On the Maximal Energy Trees with One Maximum and One Second Maximum Degree Vertex*

Jing Li, Xueliang Li
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
E-mail: lj02013@163.com; lxl@nankai.edu.cn

Abstract

For a simple graph G, the energy $E(G)$ is defined as the sum of the absolute values of all eigenvalues of its adjacent matrix. For $d_{1}>d_{2} \geq 3$ and $t \geq 3$, denote by T_{a} the tree formed from a path P_{t} on t vertices by attaching $d_{1}-1 P_{2}$'s on one end and $d_{2}-1 P_{2}$'s on the other end of the path P_{t}, and T_{b} the tree formed from P_{t+2} by attaching $d_{1}-1 P_{2}$'s on an end of the P_{t+2} and $d_{2}-2 P_{2}$'s on the vertex next to the end. In [14] Yao showed that among trees of order n and two vertices of maximum degree d_{1} and second maximum degree $d_{2}\left(d_{1}>d_{2}\right)$, the maximal energy tree is either the graph T_{a} or the graph T_{b}, where $t=n+4-2 d_{1}-2 d_{2} \geq 3$. However, she could not determine which one of T_{a} and T_{b} is the maximal energy tree. This is because the quasi-order method is invalid for comparing their energies. In this paper, we use a new method to determine the maximal energy tree. We prove that the maximal energy tree is T_{b} if $d_{1} \geq 7, d_{2} \geq 3$ or $d_{1}=6, d_{2}=3$. Moreover, for $d_{1}=4$ and $d_{2}=3$, the maximal energy tree is the graph T_{b} if $t=4$, and the graph T_{a} otherwise. For other cases, the maximal energy tree is the graph T_{a} if (i) $d_{1}=5, d_{2}=4, t$ is odd and $3 \leq t \leq 45$, (ii) $d_{1}=5, d_{2}=3, t$ is odd and $3 \leq t \leq 29$, (iii) $d_{1}=6, d_{2}=5, t=3,5,7$, (iv) $d_{1}=6, d_{2}=4, t=5$; and for all the remaining cases, the maximal energy tree is the graph T_{b}.

1 Introduction

Let G be a simple graph of order n, and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the eigenvalues of G. Then the energy of G is defined as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

which was introduced by Gutman in [9]. The match polynomial $[6,7]$ of G is defined as

$$
m(G, x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} m(G, k) x^{n-2 k}
$$

[^0]where $m(G, k)$ denotes the number of k-matchings of G and $m(G, 0)=1$. If $G=T$ is a tree of order n, then the characteristic polynomial [5] of G has the form
$$
\varphi(T, x)=m(T, x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} m(T, k) x^{n-2 k} .
$$

And, by Coulson integral formula $[3,4,8,11]$, we have for a tree T,

$$
E(T)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \left[\sum_{k=0}^{\lfloor n / 2\rfloor} m(T, k) x^{2 k}\right] d x .
$$

As we did in [12], for convenience we use the so-called signless matching polynomial [1]

$$
m^{+}(G, x)=\sum_{k=0}^{\lfloor n / 2\rfloor} m(G, k) x^{2 k} .
$$

Then we have

$$
\begin{equation*}
E(T)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log m^{+}(T, x) d x . \tag{1}
\end{equation*}
$$

For basic properties of $m^{+}(G, x)$, we refer to our paper [12].
For more results on graph energy, we refer to the survey [10]. For terminology and notations not defined here, we refer to the book of Bondy and Murty [2].

Graphs with extremal energies are interested in literature. In 2009 Li et al. [13] showed that among trees of order n with two vertices of maximum degree $\Delta(\geq 3)$, the maximal energy tree is either the graph G_{a} or the graph G_{b}, where $t=n+4-4 \Delta \geq 3$ and G_{a} is the tree formed from a path P_{t} on t vertices by attaching $\Delta-1 P_{2}$'s on each end of the path P_{t}, G_{b} is the tree formed from P_{t+2} by attaching $\Delta-1 P_{2}$'s on an end of the P_{t+2} and $\Delta-2 P_{2}$'s on the vertex next to the end. However, they could not determine which one of G_{a} and G_{b} is the maximal energy tree. In our recent paper [12], we used a new method to determine the maximal energy tree. In a similar way, Yao [14] gave the following Theorem 1.1 about the maximal energy tree with one maximum and one second maximum degree vertex.

Theorem 1.1 ([14]) Among trees with a fixed number of vertices (n) and two vertices of maximum degree d_{1} and second maximum degree $d_{2}\left(d_{1}>d_{2}\right)$, the maximal energy tree has as many as possible 2-branches.
(1) If $n \geq 2 d_{1}+2 d_{2}-1$, then the maximal energy tree is either the graph T_{a} or the graph T_{b}, depicted in Figure 1.1.
(2) If $n \leq 2 d_{1}+2 d_{2}-2$, then the maximal energy tree is the graph T_{c} depicted in Figure 1.1.

T_{a}

T_{b}

$$
d(u)=d_{1}, d(v)=d_{2}, t=n-2 d_{1}-2 d_{2}+4, p \leq q .
$$

Figure 1.1 The maximal energy trees with n vertices and two vertices u and v of degree d_{1} and d_{2}.

