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Abstract. Let K be an algebraic number �eld with non-trivial class group G and let OK be its ring of
integers. For k 2 N and some real x � 1, let Fk(x) denote the number of non-zero principal ideals aOK
with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It
is well known that Fk(x) behaves, for x ! 1, asymptotically like x(log x)�1=jGj(log log x)Nk(G). We
study Nk(G) with new methods from Combinatorial Number Theory.

1. Introduction

Let K be an algebraic number �eld, OK its ring of integers and G its ideal class group. For a non-zero
element a 2 OK , let Z(a) denote the set of all (essentially distinct) factorizations of a into irreducible
elements. Then OK is factorial (in other words, jZ(a)j = 1 for all non-zero a 2 OK) if and only if jGj = 1.
Suppose that jGj � 2 and let k 2 N. Inspired by a paper of E. Fogels ([4]) and a question of P. Tur�an, W.
Narkiewicz initiated in the 1960s the systematic study of the asymptotic behavior of counting functions
associated with non-unique factorizations (for an overview and historical references, see [31, 14]). Among
others, the function

Fk(x) =
��faOK j a 2 OK n f0g ; (OK :aOK) � x and jZ(a)j � kg��

was considered. It counts the number of principal ideals aOK where 0 6= a 2 OK has at most k distinct
factorizations and whose norm is bounded by x. After a �rst paper in 1964, W. Narkiewicz proved in
1972 (see [28, 29]) that Fk(x) behaves, for x!1, asymptotically like

x(log x)�1=jGj(log log x)Nk for some Nk > 0 :

This result was re�ned and extended in several ways: the asymptotics were sharpened in [21], while the
function �eld case was handled in [19], Chebotarev formations in [16] and non-principal orders in global
�elds in [15]. For more and recent development, see [14, Section 9.3] and [12, 34, 25, 24, 22, 23]. In

[30, 32], W. Narkiewicz and J. �Sliwa showed that the exponents Nk depend only on the class group G,
and they gave a combinatorial description of this constant Nk(G) (see De�nition 2.1). This description
was used by W. Gao for the �rst detailed investigation of Nk(G) in [5]. We continue these investigations
of Nk(G) with new methods from Combinatorial Number Theory. Before going into details, we brie
y
outline how these investigations are embedded into the more general study of the arithmetic of OK .

Suppose that G �= Cn1 � : : : � Cnr with 1 < n1 j : : : jnr. Since jGj � 2, OK is not factorial. The
non-uniqueness of factorizations in OK is described by a variety of arithmetical invariants|such as sets
of lengths or the catenary degree|and they depend only on the class group G (the same is true not
only for rings of integers but more generally for Krull monoids with �nite class group where every class
contains a prime divisor). Thus the goal is to determine their precise values in terms of the group
invariants n1; : : : ; nr, or to describe them in terms of classical combinatorial invariants, such as the
Davenport constant or the Erd}os{Ginzburg{Ziv constant. Roughly speaking, a good understanding of
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these combinatorial invariants is restricted to groups of rank at most two, and thus no more can be
expected for the more sophisticated arithmetical invariants.

Back to the Narkiewicz constants. A straightforward example shows that N1(G) � n1 + : : : + nr
(see Inequality 2.2), and in 1982, W. Narkiewicz and J. �Sliwa stated the conjecture that equality holds.
Since, on the other hand, the Davenport constant D(G) is a lower bound for N1(G) (see Inequality 2.1),

the Narkiewicz-�Sliwa Conjecture, if true, would provide an upper bound for the Davenport constant
which is substantially stronger than all bounds known so far. Thus it is not surprising that up to now
this conjecture has been validated only for a few classes of groups including cyclic groups, elementary
2-groups and elementary 3-groups ([14, Theorem 6.2.8]). A main part of this paper deals with the study
of N1(G) for groups of rank two. A key strategy in Combinatorial Number Theory for such investigations
divides the problem into the following two steps.

Step A: Determine the precise value for the invariant under investigation for groups of the form
Cp � Cp, where p is a prime.

Step B: Show that the problem is 'multiplicative', in the sense that the precise value for the invariant
can be lifted from groups of the above form to arbitrary groups of rank two.

This procedure is applied successfully in a variety of investigations|as, for example, in the study of
the Davenport constant and of the Erd}os{Ginzburg{Ziv constant in groups of rank two|and both steps
usually require essentially di�erent methods. In the present paper, we perform Step B for the Narkiewicz
constant N1(G) (indeed, we do more; see the discussions before Theorem 3.15 and after Theorem 4.1).
For that purpose, we introduce a new combinatorial invariant, ��(G), which is of a similar type as the
Erd}os{Ginzburg{Ziv constant (see Section 3). In the �nal section, we study the Narkiewicz constants
Nk(G) for higher values of k in the context of cyclic groups and of elementary 2-groups (see Theorems
5.1 and 5.3). Our investigations are based on the recent characterization of the structure of minimal
zero-sum sequences of maximal length over groups of rank two (see [35, 38, 7]) and on a recent result on
the structure of long zero-sum free sequences over cyclic groups (see Lemmas 3.7 and 5.2).

2. Preliminaries

We denote by N the set of positive integers, by P � N the set of prime numbers, and we set N0 = N[f0g.
For real numbers a; b 2 R, we set [a; b] = fx 2 Z j a � x � bg. By a monoid, we always mean a
commutative semigroup with identity which satis�es the cancelation law (that is, if a; b; c are elements of
the monoid with ab = ac, then b = c follows).

Let H be a monoid and a; b 2 H. We denote by A(H) the set of atoms (irreducible elements) of H
and by H� the set of invertible elements of H. The monoid H is said to be reduced if H� = f1g. Let
Hred = H=H� = faH� j a 2 Hg be the associated reduced monoid.

A monoid F is called free (with basis P � F ) if every a 2 F has a unique representation of the form

a =
Y
p2P

pvp(a) with vp(a) 2 N0 and vp(a) = 0 for almost all p 2 P :

We set F = F(P ) and call

jaj =
X
p2P

vp(a) the length of a and supp(a) = fp 2 P j vp(a) > 0g the support of a :

The monoid Z(H) = F(A(Hred)) is the factorization monoid of H and � : Z(H) ! Hred denotes the
natural homomorphism given by mapping a factorization to the element it factorizes. Then the set
Z(a) = ��1(aH�) � Z(H) is called the set of factorizations of a, and we say that a has unique factorization
if jZ(a)j = 1. The set L(a) = fjzj j z 2 Z(a)g � N0 is called the set of lengths of a.

All abelian groups will be written additively. For n 2 N, let Cn denote a cyclic group with n elements.
Let G be an abelian group and G0 � G a subset. Then hG0i � G is the subgroup generated by G0,
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G�
0 = G0 n f0g, and �G0 = f�g j g 2 G0g. A family (ei)i2I of non-zero elements of G is said to be

independent if X
i2I

miei = 0 implies miei = 0 for all i 2 I; where mi 2 Z :

If I = [1; r] and (e1; : : : ; er) is independent, then we simply say that e1; : : : ; er are independent elements
of G. The tuple (ei)i2I is called a basis if (ei)i2I is independent and hfei j i 2 Igi = G. If 1 < jGj <1,
then we have

G �= Cn1 � : : :� Cnr ; and we set d�(G) =

rX
i=1

(ni � 1) ;

where r = r(G) 2 N is the rank of G, n1; : : : ; nr 2 N are integers with 1 < n1 j : : : j nr and nr = exp(G)
is the exponent of G. If jGj = 1, then r(G) = 0, exp(G) = 1, and d�(G) = 0.

The multiplicative monoid of non-zero elements in a ring of integers (more generally, in an arbitrary
Dedekind or Krull domain) is a Krull monoid. The arithmetic of Krull monoids is studied by using two
classes of auxiliary monoids: the monoid of zero-sum sequences and the monoid of zero-sum types (see
[14, Sections 3.4 and 3.5] or [13]). We need both concepts for our investigations.

Monoids of zero-sum sequences. The elements of the free monoid F(G0) are called sequences over
G0. Let

S =
Y
g2G0

gvg(S) ; where vg(S) 2 N0 for all g 2 G0 and vg(S) = 0 for almost all g 2 G0 ;

be a sequence over G0. We call vg(S) the multiplicity of g in S, and we say that S contains g if
vg(S) > 0. A sequence S1 is called a subsequence of S if S1 jS in F(G) (equivalently, vg(S1) � vg(S)
for all g 2 G). If a sequence S 2 F(G0) is written in the form S = g1 � : : : � gl, we tacitly assume that
l 2 N0 and g1; : : : ; gl 2 G. For a sequence

S = g1 � : : : � gl =
Y
g2G0

gvg(S) 2 F(G0) ;

we call �(S) =
Pl
i=1 gi =

P
g2G0

vg(S)g 2 G the sum of S, and �(S) = fPi2I gi j ; 6= I � [1; l]g the

set of subsums of S. For g 2 G, we set g + S = (g + g1) � : : : � (g + gl) 2 F(G). The sequence S is called

� a zero-sum sequence if �(S) = 0,
� short (in G) if 1 � jSj � exp(G),
� zero-sum free if there is no non-empty zero-sum subsequence,
� a minimal zero-sum sequence if S is a non-empty zero-sum sequence and every subsequence S0 of
S with 1 � jS0j < jSj is zero-sum free.

By de�nition, the empty sequence 1 2 F(G) is both zero-sum free and a zero-sum sequence of length
j1j = 0. We denote by B(G0) = fS 2 F(G0) j �(S) = 0g the monoid of zero-sum sequences over G0, by
A(G0) the set of all minimal zero-sum sequences over G0 (this is the set of atoms of the monoid B(G0)),
and by

D(G0) = supfjU j j U 2 A(G0)g 2 N [ f1g
the Davenport constant of G0.

Monoids of zero-sum types. The elements of the free monoid F(G0�N) are called types over G0.
Clearly, they are sequences over G0�N, but we think of them as labeled sequences over G0 where each
element from G0 carries a label from the positive integers. Let � : F(G0�N)! F(G0) denote the unique
homomorphism (called the unlabeling homomorphism) satisfying

�((g; n)) = g for all (g; n) 2 G0�N ;
and let � = � �� : F(G0�N)! G. For a type T 2 F(G0�N), note that �(T ) 2 F(G0) is the associated
(unlabeled) sequence. A type T1 is called a subtype of T if T1 jT in F(G0�N). We say that T
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is a zero-sum type (short, zero-sum free or a minimal zero-sum type) if the associated sequence has the
relevant property, and we set �(T ) = �(�(T )). We denote by

T (G0) = fT 2 F(G0�N) j �(T ) = 0g = ��1
�B(G0)

� � F(G0�N)
the monoid of zero-sum types over G0 (brie
y, the type monoid over G0). Type monoids were introduced
by F. Halter-Koch in [18] and applied successfully in the analytic theory of so-called type-dependent
factorization properties (see [14, Section 9.1], and [16, 17] for some early papers).

Let G1 be an abelian group. Every map ' : G0 ! G1 extends to a unique homomorphism ' : F(G0)!
F(G1) extending ', and there is a unique homomorphism ' : F(G0�N)! F(G1�N) satisfying '((g; n)) =
('(g); n) for all (g; n) 2 G0�N . Suppose that S = g1 � : : : � gl 2 F(G0). Then, obviously, '(S) = '(g1) �
: : : � '(gl), and if ' is a homomorphism, then '(S) is a zero-sum sequence if and only if �(S) 2 Ker(').
We denote by ' = ' �� : F(G0�N)! F(G1) the unique homomorphism satisfying '((g; n)) = '(g) for
all (g; n) 2 G0�N . For the sum function � : F(G0)! G, we have � �' = � �' = '�� : F(G0�N)! G1.

The greatest common divisor of sequences S; S0 2 F(G0) will always be taken in the monoid F(G0),
and the sequences will be called coprime if gcd(S; S0) = 1. The greatest common divisor of types
T; T 0 2 F(G0�N) will always be taken in the monoid F(G0�N), and the types will be called coprime if
gcd(T; T 0) = 1.

Let � : F(G0)! F(G0�N) be de�ned by

�(S) =
Y
g2G0

vg(S)Y
k=1

(g; k) 2 F(G0�N) :

Thus � is a labeling function, and for S 2 F(G0), we call �(S) the type associated with S. The map
� = � j T (G0) : T (G0)! B(G0) is a transfer homomorphism (see [14, Proposition 3.5.5]), and hence we
have in particular that L(B) = L

�
�(B)

�
for all B 2 B(G�).

Narkiewicz constants. We start with the de�nition of the Narkiewicz constants (see [14, De�nition
6.2.1]). Theorem 9.3.2 in [14] provides an asymptotic formula for the Fk(x) function|the Narkiewicz
constants occur as exponents of the log log x term|in the frame of obstructed quasi-formations (this
setting includes non-principal orders in holomorphy rings in global �elds).

