
Combinatorial Telescoping for an Identity of Andrews

on Parity in Partitions

William Y.C. Chen1, Daniel K. Du2 and Charles B. Mei3

Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P. R. China

E-mail: 1chen@nankai.edu.cn, 2dukang@mail.nankai.edu.cn,
3meib@mail.nankai.edu.cn

Abstract

Recently Andrews proposed a problem of finding a combinatorial proof

of an identity on the q-little Jacobi polynomials. We give a classification

of certain triples of partitions and find bijections based on this classifica-

tion. By the method of combinatorial telescoping for identities on sums of

positive terms, we establish a recurrence relation that leads to the identity

of Andrews.
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1 Introduction

In the study of parities in partition identities, Andrews [2] obtained the following
identity on the little q-Jacobi polynomials [5, p. 27]:

2φ1

(

q−n, qn+1

−q
; q,−q

)

= (−1)nq(
n+1

2 )
n

∑

j=−n

(−1)jq−j2

. (1.1)

The basic hypergeometric series 2φ1 is defined as follows,

2φ1

(

a, b

c
; q, z

)

:=
∞
∑

n=0

(a; q)n(b; q)n

(c; q)n(q; q)n
zn,

where |z| < 1, |q| < 1 and

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1),

(a; q)∞ =

∞
∏

i=0

(1 − aqi),

see Gasper and Rahman [5].

Let Gn(q) denote the sum on the left hand side of (1.1). Andrews [2] estab-
lished the following recurrence relation for n ≥ 1,

Gn(q) + qnGn−1(q) = 2q−(n

2), (1.2)

from which (1.1) can be easily deduced. As one of the fifteen open problems,
Andrews asked for a combinatorial proof of identity (1.1).
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In this paper, we give a combinatorial interpretation of a homogeneous re-
currence relation for the sum

Fn(q) = q(
n

2) 2φ1

(

q−n, qn+1

−q
; q,−q

)

,

that is,
Fn(q) + (q2n−1 − 1)Fn−1(q) − q2n−3Fn−2(q) = 0, (1.3)

for n ≥ 2. It is readily seen that (1.3) is a consequence of (1.2) and identity
(1.1) can be easily derived from (1.3).

To be more specific, we shall present the method of combinatorial telescop-
ing for sums of positive terms, which is a variant of the method of combinatorial
telescoping for alternating sums. In this framework, we find a classification of
certain triples of partitions and a sequence of bijections, leading to a combina-
torial explanation of recurrence relation (1.3).

The method of combinatorial telescoping for alternating sums was proposed
by Chen, Hou and Sun [3], which can be used to show that an alternating sum
satisfies certain recurrence relation. It applies to many q-series identities on
alternating sums such as Watson’s identity [8]

∞
∑

k=0

(−1)k 1 − aq2k

(q; q)k(aqk; q)∞
a2kqk(5k−1)/2 =

∞
∑

n=0

anqn2

(q; q)n
, (1.4)

and Sylvester’s identity [9]

∞
∑

k=0

(−1)kqk(3k+1)/2xk 1 − xq2k+1

(q; q)k(xqk+1; q)∞
= 1. (1.5)

For the purpose of this paper, we consider a sum of positive terms

∞
∑

k=0

f(n, k). (1.6)

Suppose that f(n, k) is a weighted count of a set An,k, namely,

f(n, k) =
∑

α∈An,k

w(α),

where w is a weight function. We wish to find sets Bn,k, Hn,k and H ′
n,k with a

weight assignment w such that there exists a weight preserving bijection

φn,k : An,k ∪Hn,k ∪H ′
n,k+1 −→ Bn,k ∪Hn,k+1 ∪H

′
n,k, (1.7)

where ∪ stands for disjoint union. Let

g(n, k) =
∑

α∈Bn,k

w(α),

h(n, k) =
∑

α∈Hn,k

w(α),

h′(n, k) =
∑

α∈H′

n,k

w(α).
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Then the bijection φn,k in (1.7) implies that

f(n, k) + h(n, k) + h′(n, k + 1) = g(n, k) + h(n, k + 1) + h′(n, k). (1.8)

Like the conditions for creative telescoping [6, 7, 10], we assume that Hn,0 =
H ′

n,0 = ∅ and Hn,k, H ′
n,k vanishes for sufficiently large k. Summing (1.8) over

k yields the following relation

∞
∑

k=0

f(n, k) =

∞
∑

k=0

g(n, k). (1.9)

It is often the case that relation (1.9) can be expressed as a recurrence relation.

