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Abstract. We obtain the generating functions for partial matchings avoiding neighbor
alignments and for partial matchings avoiding neighbor alignments and left nestings. We
show that there is a bijection between partial matchings avoiding the three neighbor patterns
(neighbor alignments, left nestings and right nestings) and set partitions avoiding right
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neighbor patterns and self-modified ascent sequences.

Keywords: set partition, partial matching, neighbor alignment, left nesting, right nesting,
self-modified ascent sequence.

AMS Subject Classification: 05A15, 05A19

1 Introduction

This paper is concerned with the enumeration of partial matchings and set partitions that
avoid certain neighbor patterns. Recall that a partition π of [n] = {1, 2, . . . , n} can be repre-
sented by a diagram with vertices drawn on a horizontal line in increasing order. For a block
B of π, we write the elements of B in increasing order. Suppose that B = {i1, i2, . . . , ik}.
Then we draw an arc from i1 to i2, an arc from i2 to i3, and so on. Such a diagram is called
the linear representation of π.

A partial matching is a partition for which each block contains at most two elements. A
partial matching is also called a poor partition by Klazar [10], see also [2]. It can be viewed
as an involution on a set. A partition for which each block contains exactly two elements is
called a perfect matching.

A nesting of a partition π is formed by two arcs (i1, j1) and (i2, j2) in the linear represen-
tation such that i1 < i2 < j2 < j1. If we further require that i1 +1 = i2, then such a nesting
is called a left nesting. Similarly, one can define right nestings. A crossing is formed by two
arcs (i1, j1) and (i2, j2) such that i1 < i2 < j1 < j2. A left crossing is a crossing formed by
two arcs (i1, j1) and (i2, j2) subject to a further condition i1 + 1 = i2. Right crossings can
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be defined in the same way. Moreover, we say that k arcs (i1, j1), (i2, j2), . . . , (ik, jk) form a
k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk. An alignment of a partition π is formed
by two arcs (i1, j1) and (i2, j2) such that i1 < j1 < i2 < j2.

Perfect matchings avoiding certain patterns have been studied in [3, 4, 5, 8, 9, 11, 12, 15].
Left nestings and right nestings were introduced by Stoimenow [16] in the study of regular
linearized chord diagrams, and were further investigated in [1, 5, 7]. In particular, Bousquet-
Mélou, Claesson, Dukes and Kitaev [1] considered perfect matchings avoiding left nestings
and right nestings, and found bijections with other combinatorial objects such as (2+2)-free
posets.

In this paper, we define a neighbor alignment as an alignment consisting of two arcs (i1, j1)
and (i2, j2) such that j1 + 1 = i2. The aforementioned patterns with neighbor constraints
are called neighbor patterns. An illustration of neighbor patterns is given in Figure 1.1.

· · · · · ·
i i+ 1 j1 j2

· · · · · ·
i i+ 1 j1 j2

· · · · · ·
i1 i2 j j + 1

· · · · · ·
i1 i2 j j + 1

· · · · · ·
i1 j1 j1 + 1 j2

Figure 1.1: Left crossing, left nesting, right crossing, right nesting and neighbor alignment.

Our main results are the generating functions for three classes of partial matchings avoid-
ing neighbor patterns. Denote the set of partial matchings of [n] by M(n). The set of partial
matchings in M(n) with no neighbor alignments is denoted by P(n), and the set of partial
matchings in P(n) with k arcs is denoted by P(n, k). The set of partial matchings in P(n)
with no left nestings is denoted by Q(n), and the set of partial matchings in Q(n) with k
arcs is denoted by Q(n, k). Moreover, the set of partial matchings in Q(n) with no right
nestings is denoted by R(n), and the set of partial matchings in R(n) with k arcs is denoted
by R(n, k). For 0 ≤ k ≤ ⌊n/2⌋, we set

P (n, k) = |P(n, k)|, Q(n, k) = |Q(n, k)|, R(n, k) = |R(n, k)|.

Denote the set of partitions of [n] by Π(n) and denote the set of partitions in Π(n) with
k blocks by Π(n, k). Note that S(n, k) = |Π(n, k)| is the Stirling number of the second
kind. The set of partitions in Π(n) with no right nestings is denoted by T (n), and the
set of partitions in T (n) with k arcs is denoted by T (n, k). For 0 ≤ k ≤ n − 1, we set
T (n, k) = |T (n, k)|.

We obtain the following generating function formulas for the numbers P (n, k) andQ(n, k).

Theorem 1.1 We have

∞∑
n=0

⌊n
2
⌋∑

k=0

P (n, k)xnyk =
∞∑
n=0

n∏
k=1

(1 + kxy)xn. (1.1)

Theorem 1.2 We have

∞∑
n=0

⌊n−1
2

⌋∑
k=0

Q(n− 1, k)xnyk =
∞∑
n=0

xn∏n
k=1(1− kx2y)

. (1.2)
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It is clear that when y = 1, the right-hand side of (1.1) reduces to

∞∑
n=0

n∏
k=1

(1 + kx)xn,

which is the generating function of the sequence A124380 in OEIS [13], whose first few entries
are

1, 1, 2, 4, 9, 22, 57, 157, 453, 1368, 4290, . . . .

Thus Theorem 1.1 can be considered as a combinatorial interpretation of the above gener-
ating function.