De�nition 2.1. A type T 2 F(G�N) is called squarefree if vg;n(T ) � 1 for all (g; n) 2 G�N. For
every k 2 N, the Narkiewicz constant Nk(G) of G is de�ned by

Nk(G) = sup
� jT j �� T 2 T (G�) squarefree, jZ(T )j � k

	 2 N0 [ f1g :
The labeling function �|de�ned as above|maps a sequence onto a squarefree type, and the labeling

is done in such a way to meet the requirements of the analytic theory (see [14, Section 9.1]). For the
combinatorial work on Nk(G), any other such function|mapping a sequence onto a squarefree type|
would do. For instance, one could simply �x some indexing of the sequence T = g1 � : : : � gl and then label
each gi with its index i, thus using the type (g1; 1) � : : : � (gl; l). In other words, study of the Narkiewicz
Constants can be done by simply replacing the usual un-indexed sequences with their natural indexed (i.e.
ordered) counterparts. More formally, if T and T 0 are two squarefree zero-sum types with �(T ) = �(T 0),
then there is a bijection from Z(T ) to Z(T 0), and hence jZ(T )j = jZ(T 0)j. In particular, we have

� jZ(T )j = jZ(�(�(T )))j.
� If T = (g1; a1) � : : : � (gl; al), where g1; : : : ; gl 2 G� and a1; : : : ; al 2 N, and eT = (g1; ea1) � : : : � (gl; eal),
where ea1; : : : ; eal 2 N are pairwise distinct, then jZ(T )j = jZ(T 0)j.

Thus we have,

Nk(G) = sup
� jT j �� T 2 T (G�) has pairwise distinct labels and jZ(T )j � k

	 2 N0 [ f1g :
If U 2 A(G�), then �(U) has unique factorization, and hence we get

(2.1) D(G) � N1(G) :
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Let G = Cn1 � : : : � Cnr with 1 < n1 j : : : jnr and let (e1; : : : ; er) be a basis of G with ord(ei) = ni for
all i 2 [1; r]. If

B =

rY
i=1

enii ; then �(B) =

rY
i=1

niY
k=1

(ei; k)

has unique factorization, and hence

(2.2)

rX
i=1

ni � N1(G) � N2(G) � : : :

In [32], W. Narkiewicz and J. �Sliwa conjectured that N1(G) equals the above lower bound for all �nite
abelian groups. We will use the above chain of inequalities without further mention and continue with a
simple lemma needed in the sequel.

Lemma 2.2. Let G be an abelian group with jGj > 1 and let T 2 T (G�) be a squarefree zero-sum type.

Then the following statements are equivalent :

(a) jZ(T )j = 1.

(b) If U; V 2 T (G) n f1g with T = UV , then �(U) \ �(V ) = f0g.
(c) If U; V 2 T (G) with U jT and V jT , then gcd(U; V ) has sum zero.

(d) If U; V 2 A(T (G)) are distinct with U jT and V jT , then gcd(U; V ) = 1.

Proof. (a) ) (b) Let T = U1 � : : : � Ur with r 2 N, U1; : : : ; Ur 2 A(T (G)), and let U; V 2 T (G) n f1g
with T = UV . Since T has unique factorization, there exists a non-empty subset I � [1; r], say I = [1; q]
with q 2 [1; r � 1], such that U = U1 � : : : � Uq and V = Uq+1 � : : : � Ur. Assume to the contrary that
there are U 0; U 00; V 0; V 00 2 F(G�N) such that U = U 0U 00, V = V 0V 00 and �(U 0) = �(V 0) 6= 0. Then
U 0V 00; U 00V 0 2 T (G). Since T is squarefree, factorizations of U 0V 00 and U 00V 0 give rise to a factorization
of T = (U 0V 00)(U 00V 0) which is di�erent from the factorization (U1 �: : :�Uq)(Uq+1 �: : :�Ur), a contradiction.

(b) ) (c) Let U; V 2 T (G) with U jT and V jT . We write T in the form T = U 0WV 0X where
W = gcd(U; V ), U 0; V 0; X 2 F(G�N), U = U 0W and V = V 0W . Then ��(W ) = �(U 0) = �(V 0) 2
�(U 0W ) \ �(V 0X) = f0g.

(c) ) (d) Let U; V 2 A(T (G)) be distinct with U jT and V jT . Since gcd(U; V ) has sum zero and
divides the atom U , it follows that gcd(U; V ) = 1.

(d) ) (a) Let T = U1 � : : : � Ur = V1 � : : : � Vs where U1; : : : ; Ur; V1; : : : ; Vs 2 A(T (G)). For every
i 2 [1; r] there is a j 2 [1; s] such that gcd(Ui; Vj) 6= 1, and hence (d) implies that Ui = Vj . Thus r = s
and, after renumbering if necessary, Ui = Vi for all i 2 [1; r]. �

3. On a variant of the Erd}os-Ginzburg-Ziv constant

We introduce a variant of the Erd}os-Ginzburg-Ziv constant which will play a crucial role for the
investigation of N1(G). We will outline the program of this section after De�nition 3.3.

De�nition 3.1. Let G be a �nite abelian group and g 2 G. Let ��(G) (��g(G), resp.) denote the smallest
integer ` 2 N0 such that every squarefree type T 2 F(G��N) of length jT j � ` (and with sum �(T ) = g
resp.) has two distinct short minimal zero-sum subtypes which are not coprime.

Let T be a squarefree type. When in the following we consider two subtypes with special properties,
then we always mean two distinct subtypes. The next lemma shows that ��(G) (and questions related
to it) can also be formulated in the setting of sequences. In the sequel, we will use both languages (the
language of sequences and those of types), and always choose the one which is most convenient for the
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particular situation. Although the proof of Lemma 3.2 is completely straightforward, we give it in detail.
It should help the reader to get acquainted with the de�nitions.

Lemma 3.2. Let G be an abelian group and g 2 G.
1. For a squarefree type T 2 T (G�) the following conditions are equivalent :

(a) T has two short minimal zero-sum subtypes T1 and T2 which are not coprime, i.e., gcd(T1; T2) 6=
1.

(b) �(T ) has short minimal zero-sum subsequences S1 and S2 with the following properties :
� S1 and S2 are not coprime, i.e., gcd(S1; S2) 6= 1.
� S1 = S2 implies that there exists some g 2 G such that 0 < vg(S1) < vg(�(T )).

2. ��(G) (and ��g(G) resp.) is the smallest integer ` 2 N0 such that every sequence S 2 F(G�) of

length jSj � ` (and with sum �(S) = g resp.) satis�es the properties given in 1.(b).

3. ��(G) = supf��h(G) j h 2 Gg.
4. Let T 2 T (G�) be a squarefree type that does not have two short minimal zero-sum subtypes which

are not coprime, and let s 2 N0 and T1; : : : ; Ts be all short minimal zero-sum subtypes of T . Then
T can be written in the form T = T0 � : : : �Ts with T0 2 T (G�), T0; : : : ; Ts are pairwise coprime (in
F(G��N)) and �(T0); : : : ;�(Ts) are pairwise coprime (in F(G�)).

Proof. 1. (a) ) (b) Let T = (g1; a1) � : : : � (gl; al) where l 2 N, g1; : : : ; gl 2 G�, a1; : : : ; al 2 N
and (g1; a1); : : : ; (gl; al) pairwise distinct. Let I1; I2 � [1; l] such that T1 =

Q
�2I1

(g�; a�) and T2 =Q
�2I2

(g�; a�) have the required properties. Since (g1; a1); : : : ; (gl; al) are pairwise distinct, it follows that

1 6= gcd(T1; T2) =
Q
�2I1\I2

(g�; a�). Since T1 and T2 are distinct, we get I1 \ I2 ( I1 and I1 \ I2 ( I2.

For � 2 [1; 2], we set S� =
Q
�2I�

g� = �(T�), and S = �(T ). Clearly, S1 and S2 are short minimal

zero-sum subsequences of S and 1 6=Q�2I1\I2
g� divides gcd(S1; S2). Suppose that S1 = S2. Then there

exist �1 2 I1 n I2, �2 2 I2 n I1 and g 2 G such that g = g�1 = g�2 , and it follows that 0 < vg(S1) <
vg�1 (S1) + v(g�2 ;a�2 )(T2) � vg(S).

(b) ) (a) Similar.

2. Since every sequence S is the image of a squarefree type under �, the assertion follows from 1.

3. Obvious.

4. First one has to show that T1; : : : ; Ts are pairwise coprime, and then de�ne T0 = T (T1 � : : : � Ts)�1.
We outline only the details that �(T0); : : : ;�(Ts) are pairwise coprime (the coprimeness of T1; : : : ; Ts
is even simpler). Assume to the contrary that there are i; j 2 [0; s] with j < i and g 2 G such that
g j�(Ti) and g j�(Tj). Then there exist k; l 2 N with k 6= l, (g; k) jTi and (g; l) jTj . This implies that
T 0i = (g; l)(g; k)�1Ti is a short minimal zero-sum subtype of T with T 0i 6= Ti and jTij � 2 implies that
gcd(T 0i ; Ti) 6= 1, a contradiction. �

The requirement in Lemma 3.2.1 that the short zero-sum sequences T1 and T2 (the short zero-sum
subtypes resp.) are minimal is essential, as the following example shows. Let (e1; e2; e3) be independent
with ord(e1) = ord(e2) = ord(e3) = m � exp(G)=2. Then S = em1 e

m
2 e

m
3 does not satisfy Condition

1.(b), but S satis�es a modi�ed Condition 1.(b) where the requirement of minimality is canceled (with
T1 = em1 e

m
2 and T2 = em1 e

m
3 ). We recall the de�nition of the Erd}os-Ginzburg-Ziv constant and of two of

its variants.

De�nition 3.3. Let G be a �nite abelian group and g 2 G. We denote by

� s(G) the smallest integer ` 2 N such that every sequence S 2 F(G) of length jSj � ` has a zero-
sum subsequence T of length jT j = exp(G). The invariant s(G) is called the Erd}os-Ginzburg-Ziv

constant of G.
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� �(G) the smallest integer ` 2 N such that every sequence S 2 F(G) of length jSj � ` has a short
zero-sum subsequence (equivalently, S has a short minimal zero-sum subsequence).

� g(G) the smallest integer ` 2 N such that every squarefree sequence S 2 F(G) of length jSj � `
has a zero-sum subsequence T of length jT j = exp(G).

Together with the Davenport constant D(G), the invariants s(G) and �(G) are classical invariants in
Combinatorial Number Theory (see [13, Sections 4 and 5] for a survey, or [3] for recent progress). By
de�nition, we have

D(G) � �(G) � ��(G) ;

and Proposition 3.10 will show that ��(G) <1. A straightforward argument will show that in the case
of a cyclic group we have ��0(G) = ��(G) = jGj + 1. The main aim of this section is to study ��(G) for
groups of the form G = Cn � Cn with n � 2. A simple example shows that ��(Cn � Cn) � 3n + 1 (see
Proposition 3.10.2), and our conjecture is that

��(Cn � Cn) = 3n+ 1 for all n � 2 :

We will show that it su�ces to verify the above conjecture for primes, and that moreover, for every
m 2 N there is a multiple n 2 mN satisfying the above conjecture (Theorem 3.15 and Corollary 3.16).
The direct problem, to �nd the precise value of ��(Cn�Cn), is intimately connected with the associated
inverse problem which asks for the structure of squarefree types T 2 F(G��N) of length jT j = ��(G)� 1
that do not have two short zero-sum subtypes which are not coprime. We formulate a conjecture and a
simple consequence, whose proof will be given right after Corollary 3.11.

Conjecture 3.4. Let G = Cn � Cn with n � 2 and let T 2 F(G��N) be a squarefree type of length

jT j = 3n. If T does not have two short minimal zero-sum subtypes which are not coprime, then there exist

a basis (e1; e2) of G and a1; a2 2 [1; n� 1] with gcd(a1; a2; n) = 1 such that �(T ) = en1 e
n
2 (a1e1 + a2e2)

n.

Note that ord(a1e1 + a2e2) = n if and only if gcd(a1; a2; n) = 1.

Lemma 3.5. Let G = Cn � Cn with n � 2, and suppose that G satis�es Conjecture 3.4. Then

��0(G) = ��(G) = 3n+ 1 and ��g(G) � 3n for all g 2 G� :

In the present paper we will not work on the inverse problem, but focus on the direct problem which
is precisely what is needed for the subsequent investigation of the Narkiewicz constant in Section 4. We
have formulated Conjecture 3.4 because it reveals the structural reason why ��(Cn�Cn) = 3n+1 should
hold true for all n � 2. In general, the inverse problems are much harder than the direct problems: even
for groups of rank two, the inverse problem with respect to the Davenport constant has been solved only
recently with considerable e�ort (see [35, 7, 38]), and the inverse problem with respect to the classical
Erd}os-Ginzburg-Ziv constant s(G) is still open (see [13, Section 5.2]).

We gather the results on s(G), �(G) and g(G) which are needed in the sequel. The precise values of
D(G), s(G) and �(G) (in terms of the group invariants) are well-known, among others, for groups of rank
at most two. We will use them without further mention.

Lemma 3.6. Let G = Cn1 � Cn2 with 1 � n1 jn2. Then
s(G) = 2n1 + 2n2 � 3 ; �(G) = 2n1 + n2 � 2 and D(G) = n1 + n2 � 1 :

Proof. See [14, Theorem 5.8.3]. �

We need the solution for the inverse problem with respect to the �(G)-invariant, which is based on
the recent characterization of all minimal zero-sum sequences of maximal length over groups of the form
Cn � Cn with n � 2.
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Lemma 3.7. Let G = Cn � Cn with n � 2, and let S 2 F(G) be a sequence of length jSj = �(G) � 1.
Then the following statements are equivalent :

(a) S has no short zero-sum subsequence.