From Theorem 1.1, one can also see that for $n \geq 2 d_{1}+2 d_{2}-1$, she could not determine which one of the trees T_{a} and T_{b} has the maximal energy. In fact, the quasi-order method they used before is invalid for the special case. In this paper, we will use the Coulson integral formula method to determine which one of the trees T_{a} and T_{b} has the maximal energy. One must notice that since $d_{1} \neq d_{2}$ here, the energy is a function in two variables d_{1} and d_{2}, and this makes our discussion much more complicated.

2 Preliminaries

In this section, we list some useful properties of the signless matching polynomial $m^{+}(G, x)$, which will be used in the sequel, and already appeared in [12].

Lemma 2.1 Let v be a vertex of G and $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ the set of all neighbors of v in G. Then

$$
m^{+}(G, x)=m^{+}(G-v, x)+x^{2} \sum_{v_{i} \in N(v)} m^{+}\left(G-v-v_{i}, x\right) .
$$

Lemma 2.2 Let P_{t} denote a path on t vertices. Then
(1) $m^{+}\left(P_{t}, x\right)=m^{+}\left(P_{t-1}, x\right)+x^{2} m^{+}\left(P_{t-2}, x\right)$, for any $t \geq 1$,
(2) $m^{+}\left(P_{t}, x\right)=\left(1+x^{2}\right) m^{+}\left(P_{t-2}, x\right)+x^{2} m^{+}\left(P_{t-3}, x\right)$, for any $t \geq 2$.

The initials are $m^{+}\left(P_{0}, x\right)=m^{+}\left(P_{1}, x\right)=1$, and we define $m^{+}\left(P_{-1}, x\right)=0$.

Corollary 2.3 Let P_{t} be a path on t vertices. Then for any real number x,

$$
m^{+}\left(P_{t-1}, x\right) \leq m^{+}\left(P_{t}, x\right) \leq\left(1+x^{2}\right) m^{+}\left(P_{t-1}, x\right), \text { for any } t \geq 1 .
$$

3 Main results

Before giving our main results, we state some knowledge on real analysis, for which we refer to [15].

Lemma 3.1 For any real number $X>-1$, we have

$$
\frac{X}{1+X} \leq \log (1+X) \leq X
$$

For convenience, we introduce the following notations:

$$
\begin{aligned}
A_{1}= & \left(x^{2}+1\right)\left(d_{1} x^{6}+d_{2} x^{6}+d_{2} x^{4}+d_{1} d_{2} x^{4}+d_{1} x^{4}+2 x^{4}+2 x^{2}+d_{1} x^{2}+d_{2} x^{2}+1\right), \\
A_{2}= & x^{2}\left(x^{2}+1\right)\left(x^{6}+2 x^{4}+d_{1} d_{2} x^{4}+d_{1} x^{2}+d_{2} x^{2}+x^{2}+1\right), \\
B_{1}= & 2 x^{8}+d_{1} x^{8}+6 x^{6}+2 d_{1} d_{2} x^{6}+d_{1} d_{2} x^{4}+2 d_{1} x^{4}+4 x^{4}+2 d_{2} x^{4}+d_{2} x^{2}+d_{1} x^{2} \\
& +3 x^{2}+1, \\
B_{2}= & x^{2}\left(x^{2}+1\right)\left(x^{6}+2 x^{4}+d_{1} d_{2} x^{4}+d_{1} x^{2}+d_{2} x^{2}+x^{2}+1\right) .
\end{aligned}
$$

Using Lemmas 2.1 and 2.2 repeatedly, we can easily get the following two recursive formulas, where $t=n+4-2 d_{1}-2 d_{2} \geq 3$:

$$
\begin{equation*}
m^{+}\left(T_{a}, x\right)=\left(1+x^{2}\right)^{d_{1}+d_{2}-5}\left(A_{1} m^{+}\left(P_{t-3}, x\right)+A_{2} m^{+}\left(P_{t-4}, x\right)\right), \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
m^{+}\left(T_{b}, x\right)=\left(1+x^{2}\right)^{d_{1}+d_{2}-5}\left(B_{1} m^{+}\left(P_{t-3}, x\right)+B_{2} m^{+}\left(P_{t-4}, x\right)\right), \tag{3}
\end{equation*}
$$

From Eqs. (2) and (3), by some elementary calculations we can obtain

$$
\begin{equation*}
m^{+}\left(T_{a}, x\right)-m^{+}\left(T_{b}, x\right)=\left(1+x^{2}\right)^{d_{1}+d_{2}-5}\left(d_{2}-2\right) x^{6}\left(x^{2}-\left(d_{1}-2\right)\right) m^{+}\left(P_{t-3}, x\right) . \tag{4}
\end{equation*}
$$

We know directly from Figure 1.1 that if $t=2$ or $d_{2}=2, T_{a} \cong T_{b}$, then $E\left(T_{a}\right)=E\left(T_{b}\right)$, so we only consider the cases $t \geq 3$ and $d_{1}>d_{2} \geq 3$.

Now we give a useful lemma.

Lemma 3.2 Among trees with n vertices and two vertices of maximum and second maximum degree d_{1} and d_{2}, let $k=d_{1}-d_{2}$, if $1 \leq k \leq 3, d_{2} \geq 7-k$ or $4 \leq k \leq 12, d_{2} \geq 3$, the maximal energy tree is the graph T_{b}, where $t=n+4-2 d_{1}-2 d_{2} \geq 3$.