Meanwhile, when y = 1 the right-hand side of (1.2) reduces to

∞∑
n=0

xn∏n
k=1(1− kx2)

,

which is the generating function of the sequence A024428 in OEIS [13], whose first few entries
are

1, 1, 2, 4, 8, 18, 42, 102, 260, 684, 1860, . . . .

This sequence can be expressed in terms of Stirling numbers of the second kind. So Theo-
rem 1.2 can be considered as another combinatorial interpretation of the above generating
function.

Denote by Mm×m(n) the set of m × m upper triangular matrices with nonnegative
integer entries which sum to n. We derive the generating function of the numbers R(n+k−
1, k) by establishing a bijection between R(n + k − 1, k) and M(n−k)×(n−k)(k). Moreover,
by constructing a bijection between M(n−k)×(n−k)(k) and T (n, k), we show that there is a
correspondence between T (n, k) and R(n+ k − 1, k). Hence by Theorem 1.3 we obtain the
generating function formula for the numbers T (n, k) as stated in Theorem 1.4. Furthermore,
it turns out that this generating function coincides with the generating function for the
number of self-modified ascent sequences of length n with largest element n − k − 1 or the
number of 31̄524̄-avoiding permutations on [n] having n− k right-to-left minima, as derived
by Bousquet-Mélou, Claesson, Dukes and Kitaev [1].

Theorem 1.3 We have

∞∑
n=1

n−1∑
k=0

R(n+ k − 1, k)xnyk =
∞∑
n=1

xn

(1− xy)(
n+1
2 )

. (1.3)

Theorem 1.4 We have

∞∑
n=1

n−1∑
k=0

T (n, k)xnyk =
∞∑
n=1

xn

(1− xy)(
n+1
2 )

. (1.4)
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This paper is structured as follows. In Section 2, we give a proof of Theorem 1.1 by
deriving a recurrence relation of P (n, k). In Section 3 we prove Theorem 1.2 by establishing
a correspondence between Π(n−k, n−2k) andQ(n−1, k). In Section 4, we present a bijection
between R(n+k−1, k) and M(n−k)×(n−k)(k), which leads to the generating function formula
in Theorem 1.3. In Section 5 we give a proof of Theorem 1.4 by constructing a correspondence
between R(n+ k − 1, k) and T (n, k).

2 Neighbor alignments

In this section, we give a proof of the generating function formula for the number of partial
matchings avoiding neighbor alignments. If (i, j) is an arc in the diagram of π, we call i a
left-hand endpoint, and call j a right-hand endpoint. A singleton of a partial matching or
a set partition is the only element in a block, which corresponds to an isolated vertex in its
diagram representation. For a block with at least two elements, the minimum element is
called an origin, and the maximum element is called a destination, and an element in between,
if any, is called a transient vertex or simply a transient. An origin and a destination are also
called an opener and a closer by some authors. We first give a recurrence relation of P (n, k).

Theorem 2.1 For n ≥ 3, and 1 ≤ k ≤ n/2, we have

P (n, k) = P (n− 1, k) + (n− k)P (n− 2, k − 1), (2.1)

with initial values P (1, 0) = 1, P (2, 0) = 1, P (2, 1) = 1.

Proof. It is clear that the number of partial matchings in P(n, k) such that the element 1 is
a singleton equals P (n − 1, k). So it suffices to show that the number of partial matchings
in which 1 is not a singleton equals (n − k)P (n − 2, k − 1). If no confusion arises, we do
not distinguish a partial matching from its diagram representation. For a partial matching
M ∈ P(n, k) in which 1 is not a singleton, we assume that (1, i) is an arc of M . Deleting the
arc (1, i) and the two vertices 1 and i, we are led to a partial matching in P(n− 2, k − 1).

Conversely, given a partial matching M ∈ P(n − 2, k − 1) with n − 2 vertices, in order
to get a partial matching with k arcs, we can add an arc into M by placing the left-hand
endpoint before the first vertex of M and inserting the right-hand endpoint at some position
of M . Clearly, there are n − 1 possible positions to insert the right-hand endpoint of the
new arc. To ensure that the insertion will not cause any neighbor alignments, we should not
allow the right-hand endpoint of the inserted arc to be placed before any origin of M . Since
there are k− 1 arcs in M , thus there are k− 1 positions that are forbidden. Hence there are
(n − 1) − (k − 1) = n − k choices to insert the new arc. After relabeling, we get a partial
matching in P(n, k). This completes the proof.

As an example, let us consider a partial matchingM = {{1, 4}, {2}, {3, 5}, {6}} ∈ P(6, 2).
The possible positions for inserting an arc are marked by the symbol ∗ in Figure 2.1. In
the left diagram, the positions before the vertices 1 and 3 are forbidden. If we choose the
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M
1 2 3 4 5 6
∗∗ ∗ ∗ ∗ ∗ =⇒

1 2 3 4 5 6 7 8

Figure 2.1: Possible positions for inserting an arc.

position between the vertices 5 and 6 to insert the right-hand endpoint of the new arc, then
the diagram on the right represents the resulting partial matching.

Proof of Theorem 1.1. Let f(n, k) denote the coefficient of xnyk in the expansion of

∞∑
m=1

m∏
i=1

(1 + ixy)xm.

It is not hard to see that f(n, k) equals the coefficient of xkyk in the expansion of

n−k∏
i=1

(1 + ixy).