(b) There exists a basis (e1; e2) of G and some x 2 [1; n� 1] with gcd(x; n) = 1 such that

S =
�
e1e2(xe1 + e2)

�n�1
:

Proof. G has Property B by [35], and hence it has Property C by [13, Theorem 5.2.5]. Therefore the
assertion follows from [13, Proposition 5.2.6], which is based on [37]. �

The invariant g(G) was introduced by H. Harborth in 1973 for groups of the form G = Crn ([20]). If
G = Cr3 , then g(G)� 1 is the maximal size of a cap in AG(r; 3) (see [2, Lemma 5.2] and also [9, Section
5.2]). In [11] it is conjectured that g(Cn�Cn) is equal to 2n� 1 for every odd n � 3 and equal to 2n+1
for every even n � 3, and it is observed that these values are lower bounds. We will need the following
result.

Lemma 3.8. Let G = Cp � Cp with p 2 P. If p � 7 or p � 47, then g(G) = 2p� 1.

Proof. See [26, 27] and [8, Theorem 5.1]. �

Lemma 3.9. Let G be a �nite abelian group with jGj > 1, and let T = U1 �: : :�Ur 2 T (G�) be a squarefree

type with r 2 N and U1; : : : ; Ur 2 A(T (G�)).

1. If jZ(T )j = 1, then
Qr
i=1 jUij � jGj.

2. Let S1; : : : ; St 2 F(G�N) such that S1 � : : : � St is a zero-sum subtype of T and �(S1); : : : ; �(St)
are all non-zero. If jZ(T )j = 1 and b1; : : : ; bt 2 N are pairwise distinct, then the squarefree type�
�(S1); b1

� � : : : � ��(St); bt� has unique factorization.

3. If T does not have two short minimal zero-sum subtypes which are not coprime and jT j �
2 exp(G) + 1, then jZ(T )j = 1.

Proof. 1. A special case was proved in [14, Proposition 6.2.6], and we follow the lines of that proof. For
every i 2 [1; r], we set Ui = (gi;1; ai;1) � : : : � (gi;mi

; ai;mi
), where mi = jUij � 2, and for all j 2 [1;mi],

gi;j 2 G and ai;j 2 N. In order to show that m1 � : : : �mr � jGj, we shall prove that the m1 � : : : �mr

elements
rX
i=1

liX
�=1

gi;� where li 2 [1;mi] for all i 2 [1; r]

are distinct. Assume the contrary. Then we may suppose that there exists some r0 2 [1; r] and li; l
0
i 2

[1;mi] such that l0i < li for all i 2 [1; r0], l0i � li for all i 2 [r0 + 1; r], and

rX
i=1

liX
�=1

gi;� =

rX
i=1

l0iX
�=1

gi;� :

Then we have

g =

r0X
i=1

liX
�=l0

i
+1

gi;� =

rX
i=r0+1

l0iX
�=li+1

gi;� :

Since g 2 �(U1 � : : : � Ur0) \ �(Ur0+1 � : : : � Ut), Lemma 2.2.(b) implies that g = 0. Then

V =

r0Y
i=1

� liY
�=l0

i
+1

(gi;�; ai;�)
�
2 T (G) n f1g :
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If V1 2 A(T (G)) with (g1;l1 ; a1;l1) jV1 jV , then V1 6= U1 (because (g1;1; a1;1) - V ) and (g1;l1 ; a1;l1) j gcd(U1; V1),
a contradiction to Lemma 2.2.(d).

2. Assume to the contrary that (�(S1); b1) � : : : � (�(St); bt) does not have unique factorization. By
Lemma 2.2.(c), there exist I; J � [1; t] such that

Q
i2I(�(Si); bi) and

Q
i2J(�(Si); bi) are zero-sum types,

but gcd
�Q

i2I(�(Si); bi);
Q
i2J(�(Si); bi)

�
=
Q
i2I\J(�(Si); bi) does not have sum zero. It follows thatQ

i2I Si and
Q
i2J Si are zero-sum types such that gcd

�Q
i2I Si;

Q
i2J Si

�
=
Q
i2I\J Si does not have sum

zero. Now Lemma 2.2.(c) implies that jZ(T )j > 1, a contradiction.

3. Assume to the contrary that jZ(T )j � 2. For � 2 [1; 2], let

z� = U�;1 � : : : � U�;r� 2 Z(T ) where U�;1; : : : ; U�;r� 2 A(T (G�)) :

After renumbering if necessary, there is a u 2 [0; r1] such that U1;� = U2;� for all � 2 [1; u] and U1;� 6= U2;�0

for all � 2 [u + 1; r1] and all �0 2 [u + 1; r2], and that jU2;u+1j � : : : � jU2;r2 j. Note that r1 � u � 2,
r2 � u � 2 and thus jU2;u+1j � bjT j=2c � exp(G). There are at least two indices j 2 [u+ 1; r1] such that
gcd(U2;u+1; U1;j) 6= 1. We pick a j 2 [u + 1; r1] with this property for which jU1;j j is minimal, and thus
it follows that jU1;j j � bjT j=2c � exp(G). Therefore, U1;j and U2;u+1 are two short minimal zero-sum
subtypes of T which are not coprime, a contradiction. �

Now we are well-prepared for our investigations on ��(G).

Proposition 3.10. Let G = Cn1 � : : :� Cnr where r; n1; : : : ; nr 2 N with 1 < n1 j : : : jnr.
1. ��0(G) � ��(G) � 2 �(G)� 1 � 2jGj � 1.

2. If r � 2, then ��(G) � ��0(G) �
Pr
i=1 ni + nr + 1.

3. Let g; h 2 G with ord(g) = ord(h) = nr. Then �
�
g(G) = ��h(G).

Proof. 1. By de�nition, we have ��0(G) � ��(G), and [13, Theorem 4.2.7] shows that �(G) � jGj. Assume
to the contrary that ��(G) � 2�(G). Then there exists a squarefree type S 2 F(G��N) of length
jSj � 2�(G) � 1 that does not have two short minimal zero-sum subtypes which are not coprime. Let
t 2 N0 and S1; : : : ; St be all short minimal zero-sum subtypes of S. Then S1; : : : ; St are pairwise coprime,
and thus S can be written in the form

S = S0S1 � : : : � St with S0 2 F(G��N) :
For every � 2 [1; t] we choose an element g� 2 supp(S�). Then the type S0(g

�1
1 S1) � : : : � (g�1t St) does not

have a short minimal zero-sum subtype which implies that

t � j(g�11 S1) � : : : � (g�1t St)j � jS0(g�11 S1) � : : : � (g�1t St)j � �(G)� 1 ;

and hence

jSj = jS0S1 � : : : � Stj = t+ jS0(g�11 S1) � : : : � (g�1t St)j � 2�(G)� 2 :

a contradiction.

2. Let r � 2, (e1; : : : ; er) be a basis of G with ord(ei) = ni for every i 2 [1; r], and set e0 = e1+ : : :+er.
The sequence

S = en11 � : : : � enrr enr0
has sum zero and precisely r + 1 short minimal zero-sum subsequences, namely en11 ; : : : ; enrr ; enr0 . Using
Lemma 3.2.2 we infer that ��0(G) > jSj =Pr

i=1 ni + nr.

3. If ' : G! G0 is a group isomorphism and g 2 G, then we obviously have ��g(G) = ��'(g)(G
0). Since

ord(g) = ord(h) = exp(G), there exists a group automorphism ' : G ! G with '(g) = h, and thus the
assertion follows. �

Corollary 3.11. Let G be a �nite abelian group with jGj > 1.
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1. If G is cyclic, then ��0(G) = ��(G) = jGj+ 1.

2. If G is an elementary 2-group, then ��0(G) = ��(G) = 2jGj � 1.

Proof. 1. Let G be cyclic of order n � 2 and g 2 G with ord(g) = n. Then the sequence S = gn has
precisely one short minimal zero-sum subsequence, and hence ��0(G) > jSj = n. In order to show that
��(G) � n + 1, we choose a squarefree type T 2 F(G��N) of length jT j = n + 1. Let t 2 N0 and
A1; : : : ; At be all short minimal zero-sum subtypes of T . Assume to the contrary that they are pairwise
coprime. By Lemma 3.2.4, S = �(T ) can be written in the form S = S0S1 � : : : � St, where Si = �(Ti)
for all i 2 [1; t] and S0 2 F(G�) is zero-sum free. For every i 2 [1; t] we choose an element ai 2 supp(Si).
Then S(a1 � : : : � at)�1 is zero-sum free, and thus [14, Proposition 5.3.5] implies that

j�(S(a1 � � � at)�1)j � jS(a1 � : : : � at)�1j+ j supp(S(a1 � : : : � at)�1)j � 1 � n+ 1� t+ t� 1 = n ;

a contradiction.

2. Let G be an elementary 2-group, set G� = fg1; : : : ; glg and consider the sequence S = g21 � : : : � g2l .
Then every short minimal zero-sum subsequence of S has the form g2 for some g 2 G�. Hence, by Lemma
3.2.2, we obtain that ��0(G) > jSj = 2jGj � 2. So the assertion follows from Proposition 3.10.1. �

Now we can give the simple proof of Lemma 3.5.

Proof of Lemma 3.5. Assume to the contrary that ��(G) > 3n + 1. Then there exists a squarefree type
T of length jT j = 3n+1 that does not have two short minimal zero-sum subtypes which are not coprime.
Clearly, the same is true for g�11 T and g�12 T , where g1; g2 2 supp(T ), and hence the structural statement
of Conjecture 3.4 shows that there is an element g 2 G with vg(�(T )) � n + 1. This implies that
Condition 1.(b) of Lemma 3.2 is satis�ed, a contradiction. Thus it follows that ��(G) � 3n+1, and using
Proposition 3.10.2 we infer that

3n+ 1 � ��0(G) � ��(G) � 3n+ 1 :

Let g 2 G� and assume to the contrary that ��g(G) � 3n+ 1. Then there exists a type T 2 F(G��N) of
length jT j = 3n and with �(T ) = g that does not have two short minimal zero-sum subtypes which are
not coprime, a contradiction to the statement of Conjecture 3.4. �

Next we show that for the �rst small primes we have ��0(Cp � Cp) = ��(Cp � Cp) = 3p + 1 (note
that this is based on the deep and recent results formulated in Lemmas 3.7 and 3.8). Whereas it would
be possible to increase the list of primes, the handling of the general case de�nitely requires a di�erent
method.

Proposition 3.12. Let G = Cp � Cp with p 2 P. If p � 7, then ��0(G) = ��(G) = 3p+ 1.

Proof. By Proposition 3.10.2 we have 3p+ 1 � ��0(G), and thus it remains to show that ��(G) � 3p+ 1.
Assume to the contrary that ��(G) > 3p+1. Then there exists a squarefree type S = g1 �: : :�gl 2 F(G��N)
of length jSj = l = 3p+1 that does not have two short minimal zero-sum subtypes which are not coprime.
Let t 2 N0 and S1; : : : ; St be all short minimal zero-sum subtypes of S. Then S1; : : : ; St are pairwise
coprime, and thus S can be written in the form

S = S0S1 � : : : � St with S0 2 F(G��N) :
For every � 2 [1; t] we choose an element g� 2 supp(S�), and we set l� = jS� j. After renumbering if
necessary we may suppose that l1 � : : : � lt, and we de�ne

L =

tY
�=1

l� 2 F(N) = F :

Assume to the contrary that t � 3. Then S(g1 � : : : � gt)�1 has length at least 3p � 2, and hence by
Lemma 3.6 it has a short minimal zero-sum subtype S0. By construction, S0 is di�erent from S1; : : : ; St, a
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contradiction. Assume to the contrary that t = 4. Then S(g1g2g3g4)
�1 has length 3p�3. Since S1; : : : ; St

are all short minimal zero-sum subtypes of S, each two elements of �(Si) and �(Sj), i 6= j 2 [1; 4], are
distinct. Thus �(S1S2S3S4(g1g2g3g4)

�1) contains at least four distinct elements and hence the same is
true for �(S(g1g2g3g4)

�1). Now Lemma 3.7 implies that S(g1g2g3g4)
�1 has a short minimal zero-sum

subtype, a contradiction. Therefore it follows that t � 5.
Now we discuss the individual primes.

CASE 1: p = 2.
We obtain that 7 = 3p+ 1 = jSj �Pt

i=1 jSij � 2t � 10, a contradiction.

CASE 2: p = 3.
We obtain that 10 = 3p + 1 = jSj � Pt

i=1 jSij � 10, which implies that jS1j = : : : = jStj = 2 and
j supp(�(S))j � j supp(�(S1 � : : : � St))j � 10 > jG�j, a contradiction.
CASE 3: p = 5.

We will apply repeatedly Lemma 3.9 (Items 1. and 3., with T =
Q
�2I S� , U� = S� and I � [1; t]).

Assume to the contrary that 5 jF L. Then l5 = 5 and l1 + l2 + l3 + l4 � jSj � 5 = 11, and thus l1 = 2.
If 3 jF L, then 2 + 3 + 5 � 2 exp(G) + 1 and 2 � 3 � 5 > jGj, a contradiction to Lemma 3.9. Thus 3 -F L,
and the same argument shows that 4 -F L. Since l2+ l3+ l4 � jSj� l1� l5 = 9, it follows that l2 = l3 = 2.
However, l1 + l2 + l3 + l5 = 11 � 2 exp(G) + 1 and l1l2l3l5 > jGj, a contradiction to Lemma 3.9.

Assume to the contrary that 2 -F L. Since 3 + 3 + 3 � 2 exp(G) + 1 and 3 � 3 � 3 > jGj, Lemma 3.9
implies that 33 -F L and hence 42 jF L. Again Lemma 3.9 implies that 3 � 42 -F L. Therefore we get that
l1 = : : : = l5 = 4 and l1 + : : :+ l5 = 20 > jSj, a contradiction.

