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Abstract

For a simple graph G, the energy E(G) is defined as the sum of the absolute values

of all eigenvalues of its adjacent matrix. For ∆ ≥ 3 and t ≥ 3, denote by Ta(∆, t)

(or simply Ta) the tree formed from a path Pt on t vertices by attaching ∆− 1 P2’s

on each end of the path Pt, and Tb(∆, t) (or simply Tb) the tree formed from Pt+2 by

attaching ∆− 1 P2’s on an end of the Pt+2 and ∆− 2 P2’s on the vertex next to the

end. In [X. Li, X. Yao, J. Zhang and I. Gutman, Maximum energy trees with two

maximum degree vertices, J. Math. Chem. 45(2009), 962–973], Li et al. proved that

among trees of order n with two vertices of maximum degree ∆, the maximal energy

tree is either the graph Ta or the graph Tb, where t = n + 4 − 4∆ ≥ 3. However,

they could not determine which one of Ta and Tb is the maximal energy tree. This

is because the quasi-order method is invalid for comparing their energies. In this

paper, we use a new method to determine the maximal energy tree. It turns out

that things are more complicated. We prove that the maximal energy tree is Tb for

∆ ≥ 7 and any t ≥ 3, while the maximal energy tree is Ta for ∆ = 3 and any t ≥ 3.

Moreover, for ∆ = 4, the maximal energy tree is Ta for all t ≥ 3 but one exception

that t = 4, for which Tb is the maximal energy tree. For ∆ = 5, the maximal energy

tree is Tb for all t ≥ 3 but 44 exceptions that t is both odd and 3 ≤ t ≤ 89, for which

Ta is the maximal energy tree. For ∆ = 6, the maximal energy tree is Tb for all t ≥ 3

but three exceptions that t = 3, 5, 7, for which Ta is the maximal energy tree. One

can see that for most cases of ∆, Tb is the maximal energy tree, ∆ = 5 is a turning

point, and ∆ = 3 and 4 are exceptional cases, which means that for all chemical

trees (whose maximum degrees are at most 4) with two vertices of maximum degree

at least 3, Ta has maximal energy, with only one exception Ta(4, 4).
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1 Introduction

Let G be a simple graph of order n, it is well known [4] that the characteristic poly-

nomial of G has the form

ϕ(G, x) =
n∑

k=0

akx
n−k.

The match polynomial of G is defined as

m(G, x) =

bn/2c∑

k=0

(−1)km(G, k)xn−2k,

where m(G, k) denotes the number of k-matchings of G and m(G, 0) = 1. If G = T is a

tree of order n, then

ϕ(T, x) = m(T, x) =

bn/2c∑

k=0

(−1)km(T, k)xn−2k.

Let λ1, λ2, · · · , λn be the eigenvalues of G, then the energy of G is defined as

E(G) =
n∑

i=1

|λi|,

which was introduced by Gutman in [6]. If T is a tree of order n, then by Coulson integral

formula [2, 3, 5, 8], we have

E(T ) =
2

π

∫ +∞

0

1

x2
log



bn/2c∑

k=0

m(T, k)x2k


 dx.

In order to avoid the signs of coefficients in the matching polynomial, this immediately

motivates us to introduce a new graph polynomial

m+(G, x) =

bn/2c∑

k=0

m(G, k)x2k.

Then we have

E(T ) =
2

π

∫ +∞

0

1

x2
log m+(T, x)dx. (1)

Although m+(G, x) is nothing new but m+(G, x) = (ix)nm(G, (ix)−1), we shall see later

that this will bring us a lot of computational convenience. Some basic properties of

m+(G, x) will be given in next section.

We refer to the survey [7] for more results on graph energy. For terminology and

notations not defined here, we refer to the book of Bondy and Murty [1].
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Graphs with extremal energies are interested in literature. Gutman [5] proved that the

star and the path has the minimal and the maximal energy among all trees, respectively.