It follows that
f(n, k) = f(n− 1, k) + (n− k)f(n− 2, k − 1)

for n ≥ 3 and k ≥ 1, f(n, 0) = 1 for n ≥ 1, and f(2, 1) = 1. Thus P (n, k) and f(n, k) satisfy
the same recurrence relation with the same initial values. This completes the proof.

To conclude this section, we give a recurrence relation of the generating function of
P (n, k). Let

fn(y) =

⌊n
2
⌋∑

k=0

P (n, k)yk.

Corollary 2.2 For n ≥ 3, we have

fn(y) = fn−1(y) + (n− 1)yfn−2(y)− y2f ′
n−2(y), (2.2)

where f1(y) = 1, f2(y) = 1 + y.

3 Neighbor alignments and left nestings

This section is concerned with the generating function for partial matchings avoiding neigh-
bor alignments and left nestings. More precisely, we establish a bijection between set par-
titions and partial matchings avoiding neighbor alignments and left nestings. As a conse-
quence, we obtain the generating function in Theorem 1.2.
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Theorem 3.1 For 0 ≤ k ≤ ⌊n−1
2
⌋, there exists a bijection between the set Π(n− k, n− 2k)

and the set Q(n − 1, k). Moreover, this bijection transforms the number of transients of a
partition to the number of left crossings of a partial matching.

Proof. For k = 0 the theorem is obvious. We only consider the case k ≥ 1. Let π ∈
Π(n− k, n− 2k) be a partition of [n− k] with k arcs, we wish to add k − 1 vertices to π in
order to form a partial matching α(π) in Q(n− 1, k), that is, a partial matching on [n− 1]
avoiding neighbor alignments and left nestings. First, we add a vertex before each origin,
except for the first origin, and relabel the vertices from left to right by using 1, 2, . . .. Let
the resulting partition be denoted by σ.

To transform the partition σ to a partial matching inQ(n−1, k), we need the operation of
changing a 2-path to a left crossing, see Figure 3.1 for an illustration. Such a transformation
is called a splitting of a 2-path, where a 2-path means two arcs (i, j) and (j, k) with i < j < k.
We shall order the 2-paths of a partition in terms of their transient vertices.

· · · · · ·
i j k

=⇒ · · · · · ·
i i+ 1 j + 1 k + 1

Figure 3.1: Changing a 2-path to a left crossing.

Assume that there arem 2-paths in σ, that is, there arem transient vertices in σ. We shall
apply the splitting operation m times to get a sequence of partitions σ = σ(0), σ(1), . . . , σ(m)

such that for 1 ≤ i ≤ m, the partition σ(i) is obtained from σ(i−1) by splitting the smallest
2-path of σ(i−1) and by relabeling the vertices afterwards.

Let α(π) = σ(m) denote the resulting partition. It is easy to see that α(π) no longer
contains any transient vertex, in other words, α(π) is a partial matching. It is clear that the
splitting operation generates a new origin and a new destination. From the construction of
σ, we see that for 1 ≤ i ≤ m, there is a singleton before each origin of σ(i), except the first
origin and the origins caused by the splitting operation. So we deduce that in the process of
constructing σ(i) from σ(i−1) we do not get any new left nestings or new neighbor alignments
in σ(i).

We claim that there are no left nestings in α(π). To prove this claim, we introduce a
linear order on the set of left nestings of a partition. For a left nesting N consisting of two
arcs (i1, j1) and (i1+1, j2) and a left nesting N ′ consisting of two arcs (i′1, j

′
1) and (i′1+1, j′2),

we say that N is smaller than N ′ if i1 < i′1. To see that all the left nestings of σ will disappear
in α(π) = σ(m), we start with the smallest left nesting of σ = σ(0). By the construction of
σ, if the smallest left nesting of σ consists of two arcs (i, j) and (i + 1, k), then i + 1 is a
transient vertex of σ. Clearly, the vertex i is either a transient vertex or an origin of σ.

If the vertex i is a transient vertex of σ, then we may assume that the 2-path Vi containing
i as the transient vertex is the t-th (t ≥ 1) 2-path of σ. Note that we always split the smallest
2-path and the splitting operation does not cause any new left nestings. We see that after
applying the splitting operation t − 1 times, the 2-path Vi (after relabeling) becomes the
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smallest 2-path of σ(t−1). One can check that after we split the smallest 2-path of σ(t−1), the
smallest left nesting in σ disappears in σ(t).

If the vertex i is an origin of σ, then we may assume that the 2-path Vi+1 of σ containing
i + 1 as the transient vertex is the t′-th (t′ ≥ 1) 2-path of σ. After applying the splitting
operation t′ − 1 times, the 2-path Vi+1 (after relabeling) becomes the smallest 2-path of
σ(t′−1). Splitting the smallest 2-path of σ(t′−1), the smallest left nesting of σ disappears in
σ(t′). See Figure 3.2 as an illustration for the above two cases.

Therefore, the smallest left nesting of σ disappears in some σ(t) (t ≥ 1). If there still
exist left nestings in σ(t), we can repeat the above process for the smallest left nesting of
σ(t). Since the splitting operation does not cause any new left nestings, the left nestings will
disappear at last. Thus the proof of the claim is completed.

· · · · · · · · ·
i i+ 1 j2 j1

=⇒
· · · · · · · · ·
i+ 1 i+ 2 j2 + 1 j1 + 1

· · · · · · · · ·
i i+ 1 j2 j1

=⇒
· · · · · · · · ·
i+ 1 i+ 2 j2 + 1 j1 + 1

Figure 3.2: The disappearing of left nestings.

