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Abstract

Let G be a nontrivial connected graph of order n and k an integer with 2 ≤ k ≤ n.

For a set S of k vertices of G, let κ(S) denote the maximum number ` of edge-

disjoint trees T1, T2, . . . , T` in G such that V (Ti) ∩ V (Tj) = S for every pair i, j

of distinct integers with 1 ≤ i, j ≤ `. Chartrand et al. generalized the concept

of connectivity as follows: The k-connectivity, denoted by κk(G), of G is defined

by κk(G) =min{κ(S)}, where the minimum is taken over all k-subsets S of V (G).

Thus κ2(G) = κ(G), where κ(G) is the connectivity of G.

This paper mainly determines the minimal number of edges of a graph of order

n with κ3 = 2, i.e., for a graph G of order n and size e(G) with κ3(G) = 2, it is

proved that e(G) ≥ d6
5ne, and the lower bound is sharp for all n ≥ 4 but n = 9, 10,

whereas for n = 9, 10 examples are given to show that d6
5ne+ 1 is the best possible

lower bound. This gives a clear picture on the minimal size of a graph of order n

with generalized connectivity κ3 = 2.
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1 Introduction

We follow the terminology and notations of [1] and all graphs considered here are

always finite and simple. As usual, we denote the numbers of vertices and edges in G by

n(G) and e(G) (or simply n and e), and these two basic parameters are called the order

and size of G, respectively. Let X be a set of vertices of G and G[X] the subgraph of G

whose vertex set is X and whose edge set consists of all edges of G which have both ends

in X. A stable set in a graph is a set of vertices no two of which are adjacent. A vertex

with degree one in a tree is called a leaf. The connectivity κ(G) of a graph G is defined

as the minimum cardinality of a set Q of vertices of G such that G − Q is disconnected

or trivial. A well-known theorem of Whitney [4] provides an equivalent definition of the

connectivity. For each 2-subset S = {u, v} of vertices of G, let κ(S) denote the maximum

number of internally disjoint uv-paths in G. Then κ(G) =min{κ(S)}, where the minimum

is taken over all 2-subsets S of V (G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial

connected graph of order n and k an integer with 2 ≤ k ≤ n. For a set S of k vertices of

G, let κ(S) denote the maximum number ` of edge-disjoint trees T1, T2, . . . , T` in G such

that V (Ti) ∩ V (Tj) = S for every pair i, j of distinct integers with 1 ≤ i, j ≤ ` (note that

the trees are vertex-disjoint in G\S). A collection {T1, T2, . . . , T`} of trees in G with this

property is called an internally disjoint set of trees connecting S. The k-connectivity,

denoted by κk(G), of G is then defined by κk(G) =min{κ(S)}, where the minimum is

taken over all k-subsets S of V (G). Obviously, κ2(G) = κ(G).

In [3], we focused on the investigation of κ3(G) and mainly studied the relationship

between the 2-connectivity and the 3-connectivity of a graph. We gave sharp upper and

lower bounds for κ3(G) for general graphs G, and showed that if G is a connected planar

graph, then κ(G)− 1 ≤ κ3(G) ≤ κ(G). Moreover, we studied the algorithmic aspects for

κ3(G) and gave an algorithm to determine κ3(G) for a general graph G.

In this paper, we determine the minimal number of edges of a graph with κ3 = 2, i.e.,

for a graph G of order n and size e(G) with κ3(G) = 2, we obtain that e(G) ≥ d6
5
ne,

and the lower bound is sharp for all n ≥ 4 but n = 9, 10, whereas for n = 9, 10 we give

examples to show that d6
5
ne+1 is the best possible lower bound. This gives a clear picture

on the minimal size of a graph of order n with generalized connectivity κ3 = 2. Note that

for a graph G of order n and size e(G) with κ(G) = 2, we have e(G) ≥ n, and a cycle of

this order attains the lower bound.
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2 Lower bound

Before proceeding, we recall a result in [3], which will be used frequently in the sequel.

