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Abstract. We introduce the notion of interlacing log-concavity of a polynomial se-
quence {Pm(x)}m≥0, where Pm(x) is a polynomial of degree m with positive coefficients.
This sequence is said to be interlacingly log-concave if the ratios of consecutive coef-
ficients of Pm(x) interlace the ratios of consecutive coefficients of Pm+1(x) for any
m ≥ 0. The interlacing log-concavity of a sequence of polynomials is stronger than the
log-concavity of the polynomials themselves. We show that the Boros-Moll polynomi-
als are interlacingly log-concave. Furthermore, we give a sufficient condition for the
interlacing log-concavity which implies that some classical combinatorial polynomials
are interlacingly log-concave.
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1 Introduction

In this paper, we introduce the notion of interlacing log-concavity of a polynomial
sequence {Pm(x)}, which is stronger than the log-concavity of the polynomials Pm(x)
themselves. We show that the Boros-Moll polynomials are interlacingly log-concave.

Let {Pm(x)} be a sequence of polynomials, where

Pm(x) =
m∑

i=0

ai(m)xm

is a polynomial of degree m. Let

ri(m) =
ai(m)

ai+1(m)
.

We say that the polynomials Pm(x) (m ≥ 0) are interlacingly log-concave if the ratios
ri(m) interlace the ratios ri(m + 1), that is,

r0(m + 1) ≤ r0(m) ≤ r1(m + 1) ≤ r1(m) ≤ · · · ≤ rm−1(m + 1) ≤ rm−1(m) ≤ rm(m + 1).
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Recall that a sequence {ai}0≤i≤m of positive numbers is said to be log-concave if

a0

a1

≤ a1

a2

≤ · · · ≤ am−1

am

.

It is obvious that the interlacing log-concavity implies log-concavity.

The main objective of this paper is to prove the interlacing log-concavity of the
Boros-Moll polynomials. For the background on these polynomials, see [2, 5–9, 14].
From now on, we shall use Pm(a) to denote the Boros-Moll polynomial given by

Pm(x) =
∑

j,k

(
2m + 1

2j

)(
m− j

k

)(
2k + 2j

k + j

)
(x + 1)j(x− 1)k

23(k+j)
. (1.1)

Boros and Moll [5] derived the following formula for the coefficient di(m) of xi in Pm(x),

di(m) = 2−2m

m∑

k=i

2k

(
2m− 2k

m− k

)(
m + k

k

)(
k

i

)
. (1.2)

In [6], they showed that the sequence {di(m)}0≤i≤m is unimodal and the maximum
element appears in the middle. In other words,

d0(m) < d1(m) < · · · < d[m
2 ](m) > d[m

2 ]−1(m) > · · · > dm(m). (1.3)

They also established the unimodality by a different approach [1, 7]. Moll [14] conjec-
tured that the sequence {di(m)}0≤i≤m is log-concave. Kauers and Paule [12] proved this
conjecture based on recurrence relations found by using a computer algebra approach.
Chen and Xia [10] showed that the sequence {di(m)}0≤i≤m satisfies the ratio mono-
tone property which implies the log-concavity and the spiral property. A combinatorial
proof of the log-concavity of Pm(a) has been found by Chen, Pang and Qu [11].

In addition to the Boros-Moll polynomials, we study polynomials whose coefficients
satisfy a triangular recurrence relation. It is easy to show that the binomial coefficients,
the Narayana numbers and the Bessel numbers are interlacingly log-concave. We also
give a sufficient condition for the interlacing log-concavity of a sequence of polynomials
and prove that the polynomials x(x + 1) · · · (x + n− 1), the Bell polynomials and the
Whitney polynomials are interlacingly log-concave.

2 The interlacing log-concavity of di(m)

In this section, we show that for m ≥ 2, the Boros-Moll polynomials Pm(x) are inter-
lacingly log-concave.

Theorem 2.1. For m ≥ 2 and 0 ≤ i ≤ m, we have

di(m)di+1(m + 1) > di+1(m)di(m + 1) (2.1)

and
di(m)di(m + 1) > di−1(m)di+1(m + 1). (2.2)
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The proof relies on the following recurrence relations derived by Kauers and Paule
[12]:

di(m + 1) =
m + i

m + 1
di−1(m) +

(4m + 2i + 3)

2(m + 1)
di(m), 0 ≤ i ≤ m + 1, (2.3)

di(m + 1) =
(4m− 2i + 3)(m + i + 1)

2(m + 1)(m + 1− i)
di(m)

− i(i + 1)