We still need to show that there are no neighbor alignments in α(π). To this end, we
define a linear order on neighbor alignments of a partition τ . For a neighbor alignment A
consisting of two arcs (i1, j1) and (j1 + 1, j2) and a neighbor alignment A′ consisting of two
arcs (i′1, j

′
1) and (j′1 + 1, j′2), we say that A is smaller than A′ if i1 < i′1. It is easily checked

that this is a linear order on the set of neighbor alignments of τ .

To see that all the neighbor alignments of σ will disappear in α(π) = σ(m), we start
with the smallest neighbor alignment of σ = σ(0). By the construction of σ, if the smallest
neighbor alignment of σ consists of two arcs (i, j) and (j + 1, k), then j + 1 is a transient
vertex of σ. Obviously, the vertex j is either a transient vertex or a destination of σ.

If the vertex j is a transient vertex of σ, then we assume that the 2-path Vj containing
j is the r-th (r ≥ 1) 2-path of σ. Applying the splitting operation r − 1 times to σ, we
get σ(1), σ(2), . . . , σ(r−1). Now the 2-path Vj (after relabeling) becomes the smallest 2-path
of σ(r−1). Moreover, after splitting the smallest 2-path of σ(r−1), the 2-path Vj+1 of σ (after
relabeling) becomes the smallest 2-path of σ(r). It can be verified that the smallest neighbor
alignment of σ disappears in σ(r+1).

If the vertex j is a destination of σ, then we assume that the 2-path Vj+1 is the r′-th
(r′ ≥ 1) 2-path of σ. After applying the splitting operation r′ − 1 times to σ, we obtain
σ(1), σ(2), . . . , σ(r′−1), and the 2-path Vj+1 (after relabeling) becomes the smallest 2-path of
σ(r′−1). It is easily seen that the smallest neighbor alignment of σ disappears in σ(r′).
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So in either case the smallest neighbor alignment of σ disappears in some σ(t) (t ≥ 1). If
σ(t) still contains any neighbor alignments, then there exist 2-paths in σ(t). We may repeat
the above process with respect to the smallest neighbor alignment in σ(t). Since there is
neither increase of neighbor alignments nor increase of 2-paths at any step, all the neighbor
alignments will disappear eventually. We conclude that there are no neighbor alignments in
α(π).

It remains to show that α(π) ∈ Q(n − 1, k) and the number of transients of π equals
the number of left crossings of α(π). It is clear that α(π) has k (k ≥ 1) arcs. It suffices to
show that to construct α(π) from π we get k − 1 more vertices. Recall that π has n − k
vertices and k arcs. Suppose that (i, j) is an arc of π such that i is not the first origin of π.
Clearly, there are k − 1 such arcs. Observe that i is either an origin or a transient vertex of
π. If i is an origin, then a singleton is added before the vertex i in the construction of σ.
If i is a transient vertex, then there is a 2-path Vi containing the vertex i. After changing
Vi to a left crossing, we get one more vertex. Combining the above two cases, we see that
in the construction of α(π), there are k − 1 vertices added. Thus α(π) ∈ Q(n − 1, k). It is
easily verified that the number of transient vertices of π equals the number of left crossings
of α(π).

Conversely, given a partial matching M in Q(n− 1, k), we can recover a partition α′(M)
in Π(n − k, n − 2k). As the first step, we change all the left crossings of M to 2-paths.
Suppose that there are m left crossings in M . We aim to construct a sequence of partitions
M = M (0),M (1), . . . ,M (m) such that for 1 ≤ i ≤ m, M (i) is obtained fromM (i−1) by changing
a unique left crossing to a 2-path.

Let us define a linear order on the set of left crossings of a given partition. For a left
crossing C consisting of two arcs (i1, j1) and (i1 + 1, j2) and a left crossing C ′ consisting of
two arcs (i′1, j

′
1) and (i′1 + 1, j′2), we say that C is smaller than C ′ if i1 < i′1. It is obvious to

see that this is a linear order. Assume that the largest left crossing of M (i−1) is formed by
two arcs (i, j1) and (i+1, j2). Set M

(i) to be the partition obtained from M (i−1) by deleting
the vertex i+1, and transforming the left crossing formed by (i, j1) and (i+1, j2) to a 2-path
formed by (i, j1 − 1) and (j1 − 1, j2 − 1). Then we relabel the vertices from left to right with
1, 2, . . ..

From the above procedure, it can be seen that M (m) is a partition without left crossings.
Now we delete the singleton immediately before each origin of M (m), if there is any, except
for the singleton immediately before the first origin. Finally we relabel the vertices from left
to right with 1, 2, . . .. Denote the resulting partition by α′(M).

We continue to show that α′(M) ∈ Π(n− k, n− 2k) and the number of left crossings of
M equals the number of transient vertices of α′(M). Apparently there are k arcs in α′(M).
So it suffices to show that there are n − k vertices in α′(M), that is, in the construction of
α′(M), we need to delete k − 1 vertices of M . Suppose that (i, j) is an arc of M such that
i is not the first origin of M . Obviously, there are k − 1 such arcs. By the assumption, we
see that i is not the first vertex of M , hence i− 1 is also a vertex of M .