Lin et al. [17] showed that among trees with a fixed number of vertices (n) and of maximum

vertex degree (∆), the maximal energy tree has exactly one branching vertex (of degree

∆) and as many as possible 2-branches. Li et al. [16] gave the following Theorem 1.1

about the maximal energy tree with two maximum degree vertices. In a similar way,

Yao [18] studied the maximal energy tree with one maximum and one second maximum

degree vertex. A branching vertex is a vertex whose degree is three or greater, and a

pendant vertex attached to a vertex of degree two is called a 2-branch.

Theorem 1.1 ( [16]) Among trees with a fixed number of vertices (n) and two vertices

of maximum degree (∆), the maximal energy tree has as many as possible 2-branches.

(1) If n ≤ 4∆ − 2, then the maximal energy tree is the graph Tc = Tc(∆, t), depicted

in Figure 1.1, in which the numbers of pendant vertices attached to the two branching

vertices u and v differ by at most 1.

(2) If n ≥ 4∆− 1, then the maximal energy tree is either the graph Ta = Ta(∆, t) or the

graph Tb = Tb(∆, t), depicted in Figure 1.1.

Ta = Ta(∆, t)

Tb = Tb(∆, t)

u v

t

p q

Tc = Tc(∆, t)

d(u) = d(v) = ∆, t = n − 4∆ + 4, |p − q| ≤ 1.

u

u

v

v

t

Figure 1.1 The maximal energy trees with n vertices and two vertices u, v of maximum

degree ∆.

From Theorem 1.1, one can see that for n ≥ 4∆− 1, they could not determine which

one of the trees Ta and Tb has the maximal energy. They gave small examples showing

that both cases could happen. In fact, the quasi-order method they used before is invalid

for the special case. Recently, for these quasi-order incomparable problems, Huo et al.

found an efficient way to determine which one attains the extremal value of the energy,

3



we refer to [9–15] for details. In this paper, we will use this newly developed method to

determine which one of the trees Ta and Tb has the maximal energy, solving this unsolved

problem. It turns out that this problem is more complicated than those in [9–15].

2 Preliminaries

In this section, we will give some properties of the new polynomial m+(G, x), which

will be used in what follows. The proofs are omitted, since they are the same as those for

matching polynomial.

Lemma 2.1 Let Kn be a complete graph with n vertices and Kn the complement of Kn,

then

m+(Kn, x) = 1,

for any n ≥ 0, defining m+(K0, x) = 1, where both K0 and K0 are the null graph.

Similar to the properties of a matching polynomial, we have

Lemma 2.2 Let G1 and G2 be two vertex disjoint graphs. Then

m+(G1 ∪G2, x) = m+(G1, x) ·m+(G2, x).

Lemma 2.3 Let e = uv be an edge of graph G. Then we have

m+(G, x) = m+(G− e, x) + x2m+(G− u− v, x).

Lemma 2.4 Let v be a vertex of G and N(v) = {v1, v2, . . . , vr} the set of all neighbors

of v in G. Then

m+(G, x) = m+(G− v, x) + x2
∑

vi∈N(v)

m+(G− v − vi, x).

The following recursive equations can be gotten from Lemma 2.3 immediately.

Lemma 2.5 Let Pt denote a path on t vertices. Then

(1) m+(Pt, x) = m+(Pt−1, x) + x2m+(Pt−2, x), for any t ≥ 1,

(2) m+(Pt, x) = (1 + x2)m+(Pt−2, x) + x2m+(Pt−3, x), for any t ≥ 2.

The initials are m+(P0, x) = m+(P1, x) = 1, and we define m+(P−1, x) = 0.
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From Lemma 2.5, one can easily obtain

Corollary 2.6 Let Pt be a path on t vertices. Then for any real number x,

m+(Pt−1, x) ≤ m+(Pt, x) ≤ (1 + x2)m+(Pt−1, x), for any t ≥ 1.

Although m+(G, x) has many other properties, the above ones are enough for our use.

3 Main results

Before giving our main results, we state some knowledge on real analysis, for which

we refer to [19].

