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Abstract

Let £ = {A1,...,As} be a set of s nonnegative integers with A\j < Ay < ... < Ag
and let ¢t > 2. A family F of subsets of an n-element set is called ¢t-wise L-intersecting
if the cardinality of the intersection of any ¢ distinct members in F belongs to £. We
give the following improvement to Fiiredi-Sudakov Theorem: Let ¢ > 3 and F be a
t-wise L-intersecting family of subsets of [n]. Then for |(\pcr F| < A1,

[ F| = o(n®);
for [(\per F| = A1 and n sufficiently large
k+s—1/n—A n—A
A= () 2000
s+1 s , 1
i<s—1

We also give a sharp upper bound for the size of a k-uniform ¢-wise L-intersecting
family in the case s = 1.

Keywords : intersecting family, Erdos-Ko-Rado Theorem, non-trivial intersecting family,
Sy(n, k, 1)-design.



1 Introduction

Let F be a family of subsets of an n-element set [n] = {1,2,...,n} and let £ = {\,..., \s}
be a set of s non-negative integers. The family F is called uniform if all its members have
the same size. F is t-wise L-intersecting if the cardinality of the intersection of any ¢ distinct
members in F belongs to £. Suppose that A\; < Ay < ... < A,. We call a family F non-trivial

if |Nper Fl < A1
In 1949, Bose [4] obtained the following intersection theorem.

Theorem 1.1 If F is a family of subsets of X satisfying |E N F| = X for every pair of
distinct subsets E, F € F, then |F| < n.

About 30 years ago, Deza, Erdés, Frankl [3] proved the following two theorems.
Theorem 1.2 Let L ={\1,..., s} be a set of s non-negative integers. If F is a k-uniform
t-wise L-intersecting family of subsets of [n], then

T (n—=N)
Fl<(t—-1
HETN | b

i=1

for n > 2Fk3.

Theorem 1.3 Let L ={\1,...,\s} be a set of s non-negative integers. If F is a k-uniform
t-wise L-intersecting family of subsets of [n] and |F| > en*~t (c=c(k) is a constant depending
on k), then

(A2 = A)[(As = A2)[ -+ [(Ar = Asn) (K = As).

In 1975, Ray-Chaudhuri and Wilson [11] derived the next result.

Theorem 1.4 Let L = {l,la,...,ls} be a set of s nonnegative integers. If F is a k-uniform
L-intersecting family of subsets of X, then

|F| < (Z)



As to nonuniform L-intersecting families, Frankl and Wilson [5] obtained in 1981 the
following celebrated result.

Theorem 1.5 Let L = {l,ls,...,ls} be a set of s nonnegative integers. If F is an L-
intersecting family of subsets of X, then

ne ()1 )

In 2004, Fiiredi and Sudakov [6] gave the following theorem:

Theorem 1.6 Let L = {\1,..., s} be a set of s non-negative integers. If F is a t-wise
L-intersecting family of subsets of [n] , then for n sufficiently large

k+s—1/(n n
< —_ .
7l = s+1 (s) +i<2331 (z>

The main objective of this paper is to give the following theorem which provides an
improvement to Theorem 1.6. We will also give a non-uniform version of the Deze-Erdos-
Frankl type theorem.

Theorem 1.7 Lett > 3 and F be a t-wise L-intersecting family of subsets of [n]. Then for

|ﬂFe]—‘F| < )‘17
| F| = o(n®);

for |Nper F| = M\ and n sufficiently large
k -1 - A - A
s+1 5 i<s—1 !

2  )-intersecting family

In this section, we consider the case for £ = {A}. The following result lowers the threshold
number in Theorem and shows the upper bound is sharp, where a S,.(n, k, 1)-design is a
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collection of k-blocks (i.e., k-subsets of [n]) such that every element in [n] appears in exactly
r blocks.