For example, to derive the recurrence relation (1.3) for Fn(q), we let

Fn,k =
(qn−k+1; q)2k

(q2; q2)k
q(

n−k

2 ). (1.10)

Then Fn(q) can be written as

Fn(q) =

∞
∑

k=0

Fn,k. (1.11)

Let

f(n, k) = Fn,k + q2n−1Fn−1,k,

g(n, k) = Fn−1,k + q2n−3Fn−2,k.

By using the method of combinatorial telescoping, one can establish relation
(1.9), which can be rewritten as the recurrence relation (1.3) of Fn(q).

Indeed, once we have bijections φn,k in (1.7), combining all these bijections,
we are led to a correspondence

φn : An ∪Hn −→ Bn ∪Hn, (1.12)

given by φn(α) = φn,k(α) if α ∈ An,k ∪Hn,k ∪H ′
n,k+1, where

An =
∞
⋃

k=0

An,k, Bn =
∞
⋃

k=0

Bn,k and Hn =
∞
⋃

k=0

(

Hn,k ∪H ′
n,k

)

.

By the method of cancelation, see Feldman and Propp [4], the above bijection
φn implies a bijection

ψn : An −→ Bn.

More precisely, we can define the bijection ψn : An → Bn by setting ψn(a) to be
the first element b that falls into Bn while iterating the action of φn on a ∈ An.

In the next section, we shall give explicit constructions of the bijections for
the recurrence relation (1.3) which implies the following identity:

n
∑

k=0

(qn−k+1; q)2k

(q2; q2)k
q(

n−k

2 ) = (−1)nqn2

n
∑

j=−n

(−1)jq−j2

. (1.13)
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Notice that (1.13) is obtained from (1.1) by multiplying both sides by q(
n

2). As
will be seen, the summand Fn,k of the left hand side of (1.13) can be viewed as
a weighted count of some set Pn,k of triples of partitions. So we may write

Fn,k =
∑

α∈Pn,k

w(α).

We shall construct bijections

φn,k : Pn,k ∪ {2n− 1} × Pn−1,k−1 → Pn−1,k−1 ∪ {2n− 3} × Pn−2,k

for k = 1, 2, . . . , n− 2. Moreover, for k = n − 1 or n, we provide an involution
In,k on

Pn,k ∪ {2n− 1} × Pn−1,k−1

with the invariant set Pn−1,k−1. Furthermore, one can verify that the bijections
φn,k and the involutions In,k are weight preserving. This yields recurrence
relation (1.3), which leads to the identity of Andrews.

2 The Combinatorial Telescoping

The objective of this section is to construct the bijections φn,k and the involu-
tions In,k as mentioned in the introduction so that we can use the combinatorial
telescoping argument to establish recurrence relation (1.3).

Let us recall some notation and definitions on partition as used in Andrews
[1]. A partition is a nonincreasing finite sequence of nonnegative integers λ =
(λ1, . . . , λ`). The integers λi are called the parts of λ. The sum of parts and the
number of parts are denoted by |λ | = λ1 + · · ·+ λ` and `(λ) = l, respectively.
The partition with no parts is denoted by ∅. Denote by D the set of partitions
of distinct parts, and denote by E the set of partitions of even parts. We shall
use diagrams to represent partitions and use rows to represent parts.

Define Pn,k to be the set of triples (τ, λ, µ), where

τ = (n− k − 1, n− k − 2, . . . , 2, 1, 0)

is a triangular partition, λ is a partition of distinct parts such that n− k+ 1 ≤
λi ≤ n+k and µ is a partition of even parts not exceeding 2k, see Figure 2.1. As
will be seen, there is a reason to include the zero part in a triangular partition.

n− k − 1← → ≤ n + k←− −→

≥ n− k + 1

≤ 2k←− −→

τ λ µ

Figure 2.1: Illustration of an element (τ, λ, µ) ∈ Pn,k.
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For k = 0, we have Pn,0 = {(τ, ∅, ∅)}, where τ = (n − 1, n − 2, . . . , 2, 1, 0),
and for k > n, we set Pn,k = ∅. For k = n− 1 and k = n, we have

Pn,n−1 = {(τ, λ, µ) : τ = (0), 2 ≤ λi ≤ 2n− 1, λ ∈ D, µ1 ≤ 2n− 2, µ ∈ E},

Pn,n = {(τ, λ, µ) : τ = ∅, 1 ≤ λi ≤ 2n, λ ∈ D, µ1 ≤ 2n, µ ∈ E}.