Lemma 3.1 For any real number X > −1, we have

X

1 + X
≤ log(1 + X) ≤ X.

To compare the energies of Ta and Tb, or more precisely, Ta(∆, t) and Tb(∆, t), means

to compare the values of two functions with the parameters ∆ and t, which are de-

noted by E(Ta(∆, t)) and E(Tb(∆, t)). Since E(Ta(2, t)) = E(Tb(2, t)) for any t ≥ 2 and

E(Ta(∆, 2)) = E(Tb(∆, 2)) for any ∆ ≥ 2, we always assume that ∆ ≥ 3 and t ≥ 3.

For notational convenience, we introduce the following things:

A1 = (1 + x2)(1 + ∆x2)(2x4 + (∆ + 2)x2 + 1),

A2 = x2(1 + x2)(x6 + (∆2 + 2)x4 + (2∆ + 1)x2 + 1),

B1 = (∆ + 2)x8 + (2∆2 + 6)x6 + (∆2 + 4∆ + 4)x4 + (2∆ + 3)x2 + 1,

B2 = x2(1 + x2)(x6 + (∆2 + 2)x4 + (2∆ + 1)x2 + 1).

Using Lemmas 2.4 and 2.5 repeatedly, we can easily get the following two recursive for-

mulas:

m+(Ta, x) = (1 + x2)2∆−5(A1m
+(Pt−3, x) + A2m

+(Pt−4, x)), (2)

and

m+(Tb, x) = (1 + x2)2∆−5(B1m
+(Pt−3, x) + B2m

+(Pt−4, x)), (3)

From Eqs. (2) and (3), by some elementary calculations we can obtain

m+(Ta, x)−m+(Tb, x) = (1 + x2)2∆−5(∆− 2)x6(x2 − (∆− 2))m+(Pt−3, x). (4)

Now we give one of our main results.
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Theorem 3.2 Among trees with n vertices and two vertices of maximum degree ∆, the

maximal energy tree has as many as possible 2-branches. If ∆ ≥ 8 and t ≥ 3, then the

maximal energy tree is the graph Tb, where t = n + 4− 4∆.

Proof. From Eq. (1), we have

E(Ta)− E(Tb) =
2

π

∫ +∞

0

1

x2
log

m+(Ta, x)

m+(Tb, x)
dx

=
2

π

∫ +∞

0

1

x2
log

(
1 +

m+(Ta, x)−m+(Tb, x)

m+(Tb, x)

)
dx. (5)

We use g(∆, t, x) to express

g(∆, t, x) =
1

x2
log

(
1 +

m+(Ta, x)−m+(Tb, x)

m+(Tb, x)

)
.

Since m+(Ta, x) > 0 and m+(Tb, x) > 0, we have

m+(Ta, x)−m+(Tb, x)

m+(Tb, x)
=

m+(Ta, x)

m+(Tb, x)
− 1 > −1.

Therefore, by Lemma 3.1 we have

1

x2
· m+(Ta, x)−m+(Tb, x)

m+(Ta, x)
≤ g(∆, t, x) ≤ 1

x2
· m+(Ta, x)−m+(Tb, x)

m+(Tb, x)
. (6)

So,

2

π

∫ +∞

0

1

x2
·m

+(Ta, x)−m+(Tb, x)

m+(Ta, x)
dx ≤ E(Ta)−E(Tb) ≤ 2

π

∫ +∞

0

1

x2
·m

+(Ta, x)−m+(Tb, x)

m+(Tb, x)
dx.

