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Abstract

For a simple graph G, the energy E(G), is defined as the sum of the abso-

lute values of all eigenvalues of its adjacency matrix. Let Cn be the cycle

and P 6,6
n be the graph obtained from two copies of C6 joined by a path

of order n− 10 . Let Cn be the class of bicyclic graphs which have exact

two edge-disjoint cycles satisfying that one is even, the other is odd. In

[I. Gutman, D. Vidović, Quest for molecular graphs with maximal en-

ergy: a computer experiment, J. Chem. Inf. Sci. 41(2001),1002–1005.],

Gutman and Vidović conjectured that the bicyclic graph with maximal

energy is P 6,6
n , for n = 14 and n ≥ 16. Recently, Huo et al. proved

that the assertion is true for bipartite bicyclic graphs. In the paper,

we first show that for the graphs in Cn the coefficients of characteristic

polynomials have uniform sign. Besides, we extend the correctness of

the assertion from bipartite bicyclic graphs to Cn.



1 Introduction

Let G be a graph of order n and A(G) be its adjacency matrix . The characteristic

polynomial ϕ(G, x) (or ϕ(G) for short) of G is defined as

ϕ(G, x) = det(xI − A(G)) =
n∑

i=0

aix
n−i. (1)

The roots λ1, λ2, . . . , λn of ϕ(G, λ) = 0 are called the eigenvalues of G.

With respect to the coefficients of the characteristic polynomial of a graph, we propose

the famous Sachs Theorem [2].

Let G be a graph with characteristic polynomial
∑n

k=0 akx
n−k. Then for k ≥ 1,

ak =
∑
S∈Lk

(−1)ω(S)2c(S) (2)

where Lk denotes the set of Sachs subgraphs of G with k vertices, that is, the subgraph

in which every component is either a K2 or a cycle; ω(S) is the number of connected

components of S and c(S) is the number of cycles contained in S. In addition, a0 = 1.

Two basic properties of the characteristic polynomial ϕ(G)[2] will be introduced.

Proposition 1.1. If G1, G2, . . . , Gr are the connected components of a graph G, then

ϕ(G) =
r∏

i=1

ϕ(Gi).

Proposition 1.2. Let uv be an edge of G. Then

ϕ(G, x) = ϕ(G− uv, x)− ϕ(G− u− v, x)− 2
∑

C∈C(uv)

ϕ(G− C, x),

where C(uv) is the set of cycles containing uv. In particular, if uv is a pendent edge with

pendent vertex v, then ϕ(G, x) = xϕ(G− v, x)− ϕ(G− u− v, x).

The energy of G, denoted by E(G), is defined as E(G) =
n∑

i=0

|λi|. This definition was

proposed by Gutman [5]. The Coulson integral formula [1] is

E(G) =
1

π

∫ +∞

−∞

1

x2
log |xnϕ(G, i/x)|dx,



where i2 = −1. Moreover, it is known from [1] that the above equality can be expressed

an explicit formula as follows:

E(G) =
1

2π

∫ +∞

−∞

1

x2
log

⌊n/2⌋∑
i=0

(−1)ia2ix
2i

2

+

⌊n/2⌋∑
i=0

(−1)ia2i+1x
2i+1

2 dx,

where a1, a2, . . . , an are the coefficients of the characteristic polynomial ϕ(G, x). Formally,

We usually note (−1)ia2i = b2i and (−1)ia2i+1 = b2i+1. For more results about graph

energy, we refer readers to the recent survey of Gutman, Li and Zhang[10].

Since 1980s, the extremal energy E(G) of a graph G has been studied extensively.

Many results have been discovered on acyclic, unicyclic, bicyclic and bipartite graphs. But

the quasi-order method people used before is not always valid. Recently, for these quasi-

order incomparable problems, we find an efficient way to determine which one attains the

extremal value of the energy, refer to [13, 15–19].

In the paper, the graphs under our consideration are finite, connected and simple.

The order of G is the number of vertices in G, denoted by |G|. Let Pn and Cn denote the

path and cycle with n vertices, respectively. Let P ℓ
n be the unicyclic graph obtained by

joining a vertex of Cℓ with a leaf of Pn−ℓ and P 6,ℓ
n be the graph obtained from two cycles

C6 and Cℓ joined by a path Pn−ℓ−4. If the path have just one vertex( namely, P1), then

P 6,ℓ
n

∼= P 6,ℓ
ℓ+5. Denote by Ra,b the graph obtained from two cycles Ca and Cb (a, b ≥ 10 and

a ≡ b ≡ 2 (mod 4)) connected by an edge. Let Bn be the class of all bipartite bicyclic

graphs that are not the graph Ra,b. Let Cn be the class of bicyclic graphs which have

exact two edge-disjoint cycles satisfying that one is even, the other is odd.

Huo et al. [18], recently, obtained a beautiful result that P 6
n is the only graph with

the maximal energy among all unicyclic graphs. In [9], Gutman and Vidović proposed a

conjecture on the bicyclic graph with the maximal energy.

Conjecture 1.3. For n = 14 and n ≥ 16 the bicyclic molecular graph of order n with

maximal energy is the molecular graph of the α, β diphenyl-polyene C6H5(CH)n−12C6H5,

or denoted by P 6,6
n .

On the bipartite bicyclic graphs, Li and Zhang(2007)[20] discussed assertion on Bn,

as follows.



Theorem 1.4. If G ∈ Bn and n ≥ 16, then E(G) ≤ E(P 6,6
n ) with equality if and only if

G ∼= P 6,6
n .

But the authors couldn’t compare the energy of P 6,6
n with that of Ra,b. Recently, Huo

et al. [16] solve the problem. Thus, the above conjecture for bipartite bicyclic graphs has

been completely solved.

Theorem 1.5. For n− t, t ≥ 10 and n− t ≡ t ≡ 2 (mod 4), E(Rn−t,t) < E(P 6,6
n ).

In the paper, we will confirm that the Conjecture 1.3 is also true on the class Cn.

Theorem 1.6. Let G ∈ Cn\{G1, G2, G3, G4}, n ≥ ℓ + 5, then E(G) ≤ E(P 6,ℓ
n ) with

equality if and only if G ∼= P 6,ℓ
n .

G1 G2 G3 G4

Fig.1 The graphs are incomparable with P 6,ℓ
ℓ+5.
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Theorem 1.7. If G ∈ Cn, then E(G) < E(P 6,6
n ) for n = 12, 14 and n ≥ 16.

For several kind of graphs, we cannot use the quasi-order method to get the extremal

energy graph, but we can use it to simplify the class of graphs. As we known, the neces-

sary condition to use the quasi-order method that is the coefficients of the characteristic

polynomials of graphs must have uniform sign. So the following lemma will be very

important.

Lemma 1.8. If G ∈ Cn contains an odd cycle of length ℓ, ℓ = 2p + 1, for all i ≥ 0, we

have : (i) (−1)ia2i ≥ 0;

(ii) (−1)ia2i+1 ≥ 0(resp. ≤ 0) if p is odd (resp. even).

2 Proof of some Lemmas

The proof of Lemma 1.8



Proof. Let L
(1)
2i and L

(1)
2i+1 denote the Sachs subgraph of G containing an even cycle,

L
(2)
2i = L2i\L(1)

2i and L
(2)
2i+1 = L2i+1\L(1)

2i+1, besides, m(G, k) is the number of the k-matching

of G. We first show (−1)ia2i ≥ 0. From Eq.(2) ( Sachs Theorem), we have

(−1)ia2i = (−1)i

 ∑
S∈L(1)

2i

(−1)ω(S)2c(S) +
∑

S∈L(2)
2i

(−1)ω(S)2c(S)

 (3)

According to the property of Sachs subgraph, the following two cases should be considered.

