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Abstract

For a simple graph G, the energy E(G) is defined as the sum of the absolute values

of all eigenvalues of its adjacent matrix. For d1 > d2 ≥ 3 and t ≥ 3, denote by Ta

the tree formed from a path Pt on t vertices by attaching d1−1 P2’s on one end and

d2 − 1 P2’s on the other end of the path Pt, and Tb the tree formed from Pt+2 by

attaching d1−1 P2’s on an end of the Pt+2 and d2−2 P2’s on the vertex next to the

end. In [14] Yao showed that among trees of order n and two vertices of maximum

degree d1 and second maximum degree d2 (d1 > d2), the maximal energy tree is

either the graph Ta or the graph Tb, where t = n + 4 − 2d1 − 2d2 ≥ 3. However,

she could not determine which one of Ta and Tb is the maximal energy tree. This

is because the quasi-order method is invalid for comparing their energies. In this

paper, we use a new method to determine the maximal energy tree. We prove that

the maximal energy tree is Tb if d1 ≥ 7, d2 ≥ 3 or d1 = 6, d2 = 3. Moreover, for

d1 = 4 and d2 = 3, the maximal energy tree is the graph Tb if t = 4, and the

graph Ta otherwise. For other cases, the maximal energy tree is the graph Ta if (i)

d1 = 5, d2 = 4, t is odd and 3 ≤ t ≤ 45, (ii) d1 = 5, d2 = 3, t is odd and 3 ≤ t ≤ 29,

(iii) d1 = 6, d2 = 5, t = 3, 5, 7, (iv) d1 = 6, d2 = 4, t = 5; and for all the remaining

cases, the maximal energy tree is the graph Tb.

1 Introduction

Let G be a simple graph of order n, and λ1, λ2, · · · , λn be the eigenvalues of G. Then

the energy of G is defined as

E(G) =
n∑

i=1

|λi|,

which was introduced by Gutman in [9]. The match polynomial [6, 7] of G is defined as

m(G, x) =

bn/2c∑

k=0

(−1)km(G, k)xn−2k,
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where m(G, k) denotes the number of k-matchings of G and m(G, 0) = 1. If G = T is a

tree of order n, then the characteristic polynomial [5] of G has the form

ϕ(T, x) = m(T, x) =

bn/2c∑

k=0

(−1)km(T, k)xn−2k.

And, by Coulson integral formula [3, 4, 8, 11], we have for a tree T ,

E(T ) =
2

π

∫ +∞

0

1

x2
log



bn/2c∑

k=0

m(T, k)x2k


 dx.

As we did in [12], for convenience we use the so-called signless matching polynomial [1]

m+(G, x) =

bn/2c∑

k=0

m(G, k)x2k.

Then we have

E(T ) =
2

π

∫ +∞

0

1

x2
log m+(T, x)dx. (1)

For basic properties of m+(G, x), we refer to our paper [12].

For more results on graph energy, we refer to the survey [10]. For terminology and

notations not defined here, we refer to the book of Bondy and Murty [2].

Graphs with extremal energies are interested in literature. In 2009 Li et al. [13] showed

that among trees of order n with two vertices of maximum degree ∆(≥ 3), the maximal

energy tree is either the graph Ga or the graph Gb, where t = n + 4 − 4∆ ≥ 3 and Ga

is the tree formed from a path Pt on t vertices by attaching ∆ − 1 P2’s on each end of

the path Pt, Gb is the tree formed from Pt+2 by attaching ∆ − 1 P2’s on an end of the

Pt+2 and ∆ − 2 P2’s on the vertex next to the end. However, they could not determine

which one of Ga and Gb is the maximal energy tree. In our recent paper [12], we used a

new method to determine the maximal energy tree. In a similar way, Yao [14] gave the

following Theorem 1.1 about the maximal energy tree with one maximum and one second

maximum degree vertex.

Theorem 1.1 ( [14]) Among trees with a fixed number of vertices (n) and two vertices

of maximum degree d1 and second maximum degree d2 (d1 > d2), the maximal energy tree

has as many as possible 2-branches.

(1) If n ≥ 2d1 + 2d2− 1, then the maximal energy tree is either the graph Ta or the graph

Tb, depicted in Figure 1.1.