Assume to the contrary that 3 -F L. Then l1; : : : ; l5 2 f2; 4g. Lemma 3.9 implies that 2 �42 -F L. Thus
we obtain that either L = 25 or L = 4 � 24. In each case Lemma 3.9 yields a contradiction.

Summing up we know that 2 � 3 jF L and that 5 -F L. Using Lemma 3.9 again we infer that 33 - L
and that 2 � 42 - L. Thus v3(L) � 2, v4(L) � 1 and hence v2(L) � 2. Again by Lemma 3.9 we infer that
22 � 32 -F L and that 22 � 3 � 4 -F L which implies that v3(L) = 1 and that v4(L) = 0. Therefore we obtain
that 24 � 3 jF L, which again is a contradiction to Lemma 3.9.

CASE 4: p = 7.
Again we apply Lemma 3.9. If t � 6, then the proof is similar to that of CASE 3. Suppose that t = 5.

If L 6= 25 and L 6= 24 � 3, then we obtain a contradiction by Lemma 3.9. Thus we distinguish these two
cases.

CASE 4.1: l1 = : : : = l5 = 2.
Since S does not have two short minimal zero-sum subtypes which are not coprime we infer that

j supp(�(S1 � : : : � S5))j = j�(S1 � : : : � S5)j = 10 and supp(�(S1 � : : : � S5)) \ supp(�(S0)) = ; :
Assume to the contrary that j supp(�(S0))j � 3. Let S00 be a subtype of S0 such that �(S00) consists
of three distinct elements. By Lemma 3.8, S00S1 � : : : � S5 has a zero-sum subtype T of length jT j = 7.
Therefore T has a short minimal zero-sum subtype T 0 of length jT 0j 6= 2, and hence T 0 is distinct from
S1; : : : ; S5, a contradiction. Thus j supp(�(S0))j � 2, and since S0 has no short zero-sum subtype, it
follows that

�(S0) = b6c6 with b; c 2 G� :

We assert that S5S0 has a minimal zero-sum subtype S0 of length jS0j = 8. Suppose this holds true.
Then l1 + l2 + l3 + jS0j = 14 � 2 exp(G) + 1 and l1l2l3jS0j = 64 > jGj, a contradiction to Lemma 3.9.

To verify this assertion, we set �(S5) = (�a)a with a 2 G�. Since D(G) = 13, the sequence ab6c6 has
a minimal zero-sum subsequence a�bucv with � 2 f0; 1g and u; v 2 [0; 6]. Since S1; : : : ; S5 are all short
minimal zero-sum subtypes of S, it follows that

�+ u+ v = ja�bucvj � 8 and hence u; v 2 [1; 6] :

Assume to the contrary that � = 0. Then b7�uc7�v is a zero-sum subsequence of b6c6. Since jb6c6j +
jb7�uc7�vj = 14, it follows that bucu or b7�uc7�v has a short minimal zero-sum subsequence, and by
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construction, the associated type di�ers from S1; : : : ; S5, a contradiction. Thus we infer that � = 1. Then
(�a)b7�uc7�v is a zero-sum subsequence of (�a)b6c6. Since jabucvj+ j(�a)b7�uc7�vj = 16 and S1; : : : ; S5
are all short minimal zero-sum subtypes of S, it follows that both, abucv and (�a)b7�uc7�v, are minimal
zero-sum subsequences of �(S0S5) having length 8.

CASE 4.2: l1 = : : : = l4 = 2 and l5 = 3.
Then jS5j = 3. We set �(S5) = a1a2a3 with a1; a2 2 G distinct, and let S05 be a subtype of S5 such

that �(S05) = a1a2. Since S does not have two short minimal zero-sum subtypes which are not coprime
we infer that

j supp(�(S1 � : : : � S4S05))j = j�(S1 � : : : � S4S05)j = 10 and supp(�(S1 � : : : � S4S05)) \ supp(�(S0)) = ; :
As above we obtain that j supp(�(S0))j = 2, and we set

�(S0) = b6c5 with b; c 2 G� :

We assert that S5S0 has a minimal zero-sum subtype S0 of length jS0j 2 [8; 9]. Suppose this holds true.
Then l1 + l2 + l3 + jS0j � 15 = 2 exp(G) + 1 and l1l2l3jS0j � 64 > jGj, a contradiction to Lemma 3.9.

Now we verify this assertion. Since D(G) = 13, the sequence a1a2b
6c5 has a minimal zero-sum subse-

quence
a�11 a

�2
2 b

ucv with �1; �2 2 [0; 1] ; u 2 [0; 6] and v 2 [0; 5] :

If �1 + �2 + u + v � 9, then the assertion follows. Suppose that �1 + �2 + u + v � 10. Then u � 3 and
v � 2. We distinguish four subcases.

CASE 4.2.1: �1 = �2 = 0.
As in CASE 4.1 it follows that bucv or b7�uc7�v has a short minimal zero-sum subsequence, and, by

construction, the associated type di�ers from S1; : : : ; S5, a contradiction.

CASE 4.2.2: �1 = 0 and �2 = 1.
Then a1a3b

7�uc7�v is a zero-sum subsequence of a1a3b
6c5. Since ja2bucvj + ja1a3b7�uc7�vj = 17 and

since S1; : : : ; S5 are all short minimal zero-sum subtypes of S, it follows that the shorter sequence of
a2b

ucv and a1a3b
7�uc7�v is a minimal zero-sum sequence of length 8.

CASE 4.2.3: �1 = 1 and �2 = 0.
Similar to CASE 4.2.2.

CASE 4.2.4: �1 = �2 = 1.
Similar to CASE 4.2.2. �

The following two lemmas constitute the essential tools in the proof of our main result, which is
Theorem 3.15.

Lemma 3.13. Let G = Cn � Cn with n � 2 and let S 2 F(G��N) be squarefree. Suppose that one of

the following two conditions hold :

(a) jSj � 4n� 1 and there are two distinct elements g1; g2 2 G such that vg1(�(S)) + vg2(�(S)) � 2n.
(b) jSj � 4n and there are three distinct elements g1; g2; g3 2 G such that vg1(�(S)) + vg2(�(S)) +

vg3(�(S)) � 2n.

Then S has two short minimal zero-sum subtypes which are not coprime.

Proof. For every subsequence T of �(S), let ��1(T ) denote the corresponding subtype of S. By Propo-

sition 3.12 we may suppose that n � 4. Let  2 f2; 3g such that
P 
�=1 vg� (�(S)) � 2n. We may

suppose that jSj = 4n � � with � 2 f0; 1g, where � = 1 implies that  = 2. Let S1; : : : ; St be all

short minimal zero-sum subtypes of S
Q 
�=1 g

�vg� (S)
� . Assume to the contrary that S does not have

two short minimal zero-sum subtypes which are not coprime. Let W = ��1(
Q 
�=1 g

vg� (�(S))
� ). Then

supp
�
�(Si)

� \ supp
�
�(Sj)

�
= ; for all i 6= j 2 [1; t],

S1 � : : : � St jSW�1 and hence jS1 � : : : � Stj � 2n� � :
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For every � 2 [1; t] we choose an element h� 2 supp(S�). Then S(g1 � : : : � g h1 � : : : � ht)�1 has no
short zero-sum subtype, and hence jSj �  � t < �(G) = 3n � 2. Since jS� j � 2 for all � 2 [1; t], the
inequality jS1 � : : : � Stj � 2n � � implies that t � n � �. Thus we obtain that 3n � 2 > jSj �  � t �
4n� �� � (n� �) = 3n� , which implies that  = 3, � = 0, jSj = 4n, jSj � � t = 3n� 3 and t = n.
Since supp

�
�(S1)

�
; : : : ; supp

�
�(Sn)

�
are pairwise disjoint, �

�
S(g1g3g3h1 � : : : �hn)�1

�
has at least n � 4

distinct elements, a contradiction to Lemma 3.7. �

Lemma 3.14. Let G = Cmn�Cmn with m;n � 2, ' : G! G the multiplication by m, and S 2 F(G��N)
squarefree. Let u 2 N0 and S1; : : : ; Su 2 F(G��N) with the following properties :

(i) S1 � : : : � Su jS.
(ii) For every � 2 [1; u], '(S�) is a short zero-sum sequence over '(G).
(iii) The sequence �(S1) � : : : � �(Su) 2 F(Ker(')) has no short zero-sum subsequence.

Let T1 and T2 be subtypes of S(S1 � : : : � Su)�1 such that '(T1) and '(T2) are short minimal zero-sum

types which are not coprime. Then one of the following three conditions hold :

(a) The sequence �(T1)�(S1) � : : : � �(Su) 2 F(Ker(')) has no short zero-sum subsequence.

(b) The sequence �(T2)�(S1) � : : : � �(Su) 2 F(Ker(')) has no short zero-sum subsequence.

(c) S has two short minimal zero-sum subtypes which are not coprime.

Proof. Suppose that for � 2 [1; 2], the sequence �(T�)�(S1) � : : : ��(Su) has a short zero-sum subsequence.
Then there exist, for � 2 [1; 2], subsets I� � [1; u] with jI�j+ 1 2 [1;m] such that

T�V� ; where V� =
Y
�2I�

S� ;

are zero-sum types, and since

jT�
Y
�2I�

S� j � n+ jI�jn � mn ;

they are short. We assert that gcd
�
T1V1; T2V2

�
=2 T (G). In order to verify this, note that by construction,

we have gcd
�
Ti; Vj

�
= 1 for all i; j 2 [1; 2], and therefore

gcd(T1V1; T2V2) = gcd(T1; T2) gcd(V1; V2) :

Now we obtain that

gcd(V1; V2) =
Y

�2I1\I2

S� ; � � '� gcd(V1; V2)� = X
�2I1\I2

� � '(S�) =
X

�2I1\I2

� � '(S�) = 0

and hence

' � �� gcd(T1V1; T2V2)� = � � '� gcd(T1V1; T2V2)� = � � '� gcd(T1; T2)� = �
�
gcd('(T1); '(T2)

� 6= 0 :

Therefore, gcd
�
T1V1; T2V2

�
=2 T (G), and hence there exist minimal zero-sum subtypes W1 jT1V1 and

W2 jT2V2 such that gcd(W1;W2) 6= 1. Since jW�V�j � jT�V�j � mn for � 2 [1; 2], it follows that W1 and
W2 are short. �

Now we formulate the main result of this section. It shows that, if ��(Cp � Cp) = 3p + 1 holds for
all primes, then ��(Cn � Cn) = 3n + 1 holds for all positive integers n � 2. Moreover, Corollary 3.16
shows that every integer m 2 N has a multiple n 2 mN satisfying ��(Cn � Cn) = 3n+ 1. We will make
substantial use of Lemma 3.7.

Theorem 3.15. Let G = Cmn � Cmn with m;n � 2.

1. Suppose that ��(Cm � Cm) = 3m+ 1.

(a) If ��(Cn � Cn) = 3n+ 1, then ��(G) = 3mn+ 1.

(b) If gcd(6;m) = 1 and n = p 2 P with m � 33p3

4 , then ��(G) = 3mp+ 1.
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2. If ��0(Cm � Cm) = 3m+ 1 and ��0(Cn � Cn) = 3n+ 1, then ��0(G) = 3mn+ 1.

Proof. The proof of 2. runs along the same lines as the proof of 1.(a). Thus we show only 1.

1. By Proposition 3.10.2, it su�ces to prove that ��(G) � 3mn+1. Let S 2 F(G��N) be a squarefree
type of length jSj = l = 3mn + 1, which has pairwise distinct labels. We have to show that S has two
short minimal zero-sum subtypes which are not coprime. Let ' : G! G denote the multiplication by m.
Then Ker(') �= C2

m and '(G) = mG �= C2
n.

We set S = g1 � : : : � gl, where l 2 N0 and g1; : : : ; gl 2 G��N, such that for some t 2 [0; l] we have
'(gi) = 0 for all i 2 [1; t] and '(gi) 6= 0 for all i 2 [t + 1; l]. If t � 3m + 1 = ��(Ker(')), then
g1 � : : : � gt 2 F(Ker(')�N) has two short minimal zero-sum subtypes which are not coprime. So we may
suppose that t 2 [0; 3m].

Let r 2 N0 and let B1; : : : ; Br be all short minimal zero-sum subtypes of g1 � : : : � gt. If two of them
are not coprime, then we are done. Otherwise, B1 � : : : �Br j g1 � : : : � gt, and for every � 2 [1; r] we choose
an element �� 2 supp(B�). It follows that g1 � : : : � gt(�1 � : : : � �r)�1 has no short zero-sum subtype. Since
jB� j � 2 for all � 2 [1; r], we infer that r � t=2. Let u0 = jg1 � : : : � gt(�1 � : : : � �r)�1j = t � r. After
renumbering if necessary we may assume g1 � : : : � gu0 = g1 � : : : � gt(�1 � : : : � �r)�1. We set

(3.1) S� = g� for every � 2 [1; u0]; and note that u0 2 [t=2; t] :

1.(a) Let u1 2 N0 be maximal such that there are types Su0+1; : : : ; Su0+u1 2 F(G��N) with the
following properties:

� S1 � : : : � Su0+u1 jS.
� For every � 2 [1; u0 + u1], '(S�) is a short zero-sum sequence over '(G).
� The sequence �(S1) � : : : � �(Su0+u1) 2 F(Ker(')) has no short zero-sum subsequence.

