3.5, we can find p + s trees in A0

and t− s trees in A1, such that all these trees are internally disjoint trees connecting Si.

Now let A′
0 be the set of the p + s trees in A0, A′

1 be the set of the t− s trees in A1 and

A′
2 := A2 ∪ {Tuj ,vj

, 1 ≤ j ≤ s}. Then A′ = A′
0 ∪A′

1 ∪A′
2 is just the set we want. The case

that s > t is similar.

From Lemmas 3.4 and 3.6, we can see that, if A′ is a set of internally disjoint trees

connecting Si which we find currently, X \ V (A) 6= ∅ and Y \ V (A) 6= ∅, then no matter

how many edges there are in E(Ka,b[Si]) \ E(A′), we always add to A′ the trees in A2

rather than the trees in A1 to form a larger set of internally disjoint trees connecting Si.

Lemma 3.7. Let A ⊂ A0∪A1∪A2 be a maximum set of internally disjoint trees connect-

ing Si, and A = A0∪A1∪A2. If V (A) ⊂ V (G) and A0 6= ∅, then we can find a maximum

set A′ = A′
0 ∪A′

1 ∪A′
2 of internally disjoint trees connecting Si, such that |A′

0| = |A0| − 1,

|A′
1| = |A1|+ 1, and A′

2 = A2.

Proof. Let u ∈ V (G) \ V (A) and T ∈ A0. Without loss of generality, suppose u ∈ X.

Then we can add the edge uy1 to T and get a tree T ′ ∈ A1. Using the method in Lemma

3.2, we can transform T ′ into a tree T ′′ of standard structure. Then T ′′ ∈ A1. Let

A′
0 := A0 \ T , A′

1 := A1 ∪ {T ′′} and A′
2 = A2. It is easy to see that A′ = A′

0 ∪A′
1 ∪A′

2 is a

set of internally disjoint trees connecting Si. Since |A′
0| = |A0| − 1, |A′

1| = |A1| + 1, and

A′
2 = A2, A′ is a maximum set of internally disjoint trees connecting Si.

So, we can assume that for the maximum set A of internally disjoint trees connecting

Si, either V (A) = V (G) or A0 = ∅. Moreover, if A′ is a set of internally disjoint trees

connecting Si which we find currently, V (A′) ⊂ V (G) and the edges in E(Ka,b[Si])\E(A′)

can form a tree T in A0, then we will add to A′ the tree T ′′ in Lemma 3.7 rather than

the tree T to form a larger set of internally disjoint trees connecting Si.

Next, let us state and prove our main result.
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Theorem 3.1. Given any two positive integers a ≤ b, let Ka,b denote a complete bipartite

graph with a bipartition of sizes a and b, respectively. Then we have the following results:

if k > b− a + 2 and a− b + k is odd, then

κk(Ka,b) =
a + b− k + 1

2
+ b(a− b + k − 1)(b− a + k − 1)

4(k − 1)
c;

if k > b− a + 2 and a− b + k is even, then

κk(Ka,b) =
a + b− k

2
+ b(a− b + k)(b− a + k)

4(k − 1)
c;

and if k ≤ b− a + 2, then

κk(Ka,b) = a.

Proof. Let X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb} be the bipartition of Ka,b.

As we have mentioned, we can restrict our attention to the k-element subsets Si =

{x1, x2, . . . , xi, y1, y2, . . . , yk−i} for max{0, k − b} ≤ i ≤ min{a, k}.
From the above lemmas, we can decide our principle to find the maximum set of

internally disjoint trees connecting Si. Namely, first we find as many trees in A2 as

possible, next we find as many trees in A1 as possible, and finally we find as many trees

in A0 as possible. Let A be the maximum set of internally disjoint trees connecting Si we

finally find. We now compute |A|.
Case 1. k ≤ b− a + 2.

Obviously, κ(S0) = a. For S1, since k ≤ b − a + 2, then b − (k − 1) = b − k + 1 ≥
a− 2 + 1 = a− 1. So, |A2| = a− 1. If b− k + 1 = a− 1, then |A1| = 0 and |A0| = 1. If

b − k + 1 > a − 1, then |A1| = 1 and |A0| = 0. No matter which case happens, we have

κ(S1) = |A2|+ |A1|+ |A0| = a.

For Si, i ≥ 2, since k ≤ b− a + 2, then b− (k − i) = b− k + i ≥ a− 2 + i > a− i. So,

|A2| = a− i. Since b− k + i− (a− i) = b− a− k + 2i ≥ −2 + 2i ≥ i, then |A1| = i and

|A0| = 0. Thus κ(Si) = |A2|+ |A1|+ |A0| = a.

In summary, if k ≤ b− a + 2, then κk(G) = a.

Case 2. k > b− a + 2.

First, let us compare κ(Si) with κ(Sk−i), for 0 ≤ i ≤ bk
2
c. If a = b, clearly, κ(Si) =

κ(Sk−i). So we may assume that a < b.