(m + 1)(m + 1− i)
di+1(m), 0 ≤ i ≤ m, (2.4)

di(m + 2) =
−4i2 + 8m2 + 24m + 19

2(m + 2− i)(m + 2)
di(m + 1)

− (m + i + 1)(4m + 3)(4m + 5)

4(m + 2− i)(m + 1)(m + 2)
di(m), 0 ≤ i ≤ m + 1, (2.5)

and for 0 ≤ i ≤ m + 1,

(m + 2− i)(m + i− 1)di−2(m)− (i− 1)(2m + 1)di−1(m) + i(i− 1)di(m) = 0. (2.6)

Note that Moll [15] independently derived the recurrence relations (2.3) and (2.6) from
which the other two relations can be easily deduced.

To prove (2.1), we need the following lemma.

Lemma 2.2. Assume that m ≥ 2. For 0 ≤ i ≤ m− 2, we have

di(m)

di+1(m)
<

(4m + 2i + 3)di+1(m)

(4m + 2i + 7)di+2(m)
. (2.7)

Proof. We proceed by induction on m. When m = 2, it is easy to check that the result
holds. Assume that the theorem is valid for n, namely,

di(n)

di+1(n)
<

(4n + 2i + 3)di+1(n)

(4n + 2i + 7)di+2(n)
, 0 ≤ i ≤ n− 2. (2.8)

We aim to show that (2.7) holds for n + 1, that is

di(n + 1)

di+1(n + 1)
<

(4n + 2i + 7)di+1(n + 1)

(4n + 2i + 11)di+2(n + 1)
, 0 ≤ i ≤ n− 1. (2.9)

From the recurrence relation (2.3), it is easy to check that for 0 ≤ i ≤ n− 1,

(2i + 4n + 7)d2
i+1(n + 1)− (2i + 4n + 11)di(n + 1)di+2(n + 1)

= (2i + 4n + 7)

(
i + n + 1

n + 1
di(n) +

2i + 4n + 5

2(n + 1)
di+1(n)

)2
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− (2i + 4n + 11)

(
i + n + 2

n + 1
di+1(n) +

2i + 4n + 7

2(n + 1)
di+2(n)

)

×
(

n + i

n + 1
di−1(n) +

2i + 4n + 3

2(n + 1)
di(n)

)

=
A1(n, i) + A2(n, i) + A3(n, i)

4(n + 1)2
,

where A1(n, i), A2(n, i) and A3(n, i) are given by

A1(n, i) = 4(2i + 4n + 7)(i + n + 1)2d2
i (n)

− 4(n + i)(2i + 4n + 11)(i + n + 2)di+1(n)di−1(n),

A2(n, i) = (2i + 4n + 7)(2i + 4n + 5)2d2
i+1(n)

− (2i + 4n + 3)(2i + 4n + 11)(2i + 4n + 7)di(m)di+2(n),

A3(n, i) = (8i3 + 40i2 + 58i + 32n3 + 42n + 80n2 + 120ni + 40i2n + 64n2i + 8)

· di+1(n)di(n)− 2(n + i)(2i + 4n + 11)(2i + 4n + 7)di+2(n)di−1(n).

We are going to show that A1(n, i), A2(n, i) and A3(n, i) are all positive for 0 ≤ i ≤
n− 2. By the induction hypothesis (2.8), we find that for 0 ≤ i ≤ n− 2,

A1(n, i) > 4(2i + 4n + 7)(i + n + 1)2d2
i (n)

− 4(n + i)(2i + 4n + 11)(i + n + 2)
(4n + 2i + 1)

(4n + 2i + 5)
d2

i (n)

= 4
35 + 96n + 72i + 64ni + 40n2 + 28i2

2i + 4n + 5
d2

i (n),

which is positive. From (2.8) it follows that for 0 ≤ i ≤ n− 2,

A2(n, i) > (2i + 4n + 7)(2i + 4n + 5)2d2
i+1(n)

− (2i + 4n + 3)(2i + 4n + 11)(2i + 4n + 7)
(4n + 2i + 3)

(4n + 2i + 7)
d2

i+1(n)

= (40i + 80n + 76)d2
i+1(n),

which is positive. By the induction hypothesis (2.8), we see that for 0 ≤ i ≤ n− 2,

di(n)di+1(n) >
(2i + 4n + 5)(2i + 4n + 7)

(2i + 4n + 3)(2i + 4n + 1)
di−1(n)di+2(n). (2.10)