Case 1. The length of the even cycle is ℓ = 4k + 2.

If 2i < 4k + 2, then (−1)ia2i = m(G, i) > 0.

If 2i = 4k + 2, then (−1)ia2i = 2 +m(G, 2k + 1) > 0.

If 2i > 4k + 2, then (−1)ia2i = (−1)i(2
∑

S∈L(1)
2i
(−1)

2i−4k−2
2

+1 +
∑

S∈L(2)
2i
(−1)i) =

2
∑

S∈L(1)
2i
(−1)2i +

∑
S∈L(2)

2i
(−1)2i > 0.

Case 2. The length of the even cycle is ℓ = 4k.

If 2i < 4k, then (−1)ia2i = m(G, 2k) > 0.

If 2i = 4k, then (−1)ia2i = −2 +m(G, 2k) ≥ 0, since C4k has two 2k-matchings.

If 2i > 4k, then (−1)ia2i = (−1)i(2
∑

S∈L(1)
2i
(−1)

2i−4k
2

+1 +
∑

S∈L(2)
2i
(−1)i) = −2(m(G −

C4k, i− 2k)) +m(G, i) ≥ −2(m(G− C4k, i− 2k)) +m(G− C4k, i− 2k)m(C4k, 2k) = 0.

We now consider (−1)ia2i+1, there are two cases to be executed.

Case 1. 2i+ 1 ≥ (2p+ 1) + ℓ, ℓ is the length of the even cycle and 2p+ 1 is that of the

odd cycle.

(−1)ia2i+1 = (−1)i

4
∑

S∈L(1)
2i+1

(−1)
2i+1−(2p+1)−ℓ

2
+2 + 2

∑
S∈L(2)

2i+1

(−1)
2i+1−(2p+1)

2
+1


= 4

∑
S∈L(1)

2i+1

(−1)p+
ℓ
2 + 2

∑
S∈L(2)

2i+1

(−1)1−p.

If ℓ = 4k + 2, then p+ ℓ
2
and 1− p have the same parity.

If ℓ = 4k then p + ℓ
2
and 1 − p have different parity. In this case, finding the difference



between |4
∑

S∈L(1)
2i+1

(−1)p−
ℓ
2 | and |2

∑
S∈L(2)

2i+1
(−1)1−p| is necessary. By the way,

|2
∑

S∈L(2)
2i+1

(−1)1−p| = 2m(G− C2p+1, i− p)

≥ 2m(G− C2p+1 − Cℓ, i− p− ℓ/2)×m(Cℓ, ℓ/2)

= |4
∑

S∈L(1)
2i+1

(−1)p+
ℓ
2 |,

Thus, if p is even, (−1)ia2i+1 < 0; otherwise, (−1)ia2i+1 > 0, the result holds.

Case 2. 2p+ 1 ≤ 2i+ 1 < (2p+ 1) + l.

From Eq.3, we have (−1)ia2i+1 = 2
∑

S∈L(2)
2i+1

(−1)1−p. So (−1)ia2i+1 < 0, for even p;

(−1)ia2i+1 > 0, otherwise. The proof is thus completed.

In view of Lemma 1.8, the quasi-order method is applicable to Cn. It will play a key

role in the proof of Theorem 1.7

Now, in order to simplified the proof of Theorem 1.6, we define some notations.

The distance of two cycles C1 and C2 of the graph G is dG(C1, C2) = min{d(x, y)|x ∈

C1 and y ∈ C2}, the corresponding path is marked as xTy. If C1 and C2 have a common

vertex, we define dG(C1, C2) = 0. We refer to P s,ℓ
m as the brace of the bicyclic graph G,

if G contains P s,ℓ
m as its induced subgraph. Let Cℓ

n be the set of all unicyclic graphs with

n vertices and with a cycle Cℓ, and C(n, ℓ) denote the collection of all unicyclic graphs

obtained from Cℓ by adding to it n− ℓ pendent vertices. We define Ts to be a forest with

s vertices. we will write dG(C1, C2) by d(G) for short.

Lemma 2.1. Let n = 4k, 4k + 1, 4k + 2 or 4k + 3. Then

Pn ≻ P2 ∪ Pn−2 ≻ P4 ∪ Pn−4 ≻ · · · ≻ P2k ∪ Pn−2k ≻ P2k+1 ∪ Pn−2k−1

≻ P2k−1 ∪ Pn−2k+1 ≻ · · · ≻ P3 ∪ Pn−3 ≻ P1 ∪ Pn−1.

Lemma 2.2. If ℓ (≥ 3) is odd and n > t ≥ ℓ+ 3, we have P ℓ
n ∪ P4 ≻ P ℓ

t ∪ Pn−t+4.

Proof. By Proposition 1.2, we get

bi(P
ℓ
n ∪ P4) = bi(P

ℓ
t ∪ Pn−t ∪ P4) + bi−2(P

ℓ
t−1 ∪ Pn−t−1 ∪ P4),

bi(P
ℓ
t ∪ Pn−t+4) = bi(P

ℓ
t ∪ Pn−t ∪ P4) + bi−2(P

ℓ
t ∪ Pn−t−1 ∪ P3).



From the above equalities, we only need to compare bi−2(P
ℓ
t−1∪Pn−t−1∪P4) with bi−2(P

ℓ
t ∪

Pn−t−1 ∪ P3), where

bi−2(P
ℓ
t−1 ∪ Pn−t−1 ∪ P4) = bi−2(Pt−1 ∪ Pn−t−1 ∪ P4) + bi−4(Pℓ−2 ∪ Pn−t−1 ∪ Pt−ℓ−1 ∪ P4)

+ 2bi−ℓ−2(Pn−t−1 ∪ Pt−ℓ−1 ∪ P4),

bi−2(P
ℓ
t ∪ Pn−t−1 ∪ P3) = bi−2(Pt ∪ Pn−t−1 ∪ P3) + bi−4(Pℓ−2 ∪ Pt−ℓ ∪ Pn−t−1 ∪ P3)

+ 2bi−ℓ−2(Pt−ℓ ∪ Pn−t−1 ∪ P3).

If t − ℓ = 3, then Pt−ℓ−1 ∪ P4 ≻ Pt−ℓ ∪ P3; if t − ℓ = 4,then Pt−ℓ−1 ∪ P4
∼= Pt−ℓ ∪ P3;

if t − ℓ ≥ 5, then Pt−ℓ−1 ∪ P4 ≻ Pt−ℓ ∪ P3. Meanwhile, Pt−1 ∪ P4 ≻ Pt ∪ P3. Thus

bi−2(P
ℓ
t−1 ∪ Pn−t−1 ∪ P4) ≻ bi−2(P

ℓ
t ∪ Pn−t−1 ∪ P3), the result holds.

In terms of Proposition 1.2 and the property of the coefficients of characteristic poly-

nomial, we can easily deduce the following lemma.

Lemma 2.3. Let G be a graph in Cn.

(a) If G contains a cycle Cr and uv is an edge on this cycle, then

bi(G) = bi(G− uv) + bi−2(G− u− v)− 2bi−r(G− Cr) if r ≡ 0(mod 4)

bi(G) = bi(G− uv) + bi−2(G− u− v) + 2bi−r(G− Cr) if r ̸≡ 0(mod 4).