For i = 0, κ(S0) = a < b = κ(Sk).

For 1 ≤ i ≤ bk
2
c, we will give the expressions of κ(Si) and κ(Sk−i).
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First for Si, since every pair of vertices u ∈ X \Si and v ∈ Y \Si can form a tree Tu,v,

then |A2| = min{a− i, b− (k − i)}. Namely,

|A2| =
{

a− i if i ≥ a−b+k
2

;

b− k + i if i < a−b+k
2

.

Next, since every tree T in A1 has a vertex in V \ (Si ∪ V (A2)), we have

|A1| ≤
{

b− k + i− (a− i) if i ≥ a−b+k
2

;

a− i− (b− k + i) if i < a−b+k
2

.

On the other hand, if the tree T has vertex set Si ∪ {u}, where u ∈ X \ Si, then every

vertex in Si ∩X is incident with one edge in E(Si), where E(Si) denotes the set of edges

whose ends are both in Si. And if the tree T has vertex set Si ∪ {v}, where v ∈ Y \ Si,

then every vertex in Si∩Y is incident with one edge in E(Si). Since every vertex in Si∩X

is incident with k − i edges in E(Si) and every vertex in Si ∩ Y is incident with i edges

in E(Si), we have

|A1| ≤
{

i if i ≥ a−b+k
2

;

k − i if i < a−b+k
2

.

Combining the two inequalities, we get

|A1| =
{

min{b− a− k + 2i, i} if i ≥ a−b+k
2

;

min{a− b + k − 2i, k − i} if i < a−b+k
2

.

Thus

|A1| =





i if i ≥ a− b + k ;

b− a− k + 2i if a−b+k
2

≤ i < a− b + k ;

a− b + k − 2i if i < a−b+k
2

.

Finally, by Lemma 3.5 we have

|A0| =
{
b i(k−i)−|A1|(k−i)

k−1
c if i ≥ a−b+k

2
;

b i(k−i)−|A1|i
k−1

c if i < a−b+k
2

.

Thus

|A0| =





0 if i ≥ a− b + k ;

b [i−(b−a−k+2i)](k−i)
k−1

c if a−b+k
2

≤ i < a− b + k ;

b [k−i−(a−b+k−2i)]i
k−1

c if i < a−b+k
2

.

Hence

κ(Si) =





a if i ≥ a− b + k ;

b− k + i + b [i−(b−a−k+2i)](k−i)
k−1

c if a−b+k
2

≤ i < a− b + k ;

a− i + b [k−i−(a−b+k−2i)]i
k−1

c if i < a−b+k
2

.

Notice that i ≥ 1, and hence k − i ≤ k − 1.
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If a−b+k
2

≤ i < a− b + k, then b [i−(b−a−k+2i)](k−i)
k−1

c ≤ i− (b− a− k + 2i) = a− b + k− i.

So, κ(Si) ≤ b− k + i + a− b + k − i = a.

If i < a−b+k
2

, then a − b + k − 2i > 0, k − i − (a − b + k − 2i) < k − i ≤ k − 1, and

hence b [k−i−(a−b+k−2i)]i
k−1

c ≤ i. So, κ(Si) ≤ a− i + i = a

Thus κ(Si) ≤ a for i ≥ 1.

Next, considering Sk−i, similarly, we have |A2| = min{a− (k − i), b− i}.
Since a < b and i ≤ bk

2
c ≤ dk

2
e ≤ k − i, then b− i > a− (k − i). So |A2| = a− k + i

and |A1| = min{b− i− (a− k + i), k − i}. Hence

|A1| =
{

k − i if i ≤ b− a ;

b− a + k − 2i if i > b− a .

Moreover,

|A0| =
{

0 if i ≤ b− a ;

b [k−i−(b−a+k−2i)]i
k−1

c if i > b− a .

So,

κ(Sk−i) =

{
a if i ≤ b− a ;

b− i + b [k−i−(b−a+k−2i)]i
k−1

c if i > b− a .

Now, we can compare κ(Si) with κ(Sk−i). For i ≤ b − a, κ(Sk−i) = a ≥ κ(Si). For

i > b− a, there must be b− a < k − i, that is, i < a− b + k. Note that for any two real

numbers s, t, bs + tc ≥ bsc+ btc.
If a−b+k

2
≤ i < a− b + k, then

κ(Sk−i)− κ(Si) = b− i + b [k − i− (b− a + k − 2i)]i

k − 1
c

−{b− k + i + b [i− (b− a− k + 2i)](k − i)

k − 1
c}

≥ (k − 2i) + b(k − 2i)(b− a− k)

k − 1
c

≥ (k − 2i) + b(k − 2i)(1− k)

k − 1
c ≥ (k − 2i)− (k − 2i) = 0.

So, κ(Sk−i) ≥ κ(Si).

