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Abstract. Bouvel and Pergola introduced the notion of minimal permutations in the
study of the whole genome duplication-random loss model for genome rearrangements.
Let Fd(n) denote the set of minimal permutations of length n with d descents, and let
fd(n) = |Fd(n)|. They showed that fn−2(n) = 2n − (n− 1)n− 2 and fn(2n) = Cn, where
Cn is the n-th Catalan number. Mansour and Yan proved that fn+1(2n+1) = 2n−2nCn+1.
In this paper, we consider the problem of counting minimal permutations in Fd(n) with
a prescribed set of ascents, and we show that they are in one-to-one correspondence
with a class of skew Young tableaux, which we call 2-regular skew tableaux. Using the
determinantal formula for the number of skew Young tableaux of a given shape, we find
an explicit formula for fn−3(n). Furthermore, by using the Knuth equivalence, we give a
combinatorial interpretation of a formula for a refinement of the number fn+1(2n + 1).
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1 Introduction

The notion of minimal permutations was introduced by Bouvel and Pergola in the study
of genome evolution, see [3]. Such permutations are a basis of permutations that can be
obtained from the identity permutation via a given number of steps in the duplication-
random loss model, see [1, 3, 4, 6]. Let π = π1π2 · · ·πn be a permutation. A duplication
of π means the duplication of a fragment of consecutive elements of π in such a way that
the duplicated fragment is put immediately after the original fragment. Suppose that
πiπi+1 · · ·πj is the fragment for duplication, then the duplicated sequence is

π1 · · ·πi−1πi · · ·πjπi · · ·πjπj+1 · · ·πn.

A random loss means to randomly delete one occurrence of each repeated element πk for
i ≤ k ≤ j, so that we get a permutation again. In the following example, the fragment
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234 is duplicated, and the underlined elements are the occurrences of repeated elements
that are supposed to be deleted,

1
︷︸︸︷

234 56 1
︷︸︸︷

234
︷︸︸︷

234 56 123423456 132456.

To describe the notation of minimal permutations, we give an overview of the descent
set of a permutation and the patterns of subsequences of a permutation. Let Sn be the set
of permutations on [n] = {1, 2, . . . , n}, where n ≥ 1. In a permutation π = π1π2 · · ·πn ∈
Sn, a descent is a position i such that i ≤ n − 1 and πi > πi+1, whereas an ascent is a
position i with i ≤ n− 1 and πi < πi+1. For example, the permutation 3145726 ∈ S7 has
two descents 1 and 5 and has four ascents 2, 3, 4 and 6.

Let V = {v1, v2, . . . , vn} be a set of distinct integers listed in increasing order, namely,
v1 < v2 < · · · < vn. The standardization of a permutation π on V is the permutation
st(π) on [n] obtained from π by replacing vi with i. For example, st(9425) = 4213. A
subsequence ω = πi(1)πi(2) · · ·πi(k) of π is said to be of type σ or π contains a pattern σ
if st(ω) = σ. We say that a permutation π ∈ Sn contains a pattern τ ∈ Sk if there is a
subsequence of π that is of type τ . For example, let π = 263751498. The subsequence
3549 is of type 1324, and so π contains the pattern 1324. We use the notation τ ≺ π to
denote that a permutation π contains the pattern τ .

A permutation π is called a minimal permutation with d descents if it is minimal in
the sense that there exists no permutation σ with exactly d descents such that σ ≺ π.
Denote by Bd the set of minimal permutations with d descents. Bouvel and Pergola [3]
have shown that the length, namely, the number of elements, of any minimal permutation
in the set Bd is at least d+1 and at most 2d. They also proved that in the whole genome
duplication-random loss model, the permutations that can be obtained from the identity
permutation in at most p steps can be characterized as permutations with d = 2p descents
that avoid certain patterns.

Theorem 1.1 (Bouvel and Pergola [3]) Let π = π1π2 · · ·πn be a permutation on [n].
Then π is a minimal permutation with d descents if and only if π is a permutation with
d descents satisfying the following conditions:

(i) It starts and ends with a descent;

(ii) If i is an ascent, that is, πi < πi+1, then i ∈ {2, 3, . . . , n− 2} and πi−1πiπi+1πi+2 is
of type 2143 or 3142.

Denote by Fd(n) the set of minimal permutations of length n with d descents and fd(n) =
|Fd(n)|. Clearly, fd(n) = 0 for d ≤ 0 or d ≥ n, and fd(d + 1) = 1 for all d ≥ 1. Bouvel
and Pergola proved that fn(2n) equals the n-th Catalan number, that is,

fn(2n) = Cn =
1

n + 1

(
2n

n

)
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and fn−2(n) is given by the formula

fn−2(n) = 2n − (n− 1)n− 2.

Mansour and Yan [7] have shown that

fn+1(2n + 1) = 2n−2nCn+1. (1.1)

As remarked by Bouvel and Pergola, it is an open problem to compute fd(n) for
other cases of d. In this paper, we consider the enumeration of minimal permutations in
Fd(n) with a prescribed set of ascents. We show that such minimal permutations are in
one-to-one correspondence with a class of skew Young tableaux, which we call 2-regular
skew tableaux. Thus we may employ the determinantal formula for the number of skew
Young tableaux of a given shape to compute the number fd(n). In this way, we derive
an explicit formula for fn−3(n). Moreover, we obtain a formula for the refinement of the
number fn+1(2n + 1) and find a combinatorial proof by using the Knuth equivalence of
permutations.

2 2-Regular skew tableaux

In this section, we establish a connection between minimal permutations and skew Young
tableaux of certain shape. To describe our correspondence, let us give an overview of
necessary terminology on Young tableaux as used in Stanley [9].