We claim that either the vertex i − 1 or the vertex i, but not both, will be deleted in
the construction of α′(M). There are two cases. Case 1. The vertex i − 1 is a singleton.
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It can be seen that in the construction of α′(M), the vertex i − 1 is deleted. Case 2. The
vertex i− 1 is not a singleton. Since there are neither neighbor alignments nor left nestings
in M , there exists an arc (i − 1, k) of M such that the two arcs (i − 1, k) and (i, j) form a
left crossing of M . In this case, in the construction of α′(M), the left crossing formed by the
arcs (i − 1, k) and (i, j) is transformed into a 2-path by deleting the vertex i. So the claim
is proved.

Thus in the construction of α′(M), there are k− 1 vertices deleted from M . This implies
that α′(M) ∈ Π(n−k, n−2k). It is easily seen that the number of left crossings of M equals
the number of transient vertices of α′(M). Moreover, one can check that the map α′ is the
inverse of the map α. Thus the map α is a bijection. This completes the proof.

For example, for n = 13 and k = 5, let π = {{1, 5}, {2, 3, 4, 7}, {6, 8}} ∈ Π(8, 3) be a
partition with 8 vertices and 5 arcs. We need to add 4 vertices to π in order to get a partial
matching in Q(12, 5). We first add a singleton before the arc (2, 3) and a singleton before the
arc (6, 8). Then we change the two 2-paths to left crossings from left to right. An illustration
of the above procedure is given in Figure 3.3.

=⇒
1 2 3 4 5 6 7 8 9 10 11 12

=⇒
1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8

=⇒
1 2 3 4 5 6 7 8 9 10

π

Figure 3.3: An illustration of the bijection α.

We are now ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2: Let gn(y) be the generating function for the numbers Q(n − 1, k).
From Theorem 3.1 we see that

gn(y) =

⌊n−1
2

⌋∑
k=0

Q(n− 1, k)yk =

⌊n−1
2

⌋∑
k=0

S(n− k, n− 2k)yk,

where S(n, k) are the Stirling numbers of the second kind. Using the generating function of
the Stirling numbers of the second kind [14]∑

n≥k

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
,
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we obtain that
∞∑
n=1

gn(y)x
n =

∞∑
n=1

xn∏n
k=1(1− kx2y)

.

This completes the proof.

It should be mentioned that the generating function of the numbers

gn(1) =

⌊n−1
2

⌋∑
k=0

S(n− k, n− 2k)

can be found in OEIS [13], that is,

∞∑
n=1

gn(1)x
n =

∞∑
n=1

xn∏n
k=1(1− kx2)

.

Thus Theorem 1.2 can be viewed as another combinatorial interpretation for the numbers
gn(1).

To conclude this section, we give a recurrence relation of gn(y). By Theorem 3.1 and the
recurrence relation of the Stirling numbers of the second kind

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k),

we have

Q(n, k) = Q(n− 1, k) + (n− 2k − 1)Q(n− 2, k − 1). (3.1)

Note that we can also give a direct combinatorial proof of (3.1) which is similar to the proof
of (2.1) in Theorem 2.1. In view of (3.1), we are led to the following recurrence relation of
gn(y).

Corollary 3.2 For n ≥ 3, we have

gn(y) = gn−1(y) + (n− 2)y · gn−2(y)− 2y2 · g′n−2(y), (3.2)

where g1(y) = 1, g2(y) = 1.

4 Neighbor alignments and left, right nestings

In this section, we prove the formula (1.3) for the bivariate generating function of the number
of partial matchings of [n+ k − 1] with k arcs that avoid neighbor alignments, left nestings
and right nestings. This generating function turns out to be equal to the generating function
for the number of self-modified ascent sequences of length n with largest element n− k − 1
or the number of 31̄524̄-avoiding permutations on [n] that have n − k right-to-left minima,
as found by Bousquet-Mélou, Claesson, Dukes and Kitaev [1].
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Recall that R(n, k) denotes the set of partial matchings of [n] with k arcs that avoid
neighbor alignments and both left and right nestings, and Mm×m(n) denotes the set of
m×m upper triangular matrices with nonnegative integer entries which sum to n. We shall
give a bijection between the set R(n+ k− 1, k) and the set M(n−k)×(n−k)(k), from which we
can deduce the generating function formula for the numbers R(n+ k − 1, k).

Theorem 4.1 For 0 ≤ k ≤ n − 1, there is a bijection between the set R(n + k − 1, k) and
the set M(n−k)×(n−k)(k).

Proof. Let M ∈ R(n + k − 1, k) be a partial matching with n + k − 1 vertices and k arcs
avoiding left nestings, right nestings and neighbor alignments. We wish to construct an
upper triangular matrix β(M) in M(n−k)×(n−k)(k). Clearly, there are n − k − 1 singletons
in M . These singletons divide the vertices of M into n− k intervals, the first interval is the
interval before the first singleton and the (i + 1)-st interval is the interval between the i-th
and (i+ 1)-st singletons, the (n− k)-th interval is the interval after the last singleton.

From these n − k intervals, we can construct an (n − k) × (n − k) upper triangular
matrix β(M). For 1 ≤ i ≤ j ≤ n − k, define the (i, j)-entry of β(M) to be the number of
arcs of M starting with a vertex in the i-th interval and ending with a vertex in the j-th
interval. Clearly, for an origin in the i-th interval, the corresponding destination is in some
j-th interval, where j ≥ i. Since there are k arcs in M , we see that β(M) ∈ M(n−k)×(n−k)(k).