In view of (2.10), we deduce that

A3(n, i) >(8i3 + 40i2 + 58i + 32n3 + 42n + 80n2 + 120ni + 40i2n + 64n2i + 8)di+1(n)di(n)
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− 2(n + i)(2i + 4n + 11)(2i + 4n + 7)
(4n + 2i + 3)(4n + 2i + 1)

(4n + 2i + 5)(4n + 2i + 7)
di+1(n)di(n)

=8
5 + 22n + 30i + 44ni + 24n2 + 16i2

2i + 4n + 5
di+1(n)di(n),

which is positive for 0 ≤ i ≤ n− 2. Hence the inequality (2.9) holds for 0 ≤ i ≤ n− 2.
It remains to show that (2.9) is true for i = n− 1, that is,

dn−1(n + 1)

dn(n + 1)
<

(6n + 5)dn(n + 1)

(6n + 9)dn+1(n + 1)
. (2.11)

From (1.2) it follows that

dn(n + 1) = 2−n−2(2n + 3)

(
2n + 2

n + 1

)
, (2.12)

dn+1(n + 1) =
1

2n+1

(
2n + 2

n + 1

)
, (2.13)

dn(n + 2) =
(n + 1)(4n2 + 18n + 21)

2n+4(2n + 3)

(
2n + 4

n + 2

)
. (2.14)

Consequently,

dn−1(n + 1)

dn(n + 1)
=

n(4n2 + 10n + 7)

2(2n + 1)(2n + 3)
<

(2n + 3)(6n + 5)

2(6n + 9)
=

(6n + 5)dn(n + 1)

(6n + 9)dn+1(n + 1)
.

This completes the proof.

We are in a position to prove (2.1). In fact we shall prove a stronger inequality.

Lemma 2.3. Assume that m ≥ 2. For 0 ≤ i ≤ m− 1, we have

di(m)

di+1(m)
>

(2i + 4m + 5)di(m + 1)

(2i + 4m + 3)di+1(m + 1)
. (2.15)

Proof. By Lemma 2.2, we have for 0 ≤ i ≤ m− 1,

d2
i (m) >

2i + 4m + 5

2i + 4m + 1
di−1(m)di+1(m). (2.16)

From (2.16) and the recurrence relation (2.3), we find that for 0 ≤ i ≤ m− 1,

di+1(m + 1)di(m)− 2i + 4m + 5

2i + 4m + 3
di+1(m)di(m + 1)

=
2i + 4m + 5

2(m + 1)
di+1(m)di(m) +

i + m + 1

m + 1
di(m)2

− 2i + 4m + 5

2i + 4m + 3

(
2i + 4m + 3

2(m + 1)
di(m)di+1(m) +

i + m

m + 1
di−1(m)di+1(m)

)
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=
i + m + 1

m + 1
d2

i (m)− (4m + 2i + 5)(m + i)

(4m + 2i + 3)(m + 1)
di−1(m)di+1(m)

>

(
m + 1 + i

m + 1
− (4m + 2i + 1)(m + i)

(4m + 2i + 3)(m + 1)

)
d2

i (m)

=
6m + 4i + 3

(4m + 2i + 3)(m + 1)
d2

i (m) > 0,

which yields (2.15). This completes the proof of the lemma.

We now turn to the proof of (2.2).

Lemma 2.4. Assume that m ≥ 2. For 0 ≤ i ≤ m− 1, we have

di(m)

di+1(m)
<

di+1(m + 1)

di+2(m + 1)
. (2.17)

Proof. We proceed by induction on m. It is easily seen that the theorem holds for
m = 2. We assume that the lemma is true for n ≥ 2, i.e.,

di(n)

di+1(n)
<

di+1(n + 1)

di+2(n + 1)
, 0 ≤ i ≤ n− 1. (2.18)

It will be shown that the theorem holds for n + 1, that is,

di(n + 1)

di+1(n + 1)
<

di+1(n + 2)

di+2(n + 2)
, 0 ≤ i ≤ n. (2.19)

Recall that the sequence {di(n+1)}0≤i≤n+1 is unimodal. Furthermore, from (1.3) or the
ratio monotone property [10], we see that the maximum element appears in the middle,
namely, di(n+1) < di+1(n+1) when 0 ≤ i ≤ [

n+1
2

]−1 and di(n+1) > di+1(n+1) when[
n+1

2

] ≤ i ≤ n. We shall consider three cases. The first case is di(n + 1) < di+1(n + 1),
namely, 0 ≤ i ≤ [

n+1
2

] − 1. From the recurrence relation (2.3), we find that for
0 ≤ i ≤ [

n+1
2

]− 1,

di+1(n + 1)di+1(n + 2)− di+2(n + 2)di(n + 1)