(2) If n ≤ 2d1 + 2d2 − 2, then the maximal energy tree is the graph Tc depicted in Figure

1.1.
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Figure 1.1 The maximal energy trees with n vertices and two vertices u and v of degree

d1 and d2.

From Theorem 1.1, one can also see that for n ≥ 2d1+2d2−1, she could not determine

which one of the trees Ta and Tb has the maximal energy. In fact, the quasi-order method

they used before is invalid for the special case. In this paper, we will use the Coulson

integral formula method to determine which one of the trees Ta and Tb has the maximal

energy. One must notice that since d1 6= d2 here, the energy is a function in two variables

d1 and d2, and this makes our discussion much more complicated.

2 Preliminaries

In this section, we list some useful properties of the signless matching polynomial

m+(G, x), which will be used in the sequel, and already appeared in [12].

Lemma 2.1 Let v be a vertex of G and N(v) = {v1, v2, . . . , vr} the set of all neighbors

of v in G. Then

m+(G, x) = m+(G− v, x) + x2
∑

vi∈N(v)

m+(G− v − vi, x).

Lemma 2.2 Let Pt denote a path on t vertices. Then

(1) m+(Pt, x) = m+(Pt−1, x) + x2m+(Pt−2, x), for any t ≥ 1,

(2) m+(Pt, x) = (1 + x2)m+(Pt−2, x) + x2m+(Pt−3, x), for any t ≥ 2.

The initials are m+(P0, x) = m+(P1, x) = 1, and we define m+(P−1, x) = 0.
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Corollary 2.3 Let Pt be a path on t vertices. Then for any real number x,

m+(Pt−1, x) ≤ m+(Pt, x) ≤ (1 + x2)m+(Pt−1, x), for any t ≥ 1.

3 Main results

Before giving our main results, we state some knowledge on real analysis, for which

we refer to [15].

Lemma 3.1 For any real number X > −1, we have

X

1 + X
≤ log(1 + X) ≤ X.

For convenience, we introduce the following notations:

A1 = (x2 + 1)(d1x
6 + d2x

6 + d2x
4 + d1d2x

4 + d1x
4 + 2x4 + 2x2 + d1x

2 + d2x
2 + 1),

A2 = x2(x2 + 1)(x6 + 2x4 + d1d2x
4 + d1x

2 + d2x
2 + x2 + 1),

B1 = 2x8 + d1x
8 + 6x6 + 2d1d2x

6 + d1d2x
4 + 2d1x

4 + 4x4 + 2d2x
4 + d2x

2 + d1x
2

+3x2 + 1,

B2 = x2(x2 + 1)(x6 + 2x4 + d1d2x
4 + d1x

2 + d2x
2 + x2 + 1).

Using Lemmas 2.1 and 2.2 repeatedly, we can easily get the following two recursive for-

mulas, where t = n + 4− 2d1 − 2d2 ≥ 3:

m+(Ta, x) = (1 + x2)d1+d2−5(A1m
+(Pt−3, x) + A2m

+(Pt−4, x)), (2)

and

m+(Tb, x) = (1 + x2)d1+d2−5(B1m
+(Pt−3, x) + B2m

+(Pt−4, x)), (3)

From Eqs. (2) and (3), by some elementary calculations we can obtain

m+(Ta, x)−m+(Tb, x) = (1 + x2)d1+d2−5(d2 − 2)x6(x2 − (d1 − 2))m+(Pt−3, x). (4)

We know directly from Figure 1.1 that if t = 2 or d2 = 2, Ta
∼= Tb, then E(Ta) = E(Tb),

so we only consider the cases t ≥ 3 and d1 > d2 ≥ 3.

Now we give a useful lemma.

Lemma 3.2 Among trees with n vertices and two vertices of maximum and second max-

imum degree d1 and d2, let k = d1 − d2, if 1 ≤ k ≤ 3, d2 ≥ 7− k or 4 ≤ k ≤ 12, d2 ≥ 3,

the maximal energy tree is the graph Tb, where t = n + 4− 2d1 − 2d2 ≥ 3.
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Proof. Since m+(Ta, x) > 0 and m+(Tb, x) > 0, we have

m+(Ta, x)−m+(Tb, x)

m+(Tb, x)
=

m+(Ta, x)

m+(Tb, x)
− 1 > −1.