Lemma 3.6 implies that �(Ker(')) = 3m� 2 and hence u0 + u1 2 [0; 3m� 3]. Note that the number of
nonzero terms in '(S(S1 � : : : � Su0+u1)�1) is equal to

jS(g1 � : : : � gt)�1(Su0+1 � : : : � Su0+u1)�1j � l � t� (3m� 3� u0)n

� 3mn+ 1� (3m� 3)n+ u0n� t � 3n+ 1 :

Since ��('(G)) = 3n + 1, there are subtypes T1 and T2 of S(S1 � : : : � Su)�1 such that '(T1); '(T2) 2
F('(G)��N) are two short minimal zero-sum types which are not coprime. Since u1 is maximal, Lemma
3.14 implies that S has two short minimal zero-sum subtypes which are not coprime.

1.(b) The proof of 1.(b) uses the same ideas as the proof of 1.(a). But since it is of higher technical
complexity we discuss its strategy before going into details. We will always use Lemma 3.14 which requires
the construction of an integer u 2 N0 and of types S1; : : : ; Su satisfying the given conditions. In order
to obtain the types T1 and T2 we proceed as follows. We have to �nd a subtype T of S(S1 � : : : � Su)�1
such that '(T ) 2 F('(G)��N) has two short minimal zero-sum subtypes which are not coprime. This is
guaranteed in each of the following cases:

� j'(T )j � ��('(G)). Note that '(G) �= Cp � Cp, and that by Lemma 3.6 and Proposition 3.10.1,
��Cp � Cp) � 6p� 5.

� There is an element a 2 '(G)� such that va('(T )) > ord(a) = p.
� The group '(G) and the type '(T ) satisfy the assumptions of Lemma 3.13.

� The sequence '(T ) has a short minimal zero-sum subsequence �`11 �
`2
2 �

`3
3 , and �`11 �

`2
2 �

`3+1
3 is also a

subsequence of '(T ).

We will proceed by contradiction, and hence during the constructions we can always assume that a given
subtype '(T ) 2 F('(G)��N) does not have any of the above properties. In particular, Lemma 3.14
is used as follows: since Condition (c) in 3.14 does not hold, we obtain (step by step) types satisfying
Conditions (i); (ii) and (iii) in Lemma 3.14.
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Now let gcd(6;m) = 1 and let n = p be a prime with m � 33p3=4. By 1.(a) and Proposition 3.12,
we may suppose that p � 11, and we assume to the contrary that S does not have two short minimal
zero-sum subtypes which are not coprime. We set

(3.2) W = S(g1 � : : : � gt)�1 and '(W ) = er11 � : : : � erkk ;

where e1; : : : ; ek 2 '(G) are distinct and r1; : : : ; rk 2 N. For every i 2 [1; k], let Wei denote the subtype
of W with '(Wei) = erii . After renumbering if necessary there is some f 2 [0; k] such that that ri �
(6p � 6)(p � 2) + 1 for i 2 [1; f ] and rj � (6p � 6)(p � 2) for every i 2 [f + 1; k]. We continue with the
following assertion.

A1. f � 2.

Proof of A1. By rearranging if necessary we may assume that r1 = maxfri j i 2 [1; k]g. We assert that
r1 � 2mp+ 2m� 4. If this holds, then

maxfri j i 2 [2; k]g � jSj � t� ve1('(W ))

j'(G) n f0; e1gj � 3mp+ 1� 3m� (2mp+ 2m� 4)

p2 � 2
� (6p� 6)(p� 2) + 1 ;

and hence f � 2. Assume to the contrary that r1 � 2mp+ 2m� 3. Then We1 = (g + h1) � : : : � (g + hv)
where g 2 G�N with '(g) = e1, h1; : : : ; hv 2 Ker(')�N and v � 2mp + 2m � 3. Let U1; : : : ; U` be
all short minimal zero-sum subtypes of We1 . By our assumption on S, they are pairwise coprime and
hence U1 � : : : � U` jWe1 . For every � 2 [1; `], we choose an element x� 2 supp(U�), and clearly we have

jU� j � 2 which implies that ` � jWe1
j

2 . Then We1(x1 � : : : � x`)�1 has no short zero-sum subtype, and

jWe1(x1 � : : : � x`)�1j � v=2 � mp + m � 3=2. After renumbering if necessary, we may assume that
We1(x1 � : : : � x`)�1 = (g + h1) � : : : � (g + hv�`). Note that v � ` � mp +m � 3=2 � 4m � 3. Since, by
Lemma 3.6, s(Ker(')) = 4m� 3, the type h1 � : : : � hv 2 F(Ker(')�N) may be written as

h1 � : : : � hv = V1 � : : : � V2p�1V 0 ;

where V 0; V1; : : : ; V2p�1 2 F(Ker(')�N) and, for every � 2 [1; 2p � 1], V� has sum zero and length
jV� j = m. Furthermore, we suppose that V1 jh1 � : : : � hv�`. We set W1 =

Qp
�=1(g + V�) and W2 =

(g + V1)
Q2p�1
�=p+1(g + V�). Note that

�(W1) = mp�(g) +

pX
�=1

�(V�) = 0 = mp�(g) + �(V1) +

2p�1X
�=p+1

�(V�) = �(W2) ;

and that g + V1 = gcd(W1;W2). Since g + V1 jWe1(x1 � : : : � x`)�1, it follows that g + V1 is zero-sum free.
Therefore, there exist two short minimal zero-sum subtypes T1 and T2, T1 jW1 and T2 jW2, which are
not coprime, a contradiction. �

We set

(3.3) W 0 =

fY
i=1

Wei ; W 00 =

kY
i=f+1

Wei and then W =W 0W 00 :

CASE 1: There exist distinct i; j 2 [1; f ] such that

the sequence ep�1i ep�1j has a short zero-sum subsequence.

After renumbering if necessary, we may suppose that i = 1 and j = 2 . A short zero-sum subsequence
of ep�11 ep�12 over '(G) �= Cp�Cp must be the form e�11 e

�2
2 with �1; �2 2 [1; p�1] and �1+�2 � p. Moreover,

if �1+�2 = p, then it follows that �1(e1�e2) = 0 and hence e1�e2 = 0, a contradiction. Thus �1+�2 < p.
Let u1 2 N0 be maximal such that there exist types Su0+1; : : : ; Su0+u1 with the following properties:

� Su0+1 � : : : � Su0+u1 jWe1We2 .
� For every � 2 [1; u1], '(Su0+�) = e1

�1e2
�2 .
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� The sequence �(S1) � : : : � �(Su0+u1) 2 F(Ker(')) has no short zero-sum subsequence.

We consider the type

W0 =W (Su0+1 � : : : � Su0+u1)�1 = S(g1 � : : : � gtSu0+1 � : : : � Su0+u1)�1 :
First, suppose that minfve1('(W0)); ve2('(W0))g � p� 1. Then there are types T1; T2 dividing W0 such
that '(T1) and '(T2) are two short minimal zero-sum types which are not coprime. Thus Lemma 3.14
implies that S has two short minimal zero-sum subtypes which are not coprime, a contradiction.

Thus from now on, we may suppose that minfve1('(W0)); ve2('(W0))g < p� 1. We obtain that

u1 � minfve1('(W )); ve2('(W ))g � (p� 2)

maxf�1; �2g � (6p� 6)(p� 2) + 1� (p� 2)

p� 2
> 6p� 7 :

Let u2 2 N0 be maximal such that there exist types Su0+u1+1; : : : ; Su0+u1+u2 with the following properties:
� Su0+u1+1 � : : : � Su0+u1+u2 jS(S1 � : : : � Su0+u1)�1.
� For every � 2 [1; u2], '(Su0+u1+�) is a short minimal zero-sum sequence over '(G).
� The sequence �(S1) � : : : � �(Su0+u1+u2) 2 F(Ker(')) has no short zero-sum subsequence.

Since �(Ker(')) = 3m� 2, we infer that u0+u1+u2 � 3m� 3. Since jSu0+� j � p� 1 for each � 2 [1; u1]
and u1 � 6p� 6, we obtain that

jS(g1� : : : � gtSu0+1 � : : : � Su0+u1Su0+u1+1 � : : : � Su0+u1+u2)�1j
� 3mp+ 1� t� (3m� 3� u0)p+ 6p� 6 � 3mp+ 1� (3m� 3)p+ 6p� 6 � 6p� 5 :

Again by using Lemma 3.14 we infer that S has two short minimal zero-sum subtypes which are not
coprime, a contradiction.

CASE 2: For every distinct i; j 2 [1; f ]

the sequence ep�1i ep�1j has no short zero-sum subsequence.

We continue with the following four assertions on the structure of the types We1 ; : : : ;Wek .

A2. Let i 2 [1; k] with ri � p+ 4. Then j supp(�(Wei))j � 4.

A3. Let i 2 [1; k] with ri � p+ 4. Then j supp(�(Wei))j � 3.

A4. Let i 2 [1; k] with jWei j � p + 4. Then Wei = �i;1 � : : : � �i;wi
W 0
i where �(�i;1) = : : : = �(�i;wi

) =
�i 2 G and jW 0

i j � 4.

A5.
�� supp ��(�p1) � : : : � �(�pf )��� � 3.

Proof of A2. Assume to the contrary that j supp(�(Wei))j � 5. Let x1; x2; x3; x4; x5 2 supp(Wei)
such that �(x1); : : : ;�(x5) are pairwise distinct, and let Z be a subtype of Wei(x1x2x3x4x5)

�1 with
jZj = p� 1. We set

W1 =W lcm(x1 � : : : � x5Z;We1 ;We2)
�1 and W 0

1 =WW�1
1 :

Let u1 2 N0 be maximal such that there exist types Su0+1; : : : ; Su0+u1 with the following properties:

� Su0+1 � : : : � Su0+u1 jW1.
� For every � 2 [1; u1], '(Su0+�) is a short minimal zero-sum sequence over '(G).
� The sequence �(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1) 2 F(Ker(')) has no short zero-sum
subsequence.

If jW1(Su0+1 � : : : � Su0+u1)�1j � 6p� 5, then S has two short minimal zero-sum subtypes which are not
coprime, a contradiction. Thus we may assume that

jW1(Su0+1 � : : : � Su0+u1)�1j � 6p� 6 :

WriteW 0
1 = (x1 � : : : �x5Z)TW2, where T is a subtype ofW 0

1 with '(T ) = e4p�61 e4p�62 . Now we apply (step
by step) Lemma 3.13(a) (to the group '(G) and some types UV with U jW2; V jW1(Su0+1 �: : :�Su0+u1)�1,
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jV j = 2p� 1 and '(U) = ep1e
p
2) and Lemma 3.14 to obtain a maximal u2 2 N0 such that there exist types

Su0+u1+1; : : : ; Su0+u1+u2 with the following properties:

� Su0+u1+1 � : : : � Su0+u1+u2 jW2W1(Su0+1 � : : : � Su0+u1)�1.
� For every � 2 [1; u2], '(Su0+u1+�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [1; u2], gcd(Su0+u1+� ;W1(Su0+1 � : : : � Su0+u1)�1) 6= 1 and gcd(Su0+u1+� ;W2) 6= 1.
� The sequence �(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2) 2 F(Ker(')) has no short zero-sum
subsequence.

Let W 00
1 (resp. W 00

2 ) be the remaining subsequence of W1(Su0+1 � : : : � Su0+u1)�1 (resp. W2) after the
construction of these S� with � 2 [u0 + u1 + 1; u0 + u1 + u2]. Then,

W2W1(Su0+1 � : : : � Su0+u1)�1 = Su0+u1+1 � : : : � Su0+u1+u2W 00
1W

00
2 :

Clearly, maxfve1('(S�)); ve2('(S�))g � p � 2 holds for every � 2 [u0 + u1 + 1; u0 + u1 + u2]. But
minfve1('(W2)); ve2('(W2))g � (p� 1) � minfri j i 2 [1; f ]g � (4p� 6)� (p� 1) � (6p� 6)(p� 2) + 1�
(4p� 6)� (p� 1) > (4p� 4)(p� 2) � �jW1(Su0+1 � : : : � Su0+u1)�1j � (2p� 2)

�
(p� 2). These show that

if jW 00
1 j � 2p� 1, then the construction of S� in the way above could be continued, a contraction to the

maximality of u2. Hence,
jW 00

1 j � 2p� 2:

Let u3 2 N0 be maximal such that there exist types Su0+u1+u2+1; : : : ; Su0+u1+u2+u3 with the following
properties:

� Su0+u1+u2+1 � : : : � Su0+u1+u2+u3 jW 00
2 .

� For every � 2 [1; u3], '(Su0+u1+u2+�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [1; u3], '(Su0+u1+u2+�) 2 fep1; ep2g.
� The sequence �(S1)�: : :���(Su0)�(Su0+1)�: : :��(Su0+u1+u2+u3) 2 F(Ker(')) has no short zero-sum
subsequence.