A partition of a positive integer n is defined to be a sequence λ = (λ1, . . . , λk) of
positive integers such that

∑
λi = n and λ1 ≥ · · · ≥ λk. If λ is a partition of n, we write

λ ` n, or |λ| = n. The Ferrers diagram of a partition λ is a diagram with left-justified
rows in which the i-th row consists of λi dots. The conjugate partition λ′ of λ is obtained
by transposing the Ferrers diagram of λ. The positive terms λi are called the parts of λ,
and the number of parts is denoted by l(λ).

A standard Young tableau (SYT) of shape λ is an array P = (Pij) of positive integers
of shape λ that is strictly increasing in every row and in every column, where Pij is
the integer in the position (i, j) of P . The size of an SYT is its number of entries. If
λ and µ are partitions with µ ⊆ λ, namely, µi ≤ λi for all i, we can define a Young
tableau of skew shape λ/µ as a tableau on [n] that is increasing in every row and every
column. The number of boxes of the Young diagram of shape λ/µ is denoted by |λ/µ|.
For example, below are an SYT of shape (4, 3, 3, 1) and a skew Young tableau of shape
(6, 5, 2, 2)/(3, 1):

1 3 5 6 7 8 11
2 4 8 1 5 9 10
7 9 11 2 4
10 3 6

.
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If |λ/µ| = n and l(λ) = r, then the number of skew Young tableaux of shape λ/µ is given
by

fλ/µ = n! det

(
1

(λi − µj − i + j)!

)r

i, j=1

, (2.1)

see, for example, [9, Corollary 7.16.3] and [10]. Since f λ/µ = fλ′/µ′

for any skew shape
λ/µ, (2.1) also takes the following form

fλ/µ = n! det

(
1

(λ′
i − µ′

j − i + j)!

)t

i, j=1

, (2.2)

where |λ′/µ′| = n and l(λ′) = t.

Let (a1, . . . , ak) be a sequence of positive integers such that ai ≥ 2 for all i and a1+a2+
· · ·+ak = n. Let P be a skew Young tableau of size n with column lengths a1, a2, . . . , ak.
We say that P is 2-regular if any two consecutive columns overlap exactly by two rows,
namely, for any two consecutive columns there are exactly two rows containing elements
in both columns. Denote by Pa1 , a2,..., ak

(n) the set of 2-regular skew tableaux with column
lengths a1, a2, . . . , ak.

For example, the following skew Young tableau is 2-regular and it belongs to P4,2,5,3,2(16):

6 8
2 10 15
5 11
9

1 3 12
4 7 14
13
16

. (2.3)

For a permutation π of length n, a substring of π is a sequence of consecutive elements
of π. A maximal decreasing substring of π is defined to be a decreasing substring that is not
a substring of another decreasing substring. For example, the permutation 5 2 7 3 1 4 8 9 6
contains five maximal decreasing substrings, namely, 5 2, 7, 3 1, 4, 8 and 9 6.

It is clear that any permutation π with k − 1 ascents can be decomposed into k
maximal decreasing substrings. To describe the ascent set, we find it convenient to use a
sequence (a1, a2, . . . , ak) to denote the lengths of the maximal decreasing substrings, and
this sequence is called the ascent sequence of π. Then the ascent set of π is expressed as
{a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1}.

Lemma 2.1 Given a minimal permutation π = π1π2 · · ·πn. Suppose (a1, a2, . . . , ak) is
its ascent sequence, then ai ≥ 2 for all i.
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Proof. By condition (i) of Theorem 1.1, π starts and ends with a descent, this implies that
a1 ≥ 2 and ak ≥ 2. For each ascent j = a1 + · · ·+ ai of π, where 1 ≤ i ≤ k− 1, condition
(ii) of Theorem 1.1 says that πj−1πjπj+1πj+2 is of type 2143 or 3142, which means that
both j−1 and j +1 are descents. Therefore, π contains no consecutive ascents. It follows
that the length of every maximal decreasing substring is at least two. Thus we have
ai ≥ 2. This completes the proof.

Denote by Fa1, a2,..., ak
(n) the set of minimal permutations of length n with the ascent

sequence (a1, a2, . . . , ak), and let Fa1 , a2,..., ak
(n) = |Fa1, a2,..., ak

(n)|. We show that there is a
bijection between the set Fa1 , a2,..., ak

(n) of minimal permutations and the set Pa1 , a2,..., ak
(n)

of 2-regular skew tableaux.

Theorem 2.2 Let (a1, a2, . . . , ak) be a sequence of positive integers such that a1 + a2 +
· · ·+ak = n and ai ≥ 2 for all i. Then the minimal permutations in the set Fa1, a2,..., ak

(n)
are in one-to-one correspondence with the 2-regular skew tableaux in the set Pa1, a2,..., ak

(n).

Proof. Let π = π1π2 · · ·πn be a minimal permutation in Fa1, a2,..., ak
(n). We wish to

transform π into a tableau P of the following form:

P =

...

... · · · · · ·
πa1+a2

πa1+a2+2

πa1+a2−1 πa1+a2+1
...

πa1
πa1+2

πa1−1 πa1+1
...

π2

π1

. (2.4)

More precisely, for 1 ≤ i ≤ k, the i-th column of P is the i-th maximal decreasing
substring of π, where the elements in the maximal decreasing substring are placed in
increasing order along the column. Moreover, any two consecutive columns of P overlap
exactly by two rows. We shall prove that P is a 2-regular skew tableau.

From the construction of P , we just need to show that both the rows and columns are
increasing. It is easy to see that every column of P is strictly increasing. It remains to
show that any row of P is also strictly increasing. To this end, it suffices to prove that
the following array consisting of the four overlapping elements of two adjacent rows is
increasing along the rows:

πj πj+2

πj−1 πj+1
, (2.5)
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where j = a1 + a2 + · · ·ai (1 ≤ i ≤ k − 1) is an ascent of π. From condition (ii) of
Theorem 1.1, πj−1πjπj+1πj+2 is of type 2143 or 3142. It follows that πj−1 < πj+1 and
πj < πj+2. We conclude that every row of P is increasing. So P is a 2-regular skew
tableau in Pa1, a2,..., ak

(n).