Therefore, from Eq. (1) and Lemma 3.1, we get that

E(Ta)− E(Tb) =
2

π

∫ +∞

0

1

x2
log

m+(Ta, x)

m+(Tb, x)
dx

=
2

π

∫ +∞

0

1

x2
log

(
1 +

m+(Ta, x)−m+(Tb, x)

m+(Tb, x)

)
dx. (5)

≤ 2

π

∫ +∞

0

1

x2
· m+(Ta, x)−m+(Tb, x)

m+(Tb, x)
dx.

By Corollary 2.3, we have m+(Pt−4, x) ≤ m+(Pt−3, x) and m+(Pt−4, x) ≥ m+(Pt−3,x)
1+x2 for

t ≥ 4. So, we have

E(Ta)− E(Tb)

≤ 2

π

∫ +∞

0

1

x2
· m+(Ta, x)−m+(Tb, x)

m+(Tb, x)
dx

=
2

π

∫ +∞

0

(d2 − 2)x4(x2 − (d1 − 2))m+(Pt−3, x)

B1m+(Pt−3, x) + B2m+(Pt−4, x)
dx

≤ 2

π

∫ +∞

√
d1−2

(d2 − 2)x4(x2 − (d1 − 2))

B1 + B2/(1 + x2)
dx +

2

π

∫ √
d1−2

0

(d2 − 2)x4(x2 − (d1 − 2))

B1 + B2

dx

<
2

π

∫ +∞

√
d1−2

(d2 − 2)x4(x2 − (d1 − 2))

(d1 + 3)x8
dx +

2

π

∫ √
d1−2

1

(d2 − 2)x4(x2 − (d1 − 2))

(5d1d2 + 6d1 + 5d2 + 26)x10
dx

+
2

π

∫ 1

0

2(d2 − 2)x4(x2 − (d1 − 2))

(5d1d2 + 6d1 + 5d2 + 26)(x2 + 1)
dx

=
2

π
f(d1, d2).

Where

f(d1, d2) =
2(d2 − 2)

3(d1 + 3)
√

d1 − 2
− d2 − 2

15(26 + 6d1 + 5d1d2 + 5d2)

(
3d1 − 11 +

2

(d1 − 2)3/2

)

−28d2 − 40d1d2 + 80d1 − 30πd1 + 30π + 15πd2d1 − 56− 15πd2

30(26 + 6d1 + 5d1d2 + 5d2)
.

Now, for k = d1 − d2, we have that

(1) if k = 1, when d2 ≥ 62, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(2) if k = 2, when d2 ≥ 60, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(3) if k = 3, when d2 ≥ 57, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.
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(4) if k = 4, when d2 ≥ 54, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(5) if k = 5, when d2 ≥ 50, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(6) if k = 6, when d2 ≥ 47, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(7) if k = 7, when d2 ≥ 43, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(8) if k = 8, when d2 ≥ 40, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(9) if k = 9, when d2 ≥ 35, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(10) if k = 10, when d2 ≥ 31, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(11) if k = 11, when d2 ≥ 24, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

(12) if k = 12, when d2 ≥ 3, E(Ta)− E(Tb) < 2
π
f(d1, d2) < 0.

For smaller d2, we consider the following inequality

E(Ta)− E(Tb) ≤ 2

π
· g(d1, d2, x) < 0

where

g(d1, d2, x) =

∫ √
d1−2

0

1

x2
log

(
1 +

(d2 − 2)x6(x2 − (d1 − 2))

B1 + B2

)
dx

+

∫ +∞

√
d1−2

1

x2
log

(
1 +

(d2 − 2)x6(x2 − (d1 − 2))

B1 + B2

1+x2

)
dx.

By direct calculations, using a computer with the Maple programm, we can get that

(1) if k = 1, when 6 ≤ d2 ≤ 61, E(Ta)− E(Tb) < 2
π
g(d1, d2, x) < 0.

(2) if k = 2, when 5 ≤ d2 ≤ 59, E(Ta)− E(Tb) < 0.

(3) if k = 3, when 4 ≤ d2 ≤ 56, E(Ta)− E(Tb) < 0.