Proof. Since $m^{+}\left(T_{a}, x\right)>0$ and $m^{+}\left(T_{b}, x\right)>0$, we have

$$
\frac{m^{+}\left(T_{a}, x\right)-m^{+}\left(T_{b}, x\right)}{m^{+}\left(T_{b}, x\right)}=\frac{m^{+}\left(T_{a}, x\right)}{m^{+}\left(T_{b}, x\right)}-1>-1 .
$$

Therefore, from Eq. (1) and Lemma 3.1, we get that

$$
\begin{align*}
E\left(T_{a}\right)-E\left(T_{b}\right) & =\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \frac{m^{+}\left(T_{a}, x\right)}{m^{+}\left(T_{b}, x\right)} d x \\
& =\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{m^{+}\left(T_{a}, x\right)-m^{+}\left(T_{b}, x\right)}{m^{+}\left(T_{b}, x\right)}\right) d x \tag{5}\\
& \leq \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \cdot \frac{m^{+}\left(T_{a}, x\right)-m^{+}\left(T_{b}, x\right)}{m^{+}\left(T_{b}, x\right)} d x
\end{align*}
$$

By Corollary 2.3, we have $m^{+}\left(P_{t-4}, x\right) \leq m^{+}\left(P_{t-3}, x\right)$ and $m^{+}\left(P_{t-4}, x\right) \geq \frac{m^{+}\left(P_{t-3}, x\right)}{1+x^{2}}$ for $t \geq 4$. So, we have

$$
\begin{aligned}
& E\left(T_{a}\right)-E\left(T_{b}\right) \\
\leq & \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \cdot \frac{m^{+}\left(T_{a}, x\right)-m^{+}\left(T_{b}, x\right)}{m^{+}\left(T_{b}, x\right)} d x \\
= & \frac{2}{\pi} \int_{0}^{+\infty} \frac{\left(d_{2}-2\right) x^{4}\left(x^{2}-\left(d_{1}-2\right)\right) m^{+}\left(P_{t-3}, x\right)}{B_{1} m^{+}\left(P_{t-3}, x\right)+B_{2} m^{+}\left(P_{t-4}, x\right)} d x \\
\leq & \frac{2}{\pi} \int_{\sqrt{d_{1}-2}}^{+\infty} \frac{\left(d_{2}-2\right) x^{4}\left(x^{2}-\left(d_{1}-2\right)\right)}{B_{1}+B_{2} /\left(1+x^{2}\right)} d x+\frac{2}{\pi} \int_{0}^{\sqrt{d_{1}-2}} \frac{\left(d_{2}-2\right) x^{4}\left(x^{2}-\left(d_{1}-2\right)\right)}{B_{1}+B_{2}} d x \\
< & \frac{2}{\pi} \int_{\sqrt{d_{1}-2}}^{+\infty} \frac{\left(d_{2}-2\right) x^{4}\left(x^{2}-\left(d_{1}-2\right)\right)}{\left(d_{1}+3\right) x^{8}} d x+\frac{2}{\pi} \int_{1}^{\sqrt{d_{1}-2}} \frac{\left(d_{2}-2\right) x^{4}\left(x^{2}-\left(d_{1}-2\right)\right)}{\left(5 d_{1} d_{2}+6 d_{1}+5 d_{2}+26\right) x^{10}} d x \\
& +\frac{2}{\pi} \int_{0}^{1} \frac{2\left(d_{2}-2\right) x^{4}\left(x^{2}-\left(d_{1}-2\right)\right)}{\left(5 d_{1} d_{2}+6 d_{1}+5 d_{2}+26\right)\left(x^{2}+1\right)} d x \\
= & \frac{2}{\pi} f\left(d_{1}, d_{2}\right) .
\end{aligned}
$$

Where

$$
\begin{aligned}
f\left(d_{1}, d_{2}\right)= & \frac{2\left(d_{2}-2\right)}{3\left(d_{1}+3\right) \sqrt{d_{1}-2}}-\frac{d_{2}-2}{15\left(26+6 d_{1}+5 d_{1} d_{2}+5 d_{2}\right)}\left(3 d_{1}-11+\frac{2}{\left(d_{1}-2\right)^{3 / 2}}\right) \\
& -\frac{28 d_{2}-40 d_{1} d_{2}+80 d_{1}-30 \pi d_{1}+30 \pi+15 \pi d_{2} d_{1}-56-15 \pi d_{2}}{30\left(26+6 d_{1}+5 d_{1} d_{2}+5 d_{2}\right)} .
\end{aligned}
$$

Now, for $k=d_{1}-d_{2}$, we have that
(1) if $k=1$, when $d_{2} \geq 62, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(2) if $k=2$, when $d_{2} \geq 60, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(3) if $k=3$, when $d_{2} \geq 57, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(4) if $k=4$, when $d_{2} \geq 54, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(5) if $k=5$, when $d_{2} \geq 50, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(6) if $k=6$, when $d_{2} \geq 47, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(7) if $k=7$, when $d_{2} \geq 43, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(8) if $k=8$, when $d_{2} \geq 40, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(9) if $k=9$, when $d_{2} \geq 35, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(10) if $k=10$, when $d_{2} \geq 31, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(11) if $k=11$, when $d_{2} \geq 24, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.
(12) if $k=12$, when $d_{2} \geq 3, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)<0$.