Conversely, let P be a 2-regular skew tableau in Pa1, a2 ,..., ak
(n). We can easily construct

a permutation π by reading off the elements of P from bottom to top and from left to
right. It is routine to verify that π is a minimal permutation in Fa1, a2,..., ak

(n). This
completes the proof.

For example, π = 16 13 4 1 7 3 14 12 9 5 2 11 10 6 15 8 ∈ F11(16) contains 5 maximal
decreasing substrings and the 2-regular skew tableau corresponding to π is given by (2.3).

Some known results can be derived from the above bijection. For example, it can be
seen that the minimal permutations in Fn(2n) are alternating permutations, in the sense
that for any minimal permutation π in Fn(2n), we have

π1 > π2 < π3 > π4 < · · · < π2n−1 > π2n,

see [3]. Hence the 2-regular skew tableaux corresponding to the minimal permutations in
Fn(2n) are of shape (n, n):

π2 π4 · · · π2i π2i+2 · · · π2n

π1 π3 · · · π2i−1 π2i+1 · · · π2n−1.
(2.6)

Thus, by (2.1), we have

fn(2n) = f (n,n) = (2n)!

∣
∣
∣
∣
∣
∣
∣
∣

1

n!

1

(n + 1)!

1

(n− 1)!

1

n!

∣
∣
∣
∣
∣
∣
∣
∣

=
1

n + 1

(
2n

n

)

= Cn.

In view of the bijection given by Theorem 2.2, the enumeration of minimal permuta-
tions is equivalent to the enumeration of 2-regular skew tableaux.

Theorem 2.3 Given an ascent sequence α = (a1, a2, . . . , ak), where
∑k

i=1 ai = n and
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ai ≥ 2, 1 ≤ i ≤ k, we have

Fa1, a2,..., ak
= n! det(A) = n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

a1!

1
1

a2!
Aij

A3, 1 1
1

a3!

A4, 2 1
1

a4!
. . .

. . .
. . .

Ak−1, k−3 1
1

ak−1!

Ak, k−2 1
1

ak!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.7)

where

Ai, j = 0, for j < i− 2,

Ai, i−2 =

{

0, for ai−1 > 2,

1, for ai−1 = 2,

Ai, j =
1

(
∑j

m=i am − (j − i)
)

!
, for j > i.

Proof. First we need to determine the shape of the 2-regular skew tableau P defined in
(2.4). Suppose that the shape of P is λ/µ. Since the i-th column of P is the i-th maximal
decreasing substring, we have

λ′
i − µ′

i = ai, for 1 ≤ i ≤ k. (2.8)

Moreover, since any two consecutive columns overlap exactly by two rows in P , it follows
that

λ′
i − λ′

i+1 = ai − 2, for 1 ≤ i ≤ k − 1. (2.9)

Obviously λ′
k = ak and µ′

k = 0. For 1 ≤ i ≤ k − 1, we have

λ′
i = λ′

i+1 + (ai − 2)

= λ′
i+2 + (ai+1 − 2) + (ai − 2)

...

= ak + (ak−1 − 2) + · · ·+ (ai − 2)

= ai + ai+1 + · · ·+ ak − 2(k − i).
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This implies µ′
i = λ′

i − ai = ai+1 + · · ·+ ak − 2(k − i). Consequently,

Fa1, a2,..., ak
(n) = fλ′/µ′

, (2.10)

where

λ′ = (λ′
1, λ′

2, . . . , λ′
k), λ′

i =
k∑

j=i

aj − 2(k − i), for 1 ≤ i ≤ k,

and

µ′ = (µ′
1, µ′

2, . . . , µ′
k), µ′

i = λ′
i − ai =

k∑

j=i+1

aj − 2(k − i), for 1 ≤ i ≤ k.

We continue to compute the number of 2-regular skew tableaux using formula (2.2).
In view of (2.8) and (2.9), we have the following five cases.

(1) j < i− 2, λ′
i − µ′

j = −(aj+1 + · · ·+ ai−1) + 2(i− j). So λ′
i − µ′

j − i + j = −(aj+1 +
· · ·+ai−1)+(i− j). Since each am ≥ 2(1 ≤ m ≤ k), we have that λ′

i−µ′
j− i+ j < 0,

which means Ai, j = 0.

(2) j = i− 2, λ′
i − µ′

i−2 = −ai−1 + 4. Thus, if ai−1 = 2, then λ′
i − µ′

i−2 − i + i− 2 = 0
and Ai, i−2 = 1/0! = 1. Otherwise, we have ai−1 > 2, so λ′

i − µ′
i−2 − i + i− 2 < 0,

and Ai, i−2 = 0.

(3) j = i− 1, λ′
i − µ′

i−1 = 2. Then λ′
i − µ′

i−1 − i + (i− 1) = 1, and Ai, i−1 = 1.

(4) j = i. By (2.8), we have λ′
i − µ′

i = ai. Thus, Ai, i =
1

ai!
.

(5) j ≥ i + 1. In this case, we have

Ai, j =
1

(λ′
i − µ′

j − i + j)!
=

1

(ai + · · ·+ aj − (j − i))!
,

as desired.

Now, we can compute the number of minimal permutations in Fd(n). Note that all
the minimal permutations in Fd(n) have n− d maximal decreasing substrings.