Conversely, given an upper triangular matrix T ∈ M(n−k)×(n−k)(k), we can recover the
linear representation of a partial matching β′(T ) in R(n+ k− 1, k). For 1 ≤ i, j ≤ n− k, let
ti,j denote the (i, j)-entry of T . Let ri and sj denote the i-th row sum and the j-th column
sum of T respectively.

The partial matching β′(T ) is constructed as follows. First, we draw n− k− 1 singletons
on a line to form n−k intervals. Then we need to determine the origins and the destinations
in each interval. For 1 ≤ i ≤ n− k, we put ri origins and si destinations in the i-th interval,
where all the destinations are placed after all the origins. So there are (n − k − 1) + 2k =
n+ k − 1 vertices. Next, we label the vertices from left to right by 1, 2, . . . , n+ k − 1.

Finally, we should match the k origins and the k destinations to form k arcs. For
1 ≤ i ≤ n − k, for the ri origins in the i-th interval, their corresponding destinations are
determined as follows. As the initial step, for each j (i ≤ j ≤ n− k), we choose the first ti,j
available destinations (i.e., the destinations that have not been matched) in the j-th interval.
It is easy to check that there are ti,i + ti,i+1 + · · · + ti,n−k = ri destinations that have been
chosen so far. Then we match these ri destinations with the ri origins in the i-th interval
to form an ri-crossing. This construction ensures that there are neither left nestings nor
right nestings in β′(T ). Furthermore, the positions of singletons guarantee that there are
no neighbor alignments in β′(T ). Therefore β′(T ) is a partial matching in R(n + k − 1, k).
Moreover, it is easy to see that the map β′ is the inverse of the map β. Thus β is a bijection.
This completes the proof.

For example, for n = 10 and k = 6, let

M = {{1, 6}, {2, 7}, {3}, {4, 8}, {5, 14}, {9}, {10, 11}, {12}, {13, 15}},
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which belongs to R(15, 6). The three singletons 3, 9, 12 divide the vertices into 4 intervals,
namely, {1, 2}, {4, 5, 6, 7, 8}, {10, 11}, {13, 14, 15}. According to the construction of β(M),
we have

β(M) =


0 2 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 . (4.1)

Conversely, given the upper triangular matrix in (4.1), we can recover a partial matching.
First, use three singletons to form four intervals. Assign two origins in the first interval,
all their corresponding destinations are in the second interval. Similarly, assign two origins
in the second interval, their corresponding destinations are in the second and the fourth
interval, and so on. The construction of the corresponding partial matching is illustrated in
Figure 4.1.

=⇒
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=⇒
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=⇒
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.1: An illustration of the bijection β.

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Denote by C(k,
(
n−k+1

2

)
) the set of compositions of k into

(
n−k+1

2

)
parts. Since there are

(
n−k+1

2

)
positions (i, j) of an (n − k) × (n − k) matrix such that

i ≤ j, there is a one-to-one correspondence between the set M(n−k)×(n−k)(k) and the set
C(k,

(
n−k+1

2

)
). Note that

|C(k,
(
n− k + 1

2

)
)| =

(
k +

(
n−k+1

2

)
− 1

k

)
=

((n−k
2

)
+ n− 1

k

)
.
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By Theorem 4.1, we obtain

R(n+ k − 1, k) = |R(n+ k − 1, k)| = |M(n−k)×(n−k)(k)| =
((n−k

2

)
+ n− 1

k

)
.

On the other hand, the coefficient of xn in

∞∑
k=1

xk

(1− xy)(
k+1
2 )

equals
n∑

k=1

((k
2

)
+ n− 1

n− k

)
yn−k =

n−1∑
k=0

((n−k
2

)
+ n− 1

k

)
yk.

Therefore we have

∞∑
n=1

n−1∑
k=0

R(n+ k − 1, k)xnyk =
∞∑
n=1

n−1∑
k=0

((n−k
2

)
+ n− 1

k

)
xnyk

=
∞∑
n=1

xn

(1− xy)(
n+1
2 )

. (4.2)

This completes the proof.

The above generating function formula (4.2) suggests a connection between self-modified
ascent sequences and partial matchings avoiding neighbor alignments, left and right nestings.
Dukes and Parviainen [6] give a bijection from ascent sequences to a special type of upper
triangular matrices, which specializes to a correspondence between the set of self-modified
ascent sequences of length n with largest element k− 1 and the set of k×k upper triangular
matrices with nonnegative integer entries which sum to n such that there are no zeros on
the diagonal. It is clear that such matrices correspond to general k × k upper triangular
matrices with nonnegative integer entries which sum to n− k. In view of the bijection β in
Theorem 4.1, we see that there is a one-to-one correspondence between the set Mk×k(n−k)
and the set R(2n− k − 1, n− k). Thus we have the following theorem.

Theorem 4.2 There is a bijection between the set of self-modified ascent sequences of length
n with largest element k−1 and the set R(2n−k−1, n−k) of partial matchings of [2n−k−1]
with n− k arcs avoiding left nestings, right nestings and neighbor alignments.

5 Partitions with no right nestings

In this section, we give a bijection between partitions avoiding right nestings and partial
matching avoiding neighbor alignments, left nestings and right nestings. More precisely, we
shall construct a bijection between the set T (n, k) of partitions of [n] with k arcs but with
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no right nestings and the set R(n+ k − 1, k) of partial matchings of [n+ k − 1] with k arcs
that avoid neighbor alignments, left and right nestings.