Lemma 2.1. If G is a connected graph with minimum degree δ, then κ3(G) ≤ δ. In

particular, if there are two adjacent vertices of degree δ, then κ3(G) ≤ δ − 1.

Now we give the lower bound.

Proposition 2.1. Every graph G of order n with κ3(G) = 2 has at least d6
5
ne edges.

Proof. Since κ3(G) = 2, by Lemma 2.1, we know that δ(G) ≥ 2 and any two vertices of

degree 2 are not adjacent. Denote by X the set of vertices of degree 2. We have that X

is a stable set. Put Y = V (G) −X and obviously there are 2|X| edges joining X to Y .

Assume that m′ is the number of edges joining two vertices belonging to Y . It is clear

that

e = 2|X|+ m′. (1)

Since every vertex of Y has degree at least 3 in G, then
∑

v∈Y d(v) = 2|X|+2m′ ≥ 3|Y | =
3(n− |X|), namely,

5|X|+ 2m′ ≥ 3n. (2)

Combining (1) with (2), we have 5
2
e = 5

2
(2|X| + m′) = 5|X| + 5

2
m′ ≥ 5|X| + 2m′ ≥ 3n,

namely, e ≥ 6
5
n. Since the number of edges is an integer, it follows that e ≥ d6

5
ne. The

proof is complete.

Remark 2.1: Furthermore, when n is a multiple of 5, in Proposition 2.1 equality holds

if and only if 5|X|+ 5
2
m′ = 5|X|+ 2m′ = 3n, namely, if and only if

(A) m′ = 0, that is, Y is a stable set and

(B) the maximum degree ∆ is 3.

Moreover, in this case, inequality (2) becomes 5|X| = 3n, that is, |X| = 3
5
n.

Remark 2.2: Obviously, for any graph G with e(G) = d6
5
n(G)e, κ3(G) ≤ 2. The next

two lemmas show that the number e(G) = d6
5
n(G)e cannot guarantee that κ3(G) = 2.

Lemma 2.2. For any connected graph G of order 10 and size 12, κ3(G) = 1.

Proof. Note that e(G) = d6
5
n(G)e and so κ3(G) ≤ 2. Assume, to the contrary, that there

is a connected graph G of order 10 and size 12 with κ3(G) = 2. Therefore by Remark 2.1,
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both X and Y are stable sets, |X| = 3
5
n = 6 and |Y | = 4, where X and Y are the sets of

vertices of degrees 2 and 3, respectively. Let X = {x1, . . . , x6} and Y = {y1, . . . , y4}.
Case 1: For every 2-subset {yi, yj} of Y , there is a vertex in X that is adjacent to both

yi and yj, where 1 ≤ i 6= j ≤ 4.

Note that every vertex in X has degree 2, and there are exactly six vertices in X and

six 2-subsets of Y , namely

{y1, y2}, {y1, y3}, {y1, y4}, {y2, y3}, {y2, y4}, {y3, y4}.

Thus we may assume that G is isomorphic to the graph as shown in Figure 1. Then

observe that it is impossible to find two internally-disjoint trees connecting the vertices

x1, x2 and x4, contrary to our assumption.

Figure 1: The graph for Case 1 of Lemma 2.2
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Case 2: There exists a 2-subset of Y such that no vertex in X is adjacent to both of the

vertices in that subset.

For this case, there must exist some 2-subset {yi, yj} such that at least two vertices

in X are adjacent to both yi and yj, where 1 ≤ i 6= j ≤ 4. Without loss of generality,

we may assume that {yi, yj} = {y1, y2}. Since G is connected, we can get that only two

vertices in X are adjacent to both y1 and y2. Then we may assume that G is isomorphic

to the graph as shown in Figure 2. Now consider the three vertices x1, x3 and x5 and we

can get κ3(G) = 1, contrary to our assumption.

Figure 2: The graph for Case 2 of Lemma 2.2
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The proof is complete.