Corollary 2.4 For d + 1 ≤ n ≤ 2d, we have

fd(n) =
∑

ai≥2 for 1≤i≤n−d
a1+a2+···+an−d=n

Fa1, a2,..., an−d
. (2.11)
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Taking d = n − 2 as an example, we immediately get the formula for fn−2(n) which
is due to Bouvel and Pergola [3]. It is obvious that the minimal permutations in Fn−2(n)
have only one ascent, which means that they have two maximal decreasing substrings.
Suppose that the unique ascent is k, and the ascent sequence is (k, n − k) for some
2 ≤ k ≤ n− 2. By Theorem 2.3, we have

Fk, n−k = n!

∣
∣
∣
∣
∣
∣
∣
∣

1

k!

1

(n− 1)!

1
1

(n− k)!

∣
∣
∣
∣
∣
∣
∣
∣

=

(
n

k

)

− n.

Therefore, by Corollary 2.4,

fn−2(n) =
n−2∑

k=2

((
n

k

)

− n

)

= 2n − 2− n(n− 1).

We finish the section with the computation of fn−3(n).

Theorem 2.5 The number of minimal permutations of length n with n− 3 descents is

fn−3(n) = 3n − (n2 − 2n + 4)2n−1 +
1

2

(
n4 − 7n3 + 19n2 − 21n + 2

)
.

Proof. The minimal permutations in Fn−3(n) have three maximal decreasing substrings.
Suppose that the ascent sequence is (a, b, c), where a+b+c = n and a, b, c ≥ 2. According
to Theorem 2.3, let

A1 = n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

a!

1

(a + 1)!

1

(n− 2)!

1
1

2!

1

(c + 1)!

1 1
1

c!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n!

a!2!c!
+

n!

(a + 1)!(c + 1)!
+

n!

(n− 2)!

−
n!

(n− 2)!2!
−

n!

(a + 1)!c!
−

n!

a!(c + 1)!
,
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and let

A2 = n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

a!

1

(a + b− 1)!

1

(n− 2)!

1
1

b!

1

(b + c− 1)!

0 1
1

c!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n!

a!b!c!
+

n!

(n− 2)!
−

n!

(a + b− 1)!c!
−

n!

a!(b + c− 1)!
.

By Corollary 2.4, we have

fn−3(n) =
∑

a, c≥2, b=2
a+b+c=n

A1 +
∑

a, c≥2, b≥3
a+b+c=n

A2.

In order to simplify the computation, we reformulate the above equation into the following
form:

fn−3(n) =
∑

a, c≥2, b=2
a+b+c=n

A1 +
∑

a, b, c≥2
a+b+c=n

A2 −
∑

a, c≥2, b=2
a+b+c=n

A2

=
∑

a, c≥2, b=2
a+b+c=n

(A1 − A2) +
∑

a, b, c≥2
a+b+c=n

A2. (2.12)

The first sum in (2.12) equals

∑

a, c≥2, b=2
a+b+c=n

(A1 − A2) =
∑

a, c≥2
a+c=n−2

(
n!

(a + 1)!(c + 1)!
−

(
n

2

))

=
n−4∑

a=2

((
n

a + 1

)

−

(
n

2

))

= 2n − 2n− 2− (n− 3)

(
n

2

)

. (2.13)

The second sum of (2.12) can be expressed as follows:

∑

a, b, c≥2
a+b+c=n

A2 =
∑

a, b, c≥2
a+b+c=n

((
n

a, b, c

)

+ n(n− 1)− n

(
n− 1

c

)

− n

(
n− 1

a

))

.

10



By the principle of inclusion-exclusion, we have

∑

a, b, c≥2
a+b+c=n

(
n

a, b, c

)

= 3n − 3

n∑

b=0

(
n

0, b, n− b

)

− 3

n−1∑

b=0

(
n

1, b, n− 1− b

)

+ 3

(
n

0, 0, n

)

+ 3

(
n

1, 1, n− 2

)

+ 6

(
n

0, 1, n− 1

)

= 3n − 3 · 2n − 3n · 2n−1 + 3n2 + 3n + 3. (2.14)

Let [xn]f(x) denote the coefficient of xn in f(x), then
∑

a, b, c≥2
a+b+c=n

n(n− 1) = n(n− 1) · [xn](x2 + x3 + · · · )3

= n(n− 1)

(
n− 4

2

)

. (2.15)

Furthermore,

n
∑

a, b, c≥2
a+b+c=n

((
n− 1

c

)

+

(
n− 1

a

))

= 2n
∑

a, b, c≥2
a+b+c=n

(
n− 1

a

)

.

It is easily seen that

∑

a, b, c≥2
a+b+c=n

(
n− 1

a

)

=
n−4∑

a=2

∑

b, c≥2
b+c=n−a

(
n− 1

a

)

=
n−4∑

a=2

(
n− 1

a

)

(n− 3− a).

Since

n−1∑

a=1

a

(
n− 1

a

)

=
n−1∑

a=1

a

(
n− 1

a

)

xa−1

∣
∣
∣
∣
∣
x=1

= (n− 1)(1 + x)n−2

∣
∣
∣
∣
x=1

= (n− 1)2n−2,

we find

2n
∑

a, b, c≥2
a+b+c=n

(
n− 1

a

)

= 2n(n− 3)
n−4∑

a=2

(
n− 1

a

)

− 2n
n−4∑

a=2

a

(
n− 1

a

)

= 2n(n− 3)
(
2n−1 − 2(n− 1)− 2

)

− 2n
(
(n− 1)2n−2 − 2(n− 1)− (n− 1)(n− 2)

)

= n(n− 3)2n − n(n− 1)2n−1 − 2n3 + 10n2. (2.16)
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Combining (2.13), (2.14), (2.15) and (2.16), we have

fn−3(n) = 3n − (n2 − 2n + 4)2n−1 +
1

2

(
n4 − 7n3 + 19n2 − 21n + 2

)
,

as claimed.