For smaller d_{2}, we consider the following inequality

$$
E\left(T_{a}\right)-E\left(T_{b}\right) \leq \frac{2}{\pi} \cdot g\left(d_{1}, d_{2}, x\right)<0
$$

where

$$
\begin{aligned}
g\left(d_{1}, d_{2}, x\right) & =\int_{0}^{\sqrt{d_{1}-2}} \frac{1}{x^{2}} \log \left(1+\frac{\left(d_{2}-2\right) x^{6}\left(x^{2}-\left(d_{1}-2\right)\right)}{B_{1}+B_{2}}\right) d x \\
& +\int_{\sqrt{d_{1}-2}}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{\left(d_{2}-2\right) x^{6}\left(x^{2}-\left(d_{1}-2\right)\right)}{B_{1}+\frac{B_{2}}{1+x^{2}}}\right) d x
\end{aligned}
$$

By direct calculations, using a computer with the Maple programm, we can get that
(1) if $k=1$, when $6 \leq d_{2} \leq 61, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} g\left(d_{1}, d_{2}, x\right)<0$.
(2) if $k=2$, when $5 \leq d_{2} \leq 59, E\left(T_{a}\right)-E\left(T_{b}\right)<0$.
(3) if $k=3$, when $4 \leq d_{2} \leq 56, E\left(T_{a}\right)-E\left(T_{b}\right)<0$.
(4) if $4 \leq k \leq 11$, when $3 \leq d_{2} \leq 53, E\left(T_{a}\right)-E\left(T_{b}\right)<0$.

Then, from all the above results, we get the following conclusion: for all $t \geq 4$,
(1) if $k=1$, when $d_{2} \geq 6, E\left(T_{a}\right)-E\left(T_{b}\right)<0$.
(2) if $k=2$, when $d_{2} \geq 5, E\left(T_{a}\right)-E\left(T_{b}\right)<0$.
(3) if $k=3$, when $d_{2} \geq 4, E\left(T_{a}\right)-E\left(T_{b}\right)<0$.
(4) if $4 \leq k \leq 12$, when $d_{2} \geq 3, E\left(T_{a}\right)-E\left(T_{b}\right)<0$.

If $t=3$, we have $m^{+}\left(P_{t-4}, x\right)=m^{+}\left(P_{-1}, x\right)=0$. By a similar method as above, we can get the same result.

The proof is now complete.
Next we consider the case $k \geq 13$.

Lemma 3.3 Among trees with n vertices and two vertices of maximum and second maximum degree d_{1} and d_{2}, let $k=d_{1}-d_{2}$, if $k \geq 13, d_{2} \geq 3$, then the maximal energy tree is the graph T_{b}, where $t=n+4-2 d_{1}-2 d_{2} \geq 3$.

Proof. In Lemma 3.2 we proved that if $t \geq 4, d_{2} \geq 3, E\left(T_{a}\right)-E\left(T_{b}\right)<\frac{2}{\pi} f\left(d_{1}, d_{2}\right)$. Let $d_{1}=d_{2}+k$, then $f\left(d_{1}, d_{2}\right)=h\left(d_{2}, k\right)$. We first want to show that $h\left(d_{2}, k\right)$ is monotonically decreasing in k.

$$
\begin{aligned}
& h\left(d_{2}, k\right)=\frac{2\left(d_{2}-2\right)}{3\left(d_{2}+k+3\right) \sqrt{d_{2}+k-2}} \\
& -\frac{d_{2}-2}{15\left(26+6\left(d_{2}+k\right)+5\left(d_{2}+k\right) d_{2}+5 d_{2}\right)}\left(3\left(d_{2}+k\right)-11+\frac{2}{\left(d_{2}+k-2\right)^{3 / 2}}\right) \\
& -\frac{28 d_{2}-40\left(d_{2}+k\right) d_{2}+80\left(d_{2}+k\right)-30 \pi\left(d_{2}+k\right)+30 \pi+15 \pi d_{2}\left(d_{2}+k\right)-56-15 \pi d_{2}}{30\left(26+6\left(d_{2}+k\right)+5\left(d_{2}+k\right) d_{2}+5 d_{2}\right)} .
\end{aligned}
$$

The derivative of $h\left(d_{2}, k\right)$ on k is

$$
h^{\prime}\left(d_{2}, k\right)=h_{1}+h_{2}+h_{3}+h_{4}+h_{5}+h_{6},
$$

where

$$
\begin{aligned}
h_{1} & =-\frac{2\left(d_{2}-2\right)}{3\left(d_{2}+k+3\right)^{2} \sqrt{d_{2}+k-2}}, \\
h_{2}= & -\frac{d_{2}-2}{3\left(d_{2}+k+3\right)\left(d_{2}+k-2\right)^{3 / 2}}, \\
h_{3}= & -\frac{-30 \pi-40 d_{2}+15 d_{2} \pi+80}{780+330 d_{2}+180 k+150\left(d_{2}+k\right) d_{2}}, \\
h_{4} & =\frac{108 d_{2}-56-30 \pi\left(d_{2}+k\right)-40\left(d_{2}+k\right) d_{2}+15 d_{2} \pi\left(d_{2}+k\right)+30 \pi-15 d_{2} \pi+80 k}{\left(780+330 d_{2}+180 k+150\left(d_{2}+k\right) d_{2}\right)^{2}} \\
& \cdot\left(180+150 d_{2}\right), \\
h_{5}= & -\frac{\frac{d_{2}-2}{5}-\frac{d_{2}-2}{5\left(d_{2}+k-2\right)^{5 / 2}}}{26+11 d_{2}+6 k+5\left(d_{2}+k\right) d_{2}}, \\
h_{6}= & \frac{\left(\frac{2}{15\left(d_{2}+k-2\right)^{3 / 2}}+\frac{3 d_{2}+3 k-11}{15}\right)\left(d_{2}-2\right)\left(5 d_{2}+6\right)}{\left(26+11 d_{2}+6 k+5\left(d_{2}+k\right) d_{2}\right)^{2}} .
\end{aligned}
$$