Remark 2.3: Note that there exists a graph G such that n = 10, e(G) = 13 and

κ3(G) = 2, see Figure 3.
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Figure 3: The graph G of order 10 and size 13 with κ3(G) = 2.
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Now we turn to the graphs of order 9 and size 11.

Lemma 2.3. For any connected graph G of order 9 and size 11, κ3(G) = 1.

Proof. Assume, to the contrary, that there is a connected graph G of order n = 9 and size

e = 11 with κ3(G) ≥ 2. By Lemma 2.1, we have the minimum degree δ(G) ≥ 2. Denote by

X the set of vertices of degree 2 in G. It follows that 2e = Σv∈V (G)d(v) ≥ 2|X|+3(n−|X|),
namely, |X| ≥ 3n − 2e = 5. On the other hand, by Lemma 2.1 again, we get that X is

a stable set. Let m′ be the number of edges joining two vertices belonging to Y , where

Y = V (G) − X. It is clear that e = 2|X| + m′. So |X| ≤ e
2

= 5.5. Now we can

conclude that |X| = 5, |Y | = 4, m′ = 1 and every vertex in Y has degree exactly 3. Set

X = {x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4}. Since m′ = 1, without loss of generality,

suppose that y1y2 is the only edge in G[Y ].

Case 1: There is a vertex in X that is adjacent to both y1 and y2.

Note that G is a simple connected graph and every vertex in X has degree 2. It is not

hard to get that G is isomorphic to the graph as shown in Figure 4. Then observe that

it is impossible to find two internally-disjoint trees connecting the vertices x1, x2 and x4,

contrary to our assumption.

Figure 4: The graph for Case 1 of Lemma 2.3
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Case 2: There is no vertex in X that is adjacent to both y1 and y2.

Subcase 2.1: For every 2-subset {yi, yj} of Y other than {y1, y2}, there is a vertex in X

that is adjacent to both yi and yj, where 1 ≤ i 6= j ≤ 4.

Note that there are exactly five vertices in X and five 2-subsets of Y other than

{y1, y2}. Thus, we may assume that G is isomorphic to the graph as shown in Figure
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5. Consider the three vertices x1, x2 and x5, and we can get κ3(G) = 1, contrary to our

assumption.

Figure 5: The graph for Subcase 2.1 of Lemma 2.3
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Subcase 2.2: Except {y1, y2}, there exists another 2-subset such that no vertex in X is

adjacent to both of the vertices in that subset.

In such a situation, there must exist some 2-subset {yi, yj} such that at least two

vertices in X are adjacent to both yi and yj, where 1 ≤ i 6= j ≤ 4. If {yi, yj} = {y3, y4}, it

is not hard to get that there must exist a vertex in X that is adjacent to both y1 and y2,

contrary to the case. So without loss of generality, we may assume that {yi, yj} = {y1, y3}.
Then we can get G is isomorphic to the graph as shown in Figure 6. Observe that it is

impossible to find two internally-disjoint trees connecting the vertices x1, x4 and x5,

contrary to our assumption.

Figure 6: The graph for Subcase 2.2 of Lemma 2.3
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The proof is complete.

Remark 2.4: Notice that there exists a graph G such that n = 9, e(G) = 12 and

κ3(G) = 2, see Figure 7.

Figure 7: The graph G of order 9 and size 12 with κ3(G) = 2.
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In view of Lemmas 2.2 and 2.3 and Remarks 2.3 and 2.4, we can see that for n = 9, 10,

d6
5
ne + 1 is the best possible lower bound. Naturally, for any positive integer n but
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n = 9, 10, we want to know whether there is a graph of order n attaining the lower bound

d6
5
ne in Proposition 2.1. For this purpose, we first construct a class of graphs.