(4) if 4 ≤ k ≤ 11, when 3 ≤ d2 ≤ 53, E(Ta)− E(Tb) < 0.

Then, from all the above results, we get the following conclusion: for all t ≥ 4,

(1) if k = 1, when d2 ≥ 6, E(Ta)− E(Tb) < 0.

(2) if k = 2, when d2 ≥ 5, E(Ta)− E(Tb) < 0.

(3) if k = 3, when d2 ≥ 4, E(Ta)− E(Tb) < 0.

(4) if 4 ≤ k ≤ 12, when d2 ≥ 3, E(Ta)− E(Tb) < 0.

If t = 3, we have m+(Pt−4, x) = m+(P−1, x) = 0. By a similar method as above, we

can get the same result.

The proof is now complete.

Next we consider the case k ≥ 13.
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Lemma 3.3 Among trees with n vertices and two vertices of maximum and second max-

imum degree d1 and d2, let k = d1 − d2, if k ≥ 13, d2 ≥ 3, then the maximal energy tree

is the graph Tb, where t = n + 4− 2d1 − 2d2 ≥ 3.

Proof. In Lemma 3.2 we proved that if t ≥ 4, d2 ≥ 3, E(Ta) − E(Tb) < 2
π
f(d1, d2). Let

d1 = d2+k, then f(d1, d2) = h(d2, k). We first want to show that h(d2, k) is monotonically

decreasing in k.

h(d2, k) =
2(d2 − 2)

3(d2 + k + 3)
√

d2 + k − 2

− d2 − 2

15(26 + 6(d2 + k) + 5(d2 + k)d2 + 5d2)

(
3(d2 + k)− 11 +

2

(d2 + k − 2)3/2

)

−28d2 − 40(d2 + k)d2 + 80(d2 + k)− 30π(d2 + k) + 30π + 15πd2(d2 + k)− 56− 15πd2

30(26 + 6(d2 + k) + 5(d2 + k)d2 + 5d2)
.

The derivative of h(d2, k) on k is

h′(d2, k) = h1 + h2 + h3 + h4 + h5 + h6,

where

h1 = − 2(d2 − 2)

3(d2 + k + 3)2
√

d2 + k − 2
,

h2 = − d2 − 2

3(d2 + k + 3)(d2 + k − 2)3/2
,

h3 = − −30π − 40d2 + 15d2π + 80

780 + 330d2 + 180k + 150(d2 + k)d2

,

h4 =
108d2 − 56− 30π(d2 + k)− 40(d2 + k)d2 + 15d2π(d2 + k) + 30π − 15d2π + 80k

(780 + 330d2 + 180k + 150(d2 + k)d2)2

·(180 + 150d2),

h5 = −
d2−2

5
− d2−2

5(d2+k−2)5/2

26 + 11d2 + 6k + 5(d2 + k)d2

,

h6 =

(
2

15(d2+k−2)3/2 + 3d2+3k−11
15

)
(d2 − 2)(5d2 + 6)

(26 + 11d2 + 6k + 5(d2 + k)d2)2
.

Clearly, h1, h2 ≤ 0,

h3 + h4 = −−264d2 − 170d2
2 + 90d2π + 75d2

2π + 1208− 480π

15(5d2
2 + 5d2k + 11d2 + 6k + 26)2

< 0.
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Moreover,

h5 + h6

m
= (2(d2 + k − 2) + (3d2 + 3k − 11)(d2 + k − 2)5/2)(5d2 + 6)

−3(26 + 11d2 + 6k + 5(d2 + k)d2)((d2 + k − 2)5/2 − 1)

= (−70d3
2 − 140d2

2k + 136d2
2 − 70d2k

2 − 8d2k + 296d2 − 144k2 + 576k − 576)

·
√

d2 + k − 2 + 25d2
2 + 25d2 + 25d2k + 30k + 54

< 0,

where

m =
d2 − 2

15(d2 + k − 2)5/2(26 + 11d2 + 6k + 5(d2 + k)d2)2
> 0.

Thus, h5 + h6 < 0.

Therefore, h′(d2, k) < 0, and hence h(d2, k) is monotonically decreasing in k. Then,

for any d2 ≥ 3, k ≥ 13, f(d1, d2) = h(d2, k) < h(d2, 12) < 0. Thus E(Ta)− E(Tb) < 0.