Clearly, $h_{1}, h_{2} \leq 0$,

$$
h_{3}+h_{4}=-\frac{-264 d_{2}-170 d_{2}^{2}+90 d_{2} \pi+75 d_{2}^{2} \pi+1208-480 \pi}{15\left(5 d_{2}^{2}+5 d_{2} k+11 d_{2}+6 k+26\right)^{2}}<0
$$

Moreover,

$$
\begin{aligned}
\frac{h_{5}+h_{6}}{m}= & \left(2\left(d_{2}+k-2\right)+\left(3 d_{2}+3 k-11\right)\left(d_{2}+k-2\right)^{5 / 2}\right)\left(5 d_{2}+6\right) \\
& -3\left(26+11 d_{2}+6 k+5\left(d_{2}+k\right) d_{2}\right)\left(\left(d_{2}+k-2\right)^{5 / 2}-1\right) \\
= & \left(-70 d_{2}^{3}-140 d_{2}^{2} k+136 d_{2}^{2}-70 d_{2} k^{2}-8 d_{2} k+296 d_{2}-144 k^{2}+576 k-576\right) \\
& \cdot \sqrt{d_{2}+k-2}+25 d_{2}^{2}+25 d_{2}+25 d_{2} k+30 k+54 \\
< & 0,
\end{aligned}
$$

where

$$
m=\frac{d_{2}-2}{15\left(d_{2}+k-2\right)^{5 / 2}\left(26+11 d_{2}+6 k+5\left(d_{2}+k\right) d_{2}\right)^{2}}>0 .
$$

Thus, $h_{5}+h_{6}<0$.
Therefore, $h^{\prime}\left(d_{2}, k\right)<0$, and hence $h\left(d_{2}, k\right)$ is monotonically decreasing in k. Then, for any $d_{2} \geq 3, k \geq 13, f\left(d_{1}, d_{2}\right)=h\left(d_{2}, k\right)<h\left(d_{2}, 12\right)<0$. Thus $E\left(T_{a}\right)-E\left(T_{b}\right)<0$.

If $t=3$, we have $m^{+}\left(P_{t-4}, x\right)=m^{+}\left(P_{-1}, x\right)=0$. By a similar method as above, we can get the same result.

From Lemmas 3.2 and 3.3, we can get the following result immediately.

Theorem 3.4 Among trees with n vertices and two vertices of maximum and second maximum degree d_{1} and d_{2}, if $d_{1} \geq 7$ and $d_{2} \geq 3$, then the maximal energy tree is the graph T_{b}.

Now we have proved that for most cases, T_{b} has the maximal energy among trees with n vertices and two vertices of maximum and second maximum degree. Only the following six special cases are left undetermined: $\left(d_{1}, d_{2}\right)=(4,3),(5,4),(5,3),(6,5),(6,4),(6,3)$. Before solving them, we give two lemmas [12] about the properties of the signless matching polynomial $m^{+}\left(P_{t}, x\right)$ for our later use.

Lemma 3.5 For $t \geq-1$, the polynomial $m^{+}\left(P_{t}, x\right)$ has the following form

$$
m^{+}\left(P_{t}, x\right)=\frac{1}{\sqrt{1+4 x^{2}}}\left(\lambda_{1}^{t+1}-\lambda_{2}^{t+1}\right),
$$

where $\lambda_{1}=\frac{1+\sqrt{1+4 x^{2}}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{1+4 x^{2}}}{2}$.

Lemma 3.6 Suppose $t \geq 4$. If t is even, then

$$
\begin{equation*}
\frac{2}{1+\sqrt{1+4 x^{2}}}<\frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)} \leq 1 . \tag{6}
\end{equation*}
$$

If t is odd, then

$$
\begin{equation*}
\frac{1}{1+x^{2}} \leq \frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}<\frac{2}{1+\sqrt{1+4 x^{2}}} . \tag{7}
\end{equation*}
$$

Note that

$$
\lim _{t \rightarrow \infty} \frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}=\frac{2}{1+\sqrt{1+4 x^{2}}}
$$

Therefore, in view of Ineq. (6), if t is even and sufficiently large, then for some x, there exists some $\frac{2}{1+\sqrt{1+4 x^{2}}}<\Theta^{\prime}<1$, such that Θ^{\prime} becomes an upper bound for $\frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3,3)}\right.}$. Analogously, in view of Ineq. (7), if t is odd and sufficiently large, then for some x there exists some $\frac{1}{1+x^{2}}<\Theta^{\prime \prime}<\frac{2}{1+\sqrt{1+4 x^{2}}}$, such that $\Theta^{\prime \prime}$ becomes a lower bound for $\frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}$. By numerical testing we can find the proper Θ^{\prime} and $\Theta^{\prime \prime}$.