It should be mentioned that we have imposed the distinction between the par-
tition of with only a zero part and the empty partition. Under this convention,
one sees that

⋃

k≥0 Pn,k is a disjoint union. Moreover, the k-th summand Fn,k

of Fn(q) as given in (1.10) can be viewed as a weighted count of Pn,k, that is,

Fn,k =
∑

(τ,λ,µ)∈Pn,k

(−1)`(λ)q | τ |+ |λ |+ |µ | .

We now proceed to construct the bijections φn,k in (1.7). Let

An,k = Pn,k ∪ {2n− 1} × Pn−1,k,

Bn,k = Pn−1,k ∪ {2n− 3} × Pn−2,k,

Hn,k = {2n− 1} × Pn−1,k−1,

H ′
n,k = Pn−1,k−1.

The following theorem gives a combinatorial telescoping relation for Pn,k.

Theorem 2.1 For n ≥ 2 and 0 ≤ k ≤ n− 2, there is a bijection

φn,k : Pn,k ∪ {2n− 1} × Pn−1,k−1 → Pn−1,k−1 ∪ {2n− 3} × Pn−2,k. (2.1)

Proof. For k = 0, as Pn−1,k−1 is the empty set, and the bijection φn,0 is defined
by

φn,0 : (τ, ∅, ∅) 7→ (2n− 3, (τ ′, ∅, ∅)),

where τ ′ is obtained from τ by removing the first two parts. For example, when
n = 2, we have τ = (1, 0) and the triple of partitions ((1, 0), ∅, ∅) is mapped to
(1, (∅, ∅, ∅)), which belongs to {2n− 3}× Pn−2,k. Because of the zero part, it is
always possible to remove first two parts of τ .

For k > 0, the bijection φn,k is essentially a classification of the set Pn,k into
four classes, that is,

Pn,k = An,k ∪ Bn,k ∪ Cn,k ∪ Pn−1,k−1,

where

An,k = {(τ, λ, µ) ∈ Pn,k : λ1 ≤ n+ k − 2, µ1 = 2k},

Bn,k = {(τ, λ, µ) ∈ Pn,k : either n + k or n + k − 1 appears in λ, but not both},

Cn,k = {(τ, λ, µ) ∈ Pn,k : λ1 = n+ k, λ2 = n+ k − 1}.

In other words, for the triple of partitions (τ, λ, µ) ∈ Pn,k, if neither n+ k nor
n + k − 1 appears in λ and 2k does not appear in µ, then (τ, λ, µ) falls into
Pn−1,k−1. If neither n+ k nor n+ k− 1 appears in λ and 2k appears in µ, then
(τ, λ, µ) falls into An,k. If exactly one of n+ k and n+ k− 1 appears in λ, then
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(τ, λ, µ) falls into Bn,k. If both n+ k and n+ k − 1 appear in λ, then (τ, λ, µ)
falls into Cn,k.

For Pn−2,k, we need the following classification

Pn−2,k = A′
n,k ∪ B′

n,k ∪ C ′
n,k ∪Dn,k,

where

A′
n,k = {(τ, λ, µ) ∈ Pn−2,k : λ` ≥ n− k + 1},

B′
n,k = {(τ, λ, µ) ∈ Pn−2,k : n − k or n − k − 1 appears in λ, but not both},

C ′
n,k = {(τ, λ, µ) ∈ Pn−2,k : λ` = n− k − 1, λ`−1 = n− k, µ1 = 2k},

Dn,k = {(τ, λ, µ) ∈ Pn−2,k : λ` = n− k − 1, λ`−1 = n− k, µ1 < 2k}.

In other words, for the triple of partitions (τ, λ, µ) ∈ Pn−2,k, if neither n−k nor
n− k− 1 appears in λ , then (τ, λ, µ) falls into A′

n,k. If exactly one of n− k and
n− k− 1 appears in λ, then (τ, λ, µ) falls into B′

n,k. If both n− k and n− k− 1
appear in λ and 2k appears in µ, then (τ, λ, µ) falls into C ′

n,k. If both n−k and
n− k− 1 appear in λ and 2k does not appear in µ, then (τ, λ, µ) falls into D′

n,k.