If t = 3, we have m+(Pt−4, x) = m+(P−1, x) = 0. By a similar method as above, we

can get the same result.

From Lemmas 3.2 and 3.3, we can get the following result immediately.

Theorem 3.4 Among trees with n vertices and two vertices of maximum and second

maximum degree d1 and d2, if d1 ≥ 7 and d2 ≥ 3, then the maximal energy tree is the

graph Tb.

Now we have proved that for most cases, Tb has the maximal energy among trees with

n vertices and two vertices of maximum and second maximum degree. Only the following

six special cases are left undetermined: (d1, d2) = (4, 3), (5, 4), (5, 3), (6, 5), (6, 4), (6, 3).

Before solving them, we give two lemmas [12] about the properties of the signless matching

polynomial m+(Pt, x) for our later use.

Lemma 3.5 For t ≥ −1, the polynomial m+(Pt, x) has the following form

m+(Pt, x) =
1√

1 + 4x2
(λt+1

1 − λt+1
2 ),

where λ1 = 1+
√

1+4x2

2
and λ2 = 1−√1+4x2

2
.

Lemma 3.6 Suppose t ≥ 4. If t is even, then

2

1 +
√

1 + 4x2
<

m+(Pt−4, x)

m+(Pt−3, x)
≤ 1. (6)

If t is odd, then
1

1 + x2
≤ m+(Pt−4, x)

m+(Pt−3, x)
<

2

1 +
√

1 + 4x2
. (7)
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Note that

lim
t→∞

m+(Pt−4, x)

m+(Pt−3, x)
=

2

1 +
√

1 + 4x2
.

Therefore, in view of Ineq. (6), if t is even and sufficiently large, then for some x, there

exists some 2
1+
√

1+4x2 < Θ′ < 1, such that Θ′ becomes an upper bound for m+(Pt−4,x)
m+(Pt−3,x)

.

Analogously, in view of Ineq. (7), if t is odd and sufficiently large, then for some x there

exists some 1
1+x2 < Θ′′ < 2

1+
√

1+4x2 , such that Θ′′ becomes a lower bound for m+(Pt−4,x)
m+(Pt−3,x)

.

By numerical testing we can find the proper Θ′ and Θ′′.

Now we are ready to deal with the case d1 = 4, d2 = 3.

Theorem 3.7 Among trees with n vertices and two vertices of maximum and second

maximum degree d1 = 4 and d2 = 3, letting t = n+4−2d1−2d2 ≥ 3, the maximal energy

tree is the graph Tb if t = 4, and the graph Ta otherwise.

Proof. By Eqs. (2), (3), (4) and (5), we have

E(Ta)− E(Tb) =
2

π

∫ +∞

0

1

x2
log

(
1 +

m+(Ta, x)−m+(Tb, x)

m+(Tb, x)

)
dx

=
2

π

∫ +∞

0

1

x2
log

(
1 +

(d2 − 2)x6(x2 − (d1 − 2))

B1 + B2
m+(Pt−4,x)
m+(Pt−3,x)

)
dx. (8)

We first consider the case that t is odd and t ≥ 5. By Eq. (8) and Lemma 3.6, we

have

E(Ta)− E(Tb)

>
2

π

∫ +∞

√
2

1

x2
log

(
1 +

x6(x2 − 2)

B1 + B2
2

1+
√

1+4x2

)
dx +

2

π

∫ √
2

0

1

x2
log

(
1 +

x6(x2 − 2)

B1 + B2
1

1+x2

)
dx

>
2

π
· 0.011179 > 0.

If t is even, we want to find t and x satisfying that

m+(Pt−4, x)

m+(Pt−3, x)
<

2

−1 +
√

1 + 4x2
. (9)

It is equivalent to solve

λt−3
1 − λt−3

2

λt−2
1 − λt−2

2

< − 1

λ2

i. e.,

(
1 +

√
1 + 4x2

2x

)2t−6

>
√

1 + 4x2 − 1 .