By Corollary 2.6, we have m+(Pt−4, x) ≤ m+(Pt−3, x) and m+(Pt−4, x) ≥ m+(Pt−3,x)
1+x2 for

∆ ≥ 3 and t ≥ 4. So, we have

E(Ta)− E(Tb)

≤ 2

π

∫ +∞

0

1

x2
· m+(Ta, x)−m+(Tb, x)

m+(Tb, x)
dx

=
2

π

∫ +∞

0

(∆− 2)x4(x2 − (∆− 2))m+(Pt−3, x)

B1m+(Pt−3, x) + B2m+(Pt−4, x)
dx

≤ 2

π

∫ +∞

√
∆−2

(∆− 2)x4(x2 − (∆− 2))

B1 + B2/(1 + x2)
dx− 2

π

∫ √
∆−2

0

(∆− 2)x4(∆− 2− x2)

B1 + B2

dx.

We look at the last two parts separately. The first part is

2

π

∫ +∞

√
∆−2

(∆− 2)x4(x2 − (∆− 2))

B1 + B2/(1 + x2)
dx

=
2

π

∫ +∞

√
∆−2

(∆− 2)x4(x2 − (∆− 2))

(∆ + 3)x8 + (3∆2 + 8)x6 + (∆2 + 6∆ + 5)x4 + (2∆ + 4)x2 + 1
dx

<
2

π

∫ +∞

√
∆−2

(∆− 2)x4(x2 − (∆− 2))

(∆ + 3)x8
dx =

2

π
· 2
√

∆− 2

3(∆ + 3)
.
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The second part is

2

π

∫ √
∆−2

0

(∆− 2)x4(∆− 2− x2)

B1 + B2

dx

=
2

π

∫ √
∆−2

0

(∆− 2)x4(∆− 2− x2)

h(∆, x)
dx

>
2

π

∫ 1

0

(∆− 2)x4(∆− 2− x2)
5∆2+11∆+26

2
(x2 + 1)

dx +
2

π

∫ √
∆−2

1

(∆− 2)x4(∆− 2− x2)

(5∆2 + 11∆ + 26)x10
dx

=
2

π

(−45π∆− 34∆2 + 74∆ + 30π − 12 + 15π∆2 + 4√
∆−2

30(26 + 11∆ + 5∆2)

)
,

where h(∆, x) = x10+(∆2+∆+5)x8+(3∆2+2∆+9)x6+(∆2+6∆+6)x4+(2∆+4)x2+1.

Now, when ∆ ≥ 65 we get that

E(Ta)− E(Tb)

<
2

π
· 2
√

∆− 2

3(∆ + 3)
− 2

π

(−45π∆− 34∆2 + 74∆ + 30π − 12 + 15π∆2 + 4√
∆−2

30(26 + 11∆ + 5∆2)

)
≤ 0.

For t = 3, we have m+(Pt−4, x) = m+(P−1, x) = 0. By a similar method as above, we can

get that E(Ta)− E(Tb) < 0 when ∆ ≥ 24.

Therefore, for ∆ ≥ 65 and t ≥ 3, we have E(Ta) < E(Tb).

For 8 ≤ ∆ ≤ 64, we can get that

E(Ta)− E(Tb) ≤ 2

π
· f(∆, x) < 0

by direct calculations, using a computer with the Maple programm, as shown in Table 1,

where

f(∆, x) =

∫ +∞

√
∆−2

(∆− 2)x4(x2 − (∆− 2))

B1 + B2

1+x2

dx−
∫ √

∆−2

0

(∆− 2)x4(∆− 2− x2)

B1 + B2

dx.

The proof is thus complete.

Now we are left with the cases 3 ≤ ∆ ≤ 7. At first, we consider the case of ∆ = 3 and

t ≥ 3. In this case, we have n = 4∆− 4 + t ≥ 11.