Now we are ready to deal with the case $d_{1}=4, d_{2}=3$.

Theorem 3.7 Among trees with n vertices and two vertices of maximum and second maximum degree $d_{1}=4$ and $d_{2}=3$, letting $t=n+4-2 d_{1}-2 d_{2} \geq 3$, the maximal energy tree is the graph T_{b} if $t=4$, and the graph T_{a} otherwise.

Proof. By Eqs. (2), (3), (4) and (5), we have

$$
\begin{align*}
E\left(T_{a}\right)-E\left(T_{b}\right) & =\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{m^{+}\left(T_{a}, x\right)-m^{+}\left(T_{b}, x\right)}{m^{+}\left(T_{b}, x\right)}\right) d x \\
& =\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{\left(d_{2}-2\right) x^{6}\left(x^{2}-\left(d_{1}-2\right)\right)}{B_{1}+B_{2} \frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}}\right) d x \tag{8}
\end{align*}
$$

We first consider the case that t is odd and $t \geq 5$. By Eq. (8) and Lemma 3.6, we have

$$
\begin{aligned}
& E\left(T_{a}\right)-E\left(T_{b}\right) \\
> & \frac{2}{\pi} \int_{\sqrt{2}}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{x^{6}\left(x^{2}-2\right)}{B_{1}+B_{2} \frac{2}{1+\sqrt{1+4 x^{2}}}}\right) d x+\frac{2}{\pi} \int_{0}^{\sqrt{2}} \frac{1}{x^{2}} \log \left(1+\frac{x^{6}\left(x^{2}-2\right)}{B_{1}+B_{2} \frac{1}{1+x^{2}}}\right) d x \\
> & \frac{2}{\pi} \cdot 0.011179>0 .
\end{aligned}
$$

If t is even, we want to find t and x satisfying that

$$
\begin{equation*}
\frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}<\frac{2}{-1+\sqrt{1+4 x^{2}}} \tag{9}
\end{equation*}
$$

It is equivalent to solve

$$
\frac{\lambda_{1}^{t-3}-\lambda_{2}^{t-3}}{\lambda_{1}^{t-2}-\lambda_{2}^{t-2}}<-\frac{1}{\lambda_{2}} \quad \text { i. e., } \quad\left(\frac{1+\sqrt{1+4 x^{2}}}{2 x}\right)^{2 t-6}>\sqrt{1+4 x^{2}}-1
$$

Thus,

$$
2 t-6>\log _{\frac{1+\sqrt{1+4 x^{2}}}{2 x}}\left(\sqrt{1+4 x^{2}}-1\right)
$$

Since for $x \in(0,+\infty), \frac{1+\sqrt{1+4 x^{2}}}{2 x}$ is decreasing and $\sqrt{1+4 x^{2}}-1$ is increasing, we have that $\log _{\frac{1+\sqrt{1+4 x^{2}}}{2 x}}\left(\sqrt{1+4 x^{2}}-1\right)$ is increasing. Thus, if $x \in[\sqrt{2}, 5]$, then

$$
\log _{\frac{1+\sqrt{1+4 x^{2}}}{2 x}}\left(\sqrt{1+4 x^{2}}-1\right) \leq \log _{\frac{1+\sqrt{101}}{10}}(\sqrt{101}-1)<23 .
$$

Therefore, when $t \geq 15$, i.e., $2 t-6>23$, we have that Ineq. (9) holds for $x \in[\sqrt{2}, 5]$.
Now we calculate the difference of $E\left(T_{a}\right)$ and $E\left(T_{b}\right)$. When t is even and $t \geq 15$, from Eq. (8) we have

$$
\begin{aligned}
& E\left(T_{a}\right)-E\left(T_{b}\right) \\
> & \frac{2}{\pi} \int_{5}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{x^{6}\left(x^{2}-2\right)}{B_{1}+B_{2}}\right) d x+\frac{2}{\pi} \int_{\sqrt{2}}^{5} \frac{1}{x^{2}} \log \left(1+\frac{x^{6}\left(x^{2}-2\right)}{B_{1}+B_{2} \frac{2}{-1+\sqrt{1+4 x^{2}}}}\right) d x \\
& +\frac{2}{\pi} \int_{0}^{\sqrt{2}} \frac{1}{x^{2}} \log \left(1+\frac{x^{6}\left(x^{2}-2\right)}{B_{1}+B_{2} \frac{2}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
> & \frac{2}{\pi} \cdot 0.001634>0 .
\end{aligned}
$$

For $t=3$ and any even t with $4 \leq t \leq 14$, by computing the energies of the two graphs directly by a computer with Maple programm, we can get that $E\left(T_{a}\right)<E\left(T_{b}\right)$ for $t=4$, and $E\left(T_{a}\right)>E\left(T_{b}\right)$ for the other cases.

The proof is thus complete.
The following theorem gives the result for the cases: $\left(d_{1}, d_{2}\right)=(5,4),(5,3),(6,5)$, $(6,4),(6,3)$.