3 A refinement of the number fn+1(2n + 1)

In this section, we give a formula for a refinement of the number fn+1(2n + 1). It can be
derived from Theorem 2.2 and formula (2.1). We shall also provide a combinatorial proof
by using the RSK algorithm and the Knuth equivalence of permutations.

Let Fn+1(2n + 1) be the set of minimal permutations of length 2n + 1 with n + 1
descents and π = π1π2 · · ·π2n+1 ∈ Fn+1(2n + 1). It can be seen that there is only one
occurrence of consecutive descents in π, see [7]. This leads to a classification of the minimal
permutations in Fn+1(2n + 1) according to the positions of the consecutive descents.

Theorem 3.1 For 1 ≤ i ≤ n, let M2n+1, 2i denote the set of minimal permutations π in
Fn+1(2n + 1) such that both 2i− 1 and 2i are descents of π. Then we have

|M2n+1, 2i| =

(
2n + 1

n− 1

)(
n− 1

i− 1

)

. (3.1)

It is easy to see that these 2-regular skew tableaux corresponding to the minimal
permutations inM2n+1, 2i are the following skew Young tableaux of shape (n, n, i)/(i−1):

π2i+1 π2i+3 π2i+5 · · · π2n−1 π2n+1

π2 π4 · · · π2i π2i+2 π2i+4 · · · π2n−2 π2n

π1 π3 · · · π2i−1

. (3.2)

Applying formula (2.1), we obtain

|M2n+1, 2i| = f (n, n, i)/(i−1) = (2n + 1)!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

(n− i + 1)!

1

(n + 1)!

1

(n + 2)!

1

(n− i)!

1

n!

1

(n + 1)!

0
1

(i− 1)!

1

i!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

(
2n + 1

n

)(
n + 1

i

)

+

(
2n + 1

n− 1

)(
n− 1

i− 1

)
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−

(
2n + 1

n

)(
n

i

)

−

(
2n + 1

n

)(
n

i− 1

)

=

(
2n + 1

n− 1

)(
n− 1

i− 1

)

.

This implies the following formula of Mansour and Yan [7]:

fn+1(2n + 1) =
n∑

i=1

f (n,n, i)/(i−1) = 2n−1

(
2n + 1

n− 1

)

.

We now proceed to give a combinatorial proof of Theorem 3.1 by using the Robinson-
Schensted-Knuth (RSK) algorithm. Given a tableau T on a subset S of [n] and an integer
k in [n] but not in S, the basic operation of the RSK algorithm is the row insertion. We
shall use T ← k to denote the tableau obtained from T after inserting k. The insertion
path of this operation, denoted by I(T ← k), is the set of positions where the elements
are bumped to the next row during the insertion operation along with the position where
last bumped element is placed.

For example, here are a tableau T and the tableau T ←− 5,

T =

1 2 4 7 20
3 6 10 15
9 13 14 17
11

, T ←− 5 =

1 2 4 5 20
3 6 7 15
9 10 14 17
11 13

.

The insertion path I(T ← 5) is {(1, 4), (2, 3), (3, 2), (4, 2)}, where the elements are shown
in boldface.

The following properties of insertion paths will be needed, see [9].

(1) When we insert k into T , the insertion path I(T ← k) moves to the left. More
precisely, if (r, s), (r + 1, t) ∈ I(T ← k) then t ≤ s.

(2) Suppose that k > j. Then I((T ← j) ← k) lies strictly to the right of I(T ← j).
More precisely, if (r, t) ∈ I((T ← j) ← k), and (r, s) ∈ I(T ← j), then t > s.
Moreover, I((T ← j) ← k) can never go below the last position of I(T ← j). In
other words, if T ← j ends in the u-th row and (T ← j)← k ends in the v-th row,
then v ≤ u.

The RSK algorithm establishes a bijection between permutations π in Sn and pairs

(P, Q) of SYTs of the same shape on [n]. We write π
RSK
−→ (P, Q), where P is the insertion

tableau and Q is the recording tableau.
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We shall also use the Knuth equivalence of permutations. Recall that a Knuth trans-
formation switches two adjacent elements a and c of a permutation π if any element b
satisfying a < b < c is located next to a or c. According to this definition, for a < b < c,
there are two kinds of Knuth transformations:

· · · b a c · · · ←→ · · · b c a · · · , (3.3)

· · · a c b · · · ←→ · · · c a b · · · . (3.4)

Two permutations π and σ in Sn are called Knuth equivalent (denoted by π
K
∼ σ) if one

can be obtained from the other by a sequence of Knuth transformations. The following
characterization is due to Knuth [5].

Theorem 3.2 Two permutations in Sn are Knuth equivalent if and only if they have the
same insertion tableau.

We now proceed to present a combinatorial proof of Theorem 3.1. The main idea goes
as follows. For a minimal permutation π inM2n+1, 2i, in order to determine the insertion

tableau of π, we first construct a permutation π′ in S2n+1 such that π′ K
∼ π so that π and π′

have the same insertion tableau. As will be seen, the insertion tableau P ′ corresponding
to the first n + i elements of π′ can be easily obtained. Moreover, we show that the
insertion tableau of π′ is of shape (n, n + 1− k, k), where 1 ≤ k ≤ min{n + 1− i, i}. So
we establish a bijection between the setM2n+1, 2i and a set of tableaux of certain shapes.

Given a permutation π inM2n+1,2i, we can construct a permutation π′ in S2n+1 which
is Knuth equivalent to π.

Lemma 3.3 Let π = π1π2 · · ·π2n+1 in M2n+1, 2i. The permutation

π′ = π1π2 · · ·π2i−1π2iπ2i+2 · · ·π2nπ2i+1π2i+3 · · ·π2n+1 ∈ S2n+1 (3.5)

and π are Knuth equivalent.