We are now ready to describe the bijection φn,k. Assume that (τ, λ, µ) is a
triple of partitions in Pn,k.

Case 1: (τ, λ, µ) ∈ Pn−1,k−1. Set φn,k(τ, λ, µ) to be (τ, λ, µ) itself.

Case 2: (τ, λ, µ) ∈ An,k. Removing the first two rows from τ and removing the
first row from µ, we get τ ′ and µ′, respectively. Let λ′ = λ. Then we have
(τ ′, λ′, µ′) ∈ A′

n,k and

|τ | + |λ| + |µ| = 2n− 3 + |τ ′| + |λ′| + |µ′|.

So we obtain a bijection ϕA : An,k → {2n − 3} × A′
n,k as given by (τ, λ, µ) 7→

(2n− 3, (τ ′, λ′, µ′)). Figure 2.2 gives an illustration of the correspondence.

n− k − 1← → ←≤ n + k − 2→

≥ n− k + 1

2k←− −→

2n− 3

n− k − 3 ≤ n + k − 2← →

≥ n− k + 1

≤ 2k←− −→

τ ′ λ′ µ′

τ λ µ

↓

Figure 2.2: The bijection ϕA in Case 2.
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Case 3: (τ, λ, µ) ∈ Bn,k. Removing the first two rows from τ , we get τ ′. Sub-
tracting 2k from the part λ1 in λ, we get a partition λ′. Let µ′ = µ. Then we
have (τ ′, λ′, µ′) ∈ B′

n,k and

|τ | + |λ| + |µ| = 2n− 3 + |τ ′| + |λ′| + |µ′|.

Thus we obtain a bijection ϕB : Bn,k → {2n− 3} ×B′
n,k defined by (τ, λ, µ) 7→

(2n− 3, (τ ′, λ′, µ′)). See Figure 2.3 for an illustration.

n− k − 1← →

λ1

≤ 2k←− −→

2n− 3

n− k − 3 ≤ n + k − 2← →

λ1 − 2k

≤ 2k←− −→

τ ′ λ′ µ′

τ λ µ

↓

Figure 2.3: The bijection ϕB in Case 3.

Case 4: (τ, λ, µ) ∈ Cn,k. Removing the first two rows from τ , we get τ ′. Sub-
tracting 2k from the parts n+k−1 and n+k in λ, we get a partition λ′. Adding
2k to µ as a new part, we get µ′. Then we have (τ ′, λ′, µ′) ∈ C ′

n,k and

|τ | + |λ| + |µ| = 2n− 3 + |τ ′| + |λ′| + |µ′|.

Thus we obtain a bijection ϕC : Cn,k → {2n− 3}×C ′
n,k as given by (τ, λ, µ) 7→

(2n− 3, (τ ′, λ′, µ′)). This case is illustrated in Figure 2.4.

We now consider the quadruples (2n − 1, (τ, λ, µ)) in {2n− 1} × Pn−1,k−1.
For any (τ, λ, µ) ∈ Pn−1,k−1, remove the first two rows of τ and add two parts
n − k and n − k − 1 to λ to get τ ′ and λ′. Let µ′ = µ. Then we see that
(τ ′, λ′, µ′) ∈ Dn,k and

2n− 1 + |τ | + |λ| + |µ| = 2n− 3 + |τ ′| + |λ′| + |µ′|.

Thus we obtain a bijection

ϕD : {2n− 1} × Pn−1,k−1 → {2n− 3} ×Dn,k

as given by (2n− 1, (τ, λ, µ)) 7→ (2n− 3, (τ ′, λ′, µ′)). This case is illustrated by
Figure 2.5.

Combining the bijections ϕA, ϕB , ϕC and ϕD, we complete the proof.

In the following theorem, we provide involutions In,k for k = n − 1 and
k = n, where n ≥ 1.
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n− k − 1← → n + k← → ≤ 2k←− −→

2n− 3

n− k − 3 ≤ n + k − 2← →

n− k

n− k − 1

2k←− −→

τ ′ λ′ µ′

τ λ µ

↓

Figure 2.4: The bijection ϕC in Case 4.