Before constructing, we want to give some notions. For any two integers a and k ≥ 1,

denote by [a]k an integer such that 1 ≤ [a]k ≤ k and a ≡ [a]k (mod k). For a cycle C =

x1x2x3 . . . xk−1xkx1, we denote three special segments of C by xaCxb = xax[a+1]kx[a+2]k

. . . x[b−1]kxb, x̂aCxb = x[a+1]kx[a+2]k . . . x[b−1]kxb and x̂aCx̂b = x[a+1]kx[a+2]k . . . x[b−1]k , where

1 ≤ a, b ≤ k. Denote by |C| and |P | the lengths of a cycle C and a path P , respectively.

Lemma 2.4. For a positive integer k 6= 2, let C = x1y1x2y2 . . . x2ky2kx1 be a cycle

of length 4k. Add k new vertices z1, z2, . . . , zk to C, and join zi to xi and xi+k, for

1 ≤ i ≤ k. The resulting graph is denoted by H. Then, the 3-connectivity of H is 2,

namely, κ3(H) = 2.

Proof. Since δ(H) = 2, by Lemma 2.1 we can get κ3(H) ≤ 2. So the task is to show

κ3(H) ≥ 2. By the definition of the generalized connectivity, it suffices to prove that

κ(S) ≥ 2, for every 3-subset S of V (H).

Firstly, partition V (H) into three types: V1 = {x1, x2, . . . , x2k}, V2 = {z1, z2, . . . , zk}
and V3 = {y1, y2, . . . , y2k}. We proceed by considering all cases of S.

Case 1: S = {xa, xb, xc}, where 1 ≤ a < b < c ≤ 2k.

The three vertices divide the cycle C into three segments, at least one of which has

length at most |C|/3. Without loss of generality, we may assume that |xaCxb| ≤ |C|/3,

namely, |xbCxa| ≥ 2|C|/3. Let b′ = [b + k]2k. Note that |xbCxb′| = |C|/2, and so

xb′ ∈ V (x̂bCx̂a).

Subcase 1.1: xb′ ∈ V (xcCx̂a). In this case, T1 = xaCxbCxc and T2 = xcCxb′Cxa ∪
xb′z[b]kxb are two internally disjoint trees connecting S.

Subcase 1.2: xb′ ∈ V (x̂bCx̂c). Let a′ = [a + k]2k. We can get xa′ ∈ V (x̂bCx̂b′), since

1 ≤ |xaCxb| ≤ |C|/3, |xaCxa′| = |C|/2 and |xbCxb′| = |C|/2. Therefore, xa′ ∈ V (x̂bCx̂c),

and then T1 = xcCxaCxb and T2 = xbCxa′Cxc∪xa′z[a]kxa are two internally disjoint trees

connecting S.

Case 2: S = {za, zb, zc}, where 1 ≤ a < b < c ≤ k.

Since 1 ≤ a < b < c ≤ k < a+k < b+k < c+k ≤ 2k, xaCxbCxc and xa+kCxb+kCxc+k

are two disjoint segments of C. It is easy to find two internally disjoint trees connecting

S: T1 = zaxaCxbCxczc ∪ xbzb and T2 = zaxa+kCxb+kCxc+kzc ∪ xb+kzb.

Case 3: S = {xa, xb, zc}, where 1 ≤ a < b ≤ 2k and 1 ≤ c ≤ k.
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Observe that the two neighbors xc and xc+k of zk divide the cycle into two segments

xcCxc+k and xc+kCxc.

Subcase 3.1: xa and xb lie in distinct segments. Without loss of generality, we may

assume that xa ∈ V (xcCxc+k) and xb ∈ V (xc+kCxc). Now T1 = xaCxc+kCxb ∪ xc+kzc

and T2 = xbCxcCxa ∪ xczc are two trees we want. Note that the subcase contains the

situation that either xc or xc+k is exactly xa or xb.

Subcase 3.2: xa and xb lie in the same segment. Without loss of generality, suppose

that xa, xb ∈ V (x̂cCx̂c+k). Let b′ = [b + k]2k. Since |xcCxc+k| = |C|/2, |xbCxb′| = |C|/2
and xb ∈ V (x̂cCx̂c+k), we have xb′ ∈ V (x̂c+kCx̂c) and T1 = xaCxbCxc+kzc and T2 =

xbz[b]kxb′CxcCxa ∪ xczc are two internally disjoint trees connecting S.