Theorem 3.8 Among trees with n vertices and two vertices of maximum and second maximum degree d_{1} and d_{2}, letting $t=n+4-2 d_{1}-2 d_{2} \geq 3$,
(i) for $d_{1}=5, d_{2}=4$, the maximal energy tree is the graph T_{a} if t is odd and $3 \leq t \leq 45$, and the graph T_{b} otherwise.
(ii) for $d_{1}=5, d_{2}=3$, the maximal energy tree is the graph T_{a} if t is odd and $3 \leq t \leq 29$, and the graph T_{b} otherwise.
(iii) for $d_{1}=6, d_{2}=5$, the maximal energy tree is the graph T_{a} if $t=3,5,7$, and the graph T_{b} otherwise.
(iv) for $d_{1}=6, d_{2}=4$, the maximal energy tree is the graph T_{a} if $t=5$, and the graph T_{b} otherwise.
(v) for $d_{1}=6, d_{2}=3$, the maximal energy tree is the graph T_{b} for any $t \geq 3$.

Proof. We consider the following cases separately:
(i) $d_{1}=5, d_{2}=4$.

If t is even, we want to find t and x satisfying that

$$
\begin{equation*}
\frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}<\frac{2.1}{1+\sqrt{1+4 x^{2}}} . \tag{10}
\end{equation*}
$$

It is equivalent to solve

$$
2 t-6>\log _{\frac{1+\sqrt{1+4 x^{2}}}{2 x}}\left(41-\frac{42}{\sqrt{1+4 x^{2}}+1}\right) .
$$

If $x \in[1, \sqrt{3}]$,

$$
\log _{\frac{1+\sqrt{1+4 x^{2}}}{2 x}}\left(41-\frac{42}{\sqrt{1+4 x^{2}}+1}\right) \leq \log _{\frac{1+\sqrt{13}}{2 \sqrt{3}}}\left(41-\frac{42}{1+\sqrt{13}}\right)<13 .
$$

Therefore, when $t \geq 10$, i.e., $2 t-6>13$, we have that Ineq. (10) holds for $x \in[1, \sqrt{3}]$. Then, if t is even and $t \geq 10$, from Eq. (8) and Lemma 3.6 we have

$$
\begin{aligned}
E\left(T_{a}\right)-E\left(T_{b}\right)< & \frac{2}{\pi} \int_{\sqrt{3}}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{2 x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2} \frac{2}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
& +\frac{2}{\pi} \int_{1}^{\sqrt{3}} \frac{1}{x^{2}} \log \left(1+\frac{2 x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2} \frac{2.1}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
& +\frac{2}{\pi} \int_{0}^{1} \frac{1}{x^{2}} \log \left(1+\frac{2 x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2}}\right) d x \\
< & \frac{2}{\pi} \cdot(-0.000231)<0 .
\end{aligned}
$$

If t is odd, we want to find t and x satisfying that

$$
\begin{equation*}
\frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}>\frac{1.9}{1+\sqrt{1+4 x^{2}}} \tag{11}
\end{equation*}
$$

that is

$$
2 t-6>\log _{\frac{1+\sqrt{1+4 x^{2}}}{2 x}}\left(39-\frac{38}{\sqrt{1+4 x^{2}}+1}\right) .
$$

Then we get that when $t \geq 699$, and $x \in[\sqrt{3}, 190]$, the Ineq. (11) holds. Thus, if t is odd and $t \geq 699$, from Eq. (8) and Lemma 3.6 we have

$$
\begin{aligned}
& E\left(T_{a}\right)-E\left(T_{b}\right) \\
< & \frac{2}{\pi} \int_{190}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{2 x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2} \frac{1}{1+x^{2}}}\right) d x+\frac{2}{\pi} \int_{\sqrt{3}}^{190} \frac{1}{x^{2}} \log \left(1+\frac{2 x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2} \frac{1.9}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
& +\frac{2}{\pi} \int_{0}^{\sqrt{3}} \frac{1}{x^{2}} \log \left(1+\frac{2 x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2} \frac{2}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
< & \frac{2}{\pi} \cdot\left(-1.41 \times 10^{-5}\right)<0 .
\end{aligned}
$$

For any even t with $4 \leq t \leq 8$ and any odd t with $3 \leq t \leq 697$, by computing the energies of the two graphs directly by a computer with Matlab programm, we get that $E\left(T_{a}\right)>E\left(T_{b}\right)$ for any odd t with $3 \leq t \leq 45$, and $E\left(T_{a}\right)<E\left(T_{b}\right)$ for the other cases.
(ii) $d_{1}=5, d_{2}=3$.

If t is even and $t \geq 4$, from Eq. (8) and Lemma 3.6, we have

$$
\begin{aligned}
E\left(T_{a}\right)-E\left(T_{b}\right)< & \frac{2}{\pi} \int_{\sqrt{3}}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2} \frac{2}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
& +\frac{2}{\pi} \int_{0}^{\sqrt{3}} \frac{1}{x^{2}} \log \left(1+\frac{x^{6}\left(x^{2}-3\right)}{B_{1}+B_{2}}\right) d x \\
< & \frac{2}{\pi} \cdot\left(-1.224 \times 10^{-4}\right)<0
\end{aligned}
$$

If t is odd and $t \geq 699$, by the similar proof in (i), we get that $E\left(T_{a}\right)-E\left(T_{b}\right)<$ $\frac{2}{\pi} \cdot\left(-9.90 \times 10^{-4}\right)<0$.