We set
W 000

2 =W 00
2 (Su0+u1+u2+1 � : : : � Su0+u1+u2+u3)�1 :

If maxfve1('(W 000
2 )); ve2('(W

000
2 ))g � p + 1, then S has two short minimal zero-sum subtypes which are

not coprime, a contradiction. Thus we obtain that maxfve1('(W 000
2 )); ve2('(W

000
2 ))g � p, which implies

that jW 000
2 j � 2p. Now we have that

u0 + u1 + u2 + u3 � u0 +
jSj � t� jW 000

2 j � jW 00
1 j � jT j � jx1 � : : : � x5Zj
p

� 2m� 1 :

Since �(S1) � : : : ��(Su0)�(Su0+1) � : : : ��(Su0+u1+u2+u3) 2 F(Ker(')) has no short zero-sum subsequence,
we infer that j supp(�(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2+u3))j � 3, and we can choose three
distinct elements �; �; 
 in this set. Since the elements �(x1 + �(Z)); : : : ;�(x5 + �(Z)) are pairwise
distinct, we may assume|after renumbering if necessary|that �(x1 + �(Z));�(x2 + �(Z)) 62 f�; �; 
g.
Since x1Z and x2Z are two short minimal zero-sum subtypes over '(G) �= Cp �Cp and S does not have
two short minimal zero-sum subtypes, so we may assume that the sequence �(S1) � : : : � �(Su0)�(Su0+1) �
: : : � �(Su0+u1+u2+u3)�(x1Z) 2 F(Ker(')) has no short zero-sum subsequence. Now we have

j supp(�(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2+u3)�(x1Z))j � 4 ;

and we set Su0+u1+u2+u3+1 = x1Z.

Again we apply (step by step) Lemma 3.13 (to the group '(G); note that ep�11 ep�12 has no short
zero-sum subsequence) and Lemma 3.14, to obtain a maximal u4 2 N0 such that there exist types
Su0+u1+u2+u3+2; : : : ; Su0+u1+u2+u3+u4 with the following properties:

� Su0+u1+u2+u3+2 � : : : � Su0+u1+u2+u3+u4 jTW 000
2 W

00
1 (x2x3x4x5).

� For every � 2 [2; u4], '(Su0+u1+u2+u3+�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [2; u4], gcd(Su0+u1+u2+u3+� ;W

00
1 (x2x3x4x5)) 6= 1 and gcd(Su0+u1+u2+u3+� ; TW

000
2 ) 6=

1.
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� The sequence �(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2+u3+u4) 2 F(Ker(')) has no short
zero-sum subsequence.

Let T 0 (resp. W 000
1 ) be the remaining subtype of TW 000

2 (resp. W 00
1 (x2x3x4x5)) after the construction of

these S� with � 2 [u0 + u1 + u2 + u3 + 2; u0 + u1 + u2 + u3 + u4]. Then,

TW 000
2 W

00
1 (x2x3x4x5) = Su0+u1+u2+u3+2 � : : : � Su0+u1+u2+u3+u4T 0W 000

1 :

Obviously, for each � 2 [1; u04] we have

maxfve1('(Su0+u1+u2+u3+�); ve2('(Su0+u1+u2+u3+�)g � p� 2 :

Note that '(T ) = e4p�61 e4p�62 , '(T 0) = ec1e
d
2, and similarly to the argument for W 00

1 we may assume that
jW 000

1 j � 2p�2. Let u5 2 N0 be maximal such that there exist types Su0+u1+u2+u3+u4+1; : : : ; Su0+u1+u2+u3+u4+u5
with the following properties:

� Su0+u1+u2+u3+u4+1 � : : : � Su0+u1+u2+u3+u4+u5 jT 0.
� For every � 2 [1; u5], '(Su0+u1+u2+u3+u4+�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [1; u5], '(Su0+u1+u2+u3+u4+�) 2 fep1; ep2g.
� The sequence �(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2+u3+u4+u5) 2 F(Ker(')) has no short
zero-sum subsequence.

We set

T 00 = T 0(Su0+u1+u2+u3+u4+1 � : : : � Su0+u1+u2+u3+u4+u5)�1 :
Since S does not have two short minimal zero-sum subtypes which are not coprime, we infer that
maxfve1('(T 00)); ve1('(T 00))g � p and hence jT 00j � 2p. Since jW 000

1 T
00j � 4p� 2, it follows that

u0 + u1 + u2 + u3 + u4 + u5 � u0 +
jSj � t� jW 000

1 T
00j

p
� u0 +

3mp+ 1� t� 4p+ 2

p
= 3m� 4 +

u0p� t+ 3

p

= 3m� 4 +
tp=2� t+ 3

p
> 3m� 4 :

Now we have

j supp(�(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2+u3+u4+u5))j � 4

and

j�(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2+u3+u4+u5)j � 3m� 3:

Thus Lemma 3.7 implies that the sequence

�(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1+u2+u3+u4+u5)
has a short zero-sum subsequence, a contradiction. �

Proof of A3. By A2 we have j supp(�(Wei))j � 4, and hence there exists some element y 2 G with
vy(�(Wei)) � p+4

4 � 3. Assume to the contrary that j supp(�(Wei))j = 4, and let y1; y2; y3; y4 2
supp(Wei) such that �(y1); : : : ;�(y4) are pairwise distinct, and let y0 and y00 be two distinct elements
of Wei(y1y2y3y4)

�1 with �(y0) = �(y00) = y. We can simply repeat the proof of A2: we only have to
replace the sequence x1 � : : : � x5Z by y1 � : : : � y4Z 0y0y00, where Z 0 is a subtype of Wei(y1 � : : : � y4y0y00)�1
of length jZ 0j = p� 2. �

Proof of A4. By A3 we have j supp(�(Wei))j � 3, and hence it su�ces to prove that there exists
at most one element z 2 G��N with v

�(z)(�(Wei) � 3. Assume to the contrary that there are two
elements z1 and z2 such that �(z1) and �(z2) are distinct and v

�(z1)(Wei) � v
�(z2)(Wei)) � 3. Let

z01; z
00
1 ; z

0
2; z

00
2 be four distinct elements of Wei(z1z2)

�1 with �(z01) = �(z001 ) = �(z1) and �(z
0
2) = �(z002 ) =

�(z2). Since gcd(m; 6) = 1, the sums �(z1z
0
1z

00
1 ); �(z1z

00
1 z2); �(z1z2z

0
2) and �(z2z

0
2z

00
2 ) are distinct. Let

z0; z00 be two distinct elements of Wei(z1z
0
1z

00
1 z2z

0
2z

00
2 )

�1 with �(z0) = �(z00): Let Z 00 be a subtype of



A QUANTITATIVE ASPECT OF NON-UNIQUE FACTORIZATIONS: THE NARKIEWICZ CONSTANTS 19

Wei(z1z
0
1z

00
1 z2z

0
2z

00
2 z

0z00)�1 of length jZ 00j = p � 4. Considering the type z1z
0
1z

00
1 z2z

0
2z

00
2 z

0z00Z 00 instead of
x1 � : : : � x5Z, we can derive a contradiction as in the proof of A2. �

Proof of A5. By using Lemma 3.14 repeatedly to the type
Qf
i=1

Qwi

�=1 �i;� , we �nd a maximal w 2 N0
such that there exist types T1; : : : ; Tw with the following properties:

� T1 � : : : � Tw j
Qf
i=1

Qwi

�=1 �i;� .
� For every � 2 [1; w], '(T�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [1; w], �(T�) 2 f�p1 ; � � � ; �pfg.
� The sequence �(T1) � : : : � �(Tw) 2 F(Ker(')) has no short zero-sum subsequence.

We set R =
Qf
i=1

Qwi

�=1 �i;�(T1 � : : : �Tw)�1, and observe that v�i(�(R)) � p for every i 2 [1; f ]. Therefore,

w � jSj � t� jQk
i=f+1Wei j � jQf

i=1W
0
i j � fp

p

� 3mp+ 1� 3m� (p2 � 1� f)(6p� 6)(p� 2)� 4f � fp

p
� 2m� 1 :( Here we need that m � 33p3

4
)

Since �(T1) � : : : � �(Tw) 2 F(Ker(')) has no short zero-sum subsequence, we obtain that

j supp(�(�p1)�(�p2) � : : : � �(�pf )j � 3 : �

Now we continue our proof by using the structural information obtained in A2 to A5. We do not use
any of the notations introduced in the proofs of A2 to A5, but continue with the setting of (3.1), (3.2)
and (3.3).

After renumbering if necessary, we may suppose that �(�p1); �(�
p
2) and �(�

p
3) are distinct. Let u1 2 N0

be maximal such that there exist types Su0+1; : : : ; Su0+u1 with the following properties:

� Su0+1 � : : : � Su0+u1 j
Qk
i=4Wei .

� For every � 2 [1; u1], '(Su0+�) is a short minimal zero-sum sequence over '(G).
� The sequence �(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1) 2 F(Ker(')) has no short zero-sum
subsequence.

We set

Q =

kY
i=4

Wei(Su0+1 � : : : � Su0+u1)�1 and obtain that jQj � 6p� 6 :

We distinguish two cases.

CASE 2.1: ep�11 ep�12 ep�13 2 F('(G)) has no short zero-sum subsequence.
We set �(Q) = �1 � : : : � �u2 with u2 = jQj � 6p� 6. Since �(Cp � Cp) = 3p� 2, for every � 2 [1; u2],

the sequence ep�11 ep�12 ep�13 �� has a short zero-sum subsequence containing �� . Since each of r1; r2; r3
is greater than or equal to (6p � 6)(p � 2) + 1, we �nd (by using Lemma 3.14 step by step) u2 types
Su0+u1+1; : : : ; Su0+u1+u2 with the following properties:

� Su0+u1+1 � : : : � Su0+u1+u2 jQWe1We2We3 .
� For every � 2 [1; u2], '(Su0+u1+�) is a short minimal zero-sum sequence over '(G).

� For every � 2 [1; u2], �� j'(Su0+u1+�) j ep�11 ep�12 ep�13 �� .
� The sequence �(S1)�: : :��(Su0)�(Su0+1)�: : :��(Su0+u1)�(Su0+u1+1)�: : :��(Su0+u1+u2) 2 F(Ker('))
has no short zero-sum subsequence.

We set Q0 = QWe1We2We3(Su0+u1+1 � : : : � Su0+u1+u2)�1. Let u3 2 N0 be maximal such that there
exist types Su0+u1+u2+1; : : : ; Su0+u1+u2+u3 with the following properties:

� Su0+u1+u2+1 � : : : � Su0+u1+u2+u3 jQ0.
� For every � 2 [1; u3], '(Su0+u1+u2+�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [1; u3], '(Su0+u1+u2+�) 2 fep1; ep2; ep3g.
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� The sequence �(S1) � : : : � �(Su0)�(Su0+1) � : : : � �(Su0+u1)�(Su0+u1+1) � : : : � �(Su0+u1+u2+u3) 2
F(Ker(')) has no short zero-sum subsequence.

We set Q00 = Q0(Su0+u1+u2+1 � : : : � Su0+u1+u2+u3)�1 and observe that

maxfve1('(Q00)); ve3('(Q
00)); ve3('(Q

00))g � p ;

which implies that jQ00j � 3p. Therefore,

u0 + u1 + u2 + u3 � u0 +
jSj � t� jQ00j

p
� 3m� 2 = �(Ker(')) ;

a contradiction.

CASE 2.2: ep�11 ep�12 ep�13 2 F('(G)) has a short zero-sum subsequence.

Let e`11 e
`2
2 e

`3
3 be a short minimal zero-sum subsequence of ep�11 ep�12 ep�13 , where `1; `2; `3 2 N|recall

that ep�1i ep�1j has no short zero-sum subsequence for i; j 2 [1; 3]|and `1 + `2 + `3 2 [3; p]. According to

A4 we have Wei = �i;1 � : : : � �i;wi
W 0
i where jW 0

i j � 4.

Applying Lemma 3.13 and Lemma 3.14 to the types Q and
Qw1�`1
�=1 �1;�

Qw2�`2
�=1 �2;� , we �nd (step

by step) a maximal u2 2 N0 such that there exist types Su0+u1+1; : : : ; Su0+u1+u2 with the following
properties:

� Su0+u1+1 � : : : � Su0+u1+u2 jQ
Qw1�`1
�=1 �1;�

Qw2�`2
�=1 �2;� .

� For every � 2 [1; u2], '(Su0+u1+�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [1; u2], gcd(Su0+u1+� ; Q) 6= 1.
� The sequence �(S1) � : : : ��(Su0)�(Su0+1)�(Su0+u1+1) � : : : ��(Su0+u1+u2) 2 F(Ker(')) has no short
zero-sum subsequence.

After the construction of these S� for � 2 [1; u2], let Q
0, W 0

e1 and W 0
e2 be the remaining subtypes of Q,Qw1�`1

�=1 �1;� and
Qw2�`2
�=1 �2;� respectively. Then,

Q

w1�`1Y
�=1

�1;�

w2�`2Y
�=1

�2;�
�
Su0+u1+1 � : : : � Su0+u1+u2

��1
= Q0W 0

e1W
0
e2 :

We set

W 0
e3 =

w3�`3�1Y
�=1

�3;� :

Observe that jQ0j � 2p� 2.
Applying Lemma 3.14 to W 0

e1W
0
e2W

0
e3 , we �nd (step by step) a maximal u3 2 N0 such that there exist

types Su0+u1+u2+1; : : : ; Su0+u1+u2+u3 with the following properties:

� Su0+u1+u2+1 � : : : � Su0+u1+u2+u3 jW 0
e1W

0
e2W

0
e3 .� For every � 2 [1; u3], '(Su0+u1+u2+�) is a short minimal zero-sum sequence over '(G).

� For every � 2 [1; u3], �(Su0+u1+u2+�) 2 f�p1 ; �p2 ; �p3g.
� The sequence �(S1) � : : : � �(Su0)�(Su0+1)�(Su0+u1+1) � : : : � �(Su0+u1+u2+u3) 2 F(Ker(')) has no
short zero-sum subsequence.