Theorem 3.3 Among trees with n vertices and two vertices of maximum degree ∆ = 3,

the maximal energy tree has as many as possible 2-branches. If n ≥ 11, then the maximal

energy tree is the graph Ta.
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∆ f(∆, x) ∆ f(∆, x) ∆ f(∆, x) ∆ f(∆, x)

8 -0.00377 23 -0.20792 38 -0.29961 53 -0.35353

9 -0.02418 24 -0.21611 39 -0.30403 54 -0.35638

10 -0.04352 25 -0.22390 40 -0.30830 55 -0.35917

11 -0.06168 26 -0.23132 41 -0.31244 56 -0.36188

12 -0.07866 27 -0.23841 42 -0.31644 57 -0.36454

13 -0.09452 28 -0.24518 43 -0.32032 58 -0.36713

14 -0.10933 29 -0.25165 44 -0.32409 59 -0.36965

15 -0.12317 30 -0.25786 45 -0.32774 60 -0.37213

16 -0.13613 31 -0.26381 46 -0.33129 61 -0.37454

17 -0.14829 32 -0.26953 47 -0.33473 62 -0.37691

18 -0.15972 33 -0.27502 48 -0.33808 63 -0.37922

19 -0.17048 34 -0.28031 49 -0.34134 64 -0.38148

20 -0.18063 35 -0.28540 50 -0.34451 65 -0.38369

21 -0.19022 36 -0.29031 51 -0.34759 66 -0.38586

22 -0.19931 37 -0.29504 52 -0.35060 67 -0.38798

Table 1 The values of f(∆, x) for 8 ≤ ∆ ≤ 67.

Proof. For ∆ = 3 and t ≥ 4, by Eqs. (1), (6) and Corollary 2.6, we have

E(Ta)− E(Tb) ≥ 2

π

∫ +∞

0

1

x2
· m+(Ta, x)−m+(Tb, x)

m+(Ta, x)
dx

=
2

π

∫ +∞

0

1

x2
· x6(x2 − 1)m+(Pt−3, x)

A1m+(Pt−3, x) + A2m+(Pt−4, x)
dx

≥ 2

π

∫ +∞

1

x4(x2 − 1)

A1 + A2

dx− 2

π

∫ 1

0

x4(1− x2)

A1 + A2

1+x2

dx

=
2

π

∫ +∞

1

x4(x2 − 1)

x10 + 18x8 + 41x6 + 33x4 + 10x2 + 1
dx

− 2

π

∫ 1

0

x4(1− x2)

7x8 + 34x6 + 32x4 + 10x2 + 1
dx

>
2

π
· 0.00996 > 0.

For ∆ = 3 and t = 3, we can compute the energies of the two graphs directly and get

that E(Ta) > E(Tb).

Therefore, for ∆ = 3 and t ≥ 3, we have E(Ta) > E(Tb).

We now we give two lemmas about the properties of the new polynomial m+(Pt, x)

for our later use.
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Lemma 3.4 For t ≥ −1, the polynomial m+(Pt, x) has the following form

m+(Pt, x) =
1√

1 + 4x2
(λt+1

1 − λt+1
2 ),

where λ1 = 1+
√

1+4x2

2
and λ2 = 1−√1+4x2

2
.

Proof. By Lemma 2.5, m+(Pt, x) = m+(Pt−1, x) + x2m+(Pt−2, x) for any t ≥ 1. Thus,

it satisfies the recursive formula h(t, x) = h(t − 1, x) + x2h(t − 2, x), and the general

solution of this linear homogeneous recurrence relation is h(t, x) = P (x)λt
1 + Q(x)λt

2,

where λ1 = 1+
√

1+4x2

2
and λ2 = 1−√1+4x2

2
. Considering the initial values m+(P1, x) = 1

and m+(P2, x) = 1 + x2, by some elementary calculations, we can easily obtain that

P (x) = 1+
√

1+4x2

2
√

1+4x2 , Q(x) = −1+
√

1+4x2

2
√

1+4x2 .

Thus,

m+(Pt, x) = P (x)λt
1 + Q(x)λt

2 =
1√

1 + 4x2
(λt+1

1 − λt+1
2 ).

As we have defined, the initials are m+(P−1, x) = 0 and m+(P0, x) = 1, from which

we can get the result for all t ≥ −1.

Lemma 3.5 Suppose t ≥ 4. If t is even, then

2

1 +
√

1 + 4x2
<

m+(Pt−4, x)

m+(Pt−3, x)
≤ 1.

