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Abstract

Let L = {λ1, . . . , λs} be a set of s nonnegative integers with λ1 < λ2 < . . . < λs

and let t ≥ 2. A family F of subsets of an n-element set is called t-wise L-intersecting
if the cardinality of the intersection of any t distinct members in F belongs to L. We
give the following improvement to Füredi-Sudakov Theorem: Let t ≥ 3 and F be a
t-wise L-intersecting family of subsets of [n]. Then for |

∩
F∈F F | < λ1,

|F| = o(ns);

for |
∩

F∈F F | ≥ λ1 and n sufficiently large

|F| ≤ k + s− 1

s+ 1

(
n− λ1

s

)
+
∑

i≤s−1

(
n− λ1

i

)
.

We also give a sharp upper bound for the size of a k-uniform t-wise L-intersecting
family in the case s = 1.

Keywords : intersecting family, Erdös-Ko-Rado Theorem, non-trivial intersecting family,
Sr(n, k, 1)-design.
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1 Introduction

Let F be a family of subsets of an n-element set [n] = {1, 2, . . . , n} and let L = {λ1, . . . , λs}
be a set of s non-negative integers. The family F is called uniform if all its members have
the same size. F is t-wise L-intersecting if the cardinality of the intersection of any t distinct
members in F belongs to L. Suppose that λ1 < λ2 < . . . < λs. We call a family F non-trivial
if |
∩

F∈F F | < λ1.

In 1949, Bose [4] obtained the following intersection theorem.

Theorem 1.1 If F is a family of subsets of X satisfying |E ∩ F | = λ for every pair of
distinct subsets E,F ∈ F , then |F| ≤ n.

About 30 years ago, Deza, Erdös, Frankl [3] proved the following two theorems.

Theorem 1.2 Let L = {λ1, . . . , λs} be a set of s non-negative integers. If F is a k-uniform
t-wise L-intersecting family of subsets of [n], then

|F| ≤ (t− 1)
s∏

i=1

(n− λi)

(k − λi)

for n > 2kk3.

Theorem 1.3 Let L = {λ1, . . . , λs} be a set of s non-negative integers. If F is a k-uniform
t-wise L-intersecting family of subsets of [n] and |F| > cns−1 (c=c(k) is a constant depending
on k), then

(λ2 − λ1)|(λ3 − λ2)| · · · |(λr − λs−1)|(k − λs).

In 1975, Ray-Chaudhuri and Wilson [11] derived the next result.

Theorem 1.4 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. If F is a k-uniform
L-intersecting family of subsets of X, then

|F| ≤
(
n

s

)
.
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As to nonuniform L-intersecting families, Frankl and Wilson [5] obtained in 1981 the
following celebrated result.

Theorem 1.5 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. If F is an L-
intersecting family of subsets of X, then

|F| ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
.

In 2004, Füredi and Sudakov [6] gave the following theorem:

Theorem 1.6 Let L = {λ1, . . . , λs} be a set of s non-negative integers. If F is a t-wise
L-intersecting family of subsets of [n] , then for n sufficiently large

|F| ≤ k + s− 1

s+ 1

(
n

s

)
+
∑
i≤s−1

(
n

i

)
.

The main objective of this paper is to give the following theorem which provides an
improvement to Theorem 1.6. We will also give a non-uniform version of the Deze-Erdös-
Frankl type theorem.

Theorem 1.7 Let t ≥ 3 and F be a t-wise L-intersecting family of subsets of [n]. Then for
|
∩

F∈F F | < λ1,
|F| = o(ns);

for |
∩

F∈F F | ≥ λ1 and n sufficiently large

|F| ≤ k + s− 1

s+ 1

(
n− λ1

s

)
+
∑
i≤s−1

(
n− λ1

i

)
.

2 λ-intersecting family

In this section, we consider the case for L = {λ}. The following result lowers the threshold
number in Theorem and shows the upper bound is sharp, where a Sr(n, k, 1)-design is a

3



collection of k-blocks (i.e., k-subsets of [n]) such that every element in [n] appears in exactly
r blocks.