(b) If uv is a cut edge of G, then bi(G) = bi(G− uv) + bi−2(G− u− v).

Next, we shall introduce some results given in [12] which will be used in the context.

Lemma 2.4. Let G ∈ Cℓ
n and n > ℓ. If G has maximal energy in Cℓ

n, then G is either

P ℓ
n or, when ℓ = 4r, a graph from C(n, ℓ).

Lemma 2.5. Let G ∈ C(n, ℓ) and n > ℓ. If ℓ is even with ℓ ≥ 8 or ℓ = 4, then

E(G) < E(P 6
n).

Lemma 2.6. Let ℓ be even and ℓ ≥ 8 or ℓ = 4, then E(P ℓ
n) < E(P 6

n).

Proof of Theorem1.6: We will use three lemmas, which lay out as follows, to display

the proceeding of the proof Theorem 1.6. In the following proof, we will use the conclusion

of Lemma 2.1, 2.2, 2.4, 2.5 and 2.6.



Lemma 2.7. If G ∈ Cn and contains the brace P s,ℓ
m , s(≥ 8) is even and ℓ is odd. Then

P 6,ℓ
n ≻ G.

Proof. Let Cℓ be the odd cycle of G. And C(ℓ) denote the induced subgraph of G

consisting of the cycle Cℓ and all the trees with a vertex on Cℓ, let |C(ℓ)| = t(≥ ℓ). Notice

that if d(P 6,ℓ
n ) ≤ 1, then |(P 6,ℓ

n )| = ℓ+ 5or ℓ+ 6. But |G| ≥ ℓ+ 7. Hence we may assume

that d(P 6,ℓ
n ) ≥ 2.

If d(P 6,ℓ
n ) = 2, then G ∼= P 8,ℓ

n+7. Choosing a right edge e = uv and by Proposition 1.2

and Lemma 2.3, we can find

bi(G) = bi(P
ℓ
ℓ+7) + bi−2(P6 ∪ Pℓ−1)− 2bi−8(Pℓ−1),

bi(P
6,ℓ
ℓ+7) = bi(P

ℓ
ℓ+7) + bi−2(P

ℓ
ℓ+1 ∪ P4) + 2bi−6(

ℓ
ℓ+1).

and

P6 ∪ Pℓ−1
∼= P6 ∪ P2 ≺ P 3

4 ∪ P4
∼= P ℓ

ℓ+1 ∪ P4 when ℓ = 3,

P6 ∪ Pℓ−1 ≺ P4 ∪ Pℓ+1 ≺ P4 ∪ P ℓ
ℓ+1 when ℓ ≥ 5,

therefore, bi(G) ≤ bi(P
6,ℓ
ℓ+7).

If d(P 6,ℓ
n ) ≥ 3, and d(G) = 0, by choosing a proper edge uv, we can get

bi(G) = bi(C
s
n) + bi−2(Pℓ−2 ∪ Tn−ℓ) + 2bi−ℓ(Tn−ℓ)

≤ bi(P
6
n) + bi−2(Pℓ−2 ∪ P 6

n−ℓ) + 2bi−ℓ(P
6
n−ℓ) = bi(P

6,ℓ
n ) while |C(ℓ)| = t = ℓ,

bi(G) = bi(C
ℓ
n) + bi−2(Tt−1 ∪ Tn−t−1) + (−1)(1+s/2)2bi−s(Tn−s)

≤ bi(P
ℓ
n) + bi−2(P4 ∪ P ℓ

n−6) + 2bi−6(P
ℓ
n−6) = bi(P

6,ℓ
n ) while |C(ℓ)| = t ≥ ℓ+ 1.

If d(G) = 1 and |C(ℓ)| = t ≥ ℓ, then by choosing an appropriate edge uv, we have

bi(G) = bi(C
ℓ
t ∪ Cs

n−t) + bi−2(Tt−1 ∪ Tn−t−1)

≤ bi(P
ℓ
t ∪ P 6

n−t) + bi−2(Pt−1 ∪ Pn−t−1)

= bi(P
ℓ
t ∪ P 6

n−t) + bi−2(P
ℓ
t − u ∪ P 6

n−t−1) = bi(P
6,ℓ
n ).

If d(G) ≥ 2, and C(ℓ) = t ≥ ℓ, then by choosing a right edge uv, we get

bi(G) = bi(C
ℓ
t ∪ Cs

n−t) + bi−2(Tt−1 ∪ Cs
n−t−1)

≤ bi(P
ℓ
t ∪ P 6

n−t) + bi−2(P
ℓ
t − u ∪ P 6

n−t−1) = bi(P
6,ℓ
n ).



So we complete the proof.

Analogously, using the same discussion as the above lemma, one can determine the

following two assertions, where, the proceeding will be omitted.

Lemma 2.8. Let G ∈ Cn contain the brace P 6,ℓ
m , we have P 6,ℓ

n ≻ G.

Lemma 2.9. If G ∈ Cn\{G1, G2, G3, G4} contains P 4,ℓ
m as its brace, then P 6,ℓ

n ≻ G.

Combining Lemma 2.7 to 2.9, we finally finish the proof of Theorem 1.6.

3 Proof of Theorem 1.7

Before exhibiting the proceeding of the proof of Theorem 1.7, we shall prepare some

knowledge on real analysis [23].

Lemma 3.1. For any real number X > −1, we have

X

1 +X
≤ log(1 +X) ≤ X.

In particular, log(1 +X) < 0 if and only if X < 0.

The following lemma is a well-known conclusion due to Gutman [7] which will be used

later.

Lemma 3.2. If G1 and G2 are two graphs with the same number of vertices, then

E(G1)− E(G2) =
1

π

∫ +∞

−∞
log

∣∣∣∣ϕ(G1; ix)

ϕ(G2; ix)

∣∣∣∣ dx.
We can easily obtain the following recursive equations by means of Proposition 1.1

and Proposition 1.2.

Lemma 3.3. For any positive number n ≥ 8, we get

ϕ(Pn, x) = xϕ(Pn−1, x)− ϕ(Pn−2, x),

ϕ(P 6
n , x) = xϕ(P 6

n−1, x)− ϕ(P 6
n−2, x);



for any positive integer number n ≥ ℓ+ 6, we have

ϕ(P 6,ℓ
n , x) = ϕ(P 6

n , x)− ϕ(Pℓ−2, x)ϕ(P
6
n−ℓ, x)− 2ϕ(P 6

n−ℓ, x),

ϕ(P 6,ℓ
ℓ+5, x) = ϕ(P 6

ℓ+5, x)− ϕ(P5, x)ϕ(Pℓ−2, x)− 2ϕ(P5, x).

Next, we define some notions for convenience as follows, which will be well used in the

sequel.

Y1(x) =
x+

√
x2 − 4

2
, Y2(x) =

x−
√
x2 − 4

2
.

It is easy to check that Y1(x) + Y2(x) = x, Y1(x)Y2(x) = 1, Y1(ix) = x+
√
x2+4
2

i and

Y2(ix) =
x−

√
x2+4
2

i. furthermore, we mark

Z1(x) = −iY1(ix) =
x+

√
x2 + 4

2
, Z2(x) = −iY2(ix) =

x−
√
x2 + 4

2
.