If t is odd, then
1

1 + x2
≤ m+(Pt−4, x)

m+(Pt−3, x)
<

2

1 +
√

1 + 4x2
.

Proof. From Corollary 2.6, we know that

1

1 + x2
≤ m+(Pt−4, x)

m+(Pt−3, x)
≤ 1.

By the definitions of λ1 and λ2, we conclude that λ1 > 0 and λ2 < 0 for any x. By Lemma

3.4, if t is even, then

m+(Pt−4, x)

m+(Pt−3, x)
− 2

1 +
√

1 + 4x2
=

λt−3
1 − λt−3

2

λt−2
1 − λt−2

2

− 1

λ1

=
−λt−3

2 (λ1 − λ2)

λ1(λ
t−2
1 − λt−2

2 )
> 0.

Thus,
2

1 +
√

1 + 4x2
<

m+(Pt−4, x)

m+(Pt−3, x)
≤ 1.
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If t is odd, then obviously

1

1 + x2
≤ m+(Pt−4, x)

m+(Pt−3, x)
<

2

1 +
√

1 + 4x2
.

Now we are ready to deal with the case ∆ = 4 and t ≥ 3.

Theorem 3.6 Among trees with n vertices and two vertices of maximum degree ∆ = 4,

the maximal energy tree has as many as possible 2-branches. The maximal energy tree is

the graph Tb if t = 4, and the graph Ta otherwise, where t = n + 4− 4∆.

Proof. By Eqs. (2), (3), (4) and (5), we have

E(Ta)− E(Tb) =
2

π

∫ +∞

0

1

x2
log

(
1 +

m+(Ta, x)−m+(Tb, x)

m+(Tb, x)

)
dx

=
2

π

∫ +∞

0

1

x2
log

(
1 +

(∆− 2)x6(x2 − (∆− 2))

B1 + B2
m+(Pt−4,x)
m+(Pt−3,x)

)
dx. (7)

We first consider the case that t is odd and t ≥ 5. By Eq. (7) and Lemma 3.5, we

have

E(Ta)− E(Tb)

>
2

π

∫ +∞

√
2

1

x2
log

(
1 +

2x6(x2 − 2)

B1 + B2
2

1+
√

1+4x2

)
dx +

2

π

∫ √
2

0

1

x2
log

(
1 +

2x6(x2 − 2)

B1 + B2
1

1+x2

)
dx

>
2

π
· 0.02088 > 0.

If t is even, we want to find t and x satisfying that

m+(Pt−4, x)

m+(Pt−3, x)
<

2

−1 +
√

1 + 4x2
. (8)

It is equivalent to solve
λt−3

1 − λt−3
2

λt−2
1 − λt−2

2

< − 1

λ2

,

which means to solve (
λ1

−λ2

)t−3

> −2λ2,

that is (
1 +

√
1 + 4x2

2x

)2t−6

>
√

1 + 4x2 − 1.
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Thus,

2t− 6 > log 1+
√

1+4x2

2x

(
√

1 + 4x2 − 1).

Since for x ∈ (0, +∞), 1+
√

1+4x2

2x
is decreasing and

√
1 + 4x2 − 1 is increasing, we have

that log 1+
√

1+4x2

2x

(
√

1 + 4x2 − 1) is increasing. Thus, if x ∈ [
√

2, 5], then

log 1+
√

1+4x2

2x

(
√

1 + 4x2 − 1) ≤ log 1+
√

101
10

(
√

101− 1) < 23.

Therefore, when t ≥ 15, i.e., 2t− 6 > 23, we have that Ineq. (8) holds for x ∈ [
√

2, 5].

Now we calculate the difference of E(Ta) and E(Tb). When t is even and t ≥ 15, from

Eq. (7) we have

E(Ta)− E(Tb)

>
2

π

∫ +∞

5

1

x2
log

(
1 +

2x6(x2 − 2)

B1 + B2

)
dx +

2

π

∫ 5

√
2

1

x2
log

(
1 +

2x6(x2 − 2)

B1 + B2
2

−1+
√

1+4x2

)
dx

+
2

π

∫ √
2

0

1

x2
log

(
1 +

2x6(x2 − 2)

B1 + B2
2

1+
√

1+4x2

)
dx

>
2

π
· 0.003099 > 0.