Case 4: S = {xa, zb, zc}, where 1 ≤ a ≤ 2k and 1 ≤ b < c ≤ k.

Since 1 ≤ b < c ≤ k < b + k < c + k ≤ 2k, the two neighbors xb, xb+k of zb, together

with two neighbors xc, xc+k of zc divide the cycle into four segments xbCxc, xcCxb+k,

xb+kCxc+k and xc+kCxb. Actually, it is easy to see that no matter which segment xa lies

in, the situations are equivalent. Therefore, without loss of generality, we may assume

that xa ∈ V (xbCxc). We have T1 = xaCxcCxb+kzb ∪ xczc and T2 = zcxc+kCxbCxa ∪ xbzb

are two internally disjoint trees connecting S. Note that this case includes the situation

that xa is exactly xb or xc.

Next we consider the cases in which S contains the vertices in V3.

Case 5: S = {ya, yb, yc}, where 1 ≤ a < b < c ≤ 2k.

Clearly, in this case, k is a positive integer at least 3. Among the three segments

yaCyb, ybCyc and ycCya of C, at least one of them has length not more than |C|/3. We

may assume that |yaCyb| ≤ |C|/3 = 4k/3. Moreover, observe that xa+1 lies between

ya and yb. We have yb ∈ V (x̂a+1Cx̂[a+1+k]2k
), since |xa+1Cyb| < |yaCyb| ≤ 4k/3 and

|xa+1Cx[a+1+k]2k
| = |C|/2 = 2k.

Subcase 5.1: yc ∈ V (ŷbCx̂[a+1+k]2k
). There is at least one vertex xb+1 between yb

and yc. Since xb+1 ∈ V (x̂a+1Cx̂[a+1+k]2k
), it is clear that x[b+1+k]2k

∈ V (x̂[a+1+k]2k
Cx̂a+1),

namely, x[b+1+k]2k
∈ V (x̂[a+1+k]2k

Cŷa). We can find two internally disjoint trees con-

necting S: T1 = yaxa+1Cyb ∪ ycCx[a+1+k]2k
∪ xa+1z[a+1]kx[a+1+k]2k

and T2 = ybxb+1Cyc ∪
xb+1z[b+1]kx[b+1+k]2k

Cya.

Subcase 5.2: yc ∈ V (x̂[a+1+k]2k
Cŷa). There is at least one vertex xa between yc

and ya. Obviously, x[a+k]2k
∈ V (x̂a+1Cx̂[a+1+k]2k

). Moreover, xaCyb = |yaCyb| + 1 ≤
|C|/3+1 = 4k/3+1 and xaCx[a+k]2k

= |C|/2 = 2k, where k ≥ 3. So yb ∈ V (x̂aCx̂[a+k]2k
).
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Now T1 = yaxa+1Cyb ∪ xa+1z[a+1]kx[a+1+k]2k
Cyc and T2 = ybCx[a+k]2k

z[a]kxa ∪ ycCxaya are

two internally disjoint trees connecting S.

Case 6: S = {ya, yb, xc}, where 1 ≤ a < b ≤ 2k and 1 ≤ c ≤ 2k.

Notice that ya and yb divide C into two segments yaCyb and ybCya. Let c′ = [c + k]2k,

and then two subcases arise.

Subcase 6.1: xc and xc′ lie in distinct segments. We may assume that xc ∈ V (yaCyb)

and xc′ ∈ V (ybCya). Thus, T1 = yaCxcCyb and T2 = ybCxc′Cya ∪ xcz[c]kxc′ are exactly

two trees we want.