Theorem 2.1. Let λ be a non-negative integer and let 3 ≤ k ≤ n, t ≥ 3 and λ+1 ≤ k. If L
is a family of k-subsets of an n-elements set such that |A1 ∩ · · · ∩ At| = λ for any collection

of t-distinct members of F , then for n > λ− 1 + k(k−2)
t−1

,

|F| ≤ (n− λ)(t− 1)

k − λ
.

Moreover, the equality holds if and only if there exists a St−1(n− λ, k − λ, 1)-design.

Proof. First let us consider the case that k ≥ λ + 2. If λ = 0, let us consider F as a
hypergraph. Since |A1 ∩ · · · ∩ At| = 0 for any A1, . . . , At ∈ F , the degree of each vertex of
F is at most t− 1. Since every edge of F has k vertices, it follows that

|F|k ≤ n(t− 1).

Hence |F| ≤ n(t−1)
k

.

Next suppose that λ > 0 but there exist A1, . . . , At−1 ∈ F such that |A1∩· · ·∩At−1| = λ.
Then, for any other F ∈ F , we have |F ∩A1∩· · ·∩At−1| = λ. Therefore all other members of
F should contain the set A = A1 ∩ · · · ∩At−1. Define a new set system F ′ = {F\A|F ∈ F}.
Then |F ′| = |F| and any t distinct members of F ′ have empty intersection. Also note that
members of F ′ are subsets of an (n− λ)-set. Therefore it follows from the above discussion
that

|F| = |F ′| ≤ (n− λ)(t− 1)

k − λ
.

Now we assume that the intersection of any t − 1 members of F has a size different
from λ. Let F = {A1, . . . , Am}. Then |Ai1 ∩ · · ·Ait−1| > λ for 1 ≤ i1 ≤ · · · ≤ it−1}. Let
A1 ∩ · · · ∩ At−2 = A. Then |Ai ∩ A| > λ for every Ai ∈ F − {A1, . . . , At−2}. We claim
that Ai ∩ A ̸= Aj ∩ A for any Ai, Aj ∈ F − {A1, . . . , At−2} with i ̸= j. For otherwise
if Ai ∩ A = Aj ∩ A for some t − 1 ≤ i ̸= j ≤ m, then |Ai ∩ Aj ∩ A| = |Aj ∩ A| > λ,
contradicting the assumption. Let B = {Ai ∩ A : t − 2 < i ≤ m}. Then any two sets in
B have exactly λ elements in common. By Theorem 1.1, |B| ≤ |A|. Since |A| ≤ k − 1, we

obtain m ≤ |B|+ t− 2 ≤ k + t− 3. When n ≥ λ− 1 + k(k−2)
t−1

, we have

k + t− 3 ≤ (t− 1)(n− λ)

k − λ
.
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Hence

|F| ≤ (t− 1)(n− λ)

k − λ

when n ≥ λ− 1 + k(k−2)
t−1

.

Clearly the equality holds if and only if there are λ vertices contained by all elements
of F and the degrees of other vertices of [n] are all t − 1, the existence of such a family
corresponds to a St−1(n− λ, k − λ, 1)-design. �

To show the sharpness of the bound in Theorem 2.1, we next show the existence of a
St−1(n− λ, k − λ, 1)-design.

Lemma 2.2. If there exists an Sr(n, k, 1)-design, then

k|nr.

Proof. If there exists an Sr(n, k, 1)-design, then the number of block is nr
k
, which must be

an integer. Hence we have k|nr. �

For the convenience, we label the n elements by the elements in Zn = {0, 1, 2, · · · , n−1}.
Under the addition of the addition group Zn, we divide all

(
n
k

)
k-sunsets ( blocks ) of Zn into

equivalence classes as follows: two blocks {v1, . . . , vk} and {u1, . . . , uk} are equivalent if and
only if

v1 − u1 = v2 − u2 = · · · = vk − uk (mod n),

i.e., {u1, . . . , uk} = {v1 + h, . . . , vk + h} for some integer h, where the sum is taking modulo
n.