For t = 3 and any even t with 4 ≤ t ≤ 14, by computing the energies of the two graphs

directly by a computer with the Maple programm, we can get that E(Ta) < E(Tb) for

t = 4, and E(Ta) > E(Tb) for the other cases.

The proof is now complete.

The following theorem gives the result for the cases of ∆ = 5, 6, 7.

Theorem 3.7 For trees with n vertices and two vertices of maximum degree ∆, let t =

n− 4∆ + 4 ≥ 3. Then

(i) for ∆ = 5, the maximal energy tree is the graph Ta if t is odd and 3 ≤ t ≤ 89, and the

graph Tb otherwise.

(ii) for ∆ = 6, the maximal energy tree is the graph Ta if t = 3, 5, 7, and the graph Tb

otherwise.

(iii) for ∆ = 7, the maximal energy tree is the graph Tb for any t ≥ 3.

Proof. We consider the following cases separately:

(i) ∆ = 5.
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If t is even, we want to find t and x satisfying that

m+(Pt−4, x)

m+(Pt−3, x)
<

2.1

1 +
√

1 + 4x2
. (9)

It is equivalent to solve
λt−3

1 − λt−3
2

λt−2
1 − λt−2

2

<
2.1

2λ1

,

which means to solve (
λ1

−λ2

)t−3

>
−2.1λ2 + 2λ1

0.1λ1

,

that is, (
1 +

√
1 + 4x2

2x

)2t−6

> 41− 42√
1 + 4x2 + 1

.

Thus,

2t− 6 > log 1+
√

1+4x2

2x

(
41− 42√

1 + 4x2 + 1

)
.

Since for x ∈ (0, +∞), 1+
√

1+4x2

2x
is decreasing and − 42√

1+4x2+1
is increasing, we have that

log 1+
√

1+4x2

2x

(
41− 42√

1+4x2+1

)
is increasing. Thus, if x ∈ (0,

√
3],

log 1+
√

1+4x2

2x

(
41− 42√

1 + 4x2 + 1

)
≤ log 1+

√
13

2
√

3

(
41− 42

1 +
√

13

)
< 13.

Therefore, when t ≥ 10, i.e., 2t − 6 > 13, we have that Ineq. (9) holds for x ∈ (0,
√

3].

Thus, if t is even and t ≥ 10, from Eq. (7) and Lemma 3.5 we have

E(Ta)− E(Tb) <
2

π

∫ +∞

√
3

1

x2
log

(
1 +

3x6(x2 − 3)

B1 + B2
2

1+
√

1+4x2

)
dx

+
2

π

∫ √
3

0

1

x2
log

(
1 +

3x6(x2 − 3)

B1 + B2
2.1

1+
√

1+4x2

)
dx

<
2

π
· (−4.43× 10−4) < 0.

If t is odd, we want to find t and x satisfying that

m+(Pt−4, x)

m+(Pt−3, x)
>

1.99

1 +
√

1 + 4x2
, (10)

that is

2t− 6 > log 1+
√

1+4x2

2x

(
399− 398√

1 + 4x2 + 1

)
.

Since for x ∈ (0, +∞), log 1+
√

1+4x2

2x

(
399− 398√

1+4x2+1

)
is increasing, we have that if x ∈

[
√

3, 390], then

log 1+
√

1+4x2

2x

(
399− 398√

1 + 4x2 + 1

)
< 4671.
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Therefore, for t ≥ 2339, i.e., 2t−6 ≥ 4671, we have that Ineq. (10) holds for x ∈ [
√

3, 390].