Subcase 6.2: xc and xc′ lie in the same segment. Without loss of generality, we may

assume that xc, xc′ ∈ V (ybCya) and they occur in cyclic order ya, yb, xc, xc′ on C. The

segment yaCyb must contain a vertex xa+1 in V1. Since xa+1 ∈ V (x̂c′Cx̂c), x[a+1+k]2k
∈

V (x̂cCx̂c′). So we can find two internally disjoint trees connecting S: T1 = yaxa+1Cyb ∪
xa+1z[a+1]kx[a+1+k]2k

∪ xcCx[a+1+k]2k
and T2 = ybCxcz[c]kxc′Cya.

Case 7: S = {ya, yb, zc}, where 1 ≤ a < b ≤ 2k and 1 ≤ c ≤ k.

If k = 1, then C = x1y1x2y2x1 and H = C ∪ x1z1x2. So ya, yb and zc are exactly y1, y2

and z1, respectively. Now T1 = y2x1y1 ∪ x1z1 and T2 = y1x2y2 ∪ x2z1 are two internally

disjoint trees connecting S.

Otherwise, k ≥ 3, since k 6= 2. We know that ya, yb divide C into two segments

yaCyb, ybCya, and zc has two neighbors xc and xc+k.

Subcase 7.1: xc and xc+k lie in distinct segments. Suppose that xc ∈ V (yaCyb) and

xc+k ∈ V (ybCya). Clearly T1 = yaCxcCyb ∪ xczc and T2 = ybCxc+kCya ∪ xc+kzc are two

internally disjoint trees connecting S.

Subcase 7.2: xc and xc+k lie in the same segment. Without loss of generality, we

may assume that xc, xc+k ∈ V (ybCya) and they occur in cyclic order ya, yb, xc, xc+k on C.

Subsubcase 7.2.1: Between ya and yb, there are at least two vertices in V1. Clearly

xa+1 6= xb, and ya, xa+1, xb, yb, xc, x[a+1+k]2k
, x[b+k]2k

and xc+k are the cyclic order in which

they occur on C. So we can find two internally disjoint trees connecting S: T1 =

yaxa+1z[a+1]kx[a+1+k]2k
∪ybCxcCx[a+1+k]2k

∪xczc and T2 = ybxbz[b]kx[b+k]2k
Cxc+kCya∪xc+kzc.

Subsubcase 7.2.2: Between ya and yb, there is only one vertex in V1, i.e, xa+1 = xb.

Let b′ = [b + k]2k and clearly xb′ ∈ V (x̂cCx̂c+k). Since k ≥ 3, V (x̂cCx̂c+k) contains

at least two vertices xc+1, xc+k−1 in V1. If xc+1 6= xb′ , then x[c+1+k]2k
= x[c+k+1]2k

6= xb ∈
V (x̂c+k)Cŷa. So T1 = yaxbyb∪xbz[b]kxb′Cxc+kzc and T2 = ybCxcycxc+1z[c+1]kx[c+k+1]2k

Cya∪
xczc are two internally disjoint trees connecting S. Otherwise, xc+k−1 6= xb′ , i.e, x[c−1]2k

6=
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xb. We have x[c−1]2k
∈ V (ŷbCx̂c). So T1 = yaxbyb ∪ xbz[b]kxb′ ∪ zcxcCxb′ and T2 =

ybCx[c−1]2k
z[c−1]kxc+k−1yc+k−1xc+kCya∪xc+kzc are two internally disjoint trees connecting

S.

Case 8: S = {ya, xb, xc}, where 1 ≤ a ≤ 2k and 1 ≤ b < c ≤ 2k.

Let b′ = [b + k]2k and c′ = [c + k]2k. If b′ = c, i.e., c = [b + k]2k, then without

loss of generality, we may assume that ya ∈ V (xbCxc). We have T1 = yaCxcz[c]kxb and

T2 = xcCxbCya are two internally disjoint trees connecting S. Otherwise, b′ 6= c. Without

loss of generality, suppose xb, xc, xb′ and xc′ are the cyclic order in which they occur on

C, and then they divide C into four segments xbCxc, xcCxb′ , xb′Cxc′ and xc′Cxb.