In fact, we only need to establish a correspondence between the set T (n, k) and the set
M(n−k)×(n−k)(k). Combining the bijection β in Section 4 between upper triangular matrices
and partial matchings without left, right nestings and neighbor alignments, we obtain a
bijection between the set T (n, k) and the set R(n + k − 1, k). In the previous section we
have computed the generating function for the numbers R(n + k − 1, k). So we are led to
the same generating function formula for T (n, k) as stated in Theorem 1.4.

Theorem 5.1 For 0 ≤ k ≤ n − 1, there exists a bijection between the set R(n + k − 1, k)
and the set T (n, k). Moreover, this bijection transforms the number of left crossings of a
partial matching to the number of transient vertices of a partition.

Proof. It is clear that the theorem holds for k = 0. We only consider the case k ≥ 1.
Let M ∈ R(n + k − 1, k), namely, M is a partial matching of [n + k − 1] with k arcs
but without left nestings, right nestings and neighbor alignments. We wish to construct a
partition γ(M) ∈ T (n, k). We first use the bijection β in Section 4 to transform M to an
upper triangular matrix T = β(M) which is in M(n−k)×(n−k)(k). Using the matrix T we can
construct a partition γ(M) ∈ T (n, k).

The construction of a partition γ(M) from T can be described as follows. We start with
n−k empty intervals by putting down n−k−1 singletons on a line. Then we determine the
left-hand and right-hand endpoints in each interval so that all the arcs can be determined
by the endpoints.

To achieve this goal, we define a k-path as a sequence of k arcs of the form (v1, v2), (v2, v3),
. . . , (vk, vk+1), where v1 < v2 < · · · < vk+1. Let ri denote the i-th row sum of T , and let ti,j
denote the (i, j)-entry of T . For 1 ≤ i ≤ n − k, we shall construct an ri-path Pi consists
of (v1, v2), (v2, v3), . . . , (vri , vri+1) such that the origin v1 of Pi is in the i-th interval and the
right-hand endpoints v2, . . . , vri+1 of Pi are determined by the entries in the i-th row of T .

First, we put the origin v1 of Pi immediately before the leftmost right-hand endpoint that
has been constructed in the i-th interval. If there are no right-hand endpoints in the i-th
interval, we place v1 before the i-th singleton. For i ≤ j ≤ n − k, we assign ti,j right-hand
endpoints to the j-th interval.

After the origin v1 is determined, we continue to determine the position of the right-hand
endpoint v2 of Pi. We observe that v2 must be in the m-th interval, where m = min{j :
i ≤ j ≤ n− k, ti,j ̸= 0}. Furthermore, we claim that there is a unique position for v2 in the
m-th interval such that the insertion of the arc (v1, v2) does not cause any right nestings.
We consider two cases.

Case 1. There are no right-hand endpoints to the right of v1 in the m-th interval. In this
case, we put the right-hand endpoint v2 of Pi immediately before the m-th singleton. Then
we relabel the resulting partition.

Case 2. There are t (t ≥ 1) right-hand endpoints u1, u2, . . . , ut to the right of v1 in the
m-th interval. The strategy of finding the position of v2 can be described as follows. We

14



begin with the position immediately to the left of u1. If v2 can be placed in this position
without causing any right nestings, then this is the position we are looking for. Otherwise,
we consider the position immediately before u2 as the second candidate.

Like the case for u1, if putting v2 immediately before u2 does not cause any right nestings,
then it is the desired choice. Otherwise, we consider the position immediately before u3 as
the third candidate. Repeating this process until we find the position of v2 such that inserting
(v1, v2) creates no right nestings.

To see that the above process will terminate at some point, we assume that v2 cannot be
placed immediately before ur (1 ≤ r ≤ t), and we assume that putting v2 immediately after
ur also yields a right nesting. Then this right nesting caused by putting v2 immediately after
ur must be formed by the arc (v1, v2) and the arc whose right-hand endpoint is immediately
after ur. This means that there is a right-hand endpoint after ur. Since the number of right-
hand endpoints in every interval is finite, we conclude that there always exists a position
such that inserting the arc (v1, v2) does not cause any right nestings in the construction of
the ri-path Pi based on the matrix T .

Once the origin v1 of Pi is determined, we need to show that there exists a position to
put the right-hand endpoint v2 of Pi such that the insertion of the arc (v1, v2) does not cause
any right nestings. Furthermore, we also need the choice for the position of v2 is unique.
Assume that we have found a position immediately before the vertex uk1 (1 ≤ k1 ≤ t) such
that no right nestings will be formed after the insertion of the arc (v1, v2). It can be checked
that all the positions to the right of uk1 cannot be chosen for the insertion of (v1, v2).

To the contrary, assume that the position immediately after the vertex uk2 is a possible
choice, where 1 ≤ uk1 < uk2 ≤ t. We now proceed to find a right nesting that leads to a
contradiction. If v2 can be put immediately before uk1 , then the arc (v1, v2) and the arc
e1 = (l1, uk1) form a crossing, that is, v1 < l1; On the other hand, if v2 can be placed
immediately after uk2 , then (v1, v2) and e2 = (l2, uk2) form a crossing as well, that is, l2 < v1.
This implies that l2 < l1. So the arcs e1 and e2 form a nesting.