Thus, if t is odd and t ≥ 2339, from Eq. (7) and Lemma 3.5 we have

E(Ta)− E(Tb)

<
2

π

∫ +∞

390

1

x2
log

(
1 +

3x6(x2 − 3)

B1 + B2
1

1+x2

)
dx +

2

π

∫ 390

√
3

1

x2
log

(
1 +

3x6(x2 − 3)

B1 + B2
1.99

1+
√

1+4x2

)
dx

+
2

π

∫ √
3

0

1

x2
log

(
1 +

3x6(x2 − 3)

B1 + B2
2

1+
√

1+4x2

)
dx

<
2

π
· (−6.66× 10−6) < 0.

For any even t with 4 ≤ t ≤ 8 and any odd t with 3 ≤ t ≤ 2337, by computing the

energies of the two graphs directly by a computer with the Matlab programm, we get that

E(Ta) > E(Tb) for any odd t with 3 ≤ t ≤ 89, and E(Ta) < E(Tb) for the other cases.

(ii) ∆ = 6.

If t is even and t ≥ 4, from Eq. (7) and Lemma 3.5, we have

E(Ta)− E(Tb) <
2

π

∫ +∞

2

1

x2
log

(
1 +

4x6(x2 − 4)

B1 + B2
2

1+
√

1+4x2

)
dx

+
2

π

∫ 2

0

1

x2
log

(
1 +

4x6(x2 − 4)

B1 + B2

)
dx

<
2

π
· (−0.02027) < 0.

If t is odd, similar to the proof in (i), we can show that when t ≥ 27 and x ∈ [2, 22],

the following inequality holds:

m+(Pt−4, x)

m+(Pt−3, x)
>

1

1 +
√

1 + 4x2
.

Hence, if t is odd and t ≥ 27, we have

E(Ta)− E(Tb)

<
2

π

∫ +∞

22

1

x2
log

(
1 +

4x6(x2 − 4)

B1 + B2
1

1+x2

)
dx +

2

π

∫ 22

2

1

x2
log

(
1 +

4x6(x2 − 4)

B1 + B2
1

1+
√

1+4x2

)
dx

+
2

π

∫ 2

0

1

x2
log

(
1 +

4x6(x2 − 4)

B1 + B2
2

1+
√

1+4x2

)
dx

<
2

π
· (−2.56× 10−4) < 0.
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For any odd t with 3 ≤ t ≤ 25, by computing the energies of the two graphs directly

by a computer with the Matlab programm, we can get that E(Ta) > E(Tb) for t = 3, 5, 7,

and E(Ta) < E(Tb) for the other cases.

(iii) ∆ = 7.

If t is even and t ≥ 4, by the same method as used in (ii), we get that E(Ta)−E(Tb) <
2
π
· (−0.04445) < 0.

If t is odd and t ≥ 5, we have that

E(Ta)− E(Tb) <
2

π

∫ +∞

√
5

1

x2
log

(
1 +

5x6(x2 − 5)

B1 + B2
1

1+x2

)
dx

+
2

π

∫ √
5

0

1

x2
log

(
1 +

5x6(x2 − 5)

B1 + B2
2

1+
√

1+4x2

)
dx

<
2

π
· (−0.01031) < 0.

For t = 3, we can compute the energies of the two graphs directly by a computer with

the Matlab programm and get that E(Ta) < E(Tb).

The proof is now complete.

Chemical trees are interested in chemical literature. A chemical tree is a tree whose

maximum degree is at most 4. From the above theorems, one can observe the following

interesting result:

Corollary 3.8 For all chemical trees of order n with two vertices of maximum degree at

least 3, the graph Ta has maximal energy, with only one exception that ∆ = 4 and t = 4,

for which Tb(4, 4) has larger energy than Ta(4, 4).

Acknowledgement: The authors would like to thank the referees for helpful comments

and suggestions.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer , 2008.

[2] C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon

molecules, Proc, Cambridge Phil. Soc. 36 (1940), 201–203.

14



[3] C.A. Coulson and J. Jacobs, Conjugation across a single bond, J. Chem. Soc. (1949),

2805–2812.
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