We set

Q00 = (W 0
e1W

0
e2W

0
e3(Su0+u1+u2+1 � : : : � Su0+u1+u2+u�3)�1)(

2Y
i=1

(W 0
i

wiY
�=wi�`i+1

�i;�))W
0
3

w3Y
�=w3�`3

�3;� ;

and observe that, for i 2 [1; 2],

vei( �'(Q
00)) � p+ `i + 4 and ve3( �'(Q

00)) � p+ `i + 5 ;

which implies that

jQ00j � 4p+ 13 :
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Now we have

u0 + u1 + u2 + u3 � u0 +
jSj � t� jQ0j � jQ00j

p
> 3m� 7 ;

and we set
u4 = 3m� 3� (u0 + u1 + u2 + u3) 2 [0; 3] :

Using Lemma 3.13 and Lemma 3.14, we �nd types Su0+u1+u2+u3+1; : : : ; Su0+u1+u2+u3+u4 with the fol-
lowing properties:

� Su0+u1+u2+u3+1 � : : : � Su0+u1+u2+u3+u4 jQ0Q00.
� For every � 2 [1; u4], '(Su0+u1+u2+u3+�) is a short minimal zero-sum sequence over '(G).

� �(Su0+u1+u2+u3+1) = �`11 �
`2
2 �

`3
3 .

� The sequence �(S1) � : : : � �(Su0)�(Su0+1)�(Su0+u1+1) � : : : � �(Su0+u1+u2+u3+u4) 2 F(Ker(')) has
no short zero-sum subsequence.

By de�nition of u4, we have u0 + u1 + u2 + u3 + u4 = 3m� 3, and thus Lemma 3.7 implies that

�(S1) � : : : � �(Su0)�(Su0+1)�(Su0+u1+1) � : : : � �(Su0+u1+u2+u3+u4) = (p�1)
m�1(p�2)

m�1(p�3)
m�1

It follows that �(�`11 �
`2
2 �

`3
3 ) = p�" for some " 2 [1; 3], and we set

�(S1) � : : : � �(Su0)�(Su0+1)�(Su0+u1+1) � : : : � �(Su0+u1+u2) = (p�1)
s1(p�2)

s2(p�3)
s3 ;

and
�(Su0+u1+u2+1) � : : : � �(Su0+u1+u2+u3) = (p�1)

t1(p�2)
t2(p�3)

t3 :

Then s" + t" � m� 1� u4 � m� 4, and we set v0 = v�"(�(W
0
e")). Now by the construction of the types

Su0+u1+u2+1; : : : ; Su0+u1+u2+u3 we deduce that

s" +
v0 � p� `"

p
+ 1 � m� 4 :

In a further step, instead of constructing Su0+u1+u2+1; : : : ; Su0+u1+u2+u3 , we apply Lemma 3.14 to
W 0
e1W

0
e2W

0
e3 and �nd a maximal w 2 N0 such that there exist types V1; : : : ; Vw with the following

properties:

� V1 � : : : � Vw jW 0
e1W

0
e2W

0
e3 .� For every � 2 [1; w], '(V�) is a short minimal zero-sum sequence over '(G).

� For every � 2 [1; w], �(V�) is of the form �`11 �
`2
2 �

`3
3 .

� The sequence �(S1) � : : : � �(Su0)�(Su0+1)�(Su0+u1+1) � : : : � �(Su0+u1+u2)�(V1) � : : : � �(Vw) 2
F(Ker(')) has no short zero-sum subsequence.

We set Q000 =W 0
e1W

0
e2W

0
e3(V1 � : : : � Vw)�1, v" = v�"(�(Q

000)), and w0 = b v"�1p c. Using Lemma 3.14 again
we �nd w0 types Vw+1; : : : ; Vw+w0 with the properties:

� Vw+1 � : : : � Vw+w0 jQ000.
� For every � 2 [1; w0], '(Vw+�) is a short minimal zero-sum sequence over '(G).
� For every � 2 [1; w0], �(Vw+�) 2 f�p1 ; �p2 ; �p3g.
� The sequence �(S1) � : : : ��(Su0)�(S00u0+1)�(Su0+u1+1) � : : : ��(Su0+u1+u2)�(V1) � : : : ��(Vw)�(Vw+1) �
: : : � �(Vw+w0) 2 F(Ker(')) has no short zero-sum subsequence.

Let

� = min
n
b jW

0
e1 � 1

`1
c; b jW

0
e2 � `2

`2
c; b jW

0
e3 � `3

`3
c
o
:

Now we have that p�" occurs in

�(S1) � : : : � �(Su0)�(Su0+1)�(Su0+u1+1) � : : : � �(Su0+u1+u2)�(V1) � : : : � �(Vw)�(Vw+1) � : : : � �(Vw+w0)

at least s" + � + v0�`"��p
p � m times, a contradiction. �

Corollary 3.16. For every m 2 N there exists a positive integer n 2 mN such that ��(Cn�Cn) = 3n+1.
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Proof. Let m = 2k13k25k37k4p1 � : : : �ps where s; k1; : : : ; k4 2 N0 and p1; : : : ; ps 2 P with p1 � : : : � ps. We
set n = m5k

0

37k
0

4 with k03; k
0
4 2 N0 such that 5k3+k

0

37k4+k
0

4 � 33p3s=4 (in case s = 0 set k03 = k04 = 0). Using
Proposition 3.12 and Theorem 3.15, items 1.(a) and 1.(b), we infer that ��(Ck � Ck) = 3k + 1 holds for

k 2 f5k3+k0

37k4+k
0

4 ; 5k3+k
0

37k4+k
0

4p1; : : : ; 5
k3+k

0

37k4+k
0

4p1 � : : : � ps; n = 2k13k25k3+k
0

37k4+k
0

4p1 � : : : � psg. �

4. On N1(G) for groups of rank two

The main aim of this section is to prove the following theorem.

Theorem 4.1. Let G = Cn1 � Cn2 with 1 < n1 jn2. Suppose that for every prime divisor p of n1 we

have ��(Cp � Cp) = 3p+ 1 and that N1(Cp � Cp) = 2p.

1. N1(Cn1 � Cn1) = 2n1.

2. If D(C3
n1) � 3n1 � 1, then N1(G) = n1 + n2.

We analyze the above result. First, note that a main standing conjecture on the Davenport constant
states that

D(C3
n) = d�(G) + 1 = 3n� 2 for all n 2 N

(see [6, Conjecture 3.5]), and this holds true if n is a prime power ([14, Theorem 5.5.9]). Let G be as in
Theorem 4.1. Then

n1 + n2 � N1(G) � n1 + n2 � 2 + ol(G) ;

where the left inequality is obvious (see Inequality 2.2) and the right inequality is the best upper bound
known so far ([14, Proposition 6.2.26]). Here ol(G) denotes the Olson constant of the group G (for recent
progress see [10, 1, 33]). Now Theorem 4.1 reduces the determination of the precise value of N1(G) for
general groups of rank two to the veri�cation of the corresponding conjectures for groups Cp �Cp where
p is prime. For small primes we have ��(Cp � Cp) = 3p + 1 by Proposition 3.12, and furthermore it is
well known|due to the �rst author|that for all primes p with p � 151, we have N1(Cp �Cp) = 2p (see
[14, Proposition 6.2.11]). This result, in combination with Theorem 3.15.1.(b), Corollary 3.16 and with
the following multiplicity result for N1(G), provides further groups for which N1(Cn � Cn) = 2n holds,
which are not covered by Theorem 4.1.

Proposition 4.2. Let G = Cmn � Cmn with m;n � 2. If N1(Cm � Cm) = 2m, ��(Cn � Cn) = 3n + 1
and N1(Cn � Cn) = 2n, then N1(G) = 2mn.

Proof. By Inequality 2.2 it su�ces to prove that N1(G) � 2mn. Let ' : G! G denote the multiplication
by m. Then Ker(') �= C2

m and '(G) = mG �= C2
n. Let S 2 T (G�) be a squarefree type of length

jSj � 2mn+ 1, and without restrict we may assume that all labels are pairwise distinct (this implies in
particular, that '(S) is squarefree too). We have to show that jZ(S)j > 1. Assume to the contrary that
jZ(S)j = 1.

We set S = g1 � : : : � gl, where l 2 N0 and g1; : : : ; gl 2 G��N, such that for some t 2 [0; l] we
have '(gi) = 0 for all i 2 [1; t] and '(gi) 6= 0 for all i 2 [t + 1; l]. Suppose that t � 2m + 1 and set
g0 =

�
�(g2m+2 � : : : � gl);m0

�
, where m0 2 N is chosen is such a way that g0 - g1 � : : : � g2m+1. Then

'(g0) = 0 and S0 = g0 � : : : � g2m+1 2 T (Ker(')) is squarefree. Since jZ(S)j = 1, Lemma 3.9.2 (applied
with T = S; t = 2m+2; S1 = g1; : : : ; S2m+1 = g2m+1 and S2m+2 = g2m+2 � : : : �gl) implies that jZ(S0)j = 1,
a contradiction to jS0j > 2m = N1(Ker(')).

So we may suppose that t 2 [0; 2m], and we continue with the following assertion.

A. The type g1 � : : : � gt has a zero-sum free subtype T of length jT j � d t2e.
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Proof of A. If t = 0, then set T = 1. Suppose that t 2 [1; 2m]. We write g1 � : : : � gt = U0U1 � : : : � Uf
where U1; : : : ; Uf are minimal zero-sum types over Ker(') and U0 zero-sum free. Since S 2 F(G��N),
it follows that jUij � 2 for all i 2 [1; f ]. We choose an element xi 2 supp(Ui) for every i 2 [1; f ]. Since
jZ(S)j = 1, it follows that

g1 � : : : � gt(x1 � : : : � xf )�1 = U0(x
�1
1 U1) � : : : � (x�1f Uf )

is zero-sum free, and obviously we have jg1 � : : : � gt(x1 � : : : � xf )�1j � d t2e. �

By A we may suppose without restriction that g1 � : : : � gd t
2
e is zero-sum free, and we set S� = g� for

every � 2 [1; d t2e]. Let u 2 N0 be maximal such that there exist types Sd t
2
e+1; : : : ; Su with the following

properties:

� Sd t
2
e+1 � : : : � Su jS(S1 � : : : � Sd t

2
e)
�1.

� For every � 2 [d t2e+ 1; u], '(S�) is a short zero sum sequence over '(G)).
� The sequence �(S1) � : : : � �(Su) 2 F(Ker(')) is zero-sum free.

Since D(Ker(')) = 2m�1, it follows that u � 2m�2. We set W = gcd
�
S(S1 � : : : �Su)�1; gd t

2
e+1 � : : : �gl

�
.

Then W is the largest subtype of S(S1 � : : : � Su)�1 such that '(W ) 2 F(G��N). Clearly, '(W ) is
squarefree, has sum zero and

j'(W )j � jSj � jS1 � : : : Sd t
2
ej � jSd t

2
e+1 � : : : � Suj �

�
t�

l t
2

m�

� (2mn+ 1)�
l t
2

m
�
�
u�

l t
2

m�
n�

�
t�

l t
2

m�

�
�
2m� u+

l t
2

m�
n+ 1 � (2m� u)n+ 1 :

We distinguish two cases.

CASE 1: u = 2m� 2.
Then jW j � 2n + 1. Since '(W ) 2 T ('(G)�) and N1('(G)) = 2n, Lemma 2.2 implies that W has

two subtypes T1 and T2 such that '(T1) and '(T2) are two minimal zero-sum subtypes of '(W ) which
are not coprime. Let � 2 [1; 2]. Since D(Ker(')) = 2m� 1 and �(S1) � : : : � �(Su) is zero-sum free, there
exists a subset I� � [1; u] such that �(T�)

Q
�2I�

�(S�) is a zero-sum sequence, and hence

T�V� ; where V� =
Y
�2I�

S� ;

is a zero-sum subtype of S. Since jZ(S)j = 1, Lemma 2.2(c) implies that gcd(T1V1; T2V2) 2 T (G). Since
gcd(Ti; Vj) = 1 for all i; j 2 [1; 2], it follows that gcd(T1V1; T2V2) = gcd(T1; T2) gcd(V1; V2). Arguing as
in the proof of Lemma 3.14 we infer that

gcd(V1; V2) =
Y

�2I1\I2

S� and � � '� gcd(V1; V2)� = 0 :

Thus we get

0 = �
�
gcd(T1V1; T2V2)

�
= ' � �� gcd(T1V1; T2V2)�

= � � '� gcd(T1V1; T2V2)� = � � '� gcd(T1; T2)� = �
�
gcd('(T1); '(T2)

�
:

Since '(T1) and '(T2) are not coprime, their greatest common divisor is not trivial. But since it sums
to zero, this is a contradiction to the minimality of '(T1) and '(T2).

CASE 2: u � 2m� 3.
Then jW j � 3n + 1 = ��('(G)). Thus W has two subtypes T1 and T2 such that '(T1) and '(T2)

are two short minimal zero-sum types which are not coprime. Then Lemma 3.14 implies that S has
two short minimal zero-sum subtypes which are not coprime, and hence jZ(S)j > 1 by Lemma 2.2, a
contradiction. �
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Proof of Theorem 4.1. Theorem 3.15 implies that ��(Cn1 � Cn1) = 3n1 + 1. Thus the �rst statement
follows from Proposition 4.2. Using 1. and [14, Corollary 6.2.10] we obtain the second statement. �

5. On Nk(G) for cyclic groups and elementary 2-groups

In this section we establish two results. First, we show that in cyclic groups Nk(G) coincides with
N1(G) for large values of k (see Theorem 5.1). Second, we point out that this feature of cyclic groups is
in sharp contrast to the behavior of the Narkiewicz constants in elementary 2-groups (see Theorem 5.3).
Both proofs use ideas �rst developed in [5]. In the present paper we have the concept of type monoids at
our disposal and moreover a result on the structure of long zero-sum free sequences which was recently
established by S. Savchev and F. Chen in [36].