Note that Z1(x) + Z2(x) = x, Z1(x)Z2(x) = −1. Moreover, Z1(x) > 1 and −1 < Z2(x)

< 0, if x > 0; 0 < Z1(x) < 1 and Z2(x) < −1, otherwise. We abbreviate Zj(x) to Zj for

j = 1, 2, in the remainder of the section. Now we introduce some notions, which will be

used frequently in the sequel.

A1(x) =
Y1(x)ϕ(P

6
8 , x)− ϕ(P 6

7 , x)

(Y1(x))9 − (Y1(x))7
A2(x) =

Y2(x)ϕ(P
6
8 , x)− ϕ(P 6

7 , x)

(Y2(x))9 − (Y2(x))7
,

B1(x) =
Y1(x)(x

2 − 1)− x

(Y1(x))3 − Y1(x)
, B2(x) =

Y2(x)(x
2 − 1)− x

(Y2(x))3 − Y2(x)
,

C1(x) =
Y1(x)ϕ(P

6,6
13 , x)− ϕ(P 6,6

12 , x)

(Y1(x))14 − (Y1(x))12
, C2(x) =

Y2(x)ϕ(P
6,6
13 , x)− ϕ(P 6,6

12 , x)

(Y2(x))14 − (Y2(x))12
,

D1(x) = A1(x)(1−B1(x)(Y2(x))
2)−B2(x)(Y2(x))

2ℓ−2 − 2(Y2(x))
ℓ),

D2(x) = A2(x)(1−B2(x)(Y1(x))
2)−B1(x)(Y1(x))

2ℓ−2 − 2(Y1(x))
ℓ),

D′
1(x) = A1(x)− (B1(x))

2(Y2(x))
2 −B1(x)B2(x)(Y2(x))

12,

D′
2(x) = A2(x)− (B2(x))

2(Y1(x))
2 −B1(x)B2(x)(Y1(x))

12.

By some simple calculations, we have that ϕ(P 6
8 , x) = x8−8x6+19x4−16x2+4, ϕ(P 6

7 , x) =

x7 − 7x5 + 13x3 − 7x, ϕ(P 6,6
13 , x) = x13 − 14x11 + 74x9 − 188x7 + 245x5 − 158x3 + 40x and

ϕ(P 6,6
12 , x) = x12 − 13x10 + 62x8 − 138x6 + 153x4 − 81x2 + 16, and then

A1(ix) = −Z1f8 + f7
Z2

1 + 1
Z7

2 , A2(ix) = −Z2f8 + f7
Z2

2 + 1
Z7

1 ,

C1(ix) =
Z1g13 + g12
Z2

1 + 1
Z12

2 , C2(ix) =
Z2g13 + g12
Z2

2 + 1
Z12

1 ,



where f8 = x8 + 8x6 + 19x4 + 16, f7 = x7 + 7x5 + 13x3 + 7x, g13 = x13 + 14x11 + 74x9 +

188x7 + 245x5 + 158x3 + 40x and g12 = x12 + 13x10 + 62x8 + 138x6 + 153x4 + 81x2 + 16.

In [16, 18], Aj(ix) and Cj(ix) possess of the good property that their signs are always

positive, i.e., Aj(ix), Cj(ix) > 0 for all real number x, j = 1, 2. For convenience, we

abbreviate Aj(ix), Bj(ix) and Cj(ix) to Aj, Bj and Cj for j = 1, 2, respectively.

The following lemma will be used in the showing of the later results, due to Huo et

al. [15, 17, 18].

Lemma 3.4. For n ≥ 7 and x ̸= ±2, the characteristic polynomials of Pn and P 6
n possess

the following forms,

ϕ(Pn, x) = B1(x)(Y1(x))
n +B2(x)(Y2(x))

n

and

ϕ(P 6
n , x) = A1(x)(Y1(x))

n + A2(x)(Y2(x))
n.

Lemma 3.5. For n ≥ 12, ℓ ≥ 3 and x ̸= ±2, the characteristic polynomials of P 6,6
n and

P 6,ℓ
n have the following forms,

ϕ(P 6,6
n , x) = C1(x)(Y1(x))

n + C2(x)(Y2(x))
n,

ϕ(P 6,ℓ
n , x) = D1(x)(Y1(x))

n +D2(x)(Y2(x))
n, for n ≥ ℓ+ 6,

ϕ(P 6,ℓ
n , x) = D′

1(x)(Y1(x))
n +D′

2(x)(Y2(x))
n − 2(x5 − 4x3 + 3x), for n = ℓ+ 5.

Proof. Note that, ϕ(P 6,6
n ) satisfies the recursive formula f(n, x) = xf(n − 1, x) − f(n −

2, x) in terms of the Lemma 3.3. Therefore, the form of the general solution of the

linear homogeneous recursive relation is f(n, x) = F1(x)(Y1(x))
n + F2(x)(Y2(x))

n. By

some simple calculations, together with the initial values ϕ(P 6,6
12 ) and ϕ(P 6,6

13 ), we can

get that Fi(x) = Ci(x), i = 1, 2. From Lemma 3.3, Lemma 3.4 and Proposition 1.1, by

means of elementary calculations, it is easy to deduce the above formula of ϕ(P 6,ℓ
n , x) and

ϕ(P 6,ℓ
ℓ+5, x).

In view of Lemma 3.5, we can get the following forms of Dj(ix) and D′
j(ix) (j = 1, 2)

by some simplifications,

D1(ix) = D11(x) +D12(x)(i)
ℓ, D′

1(ix)= A1 +B2
1Z

2
2 −B1B2Z

12
2 ,

D2(ix) = D21(x) +D22(x)(i)
ℓ, D′

2(ix)= A2 +B2
2Z

2
1 −B1B2Z

12
1 ,



where,

D11(x) = A1(1 +B1Z
2
2 −B2Z

2ℓ−2
2 ), D12(x) = 2A1Z

ℓ
2,

D21(x) = A2(1 +B2Z
2
1 −B1Z

2ℓ−2
1 ), D22(x) = 2A2Z

ℓ
1.

By the above simplification and Lemma 3.4, there are no barrier to acquire the simplifying

form.

|ϕ(P 6,6
n , ix)|2 = C2

1Z
2n
1 + C2

2Z
2n
2 + (−1)n2C1C2, (4)

|ϕ(P 6,ℓ
n , ix)|2 = (D2

11 +D2
12)Z

2n
1 + (D2

21 +D2
22)Z

2n
2 + (−1)n2(D11D21 +D12D22), (5)

|ϕ(P 6,ℓ
ℓ+5, ix)|

2 = (D′
1)

2Z2ℓ+10
1 + (D′

2)
2Z2ℓ+10

2 + 2D′
1D

′
2 + 4(x5 + 4x3 + 3x)2. (6)

Proof of Theorem 1.7: In order to showing our main result, we first verify two assertions

which regard as the ingredient parts of the proceeding of the proof.

Theorem 3.6. If n ≥ ℓ+ 6 and ℓ is odd, we have E(P 6,ℓ
n )− E(P 6,6

n ) < 0.

Proof. From the above analysis, our work is just to show that E(P 6,ℓ
n ) < E(P 6,6

n ), for any

positive number n ≥ ℓ+ 6 and ℓ(≥ 3) is odd. By Lemma 3.2, we have

E(P 6,ℓ
n )− E(P 6,6

n ) =
1

π

∫ +∞

−∞
log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣ dx.
We shall distinguish two cases by means of the parity of n.