Theorem 2.1. Let )\ be a non-negative integer and let 3 < k <n,t>3and A\+1 < k. If £
is a family of k-subsets of an n-elements set such that |A; N---N A;| = A for any collection

of t-distinct members of F, then for n > A\ — 1+ k(tk:f),
(n=N(t—1)
Fl<—.

Fl< =5

Moreover, the equality holds if and only if there exists a S;_1(n — A,k — A, 1)-design.

Proof. First let us consider the case that &k > XA + 2. If A = 0, let us consider F as a
hypergraph. Since |A; N---N A;| =0 for any Ay,..., A; € F, the degree of each vertex of
F is at most t — 1. Since every edge of F has k vertices, it follows that

|Flk <n(t—1).

Hence |F| < @

Next suppose that A > 0 but there exist A;,..., A;_1 € F such that [A;N---NA_1| =\
Then, for any other F' € F, we have |[FNA;N---NA;_1| = A. Therefore all other members of
F should contain the set A = A;N---NA;_y. Define a new set system F' = { F\A|F € F}.
Then |F'| = |F| and any t distinct members of ' have empty intersection. Also note that
members of F’ are subsets of an (n — A)-set. Therefore it follows from the above discussion
that ( M- 1)

! n-— —

Now we assume that the intersection of any t — 1 members of F has a size different
from \. Let F = {A;,...,A,}. Then |[A;; N+ A q| > Afor 1 <idy < -+ <1} Let
Ayn---NA_9 = A Then |[A;NAl > X for every A; € F —{Ay,..., A2}, We claim
that A, N A # A; N A for any A;,A; € F—{Ay,..., Ao} with ¢ # j. For otherwise
if ANA=A;NAforsomet—1<i#j<m,then |[A;NA NAl = |4 NA > A
contradicting the assumption. Let B = {A4; N A:t—2 < i < m}. Then any two sets in
B have exactly A elements in common. By Theorem 1.1, |B| < |A|. Since |[A] < k—1, we
obtain m < |B|+t—2<k+t—3. Whenn>XA—1+ k(k:Q) we have

(t= 1) =2

k+t—3<
+ 3 < Y



Hence

(t=1)(n—2A)
Fls o

—A

whenn >\ —1+ k(f__lz).

Clearly the equality holds if and only if there are A vertices contained by all elements
of F and the degrees of other vertices of [n] are all ¢t — 1, the existence of such a family
corresponds to a S;_1(n — A, k — A, 1)-design. O

To show the sharpness of the bound in Theorem 2.1, we next show the existence of a
Si—1(n — Ak — A, 1)-design.

Lemma 2.2. If there exists an S,(n, k, 1)-design, then

klnr.

Proof. If there exists an S,(n, k, 1)-design, then the number of block is %", which must be
an integer. Hence we have k|nr. O

For the convenience, we label the n elements by the elements in Z,, = {0,1,2,--- ;n—1}.
Under the addition of the addition group Z,, we divide all (}) k-sunsets ( blocks ) of Z,, into
equivalence classes as follows: two blocks {vy,...,vx} and {uy,...,ux} are equivalent if and
only if

VI — UL =Vg — Uy =+ =V — U (mod n),

e, {uy,...,ux} = {vy +h,...,vp + h} for some integer h, where the sum is taking modulo
n.

Suppose that all (Z) k-blocks are divided into equivalence classes Cy,Cy, ..., C,, where
Ci={{z,z+1,...,0+k—1}:2 € Z,}.

Lemma 2.3. For each 1 < i < ¢, there exists a constant ¢; such that every element in [n]
appears in exactly ¢; blocks from C; and k|¢;n, i.e., each C; is a S, (n, k, 1)-design.

Proof . Let i be any integer such that 1 < i < ¢q. Let {vy,vg, - ,v} € C; and B; =
{H{vi+j,va+7, -+ ,ue+7}0 <7 <n—1} ( allowing repeats if there are any). Then every
element in [n] appears in exactly k& blocks from B; (counting repeats) and B; is made up by



d; > 1 copies of C;. It follows that element in [n] appears in exactly ¢; = f blocks from Cj.
Moreover, since each C; is a S, (n, k, 1)-design, it follows from Lemma 2.2 that k|¢;n. O

Theorem 2.4. For k> 1 and t > 1, a S,(n, k, 1)-design exists if and only if k|nr.