=
2i + 4n + 9

2(n + 2)
d2

i+1(n + 1) +
i + n + 2

n + 2
di(n + 1)di+1(n + 1)

− 2i + 4n + 11

2(n + 2)
di(n + 1)di+2(n + 1)− i + n + 3

n + 2
di(n + 1)di+1(n + 1)

=
2i + 4n + 9

2(n + 2)
d2

i+1(n + 1)− 2i + 4n + 11

2(n + 2)
di(n + 1)di+2(n + 1)

− 1

n + 2
di(n + 1)di+1(n + 1)
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>
2i + 4n + 7

2(n + 2)
d2

i+1(n + 1)− 2i + 4n + 11

2(n + 2)
di(n + 1)di+2(n + 1),

which is positive by Lemma 2.2. It follows that for 0 ≤ i ≤ [
n+1

2

]− 1,

di+1(n + 1)di+1(n + 2)− di+2(n + 2)di(n + 1) > 0. (2.20)

Hence this completes the proof of the first case.

We now come to the second case
[

n+1
2

] ≤ i ≤ n− 1. From the recurrence relations
(2.3) and (2.4), it follows that for

[
n+1

2

] ≤ i ≤ n− 1,

di+1(n + 2)di+1(n + 1)− di+2(n + 2)di(n + 1)

=

(
(4n− 2i + 5)(n + i + 3)

2(n + 2)(n + 1− i)
di+1(n + 1)− (i + 1)(i + 2)

(n + 2)(n + 1− i)
di+2(n + 1)

)

×
(

n + 1 + i

n + 1
di(n) +

4n + 2i + 5

2(n + 1)
di+1(n)

)

−
(

n + 3 + i

n + 2
di+1(n + 1) +

4n + 2i + 11

2(n + 2)
di+2(n + 1)

)

×
(

(4n− 2i + 3)(n + i + 1)

2(n + 1)(n + 1− i)
di(n)− i(i + 1)

(n + 1)(n + 1− i)
di+1(n)

)

= B1(n, i)di+1(n + 1)di(n) + B2(n, i)di+1(n + 1)di+1(n)

+ B3(n, i)di+2(n + 1)di(n) + B4(n, i)di+2(n + 1)di+1(n),

where B1(n, i), B2(n, i), B3(n, i) and B4(n, i) are given by

B1(n, i) =
(n + i + 3)(n + 1 + i)

(n + 2)(n + 1− i)(n + 1)
, (2.21)

B2(n, i) =
(n + i + 3)(16n2 + 40n + 25 + 4i)

4(n + 2)(n + 1− i)(n + 1)
, (2.22)

B3(n, i) = −(n + 1 + i)(41 + 16n2 + 56n− 4i)

4(n + 2)(n + 1− i)(n + 1)
, (2.23)

B4(n, i) = − (i + 1)(4n + 5− i)

(n + 2)(n + 1− i)(n + 1)
. (2.24)

Since
[

n+1
2

] ≤ i ≤ n − 1, it follows from (1.3) that di+1(n + 1) > di+2(n + 1) and
di(n) > di+1(n). Thus we get

di+1(n + 1)di(n) > di+1(n + 1)di+1(n), (2.25)

di+1(n + 1)di+1(n) > di+2(n + 1)di+1(n). (2.26)
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Observe that B1(n, i) and B2(n, i) are positive, and B3(n, i) and B4(n, i) are negative.
By the induction hypothesis (2.18), (2.25) and (2.26), we find that for

[
n+1

2

] ≤ i ≤ n−1,

di+1(n + 2)di+1(n + 1)− di+2(n + 2)di(n + 1)

> (B1(n, i) + B2(n, i) + B3(n, i) + B4(n, i)) di+1(n + 1)di+1(n)

=
24n + 10n2 − 8ni + 8i2 + 13

2(n + 2)(n + 1− i)(n + 1)
di+1(n + 1)di+1(n) > 0. (2.27)

From the inequalities (2.20) and (2.27), it follows that (2.19) holds for 0 ≤ i ≤ n− 1.
It is still necessary to show that (2.19) is true for i = n, that is,

dn(n + 1)

dn+1(n + 1)
<

dn+1(n + 2)

dn+2(n + 2)
. (2.28)

For the recurrence relation (2.6), setting i = n + 2, we find that

dn(n + 1)

dn+1(n + 1)
=

2n + 3

2
<

2n + 5

2
=

dn+1(n + 2)

dn+2(n + 2)
,

as desired. Hence the proof is complete by induction.