Case 1. n is odd and n ≥ 17. First of all, we shall show that the integrand log
∣∣∣ϕ(P 6,ℓ

n ;ix)

ϕ(P 6,6
n ;ix)

∣∣∣
is monotonically decreasing on n.

log

∣∣∣∣∣ϕ(P 6,ℓ
n+2; ix)

ϕ(P 6,6
n+2; ix)

∣∣∣∣∣− log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣
=

1

2
log

∣∣∣∣∣ϕ(P 6,ℓ
n+2; ix)ϕ(P

6,6
n ; ix)

ϕ(P 6,6
n+2; ix)ϕ(P

6,ℓ
n ; ix)

∣∣∣∣∣
2

=
1

2
log

(
1 +

K(n, ℓ, x)

H(n, ℓ, x)

)
,

where K(n, ℓ, x) = |ϕ(P 6,ℓ
n+2; ix)ϕ(P

6,6
n ; ix)|2 − |ϕ(P 6,6

n+2; ix)ϕ(P
6,ℓ
n ; ix)|2 and H(n, ℓ, x) =

|ϕ(P 6,6
n+2; ix)ϕ(P

6,ℓ
n ; ix)|2 > 0. From Lemma 3.1, we only need to verify K(n, ℓ, x) < 0. By

means of some directed calculations, we arrive at

K(n, t, x) = γ(ℓ, x)(Z4
1 − Z4

2) + α(ℓ, x)Z2n
1 (Z4

1 − 1) + β(ℓ, x)Z2n
2 (1− Z4

2 ),



where, γ(ℓ, x) = C2
2(D

2
11 + D2

12) − C2
1(D

2
21 + D2

22), α(ℓ, x) = 2C2
1(D11D21 + D12D22) −

2C1C2(D
2
11 + D2

12) and β(ℓ, x) = 2C1C2(D
2
21 + D2

22) − 2C2
1(D11D21 + D12D22). we now

discuss the sign of α(ℓ, x), β(ℓ, x) and γ(ℓ, x).

α(ℓ, x) = α0 + α1Z
2ℓ−4
1 + α2Z

2ℓ−4
2 + α3Z

2ℓ−2
1 + α4Z

2ℓ−2
2 + α6Z

2ℓ
2 + α8Z

4ℓ−4
2 ,

β(ℓ, x) = β0 + β1Z
2ℓ−4
1 + β2Z

2ℓ−4
2 + β3Z

2ℓ−2
1 + β4Z

2ℓ−2
2 + β5Z

2ℓ
1 + β7Z

4ℓ−4
1 ,

γ(ℓ, x) = γ0 + γ3Z
2ℓ−2
1 + γ4Z

2ℓ−2
2 + γ5Z

2ℓ
1 + γ6Z

2ℓ
2 + γ7Z

4ℓ−4
1 + γ8Z

4ℓ−4
2 ,

where,

α0 = 2C2
1A1A2(1 +B1Z

2
2 +B2Z

2
1 + 2B1B2 − 4)− 2C1C2A

2
1(1 +B2

1Z
4
2 + 2B1Z

2
2 ),

α1 = −2C2
1A1A2B

2
1 , α2 = −2C2

1A1A2B
2
2 ,

α3 = −2C2
1A1A2B1, α4 = −2C2

1A1A2B2,

α6 = −4C1C2A
2
1(2−B1B2 − Z2

1B2), α8 = −2C1C2A
2
1B

2
2 ,

β0 = −2C2
2A1A2(1 +B1Z

2
2 +B2Z

2
1 + 2B1B2 − 4) + 2C1C2A

2
2(1 +B2

2Z
4
1 + 2B2Z

2
1),

β1 = 2C2
2A1A2B

2
1 , β2 = 2C2

2A1A2B
2
2 ,

β3 = 2C2
2A1A2B1, β4 = 2C2

2A1A2B2,

β5 = 4C1C2A
2
2(2−B1B2 − Z2

2B1), β7 = 2C1C2A
2
2B

2
1 ,

γ0 = C2
2A

2
1(1 +B2

1Z
4
2 + 2B1Z

2
2)− C2

1A
2
2(1 +B2

2Z
4
1 + 2B2Z

2
1),

γ3 = 2C2
1A

2
2B1, γ4 = −2C2

2A
2
1B2,

γ5 = 2C2
1A

2
2(B1B2 − 2), γ6 = 2C2

2A
2
1(2−B1B2),

γ7 = −C2
1A

2
2B

2
1 , γ8 = C2

2A
2
1B

2
2 .

Claim 1. For any real x and positive integer ℓ, α(ℓ, x) < 0. From the above analysis, we

know that Ai, Bi and Ci > 0, while Z2
1 > 0 and Z2

2 > 0. Consequently, it not hard to get

α1, α2, α3, α4 and α8 < 0. Besides,

α0 = −4C2
1A1A2

(x2 + 3)

x2 + 4
− 2C1C2A

2
1(1 +B2

1Z
4
2 + 2B1Z

2
2) < 0,

and

α6 = −2C1C2A
2
1

3x2 + 10− x
√
x2 + 4

(x2 + 4)
< 0.

Therefore, the claim holds.

Claim 2. For any real x and positive integer ℓ, β(ℓ, x) > 0.



Similarly, we can deduce β1, β2, β3, β4, and β7 > 0. Besides,

β0 = 4C2
2A1A2

(x2 + 3)

x2 + 4
+ 2C1C2A

2
2(1 +B2

2Z
4
1 + 2B2Z

2
1) > 0,

and

β5 = 2C1C2A
2
2

3x2 + 10 + x
√
x2 + 4

(x2 + 4)
> 0.

Hence, the conclusion follows.

Observe that, Z1 > 1 and 0 > Z2 > −1 for x > 0, we have Z2n
1 ≥ Z

2(ℓ+6)
1 > 0 and 0 <

Z2n
2 ≤ Z

2(ℓ+6)
2 . Meanwhile, 0 < Z1 < 1 and Z2 < −1 for x < 0, then 0 < Z2n

1 ≤ Z
2(ℓ+6)
1

and Z2n
2 ≥ Z

2(ℓ+6)
2 > 0. By Claim 1 and 2, α(ℓ, x) < 0 and β(ℓ, x) > 0. Therefore,

K(n, ℓ, x) ≤ γ(ℓ, x)(Z4
1 − Z4

2) + α(ℓ, x)Z
2(ℓ+6)
1 (Z4

1 − 1) + β(ℓ, x)Z
2(ℓ+6)
2 (1− Z4

2).

Claim 3. f(ℓ, x) = γ(ℓ, x)(Z4
1 − Z4

2) + α(ℓ, x)Z
2(ℓ+6)
1 (Z4

1 − 1) + β(ℓ, x)Z
2(ℓ+6)
2 (1 − Z4

2) is

monotonically decreasing on ℓ.