Thus,

2t− 6 > log 1+
√

1+4x2

2x

(
√

1 + 4x2 − 1).
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Since for x ∈ (0, +∞), 1+
√

1+4x2

2x
is decreasing and

√
1 + 4x2 − 1 is increasing, we have

that log 1+
√

1+4x2

2x

(
√

1 + 4x2 − 1) is increasing. Thus, if x ∈ [
√

2, 5], then

log 1+
√

1+4x2

2x

(
√

1 + 4x2 − 1) ≤ log 1+
√

101
10

(
√

101− 1) < 23.

Therefore, when t ≥ 15, i.e., 2t− 6 > 23, we have that Ineq. (9) holds for x ∈ [
√

2, 5].

Now we calculate the difference of E(Ta) and E(Tb). When t is even and t ≥ 15, from

Eq. (8) we have

E(Ta)− E(Tb)

>
2

π

∫ +∞

5

1

x2
log

(
1 +

x6(x2 − 2)

B1 + B2

)
dx +

2

π

∫ 5

√
2

1

x2
log

(
1 +

x6(x2 − 2)

B1 + B2
2

−1+
√

1+4x2

)
dx

+
2

π

∫ √
2

0

1

x2
log

(
1 +

x6(x2 − 2)

B1 + B2
2

1+
√

1+4x2

)
dx

>
2

π
· 0.001634 > 0.

For t = 3 and any even t with 4 ≤ t ≤ 14, by computing the energies of the two graphs

directly by a computer with Maple programm, we can get that E(Ta) < E(Tb) for t = 4,

and E(Ta) > E(Tb) for the other cases.

The proof is thus complete.

The following theorem gives the result for the cases: (d1, d2) = (5, 4), (5, 3), (6, 5),

(6, 4), (6, 3).

Theorem 3.8 Among trees with n vertices and two vertices of maximum and second

maximum degree d1 and d2, letting t = n + 4− 2d1 − 2d2 ≥ 3,

(i) for d1 = 5, d2 = 4, the maximal energy tree is the graph Ta if t is odd and 3 ≤ t ≤ 45,

and the graph Tb otherwise.

(ii) for d1 = 5, d2 = 3, the maximal energy tree is the graph Ta if t is odd and 3 ≤ t ≤ 29,

and the graph Tb otherwise.

(iii) for d1 = 6, d2 = 5, the maximal energy tree is the graph Ta if t = 3, 5, 7, and the

graph Tb otherwise.

(iv) for d1 = 6, d2 = 4, the maximal energy tree is the graph Ta if t = 5, and the graph Tb

otherwise.

(v) for d1 = 6, d2 = 3, the maximal energy tree is the graph Tb for any t ≥ 3.

Proof. We consider the following cases separately:
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(i) d1 = 5, d2 = 4.

If t is even, we want to find t and x satisfying that

m+(Pt−4, x)

m+(Pt−3, x)
<

2.1

1 +
√

1 + 4x2
. (10)

It is equivalent to solve

2t− 6 > log 1+
√

1+4x2

2x

(
41− 42√

1 + 4x2 + 1

)
.

If x ∈ [1,
√

3],

log 1+
√

1+4x2

2x

(
41− 42√

1 + 4x2 + 1

)
≤ log 1+

√
13

2
√

3

(
41− 42

1 +
√

13

)
< 13.

Therefore, when t ≥ 10, i.e., 2t − 6 > 13, we have that Ineq. (10) holds for x ∈ [1,
√

3].

Then, if t is even and t ≥ 10, from Eq. (8) and Lemma 3.6 we have

E(Ta)− E(Tb) <
2

π

∫ +∞

√
3

1

x2
log

(
1 +

2x6(x2 − 3)

B1 + B2
2

1+
√

1+4x2

)
dx

+
2

π

∫ √
3

1

1

x2
log

(
1 +

2x6(x2 − 3)

B1 + B2
2.1

1+
√

1+4x2

)
dx

+
2

π

∫ 1

0

1

x2
log

(
1 +

2x6(x2 − 3)

B1 + B2

)
dx

<
2

π
· (−0.000231) < 0.

If t is odd, we want to find t and x satisfying that

m+(Pt−4, x)

m+(Pt−3, x)
>

1.9

1 +
√

1 + 4x2
, (11)

that is

2t− 6 > log 1+
√

1+4x2

2x

(
39− 38√

1 + 4x2 + 1

)
.