Subcase 8.1: ya ∈ V (xbCxc). We can find two internally disjoint trees connecting S:

T1 = xbCya ∪ xcCxb′z[b]kxb and T2 = yaCxcz[c]kxc′Cxb.

Subcase 8.2: ya ∈ V (xcCxb′) or ya ∈ V (xc′Cxb). It is easy to see that the two

situations are actually equivalent. So we only consider the former. We can find two

internally disjoint trees connecting S: T1 = xbCxcCya and T2 = yaCxb′Cxc′z[c]kxc ∪
xb′z[b]kxb.

Subcase 8.3: ya ∈ V (xb′Cxc′). We can find two internally disjoint trees connecting

S: T1 = xbCxc ∪ xbz[b]kxb′Cya and T2 = yaCxc′Cxb ∪ xc′z[c]kxc.

Case 9: S = {ya, zb, zc}, where 1 ≤ a ≤ 2k and 1 ≤ b < c ≤ k.

Observe that xb, xc, xb+k and xc+k divide the cycle into four segments xbCxc, xcCxb+k,

xb+kCxc+k and xc+kCxb. Actually, no matter which segment ya lies in, the situations

are equivalent. So without loss of generality, we may assume that ya ∈ V (xbCxc). Now

T1 = yaCxcCxb+kzb ∪ xczc and T2 = zcxc+kCxbCya ∪ xbzb are two internally disjoint trees

connecting S.

Case 10: S = {ya, xb, zc}, where 1 ≤ a ≤ 2k, 1 ≤ b ≤ 2k and 1 ≤ c ≤ k.

Subcase 10.1: b = c or b = c + k. Without loss of generality, we may assume that

b = c and ya ∈ V (xc+kCxb). Therefore, T1 = yaCxbzc and T2 = xbCxc+kCya ∪ xc+kzc are

two internally disjoint trees connecting S.

Subcase 10.2: b 6= c and b 6= c+k. Let b′ = [b+k]2k. We may assume that xb, xc, xb′

and xc+k are the cyclic order in which they occur on C. Moreover, they divide C into

four segments xbCxc, xcCxb′ , xb′Cxc+k and xc+kCxb.

If ya ∈ V (xbCxc), then T1 = yaCxcCxb′z[b]kxb ∪ xczc and T2 = zcxc+kCxbCya are two

internally disjoint trees connecting S.
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If ya ∈ V (xcCxb′Cxc+k), then T1 = xbCxcCya ∪ xczc and T2 = yaCxc+kCxb ∪ xc+kzc

are two internally disjoint trees connecting S.

If ya ∈ V (xc+kCxb), then T1 = yaCxbCxczc and T2 = xbz[b]kxb′Cxc+kCya ∪ xc+kzc are

two internally disjoint trees connecting S.

The proof is complete.

Remark 2.5: Clearly, the order n(H) of the graph H is 5k and the size e(H) is 4k+2k =

6k. If k = 2, then H is a connected graph of order 10 and size 12. By Lemma 2.2, we

can get κ3(H) = 1. This is the reason why we add the condition k 6= 2 to Lemma 2.4.

Moreover, no graphs of order 10 can attain the lower bound.

Next we describe an operation on a vertex of degree 2 in a graph. For a vertex u

of degree 2, to smooth u is to delete u and then add an edge between its neighbors.

Obviously, performing such an operation, the numbers of vertices and edges decrease by

one, respectively. Moreover, the degrees of the remaining vertices are not changed.

Lemma 2.5. Let G be a graph such that the set X of vertices of degree 2 is nonempty.

Denote by G′ the new graph obtained by smoothing a vertex in X, and then we have

κ3(G
′) ≥ κ3(G).