Proof.By Lemma 2.2, we need only to prove the sufficiency. Let k|lnr. Let Cy,Cs,...,C,
be the equivalence classes that partition the set of all k-subsets (k-blocks) of Z,, where
C={{z,z+1,....,0+k—1} : x € Z,}. First we consider the case r < k. Let r be the
smallest factor of r such that k|nry (if k|n, then 7, = 1) and let r = ryry. Take

Ol = U {0 + ik + j, 1+ ik + 5, - - ,k—l+z’k:+j}|0§i§%—1}.

Then it is easy to see that C] C C; and every element in [n| appears in exactly r blocks
from C. Thus Cf is a S,(n, k, 1)-design.

Now, we assume r > k. Then there exists an integer h such that
h h
Zci <r< Zci+cl-
=2 =2

h
Let " = r — > ¢. Then 0 < v < k. Since k|nr and k|e;n for each ¢ by Lemma 2.3,
i=2
k|nr’. From the previous case, we see that C} has a subset C] such that every element in [n]
appears in exactly r’ blocks from Cf. Now take C' = C{ U (U_,C}). Then every element in

[n] appears in exactly r blocks from C' and so C'is a S,.(n, k, 1)-design. O

3 Non-trivial L-intersecting families

We begin this section with the following theorem.

Theorem 3.1. Let £ = {A\,...,; A} with 0 < A} < Ag < -+ < A; and let t > 3.
Suppose F is a t-wise L-intersecting family of subsets of [n]. If for any Ay,..., A, € F,
|A1 N---N At_1| > /\1, then

[ F| = o(n).



Proof . Let F be a t-wise L-intersecting family. We denote by D = Fy N --- N F; 5 a
smallest intersection of among all possible choices of t —2 members of F and Y be a smallest
element of F (i.e., |Y| < |F| for any other F' € F). Denote |D| = m; and |Y| = my. Clearly,
my < mg. For each A; € F\{Fi,...,F, 5}, let B, = DN A;. Then these B;’s form an
F-intersecting family B on [m;] in which we allow multisets (repeats of same sets).

Now we sperate the multisets from B. Let B’ = {B;|3j # i, B, = B;} and B* = B\5'.
Then B* is an L-intersecting family of [m;]. By Theorem 1.5, we have

B*| < Z (“;1)
=0

Next, we estimate the size of B’. First we claim that for each B; € B, |B;| = \; for
some j > 2. Suppose B; € B'. Since there exists a B; such that B; = B;, it follows that
|Bi| = |B:NB;| = |FiN---NF_2NA;NA;| € L. By the condition, for any A,,..., A1 € F,
|Ay N --- N Aiq| > Ay, thus |B;] > A1, Hence the claim holds. Let B” be the set which
consists of distinct members of B'. Let B; = {B € B"||B| = \;}, where j =2,...,s. Then
each B; is a Aj-uniform {\q, ..., \;_; }-intersecting family of subsets of [m4]. It follows from

Theorem 1.4 that
mq
B < )
Bl < (j— 1)

F(B)={F—-B|[FNAN---NA_s=B and F e F}.