Therefore, from Lemmas 2.3 and 2.4 it immediately follows the interlacing log-
concavity of the Boros-Moll polynomials.

3 Polynomials with triangular relations on coeffi-

cients

Many combinatorial polynomials admit triangular relations on the coefficients. The
log-concavity of polynomials of this kind of polynomials have been extensively studied.
We show that many classical polynomials are interlacingly log-concave. First, it is easy
to check that the binomial coefficients, the Narayana numbers

N(n, k) =
1

n

(
n

k

)(
n

k + 1

)
,

and the Bessel numbers

B(n, k) =
(2n− k − 1)!

2k(n− k)!(k − 1)!

are interlacingly log-concave.

Moreover, we give a criterion that applies to many combinatorial sequences such as
the Stirling numbers of the first kind without signs, the Stirling numbers of the second
kind, and the Whitney numbers.
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Theorem 3.1. Suppose that for any n ≥ 0,

Gn(x) =
n∑

k=0

T (n, k)xk

is a polynomial of degree n which has only real zeros, and suppose that the coefficients
T (n, k) satisfy a recurrence relation of the following triangular form

T (n, k) = f(n, k)T (n− 1, k) + g(n, k)T (n− 1, k − 1).

If
(n− k)k

(n− k + 1)(k + 1)
f(n + 1, k + 1) ≤ f(n + 1, k) ≤ f(n + 1, k + 1) (3.1)

and

g(n + 1, k + 1) ≤ g(n + 1, k) ≤ (n− k + 1)(k + 1)

(n− k)k
g(n + 1, k + 1), (3.2)

then the polynomials Gn(x) are interlacingly log-concave.

Proof. Since the polynomial Gn(x) has only real zeros, by Newton’s inequality, we have

k(n− k)T (n, k)2 ≥ (k + 1)(n− k + 1)T (n, k − 1)T (n, k + 1).

Hence

T (n, k)T (n + 1, k + 1)− T (n + 1, k)T (n, k + 1)

= f(n + 1, k + 1)T (n, k)T (n, k + 1) + g(n + 1, k + 1)T (n, k)2

− f(n + 1, k)T (n, k)T (n, k + 1)− g(n + 1, k)T (n, k − 1)T (n, k + 1)

≥ (f(n + 1, k + 1)− f(n + 1, k)) T (n, k)T (n, k + 1)

+

(
(n− k + 1)(k + 1)

(n− k)k
g(n + 1, k + 1)− g(n + 1, k)

)
T (n, k − 1)T (n, k + 1),

which is positive by (3.1) and (3.2). It follows that

T (n, k)

T (n, k + 1)
≥ T (n + 1, k)

T (n + 1, k + 1)
. (3.3)

On the other hand, we have

T (n, k + 1)T (n + 1, k + 1)− T (n, k)T (n + 1, k + 2)

= f(n + 1, k + 1)T (n, k + 1)2 + g(n + 1, k + 1)T (n, k)T (n, k + 1)

− f(n + 1, k + 2)T (n, k)T (n, k + 2)− g(n + 1, k + 2)T (n, k + 1)T (n, k)
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≥
(

f(n + 1, k + 1)− (n− k − 1)(k + 1)

(n− k)(k + 2)
f(n + 1, k + 2)

)
T (n, k + 1)2

+ (g(n + 1, k + 1)− g(n + 1, k + 2))T (n, k + 1)T (n, k).

It follows from (3.1) that

T (n, k)

T (n, k + 1)
≤ T (n + 1, k + 1)

T (n + 1, k + 2)
. (3.4)

This completes the proof.

Employing Theorem 3.1, we show that many combinatorial polynomials which have
only real zeros are interlacingly log-concave. For example,

(1) The polynomials
x(x + 1)(x + 2) · · · (x + n− 1),

whose coefficients are the Stirling numbers of the first kind without signs, which
satisfy the recurrence relation

c(n, k) = (n− 1)c(n− 1, k) + c(n− 1, k − 1);

(2) The Bell polynomials whose coefficients are the Stirling numbers of the second
kind S(n, k), which satisfy the recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k);

(3) The Whitney polynomials

Wn(x) =
n∑

k=0

Wm(n, k)xk,

which have only real zeros, see Benoumhani [3, 4]. The coefficients Wm(n, k)
satisfy the recurrence relation

Wm(n, k) = (1 + mk)Wm(n− 1, k) + Wm(n− 1, k − 1).
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