Suppose that all
(
n
k

)
k-blocks are divided into equivalence classes C1, C2, . . . , Cq, where

C1 = {{x, x+ 1, . . . , x+ k − 1} : x ∈ Zn}.

Lemma 2.3. For each 1 ≤ i ≤ q, there exists a constant ci such that every element in [n]
appears in exactly ci blocks from Ci and k|cin, i.e., each Ci is a Sci(n, k, 1)-design.

Proof . Let i be any integer such that 1 ≤ i ≤ q. Let {v1, v2, · · · , vk} ∈ Ci and Bi =
{{v1 + j, v2 + j, · · · , vk + j}|0 ≤ j ≤ n− 1} ( allowing repeats if there are any). Then every
element in [n] appears in exactly k blocks from Bi (counting repeats) and Bi is made up by
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di ≥ 1 copies of Ci. It follows that element in [n] appears in exactly ci =
k
di

blocks from Ci.
Moreover, since each Ci is a Sci(n, k, 1)-design, it follows from Lemma 2.2 that k|cin. �

Theorem 2.4. For k ≥ 1 and t ≥ 1, a Sr(n, k, 1)-design exists if and only if k|nr.

Proof.By Lemma 2.2, we need only to prove the sufficiency. Let k|nr. Let C1, C2, . . . , Cq

be the equivalence classes that partition the set of all k-subsets (k-blocks) of Zn, where
C1 = {{x, x + 1, . . . , x + k − 1} : x ∈ Zn}. First we consider the case r ≤ k. Let r1 be the
smallest factor of r such that k|nr1 (if k|n, then r1 = 1) and let r = r1r2. Take

C ′
1 = ∪r2−1

j=0 {{0 + ik + j, 1 + ik + j, · · · , k − 1 + ik + j}|0 ≤ i ≤ nr1
k

− 1}.

Then it is easy to see that C ′
1 ⊆ C1 and every element in [n] appears in exactly r blocks

from C ′
1. Thus C

′
1 is a Sr(n, k, 1)-design.

Now, we assume r > k. Then there exists an integer h such that

h∑
i=2

ci ≤ r ≤
h∑

i=2

ci + c1.

Let r′ = r −
h∑

i=2

ci. Then 0 ≤ r′ ≤ k. Since k|nr and k|cin for each i by Lemma 2.3,

k|nr′. From the previous case, we see that C1 has a subset C ′
1 such that every element in [n]

appears in exactly r′ blocks from C ′
1. Now take C = C ′

1 ∪ (∪h
j=2Cj). Then every element in

[n] appears in exactly r blocks from C and so C is a Sr(n, k, 1)-design. �

3 Non-trivial L-intersecting families

We begin this section with the following theorem.

Theorem 3.1. Let L = {λ1, . . . , λs} with 0 < λ1 < λ2 < · · · < λs and let t ≥ 3.
Suppose F is a t-wise L-intersecting family of subsets of [n]. If for any A1, . . . , At−1 ∈ F ,
|A1 ∩ · · · ∩ At−1| > λ1, then

|F| = o(ns).
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Proof . Let F be a t-wise L-intersecting family. We denote by D = F1 ∩ · · · ∩ Ft−2 a
smallest intersection of among all possible choices of t−2 members of F and Y be a smallest
element of F (i.e., |Y | ≤ |F | for any other F ∈ F). Denote |D| = m1 and |Y | = m2. Clearly,
m1 ≤ m2. For each Ai ∈ F\{F1, . . . , Ft−2}, let Bi = D ∩ Ai. Then these Bi’s form an
F -intersecting family B on [m1] in which we allow multisets (repeats of same sets).