For each B € B;, Let

Then F(B) is a t-wise {0, A\j11 — Aj, ..., As — A, }-intersecting family. By Theorem 1.6, we
have when n is sufficiently large,

n

E

F(B) g%;g(s_?ﬂ) -1y
Bl ]z:; (jnzll) (%(8—% 1) H-n 2

i<s—j
Thus
It follows that

[ F| =B+ [B*| + (t — 2) (3.1)



(M) () (—“‘“’i‘]( R R (@)) vioa
i:O(z J; J—1 s—7+2\s—7+1 i;j 7

It is not difficult to see that if m; < nGsH=2/Qs+=1 then |F| < o(n®) and the theorem
holds. So we assume my > nPsT=2/Qst=1) " GQince my > my, we may assume mso > A for
n large enough, that is, the size of every element of F is no less than A;. Let f(z) = (fs) if
x> As — 1 and f(z) = 0 otherwise, one can see that the function is monotone and convex
so we can apply Jensen’s inequality. For A € ([f]), let da = |{F € F|A C F}| which is the

number of subsets in F containing A. Then
FIN _ da
< t ) 2 t )

It follows from Jensen’s inequality that

(%) Zae() () rZase
= (W)

As

As As

For a fixed A, there are d4 subsets in F which contain A and for a fixed F' € F there are
('/C') As-subsets A’s in it, so we have

Sada Zrer () (32)
(85)-C57) = (")

We may assume |F| > n?QstD/EHA=D " for otherwise we would have |F| < o(n®). Since

have

1 F
mtz(l |

ma
my > mq > nPsTt=2/CsH=1) the quantity |.7-"|((*T)) tends to infinity as n — oo. Hence we
() As!

Xs
(32) m t may \ ¢
(il)) zl' \ﬂ(ij) —t4+1) > 176 \ﬂ(i;)
t " () t ()
for any € > 0 if n is large enough. Thus
n t—1 M t
1 1 >
()= ()
which implies that m; < my < (14 o(1))n*=V/t, It follows from (3.1) that

[ F| = o(n”).
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O

Proof of Theorem 1.7 . Let £ = {\,..., A} be a set of s non-negative integers with
Al < A < -+ < A and let F be a t-wise L-intersecting family of subsets of [n]. If
|Nper F| = A1, then take A to be a subset of (. F such that |A| = A;. Define a new set
system F' = {F\A|F € F}. Then |F'| = |F| and the result follows by applying Theorem
1.6 to F'.

Now assume that |(pcr F| < A1. Then there do not exist A;,..., A,_; € F such that
|Ay N -+~ N A1 = Ay, For otherwise A; N--- N A;_; is contained in every set in F which
implies that |()zcz F| > A1. Thus by Theorem 3.1, the result follows. O

In fact, if we restrict F to be a k-uniform family, we can obtain the following.
Theorem 3.2. Let £ ={\1,..., A} with 0 < A} < Ay < --- < A and let ¢ > 3. Suppose

F is a k-uniform t-wise L-intersecting family of subsets of [n]. If for any Ay,..., A1 € F,
|A1 MN---N At_1| > /\17 then

Fee-n|()-(",")]+e-2

Proof . We can prove this result by modifying the proof for Theorem 3.1. Since F is
k-uniform, |Y'| in the proof above is k. Thus we have m; < k. It follows from a result in [§]
that if 7 is k-uniform ¢-wise L-intersecting family, then |F| < (¢ —1)("). By (3.1) in the
previous proof, we have

IFIS(t—l);c)(z:f)+t—2:(t—1) KZ) _ (“;k)] L9,

The proof is completed. l

As an immediate consequence, we have the following corollary.

Corollary 3.3. Let £ = {A\;,..., A} with 0 < A\; < Ay < -+ < Ag and let £ > 3. Suppose
F is a non-trivial k-uniform ¢-wise L-intersecting family of subsets of [n]. Then

Fee-n]()-(",")]+e-2



4 An asymptotical bound

In this section,, we give a Deza-Erdos-Frankl type theorem for nonuniform families. First,
we give the following lemma.