Proof. Let u be a vertex in X and {w1, w2} the neighbor set of u. Suppose that G′ is

obtained by smoothing u. Clearly, V (G′) = V (G) − u. For any three vertices v1, v2 and

v3 of G′, let S = {v1, v2, v3}. Obviously, S ⊆ V (G). Let T be a tree connecting S in

G. Note that if v is a leaf of T , we can assume that v ∈ S. Otherwise, T ′ = T − v is

still a tree connecting S and uses less vertices. Now if u ∈ V (T ), then we can see that

T ′ = T − u + w1w2 is exactly a tree connecting S in G′. If u /∈ V (T ), the operation

of smoothing u has nothing to do with T and so T is still a tree connecting S in G′.

Therefore, it is not hard to get that κG′(S) ≥ κG(S). From the definition of κ3, the

conclusion that κ3(G
′) ≥ κ3(G) follows.

Remark 2.6: For a given G, if we successively do the operation of smoothing a vertex

of degree 2 more than once, and the resulting graph is denoted by G′, then we can also

get κ3(G
′) ≥ κ3(G).

Now, we can get our main result.

Theorem 2.2. If G is a graph of order n with κ3(G) = 2, then e(G) ≥ d6
5
ne. Moreover,

the lower bound is sharp for all n ≥ 4 but n = 9, 10, whereas the best lower bound for

n = 9, 10 is d6
5
ne+ 1.

11



Proof. The lower bound d6
5
ne is clear from Proposition 2.1. The best lower bound d6

5
ne+1

for n = 9, 10 is given in Remarks 2.3 and 2.4. Note that all graphs considered here are

always simple. Therefore, any graph attaining the lower bound must have at least four

vertices. Next, we will show that the lower bound d6
5
ne is best possible for all n ≥ 4 but

n = 9, 10.

For n = 8, there is a graph G′ of order n such that κ3(G
′) = 2 as shown in Figure 8.

Moreover, e(G′) = 10 = d6
5
× 8e, which means that G′ attains the lower bound for n = 8.

Figure 8: The graph G′ attaining the lower bound for n = 8
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Now, smooth a vertex of degree 2 in G′. Clearly, the resulting graph G′′ is simple and

δ(G′′) = 2. By Lemma 2.5, we can get κ3(G
′′) ≥ (κ(G′) = 2) and so clearly κ3(G

′′) = 2.

Moreover, n = 8− 1 = 7 and e = 10− 1 = 9 = d6
5
× 7e. The graph G′′ is what we want

to find for n = 7. Similarly, the graph obtained from G′′ by smoothing any one vertex of

degree 2 attains the lower bound for n = 6.

Next, consider the graph H in Lemma 2.4. We know that κ3(H) = 2, n(H) = 5k and

e(H) = 6k = 6
5
n(H), for a positive integer k 6= 2. So H is exactly the graph of order

n = 5k which attains the lower bound.

For k ≥ 3, let k′ = k − 1 and then n(H) = 5k′ + 5 and e(H) = 6k′ + 6. Let X be the

set of vertices of degree 2. Clearly |X| = 3k′+3 > 4, where k′ ≥ 2. Now for the graph H,

smooth successively any t vertices in X, for 1 ≤ t ≤ 4. For any t, it is easy to check that

no parallel edge can arise. Moreover, since |X| > 4, the minimum degree of the resulting

graph H ′ is still 2. Combining Lemma 2.1 and Remark 2.6, we can get the 3-connectivity

of the resulting graph H ′ is 2. Now let us consider the numbers of vertices and edges of

H ′.

When t = 1, n(H ′) = 5k′ + 4 and e(H ′) = 6k′ + 5 = d6
5
(5k′ + 4)e;

When t = 2, n(H ′) = 5k′ + 3 and e(H ′) = 6k′ + 4 = d6
5
(5k′ + 3)e;

When t = 3, n(H ′) = 5k′ + 2 and e(H ′) = 6k′ + 3 = d6
5
(5k′ + 2)e;

When t = 4, n(H ′) = 5k′ + 1 and e(H ′) = 6k′ + 2 = d6
5
(5k′ + 1)e.
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Note that k′ ≥ 2. Therefore, for all n ≥ 4 but n = 9, 10, we can always find a graph

of order n attaining the lower bound.
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