By some simplifications, it is easy to get f(ℓ, x) = d0+d1Z
2ℓ
1 +d2Z

2ℓ
2 +d3Z

4ℓ
1 +d4Z

4ℓ
2 =

d0 + d1(Z
2
1)

ℓ + d2(Z
2
1)

−ℓ + d3(Z
2
1)

2ℓ + d4(Z
2
1)

−2ℓ, where,

d0 = γ0(Z
4
1 − Z4

2) + (α2Z
16
1 + α4Z

14
1 + α6Z

12
1 )(Z4

1 − 1)

+ (β1Z
16
1 + β3Z

14
1 + β5Z

12
1 )(1− Z4

2),

d1 = (γ3Z
2
2 + γ5)(Z

4
1 − Z4

2) + α0(Z
16
1 − Z12

1 ) + β7(Z
16
2 − Z20

2 ),

d2 = (γ4Z
2
1 + γ6)(Z

4
1 − Z4

2) + α8(Z
20
1 − Z16

1 ) + β0(Z
12
2 − Z16

2 ),

d3 = γ7(1− Z8
2) + (α1Z

8
1 + α3Z

10
1 )(Z4

1 − 1),

d4 = γ8(Z
8
1 − 1) + (β2Z

8
2 + β4Z

10
2 )(1− Z4

2).

We now mark n1(x) =
√
x2 + 4(x2+2)(x16+18x14+138x12+587x10+1506x8+2356x6+

2145x4 + 997x2 + 144) and m1(x) = x(x2 + 4)(x16 + 18x14 + 140x12 + 615x10 + 1668x8 +

2854x6 + 3005x4 + 1791x2 + 472). Observe that (1 − Z4
1) < 0 for x > 0, (1 − Z4

1) > 0

for x < 0; (1 − Z4
2) > 0 for x > 0, (1 − Z4

2) < 0 for x < 0; (Z4
1 − Z4

2) > 0 for x > 0,

(Z4
1 −Z4

2 ) < 0 for x < 0. Thus, α0(Z
16
1 −Z12

1 ) < 0 for x > 0, and then, α0(Z
16
1 −Z12

1 ) > 0

for x < 0; β0(Z
12
2 −Z16

2 ) > 0 for x > 0, and then, β0(Z
12
2 −Z16

2 ) < 0 for x < 0. Meanwhile,



with some operation, we deduce

(γ3Z
2
2 + γ5)(Z

4
1 − Z4

2) + β7(Z
16
2 − Z20

2 ) = −2C1A
2
2x(x

2 + 1)2(n1(x)−m1(x))

(x2 + x
√
x2 + 4 + 4)(x2 + 4)

, (7)

(γ4Z
2
1 + γ6)(Z

4
1 − Z4

2) + α8(Z
20
1 − Z16

1 ) = −2C2A
2
1x(x

2 + 1)2(n1(x) +m1(x))

(−x2 + x
√
x2 + 4− 4)(x2 + 4)

. (8)

By means of Claim 1 and 2 and the above discussion, it is not difficult to check that

d1 < 0 and d3 < 0 for x > 0, while, d2 > 0 and d4 > 0 for x > 0; d1 > 0 and d3 > 0 for

x < 0, while, d2 < 0 and d4 < 0 for x < 0. Therefore, whether x > 0 or x < 0, we always

conclude that

∂f(ℓ, x)

∂t
= (d1(Z

2
1)

ℓ − d2(Z
2
1)

−ℓ + 2d3(Z
2
1)

2ℓ − 2d4(Z
2
1)

−2ℓ) logZ2
1 < 0.

Thus the proof of Claim 3 is complete.

It follows from Claim 3 that for ℓ ≥ 11,

K(n, ℓ, x) ≤ f(11, x)

= −x2(x6 + 8x4 + 19x2 + 16)(x10 + 9x8 + 28x6 + 35x4 + 15x2 + 1)

(2x34 + 84x32 + 1614x30 + 18799x28 + 148264x26 + 837671x24

+ 3498049x22 + 10980708x20 + 26096742x18 + 46927728x16

+ 63358644x14 + 63262495x12 + 45628135x10 + 22990036x8

+ 7734802x6 + 1635003x4 + 196160x2 + 10240)(x2 + 1)7 < 0.

For ℓ = 3, 5, 7 and 9, then n ≥ ℓ+ 8. Thus,

K(n, ℓ, x) ≤ γ(ℓ, x)(Z4
1 − Z4

2) + α(ℓ, x)Z
2(ℓ+8)
1 (Z4

1 − 1) + β(ℓ, x)Z
2(ℓ+8)
2 (1− Z4

2)

< γ(ℓ, x)(Z4
1 − Z4

2) + α(ℓ, x)Z
2(ℓ+6)
1 (Z4

1 − 1) + β(ℓ, x)Z
2(ℓ+6)
2 (1− Z4

2)

< γ(3, x)(Z4
1 − Z4

2) + α(3, x)Z
2(3+6)
1 (Z4

1 − 1) + β(3, x)Z
2(3+6)
2 (1− Z4

2)

= −x2(x6 + 8x4 + 19x2 + 16)(x2 + 1)7(x18 + 29x16 + 341x14 + 2157x12

+ 8151x10 + 19203x8 + 28291x6 + 24995x4 + 11712x2 + 2048) < 0.

Therefore, we have verified that the integrand log
∣∣∣ϕ(P 6,ℓ

n ;ix)

ϕ(P 6,6
n ;ix)

∣∣∣ is monotonically decreasing

on n. By Claim 3, for n ≥ 17 and ℓ ≥ 11, E(P 6,ℓ
n ) − E(P 6,6

n ) ≤ E(P 6,ℓ
ℓ+6) − E(P 6,6

ℓ+6) ≤

E(P 6,11
17 )−E(P 6,6

17 ) < 0; for n ≥ 17 and ℓ ≤ 9, E(P 6,ℓ
n )−E(P 6,6

n ) ≤ E(P 6,ℓ
17 )−E(P 6,6

17 ) < 0.



Table1. The difference between E(P 6,ℓ
17 ) and E(P 6,6

17 ).

ℓ 3 5 7 9 11

E(P 6,ℓ
17 )− E(P 6,6

17 ) -0.00455 -0.04708 -0.02855 -0.05572 -0.02955

Case 2. n is even and n ≥ 12.

In terms of Eqs. 4 and 5, we deduce

log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 = log
(D2

11 +D2
12)Z

2n
1 + (D2

21 +D2
22)Z

2n
2 + 2(D11D21 +D12D22)

C2
1Z

2n
1 + C2

2Z
2n
2 + 2C1C2

.

When n → ∞, ∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 →


D2
11+D2

12

C2
1

if x > 0,

D2
21+D2

22

C2
2

if x < 0.

Our aim now is to explain

log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 < log
D2

11 +D2
12

C2
1

for x > 0 and

log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 < log
D2

21 +D2
22

C2
2

for x < 0.

Subcase 2.1 x > 0.

By means of some simple calculations, we get

log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 − log
D2

11 +D2
12

C2
1

= log

(
1 +

K1(n, ℓ, x)

H1(n, ℓ, x)

)
,

where H1(n, ℓ, x) = |ϕ(P 6,6
n ; ix)|2(D2

11 +D2
12) > 0 and K1(n, ℓ, x) = −γ(ℓ, x)Z2n

2 + α(ℓ, x).

We may suppose γ(ℓ, x) < 0. Otherwise, K1(n, ℓ, x) < 0, since α(ℓ, x) < 0 from Claim 1,

then we are done.