Lemma 4.1. Let £ = {0,\a,...,As} with Ay > 2 and ¢t > 3. Let F be a t-wise and
L-intersecting family of subsets of [n]. If Ay dose not divide every A, ..., As, then

|| = o(n®)

Proof . If for any fixed e, there exists ny such that when n > ng there exists a element
z of [n] satisfying degr(z) < e("]), then denote Flz] = {F —z :2 € F and F € F}
and F' = F — Flz]. We can get |F[z]| < e("_}) — 1 and F’ is a nonuniform t-wise and
{A2, ..., As p-intersecting family of [n] —{x}. When n = ng, |F| < 2". Thus by the induction

process, we obtain
n
|F| < 6( )
S

for n > ng + 2" sufficiently large. Since ¢ is arbitrarily, we obtain |F| = o(n®).

Now we will prove that for any fixed e, there exists ny such that when n > ng there
exists a element z of [n] satisfying degz(z) < e("]). Suppose that for any z € [n], |F[z]| >
5(2:11). Since 5(’;‘:;) > o(n*~1) for n is large enough. Theorem 3.1 implies that there exist
Aj, ... A;_ such that the size of their intersection is A\y. Denote A(z) = A;N---NA;_;. Since
|[FNA(x)| € L for any F' € F and |[FNA(z)| < Ao, [FFNA(z)| =0 or Ay. Hence each set of
F is either disjoint from A(z) or contains it. The same argument holds for every vertex of
[n]. Tt follows that if = # y, then A(z) and A(y) are either disjoint or coincide. Thus [n] can
be partitioned into m/Ag blocks from A = {A(z)}. It implies that Ay divides n. For F' € F,
denote H(F) ={A e A: AC F}and H = {H(F) : F € F}. Then [H| = |F| and H
is a nonuniform, t-wise and £ = {\;/Aa : \; € L and \;/)\y is an integer }-intersecting
family on n/As vertices. Since Ay does not divide each of As, ..., As, we have |L'| < |L] = s.
Consider H[z]| = {H(F) : € F'}. Note that H[z] is L — {0}-intersecting family. Theorem
1 in [8] implies that

iy n n—1
| Flz]| < (t—1) ; (Z) <g<8_1).
for n large enough. It contradicts the assumption. Hence for any fixed e, there exists ng
such that there is a element = of [n] satisfying degx(z) < £("~}). The proof is completed.[]
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Theorem 4.2. Let £ = {A,dg,..., As} with 0 < A\j < Ay < -+ < Ay and t > 3. Suppose
that F is a t-wise and L-intersecting family of subsets of [n]. If there exists i such that
Air1 — A; dose not divide A\;19 — A;11, then we have

[ F| = o(n®),

for n sufficiently large.

Proof . First let us consider the case A\; = 0. We use induction on s. When s = 3,
L = {0, X2, A3}, if Ao does not divide A3 — Ay, then Ay does not divide A3. By Lemma 4.1,
we have F = o(n®) for n large enough. Hence the result holds for s = 3. Suppose that the
result is true for s — 1 and suppose F is a nonuniform t-wise £ = {0, Ag, . .., A\;}-intersecting
family. If Ay does not divide every A; for i > 3, then Lemma 4.1 implies that F < o(n®).
Thus we need only to consider \g|\; for ¢ > 3. Similar to the argument in Lemma 4.1, we
have |F| = |H|, where H is a nonuniform t-wise £ = {0,1, A3/Ag, ..., A/ A2 }-intersecting
family on n/A; elements. For any = € [n], H[z] is a nonuniform ¢-wise {0, ’\3)\;;2, ce ’\*)\;2’\2 -
intersecting family on (n/As —1) elements. Since if ;11 — A; does not divide A\; 1o — ;1 1, then

% does not divide ’\“/\;2)‘“ It follows from the condition of theorem that there exists
i such that % does not divide ’\“/\;2’\“ Hence Lemma 4.1 implies |H[z]| = o(n*71). Tt

follows that n
M) < 7 oln ) = o(n)

for n large enough. Up to now, we verified the result for Ay = 0. Next for \; > 1, If F is
non-trivial, then Theorem 3.1 gives us that |F| < o(n®). If F is trivial, then the argument
above yields that |F| < o(n®) for n large enough. The proof is completed. O
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