Proof. For notational clarity, we write

π = π1π2 · · ·π2i−1π2i π2i+1 π2i+2 π2i+3 · · ·π2n π2n+1 ,

where the elements π2i+1, . . . , π2n+1 are put into boxes. Let us recall condition (ii) of
Theorem 1.1. That is, for 2 ≤ j ≤ 2n, if j is an ascent of π, then πj−1πjπj+1πj+2 is of
type 2143 or 3142. It follows that πj−1πjπj+1 is of the form bac and πjπj+1πj+2 is of the
form acb, where a < b < c.

We now consider the substring π2iπ2i+1π2i+2 · · ·π2nπ2n+1 of π. Since π is a minimal
permutation inM2n+1,2i, it is easy to see that for i ≤ j ≤ n− 1, 2j + 1 is an ascent of π.

14



This implies that π2iπ2i+1π2i+2 is of the form bac and for i ≤ j ≤ n − 2, π2j+3π2j+4π2j+5

is of the form acb. This allows us to apply a series of Knuth transformations to switch
adjacent elements that are after π2i and before π2n+1. In this way, we may move π2i+2 to
the right of π2i and move π2n−1 to the left of π2n+1, as demonstrated below:

π = π1 · · ·π2i π2i+1 π2i+2
︸ ︷︷ ︸

bac

π2i+3 π2i+4 π2i+5 π2i+6 · · · π2n−1 π2n π2n+1

K
∼ π1 · · ·π2iπ2i+2 π2i+1 π2i+3 π2i+4 π2i+5

︸ ︷︷ ︸

acb

π2i+6 π2i+7 · · · π2n−1 π2n π2n+1

K
∼ π1 · · ·π2iπ2i+2 π2i+1 π2i+4 π2i+3 π2i+5 π2i+6 π2i+7

︸ ︷︷ ︸

acb

π2i+8 π2i+9 π2i+10 π2i+11 · · ·

...

K
∼ π1 · · ·π2i π2i+2 π2i+1 π2i+4

︸ ︷︷ ︸

bac

π2i+3 π2i+6 π2i+5 π2i+8 π2i+7 · · ·π2n π2n−1 π2n+1 .

For the substring π2i+2π2i+1π2i+4 · · ·π2n−1 of the above permutation, by the second
condition of Theorem 1.1, we see that π2i+1 < π2i+2 < π2i+4. Hence π2i+2π2i+1π2i+4 is
of the form bac. Furthermore, for i ≤ j ≤ n − 4, we have π2j+3 < π2j+5 < π2j+6. It
follows that π2j+3π2j+6π2j+5 is of the form acb. Now we may apply a series of Knuth
transformations to move π2i+4 to the right of π2i+2 and to move π2n−3 to the left of π2n−1,
see the illustration as follows:

π
K
∼ π1 · · ·π2iπ2i+2π2i+4 π2i+1 π2i+3 π2i+6 π2i+5

︸ ︷︷ ︸

acb

π2i+8 π2i+7 · · ·π2n π2n−1 π2n+1

K
∼ π1 · · ·π2iπ2i+2π2i+4 π2i+1 π2i+6 π2i+3 π2i+5 π2i+8 π2i+7

︸ ︷︷ ︸

acb

π2i+10 π2i+9 · · ·

K
∼ π1 · · ·π2iπ2i+2 π2i+4 π2i+1 π2i+6

︸ ︷︷ ︸

bac

π2i+3 π2i+8 π2i+5 π2i+10 · · ·π2n π2n−3 π2n−1 π2n+1 .

Continuing the above process, we eventually obtain π ′,

π
K
∼ π1 · · ·π2i−1π2iπ2i+2π2i+4 · · ·π2n−2π2n π2i+1 π2i+3 π2i+5 · · · π2n−3 π2n−1 π2n+1

= π′.

Thus π and π′ are Knuth equivalent. This completes the proof.

For example, for n = 4 and i = 2, consider the minimal permutation π = 3 2 6 5 1 8 4 9 7
inM9,4. The permutation π′ is Knuth equivalent to π via the following transformations:

π = 3 2 6 5 1 8 4 9 7

15



K
∼ 3 2 6 5 8 1 4 9 7
K
∼ 3 2 6 5 8 1 9 4 7
K
∼ 3 2 6 5 8 9 1 4 7

= π′.

Corollary 3.4 Let π = π1π2 · · ·π2n+1 be a minimal permutation in M2n+1,2i, and let π′

be given as in (3.5). Then the insertion tableau of π ′ is given by

(
(
· · · ((P ′ ← π2i+1)← π2i+3) · · ·

)
← π2n−1

)

← π2n+1, (3.6)

where

P ′ =
π2 π4 · · · π2i π2i+2 · · · π2n

π1 π3 · · · π2i−1
. (3.7)

Proof. Let π̃ = π1π2 · · ·π2i−1π2i. Since π is a minimal permutation in M2n+1,2i, we find
that π̃ is a minimal permutation in Fi(2i). Thus π̃ is an alternating permutation, or a
down-up permutation, in the sense that

π1 > π2 < π3 > π4 · · · < π2i−1 > π2i.

By condition (ii) of Theorem 1.1, for 2 ≤ j ≤ 2i − 2, if j is an ascent of π̃, then
πj−1πjπj+1πj+2 is of type 2143 or 3142. It follows that the insertion tableau of πj−1πjπj+1πj+2

takes the following form
πj πj+2

πj−1 πj+1
.

Hence we deduce that the insertion tableau of π̃ is

π2 π4 · · · π2i

π1 π3 · · · π2i−1
. (3.8)

It is easily checked that
π2i < π2i+2 < · · · < π2n−2 < π2n.

Thus, these elements are placed to the right of π2i after they are inserted into P ′. This
implies that the insertion tableau of the first n + i elements of π ′ is given as follows

P ′ =
π2 π4 · · · π2i π2i+2 · · · π2n

π1 π3 · · · π2i−1
. (3.9)

It follows that the insertion tableau of π′ can be obtained by
(

(
· · · ((P ′ ← π2i+1)← π2i+3) · · ·

)
← π2n−1

)

← π2n+1. (3.10)
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This completes the proof.