K1(n, ℓ, x) ≤ −γ(ℓ, x)Z
2(ℓ+7)
2 + α(ℓ, x) = d̄0 + d̄1Z

2ℓ
1 + d̄2Z

2ℓ
2 + d̄3Z

4ℓ
2 + d̄4Z

6ℓ+10
2 ,

where, d̄0 = α0−γ3Z
16
2 −γ5Z

14
2 , d̄1 = α1Z

4
2+α3Z

2
2−γ7Z

18
2 , d̄2 = −γ0Z

14
2 +α2Z

4
1+α4Z

2
1+α6,

d̄3 = −γ4Z
12
2 − γ6Z

14
2 + α8Z

4
1 , and d̄4 = −γ8. Because of αi < 0 for i = 0, 1, 2, 3, 4, 5,

7, γ3, γ6, γ8 > 0 and γ4, γ5, γ7 < 0, these yield d̄i < 0 for i = 3, 4. Besides,

d̄0 = α0 − γ3Z
16
2 − γ5Z

14
2

< 2C2
1A1A2(1 +B1Z

2
2 +B2Z

2
1 + 2B1B2 − 4)− (γ3Z

16
2 + γ5Z

14
2 )

= C2
1A2

x2 + 1

(x2 + 4)2
(n2(x)−m2(x)) < 0,



where, n2(x) =
√
x2 + 4(x15 +19x13 +148x11 +604x9 +1365x7 +1645x5 +898x3 +118x)

and m2 = x16 + 21x14 + 184x12 + 866x10 + 2343x8 + 3597x6 + 2842x2 + 16. Moreover,

d̄1 =
2C2

1A2B1Z
9
2(x

2 + 1)

(Z2
1 + 1)(x2 + 4)

(x(x2 + 4)(2x6 + 21x4 + 66x2 + 57)

+ (2x8 + 23x6 + 88x4 + 121x2 + 40)
√
x2 + 4) < 0,

d̄2 < γ0Z
14
2 = − Z14

2 x

(x2 + 4)5/2
(x2 + 1)6(x8 + 11x6 + 43x4 + 73x2 + 50)

(x6 + 8x4 + 19x2 + 16)2(x8 + 9x6 + 27x4 + 33x2 + 12) < 0.

Subcase 2.2 x < 0.

Analogously, we have

log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 − log
D2

21 +D2
22

C2
2

= log

(
1 +

K2(n, ℓ, x)

H2(n, ℓ, x)

)
,

where H2(n, ℓ, x) = |ϕ(P 6,6
n ; ix)|2(D2

21 + D2
22) > 0 and K2(n, ℓ, x) = γ(ℓ, x)Z2n

1 − β(ℓ, x).

We may suppose γ(ℓ, x) > 0. Otherwise, K1(n, ℓ, x) < 0, Since β(ℓ, x) > 0 from Claim 2,

then we are done.

K2(n, ℓ, x) ≤ γ(ℓ, x)Z
2(ℓ+7)
1 − β(ℓ, x) = d̃0 + d̃1Z

2ℓ
1 + d̃2Z

2ℓ
2 + d̃3Z

4ℓ
1 + d̃4Z

6ℓ+10
1 ,

where, d̃0 = −β0+γ4Z
16
1 +γ6Z

14
1 , d̃1 = γ0Z

14
1 −(β1Z

4
2+β3Z

2
2+β5), d̃2 = γ8Z

18
1 −β2Z

4
1−β4Z

2
1 ,

d̃3 = γ3Z
12
1 + γ5Z

14
1 − β7Z

4
2 , and d̃4 = γ7. Because of βi > 0 for i = 0, 1, 2, 3, 4, 6, 8,

γ3, γ6, γ8 > 0 and γ4, γ5, γ7 < 0, we acquire d̃i < 0 for i = 3, 4. Meanwhile,

d̃0 = −β0 + γ4Z
16
1 + γ6Z

14
1

< 2C2
2A1A2(1 +B1Z

2
2 +B2Z

2
1 + 2B1B2 − 4)− (γ4Z

16
1 + γ6Z

14
1 )

= C2
2A1

x2 + 1

(x2 + 4)2
(n2(x) +m2(x)) < 0,

d̃1 < γ0Z
14
1 =

Z14
1 x

(x2 + 4)5/2
(x2 + 1)6(x8 + 11x6 + 43x4 + 73x2 + 50)

(x6 + 8x4 + 19x2 + 16)2(x8 + 9x6 + 27x4 + 33x2 + 12) < 0,

d̃2 =
2C2

2A1B2Z
9
1(x

2 + 1)

−(Z2
2 + 1)(x2 + 4)

((2x8 + 23x6 + 88x4 + 121x2 + 40)
√
x2 + 4

− x(x2 + 4)(2x6 + 21x4 + 66x2 + 57)) < 0.



In terms of the above two subcases, we arrive at

E(P 6,ℓ
n )− E(P 6,6

n ) =
1

π

∫ +∞

−∞
log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣ dx =
1

2π

∫ +∞

−∞
log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 dx
<

1

2π

∫ 0

−∞
log

D2
21 +D2

22

C2
2

log dx+
1

2π

∫ +∞

0

D2
11 +D2

12

C2
1

dx.

Let n3 = x
√
x2 + 4(x28 + 27x26 + 334x24 + 2512x22 + 12843x20 + 47233x18 + 128815x16 +

264327x14 + 409110x12 + 473270x10 + 399900x8 + 236284x6 + 90085x4 + 18851x2 + 1432),

m3 = x30 + 29x28 + 386x26 + 3130x24 + 17297x22 + 68989x20 + 204975x18 + 461091x16 +

789186x14 + 1022232x12 + 985182x10 + 683502x8 + 321663x6 + 91811x4 + 12430x2 + 352.

Notice that (n3(x))
2 − (m3(x))

2 = −4(2x10 + 24x8 + 106x6 + 225x4 + 248x2 + 121)(x6 +

8x4 + 19x2 + 16)2 < 0 for all realx.

When x > 0, Z2
2 < 1, we obtain

D2
11 +D2

12 − C2
1 = A2

1

Z4ℓ−2
2 + Z2

1 + 4Z2
2 + 4

x2 + 4
+ 2A2

1Z
2ℓ
2

Z2
1 + 2Z2

2 + 2

(Z2
1 + 1)(Z2

2 + 1)
− C2

1

≤ A2
1

Z10
2 + Z2

1 + 4Z2
2 + 4

x2 + 4
+ 2A2

1Z
6
2

Z2
1 + 2Z2

2 + 2

(Z2
1 + 1)(Z2

2 + 1)
− C2

1

=
2(x2 + 1)3

(x
√
x2 + 4− x2 − 4)2

(n3(x)−m3(x)) < 0.

When x < 0, Z2
1 < 1, we get

D2
21 +D2

22 − C2
2 = A2

2

Z4ℓ−2
1 + Z2

2 + 4Z2
1 + 4

x2 + 4
+ 2A2

2Z
2ℓ
1

Z2
2 + 2Z2

1 + 2

(Z2
1 + 1)(Z2

2 + 1)
− C2

2

≤ A2
2

Z10
1 + Z2

2 + 4Z2
1 + 4

x2 + 4
+ 2A2

2Z
6
1

Z2
2 + 2Z2

1 + 2

(Z2
1 + 1)(Z2

2 + 1)
− C2

2

= − 2(x2 + 1)3

(x
√
x2 + 4− x2 − 4)2

(n3(x) +m3(x)) < 0.

Therefore,

1

2π

∫ 0

−∞
log

D2
21 +D2

22

C2
2

dx < 0 and
1

2π

∫ +∞

0

log
D2

11 +D2
12

C2
1

dx < 0

Thus, E(P 6,ℓ
n )− E(P 6,6

n ) < 0 for all even n.

Theorem 3.7. If n = ℓ+ 5 and ℓ is odd, we have E(P 6,ℓ
n )− E(P 6,6

n ) < 0.