In fact, based on the nesting formed by e1 and e2 it can be seen that there exists a
right nesting formed by two arcs with right-hand endpoints between uk1 and uk2 in the
construction of the ri-path Pi. To this end, let us consider the distance between uk1 and uk2 .
If uk1 + 1 = uk2 , then e1 and e2 form a right nesting. If uk1 + 2 = uk2 , namely, there is a
vertex uk1+1 between uk1 and uk2 , then the arc with right-hand endpoint uk1+1 forms a right
nesting with e1 or e2. We now turn to the case that there are at least two vertices between
uk1 and uk2 . Assume that e3 = (l3, uk1+1) is the arc with right-hand endpoint uk1+1, and
e4 = (l4, uk2−1) is the arc with right-hand endpoint uk2−1. Since at each step of the insertion
process no right nestings are formed, e3 and e1 = (l1, uk1) form a crossing, that is, l1 < l3.
Moreover, e4 and e2 = (l2, uk2) form a crossing, namely, l4 < l2. Thus we deduce that e3 and
e4 form a nesting as well, and the distance between the right-hand endpoints of e3 and e4 is
shorter than the distance between the right-hand endpoints of e1 and e2. See Figure 5.1 for
an illustration.

Iterating the above process to reduce the distance between the vertex uk1+1 and the
vertex uk2−1, we eventually find a right nesting, which is a contradiction. This implies that
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· · · · · · · · · · · · · · ·
l4 l2 l1 l3 uk1 uk1+1 uk2−1 uk2

e1 e2e3 e4

Figure 5.1: The uniqueness of inserting an arc.

there is a unique position for v2 such that the insertion of the arc (v1, v2) causes no right
nestings in the construction of the ri-path Pi based on the matrix T .

Using the same process for the arc (v2, v3), we see that there is a unique position for v3
such that the insertion (v2, v3) does not cause any right nestings. By iteration, we find that
we can construct a unique ri-path Pi by inserting the arcs (v1, v2), (v2, v3), . . . , (vri , vri+1).

Since Pi has ri + 1 vertices, after we construct n − k paths P1, P2, . . . , Pn−k based on
the matrix T , we obtain a partition τ with each Pi representing a block. Clearly τ has
(r1 + 1) + · · · + (rn−k + 1) + (n − k − 1) = 2n − k − 1 vertices. Moreover, since no right
nestings are formed in the construction of Pi for each i, we see that τ has no right nestings.
Finally, delete the n − k − 1 singletons immediately before each origin of τ , except for the
first origin. Denote the resulting partition by γ(M). Thus γ(M) ∈ T (n, k) is a partition of
[n] with k arcs but without right nestings. Furthermore, it is easily seen that the number of
left crossings of M equals ∑

ri: ri>0

(ri − 1),

which is also the number of transient vertices of γ(M).

Conversely, for k ≥ 1, given a partition π ∈ T (n, k) with k arcs that has no right nestings,
we can recover a partial matching γ′(π) in R(n + k − 1, k). It is clear that we should add
k − 1 vertices to π. The construction can be described as follows.

First, we add a singleton before each origin of π except the first origin. Let π′ denote
the resulting partition. Since the partition π has n− k blocks and the number of singletons
added to π equals the number of non-singleton blocks of π minus one, we deduce that π′ has
n− k − 1 singletons which divide the vertices of π′ into n− k intervals.

From these n− k intervals and the arcs of π′, it is easy to construct an upper triangular
matrix T ′ in M(n−k)×(n−k)(k). Note that in each interval, there is at most one origin of π′.
The entries of the upper triangular matrix T ′ can be determined as follows. For 1 ≤ i ≤
j ≤ n− k, if there is an r-path P corresponding to a block of π′ whose origin is in the i-th
interval, then we set the (i, j)-entry of T ′ to be the number of right-hand endpoints of P
which are in the j-th interval. Otherwise, set the (i, j)-entry of T ′ to be zero. It is evident
that T ′ ∈ M(n−k)×(n−k)(k).

Finally, set γ′(π) = β(T ′). Recall that the map β in Section 4 is a bijection between
the set M(n−k)×(n−k)(k) and the set R(n + k − 1, k). Thus γ′(π) is a partial matching in
R(n + k − 1, k). Furthermore, it can be checked that the number of transient vertices of π
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equals to ∑
r′i: r

′
i>0

(r′i − 1), (5.1)

where r′i is the i-th row sum of T ′. It can be verified that (5.1) is also the number of left
crossings in γ′(π). Thus the number of transient vertices of π is equal to the number of left
crossings in γ′(π).

It is routine to check that the map γ′ is the inverse of the map γ. Hence γ is a bijection.
This completes the proof.

Figure 5.2 gives an example of a partial matching M without left, right nestings and
neighbor alignments. It also demonstrates the procedure to construct a partition γ(M)
without right nestings. There are two singletons in M which create three intervals. For the
origins in the first interval, their corresponding destinations are in the second and the third
interval, and so on. The upper triangular matrix T corresponding to M is

T =

 0 2 1
0 2 2
0 0 1

 .

Using the upper triangular matrix T , one can construct γ(M). The first row of T corresponds
to a 3-path of γ(M), whose origin is in the first interval and the three right-hand endpoints
are in the second and the third interval, and so on.

To conclude, we remark that in general the number of partitions of [n] avoiding right
crossings is not equal to the number of partitions of [n] avoiding right nestings. It would be
interesting to find the generating function for the number of partitions of [n] avoiding right
crossings.
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