Then we get that when t ≥ 699, and x ∈ [
√

3, 190], the Ineq. (11) holds. Thus, if t is odd

and t ≥ 699, from Eq. (8) and Lemma 3.6 we have

E(Ta)− E(Tb)

<
2

π

∫ +∞

190

1

x2
log

(
1 +

2x6(x2 − 3)

B1 + B2
1

1+x2

)
dx +

2

π

∫ 190

√
3

1

x2
log

(
1 +

2x6(x2 − 3)

B1 + B2
1.9

1+
√

1+4x2

)
dx

+
2

π

∫ √
3

0

1

x2
log

(
1 +

2x6(x2 − 3)

B1 + B2
2

1+
√

1+4x2

)
dx

<
2

π
· (−1.41× 10−5) < 0.
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For any even t with 4 ≤ t ≤ 8 and any odd t with 3 ≤ t ≤ 697, by computing the

energies of the two graphs directly by a computer with Matlab programm, we get that

E(Ta) > E(Tb) for any odd t with 3 ≤ t ≤ 45, and E(Ta) < E(Tb) for the other cases.

(ii) d1 = 5, d2 = 3.

If t is even and t ≥ 4, from Eq. (8) and Lemma 3.6, we have

E(Ta)− E(Tb) <
2

π

∫ +∞

√
3

1

x2
log

(
1 +

x6(x2 − 3)

B1 + B2
2

1+
√

1+4x2

)
dx

+
2

π

∫ √
3

0

1

x2
log

(
1 +

x6(x2 − 3)

B1 + B2

)
dx

<
2

π
· (−1.224× 10−4) < 0.

If t is odd and t ≥ 699, by the similar proof in (i), we get that E(Ta) − E(Tb) <
2
π
· (−9.90× 10−4) < 0.

For any odd t with 3 ≤ t ≤ 697, by computing the energies of the two graphs directly

with Matlab programm, we get that E(Ta) > E(Tb) for any odd t with 3 ≤ t ≤ 29, and

E(Ta) < E(Tb) for the other cases.

(iii) d1 = 6, d2 = 5.

If t is even, by the similar method as used in (ii), we get that E(Ta) − E(Tb) <
2
π
· (−0.018405) < 0.

If t is odd, similar to the proof in (i), we can show that when t ≥ 27 and x ∈ [2, 22],

the following inequality holds:

m+(Pt−4, x)

m+(Pt−3, x)
>

1

1 +
√

1 + 4x2
.

Hence, if t is odd and t ≥ 27, we have

E(Ta)− E(Tb)

<
2

π

∫ +∞

22

1

x2
log

(
1 +

3x6(x2 − 4)

B1 + B2
1

1+x2

)
dx +

2

π

∫ 22

2

1

x2
log

(
1 +

3x6(x2 − 4)

B1 + B2
1

1+
√

1+4x2

)
dx

+
2

π

∫ 2

0

1

x2
log

(
1 +

3x6(x2 − 4)

B1 + B2
2

1+
√

1+4x2

)
dx

<
2

π
· (−0.002914) < 0.

For any odd t with 3 ≤ t ≤ 25, by computing the energies of the two graphs directly,

we can get that E(Ta) > E(Tb) for t = 3, 5, 7, and E(Ta) < E(Tb) for the other cases.
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(iv) d1 = 6, d2 = 4.

If t is even, by the similar method as used in (ii), we get that E(Ta) − E(Tb) <
2
π
· (−0.015171) < 0.

If t is odd and t ≥ 27, by the similar proof in (iii), we get that E(Ta) − E(Tb) <
2
π
· (−0.004557) < 0.

For any odd t with 3 ≤ t ≤ 25, by computing the energies of the two graphs directly,

we get that E(Ta) > E(Tb) for t = 5, and E(Ta) < E(Tb) for the other cases.

(v) d1 = 6, d2 = 3.

If t is even, by the similar method as used in (ii), we get that E(Ta) − E(Tb) <
2
π
· (−0.009652) < 0.

If t is odd and t ≥ 27, by the similar proof as used in (iii), we get that E(Ta)−E(Tb) <
2
π
· (−0.004244) < 0.

For any odd t with 3 ≤ t ≤ 25, by computing the energies of the two graphs directly,

we get that E(Ta) < E(Tb) for all t ≥ 3.

The proof is now complete.
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