Proof. Denote n4(x) = x14 + 15x12 + 95x10 + 323x8 + 628x6 + 694x4 + 404x2 + 128,

m4(x) = x
√
x2 + 4(x8+11x6+48x4+96x2+80)(x2+1)2, n5(x) = x

√
x2 + 4(x14+13x12+



71x10+213x8+381x6+407x4+238x2+54), m5(x) = x16+15x14+95x12+333x10+707x8+

925x6+712x4+270x2+24, n6(x) = x
√
x2 + 4(x14+13x12+71x10+213x8+379x6+397x4+

226x2+58) andm6(x) = x16+15x14+95x12+333x10+705x8+917x6+684x4+2262x2+40.

Similarly, when ℓ → ∞,∣∣∣∣∣ϕ(P 6,ℓ
ℓ+5; ix)

ϕ(P 6,6
ℓ+5; ix)

∣∣∣∣∣
2

→


(D′

1)
2

C2
1

if x > 0,

(D′
2)

2

C2
2

if x < 0.

The next work is to explain

log

∣∣∣∣∣ϕ(P 6,ℓ
ℓ+5; ix)

ϕ(P 6,6
ℓ+5; ix)

∣∣∣∣∣
2

< log
(D′

1)
2

C2
1

for x > 0 and

log

∣∣∣∣ϕ(P 6,ℓ
n ; ix)

ϕ(P 6,6
n ; ix)

∣∣∣∣2 < log
(D′

2)
2

C2
2

for x < 0 .

Case 1. x > 0.

By means of some simple calculations, we get

log

∣∣∣∣∣ϕ(P 6,ℓ
ℓ+5; ix)

ϕ(P 6,6
ℓ+5; ix)

∣∣∣∣∣
2

− log
(D′

1)
2

C2
1

= log

(
1 +

K3(n, ℓ, x)

H3(n, ℓ, x)

)
,

where, H3(n, ℓ, x) = |ϕ(P 6,6
ℓ+5; ix)|2(D′

1)
2 > 0 and K3(n, ℓ, x) = (C2

1(D
′
2)

2 − C2
2(D

′
1)

2)

Z2ℓ+10
2 + C2

1(2D
′
1D

′
2 + 4(x5 + 4x3 + 3x)2)− 2(D′

1)
2C1C2. In fact, we may acquire

C2
1(D

′
2)

2 − C2
2(D

′
1)

2 = − x(x2 + 3)

(x2 + 4)3/2
(x10 + 12x8 + 53x6 + 116x4 + 130x2 + 64)

(x2 + 2)2(x2 + 1)6(x10 + 13x8 + 61x6 + 131x4 + 130x2 + 32) < 0,

C2
1(2D

′
1D

′
2 + 4(x5 + 4x3 + 3x)2)− 2(D′

1)
2C1C2 = −C1

2x(x2 + 3)(x2 + 2)(x2 + 1)4√
x2 + 4(x2 + x

√
x2 + 4 + 4)

(n4(x)−m4(x)) < 0.

Therefore, for x > 0, K3(ℓ, x) < 0, we achieve it.

Case 2. x < 0.

By means of some simply calculations, we get

log

∣∣∣∣∣ϕ(P 6,ℓ
ℓ+5; ix)

ϕ(P 6,6
ℓ+5; ix)

∣∣∣∣∣
2

− log
(D′

2)
2

C2
2

= log

(
1 +

K4(n, ℓ, x)

H4(n, ℓ, x)

)
,



where, H4(n, ℓ, x) = |ϕ(P 6,6
ℓ+5; ix)|2(D′

2)
2 > 0 and K4(n, ℓ, x) = (C2

2(D
′
1)

2 − C2
1(D

′
2)

2)

Z2ℓ+10
1 + C2

2(2D
′
1D

′
2 + 4(x5 + 4x3 + 3x)2)− 2(D′

2)
2C1C2. Actually, we can determine

C2
2(D

′
1)

2 − C2
1(D

′
2)

2 =
x(x2 + 3)

(x2 + 4)3/2
(x10 + 12x8 + 53x6 + 116x4 + 130x2 + 64)

(x2 + 2)2(x2 + 1)6(x10 + 13x8 + 61x6 + 131x4 + 130x2 + 32) < 0,

C2
2(2D

′
1D

′
2 + 4(x5 + 4x3 + 3x)2)− 2(D′

2)
2C1C2 = −C2

2x(x2 + 3)(x2 + 2)(x2 + 1)4√
x2 + 4(x

√
x2 + 4− x2 − 4)

(n4(x) +m4(x)) < 0.

Therefore, for x < 0, K4(ℓ, x) < 0, and then we finish the case.

From the above analysis, we can arrive at

E(P 6,ℓ
ℓ )− E(P 6

ℓ+5) =
1

π

∫ +∞

−∞
log

∣∣∣∣∣ϕ(P 6,ℓ
ℓ+5; ix)

ϕ(P 6,6
ℓ+5; ix)

∣∣∣∣∣ dx =
1

2π

∫ +∞

−∞
log

∣∣∣∣∣ϕ(P 6,ℓ
ℓ+5; ix)

ϕ(P 6,6
ℓ+5; ix)

∣∣∣∣∣
2

dx

<
1

2π

∫ 0

−∞
log

(D′
2)

2

C2
2

dx+
1

2π

∫ +∞

0

log
(D′

1)
2

C2
1

dx.

Observe that, when x > 0, we have

D′
1 − C1 =

x2 + 1

x2 + x
√
x2 + 4 + 4

(n5(x)−m5(x)) < 0

D′
1 + C1 = − x2 + 1

x2 + x
√
x2 + 4 + 4

(n6(x)−m6(x)) > 0.

So we deduce (D′
1)

2 − C2
1 < 0.

Besides, when x < 0, we have

D′
2 − C2 =

x2 + 1

x
√
x2 + 4− x2 − 4

(n5(x) +m5(x)) < 0

D′
2 + C2 = − x2 + 1

x
√
x2 + 4− x2 − 4

(n6(x) +m6(x)) > 0.

So we conclude (D′
2)

2 − C2
2 < 0.

H1 H2 H3 H4

H5 H6(|H6| = ℓ+ 3)

Fig.2 All the graphs with P 4,ℓ
m as its brace and n ≤ ℓ+ 4.

Cl Cl Cl Cl

Cl Cl

C4 C4 C4 C4

C4 C4



According to the above two theorems, we already verified Theorem 1.7 for n ≥ ℓ + 5

except the four graphs as in Figure 1. In the rest of the section, we just consider them and

the graphs with fewer vertices, which is shown in Figure 2. By Proposition 1.2, Lemma

2.1 and Lemma 2.3 , we now have the following assertion.

Observation 3.8. (i) For n = ℓ + 5, G1 ≻ G2 ≻ G3 but G1 are incomparable with G4;

(ii) For n = ℓ+ 4, H1 ≻ Hi, i = 2, 3, 5, while H1 is incomparable with H4.

Now, there are five graphs, i.e. G1, G4, H1, H4 and H6( see Figure 1 and 2), that we

want to show their energies also smaller than that of P 6,6
n for n ≤ ℓ+5, by the Observation

3.8, Theorem 3.6 and Thoerem 3.7. Fortunately, we proved them, but here, we omit the

proof. Since the proceeding is similar to that of Theorem 3.7. Therefore, we complete the

whole proof of Theorem 1.7.
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