Now we sperate the multisets from B. Let B′ = {Bi|∃j ̸= i, Bi = Bj} and B∗ = B\B′.
Then B∗ is an L-intersecting family of [m1]. By Theorem 1.5, we have

|B∗| ≤
s∑

i=0

(
m1

s

)
.

Next, we estimate the size of B′. First we claim that for each Bi ∈ B′, |Bi| = λj for
some j ≥ 2. Suppose Bi ∈ B′. Since there exists a Bj such that Bi = Bj, it follows that
|Bi| = |Bi∩Bj| = |F1∩· · ·∩Ft−2∩Ai∩Aj| ∈ L. By the condition, for any A1, . . . , At−1 ∈ F ,
|A1 ∩ · · · ∩ At−1| > λ1, thus |Bi| > λ1. Hence the claim holds. Let B′′ be the set which
consists of distinct members of B′. Let Bj = {B ∈ B′′||B| = λj}, where j = 2, . . . , s. Then
each Bj is a λj-uniform {λ1, . . . , λj−1}-intersecting family of subsets of [m1]. It follows from
Theorem 1.4 that

|Bj| ≤
(

m1

j − 1

)
.

For each B ∈ Bj, Let

F(B) = {F −B|F ∩ A1 ∩ · · · ∩ At−2 = B and F ∈ F}.

Then F(B) is a t-wise {0, λj+1 − λj, . . . , λs − λj}-intersecting family. By Theorem 1.6, we
have when n is sufficiently large,

F(B) ≤ t+ s− j

s− j + 2

(
n

s− j + 1

)
+ (t− 1)

∑
i≤s−j

(
n

i

)
.

Thus

|B′| ≤
s∑

j=2

(
m1

j − 1

)(
t+ s− j

s− j + 2

(
n

s− j + 1

)
+ (t− 1)

∑
i≤s−j

(
n

i

))
.

It follows that

|F| = |B′|+ |B∗|+ (t− 2) (3.1)
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≤
s∑

i=0

(
m1

i

)
+

s∑
j=2

(
m1

j − 1

)(
t+ s− j

s− j + 2

(
n

s− j + 1

)
+ (t− 1)

∑
i≤s−j

(
n

i

))
+ t− 2.

It is not difficult to see that if m1 ≤ n(λs+t−2)/(λs+t−1), then |F| ≤ o(ns) and the theorem
holds. So we assume m1 > n(λs+t−2)/(λs+t−1). Since m2 ≥ m1, we may assume m2 ≥ λs for
n large enough, that is, the size of every element of F is no less than λs. Let f(x) =

(
x
λs

)
if

x ≥ λs − 1 and f(x) = 0 otherwise, one can see that the function is monotone and convex
so we can apply Jensen’s inequality. For A ∈

(
[n]
λs

)
, let dA = |{F ∈ F|A ⊂ F}| which is the

number of subsets in F containing A. Then(
|F|
t

)
=
∑

A∈([n]
λs
)

(
dA
t

)
.

It follows from Jensen’s inequality that(|F|
t

)(
n
λs

) ≥

∑
A∈([n]

λs
)
(
dA
t

)(
n
λs

) ≥
(∑

A dA

( n
λs
)
t

)
.

For a fixed A, there are dA subsets in F which contain A and for a fixed F ∈ F there are(|F |
λs

)
λs-subsets A’s in it, so we have

(∑
A dA

( n
λs
)
t

)
=

(∑
f∈F (

|F |
λs
)

( n
λs
)

t

)
≥
(|F|(

m2
λs
)

( n
λs
)

t

)
.

We may assume |F| > n2(λs+1)/(t+λs−1), for otherwise we would have |F| ≤ o(ns). Since

m2 ≥ m1 ≥ n(λs+t−2)/(λs+t−1), the quantity |F|(
m2
λs
)

( n
λs
)
tends to infinity as n → ∞. Hence we

have

1(
n
λs

)
λs!

|F|t ≥
(|F|(

m2
λs
)

( n
λs
)

t

)
≥ 1

t!