Theorem 5.1. Let G be a cyclic group of order n � 6 and let k 2 N with k � 2�log
2
n+
p
(log

2
n)2+2n�18

2 .

Then Nk(G) = n.

We start with the the result by S. Savchev and F. Chen which we cite in a form given in [13, Theorem
5.1.8].

Lemma 5.2. Let G be a cyclic group of order n � 2, and let S be a zero-sum free sequence over G of

length jSj = l � n+1
2 . Then there exists an element g 2 G with ord(g) = n such that

S = (a1g) � : : : � (alg) ;
where 1 = a1 � : : : � al � n� 1 and �(S) = f�g j � 2 [1; a1 + : : :+ al]g.

We will also need the following two elementary observations.

Lemma 5.3. Let A = a1 � : : : � a` be a sequence of positive integers such that a1 + : : :+ a` � 2`� 1, thenP
(A) = [1; a1 + � � �+ a`].

Proof. For the proof we suppose that 1 � a1 � : : : � a` which implies that a1 = 1. We proceed by
induction on `. If ` = 1, then A = 1 and �(A) = [1; 1]. Suppose that ` � 2. If a` = 1, then A = 1` and
�(A) = [1; `]. Suppose that a` � 2, and set A0 = a�1` A. Then a` � �(A0) + 1, �(A0) � 2` � 3, and the
induction hypothesis implies that �(A0) = [1; �(A0)]. Therefore we obtain that

�(A) = �(A0) [ fa`g [
�
a` +�(A0)

�
= [1; �(A0)] [ fa`g [ [a` + 1; a` + �(A0)] = [1; �(A)] : �

Lemma 5.4. Let n � 6 and A 2 F(N) be a sequence of positive integers of length jAj = ` � (n + 2)=2
and with �(A) < n. Let a 2 N denote the integer with va(A) = maxfvg(A) j g 2 Ng.

1. va(A) > n=6.

2. a 2 [1; 2].

3. If x 2 �(A) with x 2 [a + 1; �(A) � a], then x = �(aA0) for some subsequence A0 of A with

va(A
0) � va(A)� 2.
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Proof. 1. If va(A) � n=6, then

�(A) � v1(A) + 2v2(A) + 3(`� v1(A)� v2(A)) = 3`� 2v1(A)� v2(A) � 3(
n

2
)� 2

n

6
� n

6
= n ;

a contradiction.

2. If a � 3, then

�(A) � v1(A) + 2v2(A) + 3(`� v1(A)� v2(A)) = 3`� 2v1(A)� v2(A) = 2`+ (`� v1(A)� v2(A))� v1(A)

� 2`+ va(A)� v1(A) � 2` � n ;

a contradiction.

3. Since n � 6, we have va(A) � 2, jAj = ` � 4 and �(A) < n � 2` � 2. Therefore, �(Aa�2) �
�(A) � 2 � 2` � 5 = 2(` � 2) � 1, and Aa�2 satis�es the assumption of Lemma 5.3. Since x � a 2
[1; �(A)� 2a] = �(Aa�2), it follows that x� a = �(A0) for some subsequence A0 of Aa�2. �

We �x the notation which will be used in the subsequent lemmas and in the proof of Theorem 5.1.
Let k 2 N, G a �nite abelian group with jGj > 1 and T = g1 � : : : � gl 2 T (G�) squarefree with jZ(T )j = k,
where l 2 N0 and g1; : : : ; gl 2 G��N. For � 2 [1; k], let

z� = U�;1 � : : : � U�;r� 2 Z(T ) ;

where, for all � 2 [1; r� ],

U�;� =
Y
i2J�;�

gi 2 A(T (G�)) and [1; l] = J�;1 ] : : : ] J�;r� :

Then L(T ) = fr1; : : : ; rkg, and we suppose that r1 = max L(T ).

Lemma 5.5. Let k 2 N�2 and T 2 T (G�) squarefree with jZ(T )j = k. Then max L(T ) � k�1+log2 jGj.
Proof. We assert that there exists a subset � � [1; r1] with j�j � r1 � k + 1 such thatY

�2�

U1;� 2 T (G)

has unique factorization. Suppose this holds true. Then Lemma 3.9.1 implies that

2j�j �
Y
�2�

jU1;�j � jGj :

Therefore we obtain j�j � log2 jGj and
max L(T ) = r1 � j�j+ k � 1 � k � 1 + log2 jGj :

It remains to verify the existence of the set �. For every i 2 [2; k], there are �i 2 [1; r1] and �i 2 [1; ri]
such that U1;�i 6= Ui;�i . We set � = [1; r1] n f�i j i 2 [2; k]g. Then j�j � r1 � (k � 1) andY

�2�

U1;� 2 T (G)

has unique factorization, since otherwise we would get jZ(T )j > k. �

Lemma 5.6. Let k 2 N�2 and T 2 T (G�) squarefree with jZ(T )j = k. For � 2 [2; k] and for � 2 [1; r� ],
we de�ne the set I� = fs 2 [1; r1] j J1;s \ J�;� 6= ;g. Then the family fI� j � 2 [1; r� ]g has a system of

distinct representatives.
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Proof. Assume to the contrary that this does not hold. Then, by Hall's Theorem, there is a subset

 � [1; r� ] such that for

I
 =
[
!2


I! we have jI
j < j
j :

By de�nition of the sets I�, we get [
!2


J�;! �
[
i2I


J1;i ;

and we set J =
S
i2I


J1;i n
S
!2
 J�;!. Then it follows that

T =
�Y
i2J

gi
� Y
!2


� Y
i2J�;!

gi
� Y
�2[1;r1]nI


� Y
i2J1;�

gi
�

is a product of at least r1�jI
j+ j
j > r1 minimal zero-sum types, a contradiction to r1 = max L(T ). �

Lemma 5.7. Let T 2 T (G�) be squarefree with jZ(T )j = 2. Then jT j < max L(T ) + D(G).

Proof. Let fI� j � 2 [1; r2]g be as in Lemma 5.6 and (s�)�2[1;r2] a system of distinct representatives.
Then for every � 2 [1; r2] we have J1;s� \ J2;� 6= ;, and for every i 2 [1; r1] there is an ui 2 J1;i such that
us� 2 J1;s� \ J2;�. Now we set � = [1; l] n fu1; : : : ; ur1g. By construction, no non-empty subset �0 � �
is a union of sets J1;� with � 2 [1; r1], or of sets J2;� with � 2 [1; r2]. Since jZ(T )j = 2, this implies thatQ
�2� g� is zero-sum free and hence j�j < D(G). Thus we obtain that

jT j = l = j�j+ r1 < D(G) + max L(T ) : �

Proof of Theorem 5.1. Assume to the contrary that Nk(G) 6= n. Since n = N1(G) � : : : � Nk(G), we
may set Nk(G) = n + 1 + t with t 2 N0. We choose a squarefree T 2 T (G�) with jZ(T )j � k and
jT j = Nk(G). Since N1(G) = n, it follows that jZ(T )j = k0 2 [2; k]. Then Nk0(G) = Nk(G), and thus,
after replacing k by k0 if necessary, we may suppose that jZ(T )j = k.

For � 2 [1; r2], we set I� = fs� 2 [1; r1] j J1;s� \ J2;� 6= ;g, and by Lemma 5.6 we may choose a
system of distinct representatives (s�)�2[1;r2]. Then for every i 2 [1; r1] there is an ui 2 J1;i such that
us� 2 J1;s� \J2;�. Therefore there is a subset I � [1; l] with jIj = r1+ r3+ : : :+ rk such that I \J�;j 6= ;
for all � 2 [1; k] and all j 2 [1; r� ]. Now we set � = [1; l] n I. Since jZ(T )j = k, the type U =

Q
�2� g� is

zero-sum free. Using Lemma 5.5 we obtain that

n� jU j = n� j�j = n� (n+ 1 + t� jIj) � jIj � 1 = r1 + r3 + : : :+ rk � 1 � (k � 1)r1 � 1

� (k � 1)(k � 1 + log2 jGj)� 1 � (by our assumption on k)
n� 11

2
:

Let R be a zero-sum free subsequence of �(T ) having maximal length. Then jRj � jU j � n+11
2 , and we

set r = jRj and s = jT j � r = n+ 1 + t� r. By Lemma 5.2 we may write

�(T ) = (a1g) � : : : � (arg)(b1g) � : : : � (bsg) ;
where g 2 G with ord(g) = n, ai; bj 2 [1; n�1] and �(A) = [1; �(A)] 2 [1; n�1] withA = a1�: : :�ar 2 F(N).
Let a 2 N with va(A) = maxfvai(A) j i 2 [1; r]g. By Lemma 5.4, we obtain that

a 2 [1; 2] and va(A) � n

6
> k :

Assume to the contrary that n� bj 2 [a+1; �(A)� 2a]. Then Lemma 5.4 implies that n� bj = a+�(A0)
for some subsequence A0 of A with va(A

0) � va(A)� 2, and thus

(5.1) bj + (va(A
0) + 1)a+ �(A0a�va(A

0)) = n :
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Since 2 � va(A
0) + 1 � va(A) � 1, we can choose the (va(A

0) + 1) a's in the left side of (5.1) in at least�
va(A)

va(A0)+1

� � va(A) � n=6 > k ways, a contradiction to jZ(T )j = k. Therefore,

bj 2 [n� a; n� 1] [ [1; n� �(A) + 2a] :

If bj1 ; bj2 2 [1; n��(A)+ 2a] for j1 6= j2, then 2 � bj1 + bj2 � 2(n��(A)+ 2a) � n� 3 < n� a. Arguing
as above we can infer that bj1 + bj2 2 [2; n� �(A) + 2a]. Repeating this argument we �nally obtainX

j2[1;s];bj�n��(A)+2a

bj � n� �(A) + 2a ;

and hence

(5.2)

rX
i=1

ai +
X

j2[1;s];bj�n��(A)+2a

bj � n+ 2a :

Now we distinguish two cases.

CASE 1: a = 1.
If bj = n � 1 for some j 2 [1; s], then T has at least v1(A) � n=6 > k distinct factorizations, a

contradiction. Therefore, bj � n � �(A) + 2 holds for every j 2 [1; s], and (5.2) implies that
Pr
i=1 ai +Ps

j=1 bj � n+ 2. Since r + s � n+ 1, it follows that
Pr
i=1 ai +

Ps
j=1 bj 2 [n+ 1; n+ 2], a contradiction

to �(T ) = 0.

CASE 2: a = 2.
If bj = n � 2 for some j 2 [1; s], then T has at least v2(A) � n=6 > k distinct factorizations, a

contradiction. If bj = bi = n � 1 for some i 6= j 2 [1; s], then T has at least v2(A) � n=6 > k distinct
factorizations, a contradiction. Thus after renumbering if necessary, we may suppose that bj � n��(A)+4
holds for every j 2 [1; s� 1]. It follows from (5.2) that

Pr
i=1 ai +

Ps�1
j=1 bj � n+ 4. If bs � n� �(A) + 4,

then, as in CASE 1, we derive a contradiction to �(T ) = 0. Therefore, we get that bs = n� 1. But from

r+ s� 1 � n and
Pr
i=1 ai+

Ps�1
j=1 bj � n+4 we obtain that 1 occurs with multiplicity at least n� 8 > k

times in a1 � : : : � arb1 � : : : � bs�1. Since bs + 1 = n, T has at least as many factorizations as the above
multiplicity of 1, a contradiction to jZ(T )j = k. �

We end this section with a result on elementary 2-groups which is in contrast to Theorem 5.1.

Theorem 5.8. Let G be an elementary 2-group of rank r 2 N and let k 2 N.
Then Nk(G) = 2r if and only if k 2 [1; 2].

Proof. By the Inequality 2.2, we have 2r � N1(G) � N2(G). First, we show that N2(G) � 2r. Let
T 2 T (G�) be squarefree with jZ(T )j = 2 and max L(T ) = r1. Then Lemma 5.7 implies that D(G)+ r1�
1 � jT j � 2r1. This implies r1 � D(G)� 1 and thus jT j � 2D(G)� 2 = 2r.

Second, we verify that N3(G) > 2r. Let (e1; : : : ; er) be a basis of G and B = e41e
2
2 � : : : � e2r. Then

�(B) = (e1; 1)(e1; 2)(e1; 3)(e1; 4)

rY
i=2

(ei; 1)(ei; 2) and Z(�(B)) = fz1; z2; z3g

where

z1 =
�
(e1; 1)(e1; 2)

��
(e1; 3)(e1; 4)

� rY
i=2

�
(ei; 1)(ei; 2)

�
;

z2 =
�
(e1; 1)(e1; 3)

��
(e1; 2)(e1; 4)

� rY
i=2

�
(ei; 1)(ei; 2)

�
and

z3 =
�
(e1; 1)(e1; 4)

��
(e1; 2)(e1; 3)

� rY
i=2

�
(ei; 1)(ei; 2)

�
:
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This shows that N3(G) � j�(B)j = 2r + 2. �
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