Since π
K
∼ π′, we see that (3.10) is also the insertion tableau of π. The following

theorem gives the shape of (3.10).

Theorem 3.5 For any 1 ≤ i ≤ n, let j = min{n − i + 1, i}. Then Pn−i is of shape
(n, n− k + 1, k) for some 1 ≤ k ≤ j.

Proof. Let
Pm = (· · · (P ′ ← π2i+1)← · · · )← π2i+2m+1,

where 0 ≤ m ≤ n− i. First we show that for 0 ≤ m ≤ n− i, each Pm has three rows and
the length of the first row of Pm is n.

We proceed by induction on m. We begin with the insertion of π2i+1 into P ′. Since
2i− 1 and 2i are consecutive descents of π, we have

π2i+1 < π2i < π2i−1.

It follows that π2i+1 bumps some element α in the first row of P ′ that is weakly to the
left of π2i into the second row, and α bumps some element β in the second row of P ′ that
is weakly to the left of π2i−1 into the third row. Hence P0 has three rows and is of shape
(n, i, 1).

Assume that Pm−1 has three rows with the first row containing n elements. Consider
the insertion path of Pm−1 ← π2i+2m+1. Since π2i+2m+1 > π2i+2m−1, the insertion path
I(Pm−1 ← π2i+2m+1) does not go below the last position of I(Pm−2 ← π2i+2m−1). Thus
Pm also has three rows. Furthermore, since 2i+2m is a descent of π, we have π2i+2m+1 <
π2i+2m. It follows that π2i+2m+1 bumps some element in the first row of Pm−1 that is
weakly to the left of π2i+2m into the second row. Thus the length of the first row of Pm

remains to be n. So we conclude that Pn−i has three rows with the first row containing n
elements.

Suppose that the shape of Pn−i is (n, n−k +1, k) for some k. It remains to prove that
k ≤ j, where j = min{n − i + 1, i}. Since there are n − i + 1 elements that are inserted
into P ′, it follows that the third row of Pn−i contains at most n− i + 1 elements. Hence
k ≤ n− i + 1.

We now prove k ≤ i. We need the following property: Assume that there exists some
m, where i − 1 ≤ m ≤ n − i, such that Pm−1 has i − 1 elements in the third row, and
after π2i+2m+1 is inserted, the last bumped element is placed at the position (3, i). Then
the second row of Pm contains i elements.

Assume to the contrary that there are more than i elements in the second row of
Pm. Since P ′ has i elements in the second row, we infer that there exists some u < m
such that Pu−1 contains less than i elements in the third row and the last position of
I(Pu−1 ← π2i+2u+1) is at the end of the second row of Pu. So all the insertions of
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π2i+2u+3, . . . , π2i+2m+1 will stop at the second row. In other words, insertion path of Pm

does not contain the position (3, i), which is a contradiction. Thus, we deduce that Pm

also has i elements in the second row.

Since the insertion path of an element moves left, it follows that I(Pm−1 ← π2i+2m+1)
contains the position (2, i). Moreover, we see that (2, i) is at the end of the second row
of Pm. Hence the insertions of π2i+2m+3, . . . , π2n+1 will stop at the end of the second row.
In other words, the number of elements on the third row remain unchanged. This implies
that the number of elements in the third row is at most i. Thus we have k ≤ i, and so
the proof is complete.

For example, for n = 4 and i = 2, we have j = 2. Let π = 3 2 6 5 1 8 4 9 7 be a minimal
permutation in M9,4. The insertion tableau P2 can be obtained by inserting 1, 4, 7 into
the tableau

P ′ =
2 5 8 9
3 6

.

Notice that I(P0 ← 4) contains (2, 2) and (3, 2). The insertion of 7 stops at the second
row, as shown below:

P0 = P ′ ← 1 =
1 5 8 9
2 6
3

, P1 = P0 ← 4 =
1 4 8 9
2 5
3 6

,

and

P2 = P1 ← 7 =
1 4 7 9
2 5 8
3 6

.

Conversely, we shall show that the SYTs as described in the above theorem are in
one-to-one correspondence with minimal permutations in M2n+1,2i. Let P2n+1, k be the
set of SYTs of shape (n, n+1−k, k), where 1 ≤ k ≤ n+1−k. Let j = min{n+1− i, i},
and let

T2n+1, j =

j
⋃

k=1

P2n+1, k.

Then we have the following correspondence.

Theorem 3.6 There is a bijection between the set T2n+1, j of SYTs and the set M2n+1,2i

of minimal permutations.

Proof. By Theorem 2.2, we know that there is a bijection between 2-regular tableaux
of shape (n, n, i)/(i − 1) and minimal permutations in M2n+1,2i. As we have proved
in Theorem 3.5 a minimal permutation in M2n+1,2i can be transformed to an SYT in
T2n+1,j , we only need to show that for any 1 ≤ k ≤ j, we can transform an SYT of shape
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(n, n + 1− k, k) to a 2-regular skew tableau of shape (n, n, i)/(i− 1). Then we obtain a
bijection between the set T2n+1, j of SYTs and the setM2n+1,2i of minimal permutations.

Let P be an SYT of shape (n, n + 1 − k, k), where 1 ≤ k ≤ min{n − i + 1, i}. We
shall apply the inverse bumping process to the n− i + 1 elements in the third row and at
the end of the second row of P , so that we obtain a sequence of n− i + 1 elements and a
tableau of shape (n, i). Then we get a 2-regular skew tableau of shape (n, n, i)/(i− 1).