(
|F|
(
m2

λs

)(
n
λs

) − t+ 1

)t

≥ 1− ϵ

t!

(
|F|
(
m2

λs

)(
n
λs

) )t

for any ϵ > 0 if n is large enough. Thus

(1 + o(1))

(
n

λs

)t−1

≥
(
m2

λs

)t

which implies that m1 ≤ m2 ≤ (1 + o(1))n(t−1)/t. It follows from (3.1) that

|F| = o(ns).
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Proof of Theorem 1.7 . Let L = {λ1, . . . , λs} be a set of s non-negative integers with
λ1 < λ2 < · · · < λs and let F be a t-wise L-intersecting family of subsets of [n]. If
|
∩

F∈F F | ≥ λ1, then take A to be a subset of
∩

F∈F F such that |A| = λ1. Define a new set
system F ′ = {F\A|F ∈ F}. Then |F ′| = |F| and the result follows by applying Theorem
1.6 to F ′.

Now assume that |
∩

F∈F F | < λ1. Then there do not exist A1, . . . , At−1 ∈ F such that
|A1 ∩ · · · ∩ At−1| = λ1. For otherwise A1 ∩ · · · ∩ At−1 is contained in every set in F which
implies that |

∩
F∈F F | ≥ λ1. Thus by Theorem 3.1, the result follows. �

In fact, if we restrict F to be a k-uniform family, we can obtain the following.

Theorem 3.2. Let L = {λ1, . . . , λs} with 0 < λ1 < λ2 < · · · < λs and let t ≥ 3. Suppose
F is a k-uniform t-wise L-intersecting family of subsets of [n]. If for any A1, . . . , At−1 ∈ F ,
|A1 ∩ · · · ∩ At−1| > λ1, then

|F| ≤ (t− 1)

[(
n

s

)
−
(
n− k

s

)]
+ t− 2.

Proof . We can prove this result by modifying the proof for Theorem 3.1. Since F is
k-uniform, |Y | in the proof above is k. Thus we have m1 ≤ k. It follows from a result in [8]
that if F is k-uniform t-wise L-intersecting family, then |F| ≤ (t − 1)

(
n
s

)
. By (3.1) in the

previous proof, we have

|F| ≤ (t− 1)
s∑

i=1

(
k

i

)(
n− k

s− i

)
+ t− 2 = (t− 1)

[(
n

s

)
−
(
n− k

s

)]
+ t− 2.

The proof is completed. �

As an immediate consequence, we have the following corollary.

Corollary 3.3. Let L = {λ1, . . . , λs} with 0 < λ1 < λ2 < · · · < λs and let t ≥ 3. Suppose
F is a non-trivial k-uniform t-wise L-intersecting family of subsets of [n]. Then

|F| ≤ (t− 1)

[(
n

s

)
−
(
n− k

s

)]
+ t− 2.

9



4 An asymptotical bound

In this section,, we give a Deza-Erdös-Frankl type theorem for nonuniform families. First,
we give the following lemma.

Lemma 4.1. Let L = {0, λ2, . . . , λs} with λ2 ≥ 2 and t ≥ 3. Let F be a t-wise and
L-intersecting family of subsets of [n]. If λ2 dose not divide every λ3, . . . , λs, then

|F| = o(ns)

Proof . If for any fixed ε, there exists n0 such that when n > n0 there exists a element
x of [n] satisfying degF(x) < ε

(
n−1
s−1

)
, then denote F [x] = {F − x : x ∈ F and F ∈ F}

and F ′ = F − F [x]. We can get |F [x]| ≤ ε
(
n−1
s−1

)
− 1 and F ′ is a nonuniform t-wise and

{λ2, . . . , λs}-intersecting family of [n]−{x}. When n = n0, |F| ≤ 2n0 . Thus by the induction
process, we obtain

|F| < ε

(
n

s

)
for n > n0 + 2n0 sufficiently large. Since ε is arbitrarily, we obtain |F| = o(ns).