If i < a−b+k
2

, then

κ(Sk−i)− κ(Si) = b− i + b [k − i− (b− a + k − 2i)]i

k − 1
c

−{a− i + b [k − i− (a− b + k − 2i)]i

k − 1
c}

≥ (b− a) + b(2i)(a− b)

k − 1
c.
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Since i < a−b+k
2

, then 2i ≤ k − 1, and hence (2i)(a−b)
k−1

≥ a − b. So, κ(Sk−i) − κ(Si) ≥
b− a + a− b = 0. Thus, κ(Sk−i) ≥ κ(Si).

In summary, κ(Sk−i) ≥ κ(Si) for 0 ≤ i ≤ bk
2
c. So, in order to get κk(G), it is enough

to consider κ(Si) for 0 ≤ i ≤ bk
2
c.

Next, let us compare κ(Si) with κ(Si+1), for 0 ≤ i ≤ bk
2
c − 1. For i = 0, κ(Si) = a ≥

κ(Si+1). For 1 ≤ i ≤ bk
2
c − 1,

κ(Si) =





a if i ≥ a− b + k ;

b− k + i + b [i−(b−a−k+2i)](k−i)
k−1

c if a−b+k
2

≤ i < a− b + k ;

a− i + b [k−i−(a−b+k−2i)]i
k−1

c if i < a−b+k
2

.

and

κ(Si+1) =





a if i ≥ a− b + k − 1 ;

b− k + i + 1 + b [i+1−(b−a−k+2i+2)](k−i−1)
k−1

c if a−b+k
2

− 1 ≤ i < a− b + k − 1 ;

a− i− 1 + b [k−i−1−(a−b+k−2i−2)](i+1)
k−1

c if i < a−b+k
2

− 1 .

So, κ(Sa−b+k) = κ(Sa−b+k+1) = · · · = κ(Smin{a,k}) = a.

If i < a−b+k
2

− 1, then

κ(Si)− κ(Si+1) = a− i + b [k − i− (a− b + k − 2i)]i

k − 1
c

−{a− i− 1 + b [k − i− 1− (a− b + k − 2i− 2)]i + 1

k − 1
c}

≥ 1 + b(a− b− 2i− 1)

k − 1
c ≥ 1 + b1− k

k − 1
c ≥ 1− 1 = 0.

So, κ(Si) ≥ κ(Si+1). Namely, if a − b + k is odd, we have κ(S0) ≥ κ(S1) ≥ · · · ≥
κ(Sa−b+k−3

2
) ≥ κ(Sa−b+k−1

2
); and if a − b + k is even, we have κ(S0) ≥ κ(S1) ≥ · · · ≥

κ(Sa−b+k−4
2

) ≥ κ(Sa−b+k−2
2

).

If a−b+k is even, then κ(Sa−b+k
2

−1) = a+b−k
2

+1+b (b−a+k−2)(a−b+k−2)
4(k−1)

c and κ(Sa−b+k
2

) =
a+b−k

2
+ b (b−a+k)(a−b+k)

4(k−1)
c. Since (a− b + k)(b− a + k)− (b− a + k − 2)(a− b + k − 2) =

(a− b+ k)(b− a+ k)− [(a− b+ k)(b− a+ k)− 2(b− a+ k)− 2(a− b+ k− 2)] = 4(k− 1),

we have κ(Sa−b+k
2

−1) = κ(Sa−b+k
2

).

If a−b+k is odd, we have κ(Sa−b+k−1
2

) = a+b−k+1
2

+b (b−a+k−1)(a−b+k−1)
4(k−1)

c = κ(Sa−b+k+1
2

).

If a−b+k
2

≤ i < a− b + k − 1, then

κ(Si+1)− κ(Si) = b− k + i + 1 + b [i + 1− (b− a− k + 2i + 2)](k − i− 1)

k − 1
c

−{b− k + i + b [i− (b− a− k + 2i)](k − i)

k − 1
c}

≥ 1 + b(b− a− 2k + 2i + 1)

k − 1
c ≥ 1 + b1− k

k − 1
c ≥ 1− 1 = 0.
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So, κ(Si+1) ≥ κ(Si). Namely, if a−b+k is odd, we have κ(Sa−b+k+1
2

) ≤ κ(Sa−b+k+3
2

) ≤ · · · ≤
κ(Sa−b+k−1) ≤ a = κ(Sa−b+k), and if a− b+ k is even, we have κ(Sa−b+k

2
) ≤ κ(Sa−b+k+2

2
) ≤

· · · ≤ κ(Sa−b+k−1) ≤ a = κ(Sa−b+k).

Thus, if k > b− a + 2 and a− b + k is odd,

κk(Ka,b) = κ(Sa−b+k−1
2

) = a+b−k+1
2

+ b (a−b+k−1)(b−a+k−1)
4(k−1)

c,
and if k > b− a + 2 and a− b + k is even,

κk(Ka,b) = κ(Sa−b+k
2

) = a+b−k
2

+ b (a−b+k)(b−a+k)
4(k−1)

c.
The proof is complete.

Notice that, when k = a + b, the result coincides with Theorem 1.2.
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