For any odd t with $3 \leq t \leq 697$, by computing the energies of the two graphs directly with Matlab programm, we get that $E\left(T_{a}\right)>E\left(T_{b}\right)$ for any odd t with $3 \leq t \leq 29$, and $E\left(T_{a}\right)<E\left(T_{b}\right)$ for the other cases.
(iii) $d_{1}=6, d_{2}=5$.

If t is even, by the similar method as used in (ii), we get that $E\left(T_{a}\right)-E\left(T_{b}\right)<$ $\frac{2}{\pi} \cdot(-0.018405)<0$.

If t is odd, similar to the proof in (i), we can show that when $t \geq 27$ and $x \in[2,22]$, the following inequality holds:

$$
\frac{m^{+}\left(P_{t-4}, x\right)}{m^{+}\left(P_{t-3}, x\right)}>\frac{1}{1+\sqrt{1+4 x^{2}}} .
$$

Hence, if t is odd and $t \geq 27$, we have

$$
\begin{aligned}
& E\left(T_{a}\right)-E\left(T_{b}\right) \\
< & \frac{2}{\pi} \int_{22}^{+\infty} \frac{1}{x^{2}} \log \left(1+\frac{3 x^{6}\left(x^{2}-4\right)}{B_{1}+B_{2} \frac{1}{1+x^{2}}}\right) d x+\frac{2}{\pi} \int_{2}^{22} \frac{1}{x^{2}} \log \left(1+\frac{3 x^{6}\left(x^{2}-4\right)}{B_{1}+B_{2} \frac{1}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
& +\frac{2}{\pi} \int_{0}^{2} \frac{1}{x^{2}} \log \left(1+\frac{3 x^{6}\left(x^{2}-4\right)}{B_{1}+B_{2} \frac{2}{1+\sqrt{1+4 x^{2}}}}\right) d x \\
< & \frac{2}{\pi} \cdot(-0.002914)<0
\end{aligned}
$$

For any odd t with $3 \leq t \leq 25$, by computing the energies of the two graphs directly, we can get that $E\left(T_{a}\right)>E\left(T_{b}\right)$ for $t=3,5,7$, and $E\left(T_{a}\right)<E\left(T_{b}\right)$ for the other cases.
(iv) $d_{1}=6, d_{2}=4$.

If t is even, by the similar method as used in (ii), we get that $E\left(T_{a}\right)-E\left(T_{b}\right)<$ $\frac{2}{\pi} \cdot(-0.015171)<0$.

If t is odd and $t \geq 27$, by the similar proof in (iii), we get that $E\left(T_{a}\right)-E\left(T_{b}\right)<$ $\frac{2}{\pi} \cdot(-0.004557)<0$.

For any odd t with $3 \leq t \leq 25$, by computing the energies of the two graphs directly, we get that $E\left(T_{a}\right)>E\left(T_{b}\right)$ for $t=5$, and $E\left(T_{a}\right)<E\left(T_{b}\right)$ for the other cases.
(v) $d_{1}=6, d_{2}=3$.

If t is even, by the similar method as used in (ii), we get that $E\left(T_{a}\right)-E\left(T_{b}\right)<$ $\frac{2}{\pi} \cdot(-0.009652)<0$.

If t is odd and $t \geq 27$, by the similar proof as used in (iii), we get that $E\left(T_{a}\right)-E\left(T_{b}\right)<$ $\frac{2}{\pi} \cdot(-0.004244)<0$.

For any odd t with $3 \leq t \leq 25$, by computing the energies of the two graphs directly, we get that $E\left(T_{a}\right)<E\left(T_{b}\right)$ for all $t \geq 3$.

The proof is now complete.

References

[1] B. Lass, Matching polynomials and duality, Combinatorica, 24(3)(2004), 427-440.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, 2008.
[3] C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc, Cambridge Phil. Soc. 36 (1940), 201-203.
[4] C.A. Coulson, J. Jacobs, Conjugation across a single bond, J. Chem. Soc. (1949), 2805-2812.
[5] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, 3rd ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
[6] E.J. Farrell, An introduction to matching polynomials, J. Combin. Theory Ser. B 27(1) (1979), 75-86.
[7] R.A. Beezera, E.J. Farrell, The matching polynomial of a regular graph, Discr. Math. 137 (1995), 7-18.
[8] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theoret. Chim. Acta (Berlin) 45 (1977), 79-87.
[9] I. Gutman, The energy of a graph, Ber. Math. -Statist. Sekt. Forschungszentrum Graz 103 (1978), 1-22.
[10] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim (2009), 145-174.
[11] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[12] J. Li, X. Li, Y. Shi, On the maximal energy tree with two maximum degree vertices, Linear Algebra Appl. 435 (2011), 2272-2284.
[13] X. Li, X. Yao, J. Zhang, I. Gutman, Maximum energy trees with two maximum degree vertices, J. Math. Chem. 45 (2009), 962-973.
[14] X. Yao, Maximum energy trees with one maximum and one second maximum degree vertex, MATCH Commun. Math. Comput. Chem. 64(1)(2010), 217-230.
[15] V.A. Zorich, Mathematical Analysis, MCCME, Moscow, 2002.

[^0]: *Supported by NSFC No. 11071130.