The detailed procedure to construct a 2-regular skew tableau from P is as follows. Let

S = {Pi1j1 , Pi2j2, . . . , Pin−i+1jn−i+1
}

be the set consisting of the n − i − k + 1 elements at the end of the second row and all
the k elements in the third row of P , where j1 ≥ j2 · · · ≥ jn−i+1, and if jt = jt+1, then
it < it+1. Intuitively, the elements in S are ordered from northeast to southwest.

For 1 ≤ s ≤ n − i + 1, we shall apply the inverse bumping procedure to Pisjs
and

recursively construct a sequence of skew tableaux Qs. As will be shown, the last tableau
Qn−i+1 is the 2-regular skew tableau that corresponds to P .

As the first step, we apply the inverse bumping procedure to Pi1j1. Denote by P 1 the
resulting tableau and suppose that πu1v1

is the element that is bumped out of P . Let Q1

be the tableau obtained by putting πu1v1
on top of P 1

1n. It is easy to see that πu1v1
< P 1

1n.
From the construction of Q1, we find that Q1

2n = P 1
1n. It follows that πu1v1

< Q1
2n. Thus

both the rows and columns of Q1 are increasing.

We now assume that we have constructed the tableau Qs. Apply the inverse bumping
procedure to the element Pis+1js+1

in the tableau Qs. Let P s+1 denote the resulting tableau.
By the properties of the RSK algorithm, the entire inverse insertion path of Pis+1js+1

lies
strictly to the left of that of Pisjs

. Hence the inverse insertion path of Pis+1js+1
does not

extend to the right of the (n− s+1)-st column of Qs. Furthermore, the element πus+1vs+1

that is bumped out of Qs is smaller than the element πusvs
that is bumped out of Qs−1.

Thus we deduce that πus+1vs+1
< πusvs

.

Let Qs+1 be the tableau obtained by putting πus+1vs+1
on top of P s+1

2(n−s). Since πus+1vs+1

lies weakly to the left of P s+1
2(n−s) and Qs+1

2(n−s) = P s+1
2(n−s), we see that πus+1vs+1

< Qs+1
2(n−s).

So we reach the conclusion that Qs+1 is strictly increasing along the rows and down the
columns.

When the above procedure terminates, we get a tableau Qn−i+1. We have shown that
both the rows and columns of Qn−i+1 are increasing. On the other hand, it is easy to see
that Qn−i+1 is of shape (n, n, i)/(i− 1). Thus Qn−i+1 is a 2-regular skew tableau of shape
(n, n, i)/(i− 1) and the proof is complete.

For example, for n = 4, i = 2, we have j = 2. Let

P =
1 4 7 9
2 5 8
3 6
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be an SYT in T9,2. Applying the inverse bumping procedure to the elements 8, 6 and 3,
we see that 7, 4, 1 are bumped out of P , so we obtain a 2-regular skew tableau of shape
(4, 4, 2)/(1), as given below:

Q1 =

7
1 4 8 9
2 5
3 6

, Q2 =

4 7
1 5 8 9
2 6
3

,

and

Q3 =
1 4 7

2 5 8 9
3 6

.

Thus 326518497 is the corresponding minimal permutation inM9,4.

We are now in a position to compute the number of SYTs of shape (n, n + 1− k, k).
Let us recall the hook length formula. For a partition λ of n, the number of SYTs of
shape λ is given by

fλ =
n!

∏

u∈λ h(u)
,

where u ranges over squares of the shape λ and h(u) is the hook length of u, that is
h(u) = λi + λ′

j − i− j + 1.

By the hook length formula, it is easy to show that
(
2n+1
n−1

)
equals the number of SYTs

of shape (n, n, 1), see [8]. In fact, we have the following more general formula.

Theorem 3.7 For 2 ≤ k ≤ [n+1
2

], the number of SYTs of shape (n, n + 1− k, k) equals

|P2n+1, k| =
n− 2k + 2

k − 1

(
n− 1

k − 2

)(
2n + 1

n− 1

)

. (3.11)

Proof. We proceed by induction on k. When k = 2, by the hook length formula, it is
easy to show that the number of SYTs of shape (n, n− 1, 2) is

(n− 2)

(
2n + 1

n− 1

)

.

For k > 2, assume that (3.11) is true for k − 1. Considering the hook lengths of shape
(n, n− k + 1, k) and the hook lengths of shape (n, n− k + 2, k − 1), we deduce that

|P2n+1, k−1|

|P2n+1, k|
=

(n− 2k + 2)(n− k + 2)

(n− 2k + 4)(k − 1)
.

Thus the number of SYTs of shape (n, n− k + 1, k) equals

|P2n+1, k| =
(n− 2k + 2)(n− k + 2)

(n− 2k + 4)(k − 1)

(n− 2k + 4)

k − 2

(
n− 1

k − 3

)(
2n + 1

n− 1

)
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=
n− 2k + 2

k − 1

(
n− 1

k − 2

)(
2n + 1

n− 1

)

.

This completes the proof.

We are now ready to finish the combinatorial proof of Theorem 3.1. We use induction
on i. Clearly, the theorem holds for i = 1. Assume that for 2 ≤ i ≤ n− 1,

∣
∣M2n+1, 2(i−1)

∣
∣ =

(
n− 1

i− 2

)(
2n + 1

n− 1

)

.

By Corollary 2.4 and Theorem 3.7, we obtain

|M2n+1, 2i| =
∣
∣M2n+1, 2(i−1)

∣
∣ + |P2n+1, i|

=

((
n− 1

i− 2

)

+
n− 2i + 2

i− 1

(
n− 1

i− 2

)) (
2n + 1

n− 1

)

=

(
n− 1

i− 1

)(
2n + 1

n− 1

)

,

as desired. Thus the proof is complete by induction.

Note added in proof. The results in Section 2 have been independently obtained by Bouvel
and Ferrari [2].
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