Now we will prove that for any fixed ε, there exists n0 such that when n > n0 there
exists a element x of [n] satisfying degF(x) < ε

(
n−1
s−1

)
. Suppose that for any x ∈ [n], |F [x]| ≥

ε
(
n−1
s−1

)
. Since ε

(
n−1
s−1

)
> o(ns−1) for n is large enough. Theorem 3.1 implies that there exist

A1, . . . At−1 such that the size of their intersection is λ2. Denote A(x) = A1∩· · ·∩At−1. Since
|F ∩A(x)| ∈ L for any F ∈ F and |F ∩A(x)| ≤ λ2, |F ∩A(x)| = 0 or λ2. Hence each set of
F is either disjoint from A(x) or contains it. The same argument holds for every vertex of
[n]. It follows that if x ̸= y, then A(x) and A(y) are either disjoint or coincide. Thus [n] can
be partitioned into m/λ2 blocks from A = {A(x)}. It implies that λ2 divides n. For F ∈ F ,
denote H(F ) = {A ∈ A : A ⊂ F} and H = {H(F ) : F ∈ F}. Then |H| = |F| and H
is a nonuniform, t-wise and L′ = {λi/λ2 : λi ∈ L and λi/λ2 is an integer}-intersecting
family on n/λ2 vertices. Since λ2 does not divide each of λ3, . . . , λs, we have |L′| < |L| = s.
Consider H[x] = {H(F ) : x ∈ F}. Note that H[x] is L′ − {0}-intersecting family. Theorem
1 in [8] implies that

|F [x]| ≤ (t− 1)

|L′|−1∑
i=0

(
n

i

)
< ε

(
n− 1

s− 1

)
.

for n large enough. It contradicts the assumption. Hence for any fixed ε, there exists n0

such that there is a element x of [n] satisfying degF(x) < ε
(
n−1
s−1

)
. The proof is completed.�
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Theorem 4.2. Let L = {λ1, λ2, . . . , λs} with 0 ≤ λ1 < λ2 < · · · < λs and t ≥ 3. Suppose
that F is a t-wise and L-intersecting family of subsets of [n]. If there exists i such that
λi+1 − λi dose not divide λi+2 − λi+1, then we have

|F| = o(ns),

for n sufficiently large.

Proof . First let us consider the case λ1 = 0. We use induction on s. When s = 3,
L = {0, λ2, λ3}, if λ2 does not divide λ3 − λ2, then λ2 does not divide λ3. By Lemma 4.1,
we have F = o(ns) for n large enough. Hence the result holds for s = 3. Suppose that the
result is true for s− 1 and suppose F is a nonuniform t-wise L = {0, λ2, . . . , λs}-intersecting
family. If λ2 does not divide every λi for i ≥ 3, then Lemma 4.1 implies that F ≤ o(ns).
Thus we need only to consider λ2|λi for i ≥ 3. Similar to the argument in Lemma 4.1, we
have |F| = |H|, where H is a nonuniform t-wise L′ = {0, 1, λ3/λ2, . . . , λs/λ2}-intersecting
family on n/λ2 elements. For any x ∈ [n], H[x] is a nonuniform t-wise {0, λ3−λ2

λ2
, . . . , λs−λ2

λ2
}-

intersecting family on (n/λ2−1) elements. Since if λi+1−λi does not divide λi+2−λi+1, then
λi+1−λi

λ2
does not divide λi+2−λi+1

λ2
. It follows from the condition of theorem that there exists

i such that λi+1−λi

λ2
does not divide λi+2−λi+1

λ2
. Hence Lemma 4.1 implies |H[x]| = o(ns−1). It

follows that
|H| ≤ n

k
· o(ns−1) = o(ns)

for n large enough. Up to now, we verified the result for λ1 = 0. Next for λ1 ≥ 1, If F is
non-trivial, then Theorem 3.1 gives us that |F| ≤ o(ns). If F is trivial, then the argument
above yields that |F| ≤ o(ns) for n large enough. The proof is completed. �
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