Theorem 2.2 For n ≥ 1 and for k = n− 1 or n, there is an involution In,k on

Pn,k ∪ {2n− 1} × Pn−1,k−1

with the invariant set Pn−1,k−1.

Proof. We only give the description of the involution In,n since In,n−1 can be
constructed in the same manner.

Case 1. For (∅, λ, µ) ∈ Pn,n, if the first part of λ is 2n, then move it to µ.
Conversely, if µ contains a part 2n but λ does not, then move this part from µ

back to λ.

Case 2. For (∅, λ, µ) ∈ Pn,n with λ1 = 2n− 1 and µ1 < 2n, remove the first part
2n− 1 of λ to get λ′, and set

In,n(∅, λ, µ) = (2n− 1, (∅, λ′, µ),

which belongs to {2n− 1} × Pn−1,n−1. Conversely, for

(2n− 1, (∅, λ, µ)) ∈ {2n− 1} × Pn−1,n−1,

adding a part 2n− 1 to λ, we get λ′ and set

In,n(2n− 1, (∅, λ, µ)) = (∅, λ′, µ),

which belongs to Pn,n.

Case 3. It can be seen that the set of triples (∅, λ, µ) ∈ Pn,n with λ1 < 2n− 1
and µ1 < 2n is exactly Pn−1,n−1. So we set Pn−1,n−1 to be the invariant set of
the involution.

In summary, we obtain an involution on Pn,n ∪{2n−1}×Pn−1,n−1 with the
invariant set Pn−1,n−1.

The weight functions w on Pn,k, {2n− 1} × Pn−1,k and {2n− 3} × Pn−2,k
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2n− 1

n− k − 1← → ←≤ n + k − 2→

≥ n− k + 1

≤ 2k − 2←− −→

2n− 3

n− k − 3 ≤ n + k − 2← →

n− k − 1

n− k

≤ 2k − 2←− −→

τ ′ λ′ µ′

τ λ µ

↓

Figure 2.5: The bijection ϕD on {2n− 1} × Pn−1,k−1.

are defined by

w(τ, λ, µ) = (−1)`(λ) q | τ |+ |λ |+ |µ | ,

w(2n− 1, (τ, λ, µ)) = q2n−1 (−1)`(λ) q | τ |+ |λ |+ |µ | ,

w(2n− 3, (τ, λ, µ)) = q2n−3 (−1)`(λ) q | τ |+ |λ |+ |µ | .

One sees that the bijections and involutions in Theorems 2.1 and 2.2 are weight
preserving. For example, for n = 8 and k = 4, let

τ = (3, 2, 1, 0), λ = (10, 9, 8) and µ = (8, 8, 4).

It can be verified that (τ, λ, µ) ∈ A8,4. Applying the bijection φ8,4 we get

τ ′ = (1, 0), λ′ = (10, 9, 8) and µ′ = (8, 4).

Moreover, it can be checked that

w(τ, λ, µ) = w(13, (τ ′, λ′, µ′)) = −q53.

Since φn,k and In,k are weight preserving, we get the following recurrence
relation for Fn(q).

Corollary 2.3 For n ≥ 2, we have

Fn(q) + (q2n−1 − 1)Fn−1(q) − q2n−3Fn−2(q) = 0. (2.2)

It is easy to verify that

(−1)nqn2

n
∑

j=−n

(−1)jq−j2

(2.3)

also satisfies recurrence relation (2.2). Taking the initial values into considera-
tion, we are led to the identity of Andrews.

9



Acknowledgments. We wish to thank Professor George Andrews and the
referees for helpful comments. This work was supported by the 973 Project,
the PCSIRT Project of the Ministry of Education, and the National Science
Foundation of China.

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press,
Cambridge, 1998.

[2] G.E. Andrews, Parity in partition identities, Ramanujan J. 23 (2010) 45–
90.

[3] W.Y.C. Chen, Q.-H. Hou and L.H. Sun, The method of combinatorial
telescoping, J. Combin. Theory, Ser. A 118 (2011) 899–907.

[4] D. Feldman and J. Propp, Producing new bijections from old, Adv. Math.
113 (1995) 1–44.

[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of
Mathematics and Its Applications, Vol. 35, Cambridge University Press,
Cambridge, 1990.

[6] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics, 2nd Ed.,
Addison-Wesley, Reading, MA, 1994.
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