On the maximal energy tree with two maximum degree vertices*

Jing Li, Xueliang Li, Yongtang Shi

Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China E-mail: lj02013@163.com; lxl@nankai.edu.cn; shi@nankai.edu.cn

Abstract

For a simple graph G, the energy E(G) is defined as the sum of the absolute values of all eigenvalues of its adjacent matrix. For $\Delta \geq 3$ and $t \geq 3$, denote by $T_a(\Delta, t)$ (or simply T_a) the tree formed from a path P_t on t vertices by attaching $\Delta - 1$ P_2 's on each end of the path P_t , and $T_b(\Delta, t)$ (or simply T_b) the tree formed from P_{t+2} by attaching $\Delta - 1$ P_2 's on an end of the P_{t+2} and $\Delta - 2$ P_2 's on the vertex next to the end. In [X. Li, X. Yao, J. Zhang and I. Gutman, Maximum energy trees with two maximum degree vertices, J. Math. Chem. 45(2009), 962–973, Li et al. proved that among trees of order n with two vertices of maximum degree Δ , the maximal energy tree is either the graph T_a or the graph T_b , where $t = n + 4 - 4\Delta \ge 3$. However, they could not determine which one of T_a and T_b is the maximal energy tree. This is because the quasi-order method is invalid for comparing their energies. In this paper, we use a new method to determine the maximal energy tree. It turns out that things are more complicated. We prove that the maximal energy tree is T_b for $\Delta \geq 7$ and any $t \geq 3$, while the maximal energy tree is T_a for $\Delta = 3$ and any $t \geq 3$. Moreover, for $\Delta = 4$, the maximal energy tree is T_a for all $t \geq 3$ but one exception that t=4, for which T_b is the maximal energy tree. For $\Delta=5$, the maximal energy tree is T_b for all $t \geq 3$ but 44 exceptions that t is both odd and $3 \leq t \leq 89$, for which T_a is the maximal energy tree. For $\Delta = 6$, the maximal energy tree is T_b for all $t \geq 3$ but three exceptions that t = 3, 5, 7, for which T_a is the maximal energy tree. One can see that for most cases of Δ , T_b is the maximal energy tree, $\Delta = 5$ is a turning point, and $\Delta = 3$ and 4 are exceptional cases, which means that for all chemical trees (whose maximum degrees are at most 4) with two vertices of maximum degree at least 3, T_a has maximal energy, with only one exception $T_a(4,4)$.

Keywords: graph energy, tree, Coulson integral formula.

AMS subject classification 2010: 05C50, 05C90, 15A18, 92E10.

^{*}Supported by NSFC and "the Fundamental Research Funds for the Central Universities".

1 Introduction

Let G be a simple graph of order n, it is well known [4] that the characteristic polynomial of G has the form

$$\varphi(G, x) = \sum_{k=0}^{n} a_k x^{n-k}.$$

The match polynomial of G is defined as

$$m(G, x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k m(G, k) x^{n-2k},$$

where m(G, k) denotes the number of k-matchings of G and m(G, 0) = 1. If G = T is a tree of order n, then

$$\varphi(T,x) = m(T,x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k m(T,k) x^{n-2k}.$$

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of G, then the energy of G is defined as

$$E(G) = \sum_{i=1}^{n} |\lambda_i|,$$

which was introduced by Gutman in [6]. If T is a tree of order n, then by Coulson integral formula [2,3,5,8], we have

$$E(T) = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left[\sum_{k=0}^{\lfloor n/2 \rfloor} m(T, k) x^{2k} \right] dx.$$

In order to avoid the signs of coefficients in the matching polynomial, this immediately motivates us to introduce a new graph polynomial

$$m^+(G,x) = \sum_{k=0}^{\lfloor n/2 \rfloor} m(G,k) x^{2k}.$$

Then we have

$$E(T) = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log m^+(T, x) dx.$$
 (1)

Although $m^+(G, x)$ is nothing new but $m^+(G, x) = (ix)^n m(G, (ix)^{-1})$, we shall see later that this will bring us a lot of computational convenience. Some basic properties of $m^+(G, x)$ will be given in next section.

We refer to the survey [7] for more results on graph energy. For terminology and notations not defined here, we refer to the book of Bondy and Murty [1].

Graphs with extremal energies are interested in literature. Gutman [5] proved that the star and the path has the minimal and the maximal energy among all trees, respectively. Lin et al. [17] showed that among trees with a fixed number of vertices (n) and of maximum vertex degree (Δ) , the maximal energy tree has exactly one branching vertex (of degree Δ) and as many as possible 2-branches. Li et al. [16] gave the following Theorem 1.1 about the maximal energy tree with two maximum degree vertices. In a similar way, Yao [18] studied the maximal energy tree with one maximum and one second maximum degree vertex. A branching vertex is a vertex whose degree is three or greater, and a pendant vertex attached to a vertex of degree two is called a 2-branch.

Theorem 1.1 ([16]) Among trees with a fixed number of vertices (n) and two vertices of maximum degree (Δ), the maximal energy tree has as many as possible 2-branches. (1) If $n \leq 4\Delta - 2$, then the maximal energy tree is the graph $T_c = T_c(\Delta, t)$, depicted in Figure 1.1, in which the numbers of pendant vertices attached to the two branching vertices u and v differ by at most 1.

(2) If $n \ge 4\Delta - 1$, then the maximal energy tree is either the graph $T_a = T_a(\Delta, t)$ or the graph $T_b = T_b(\Delta, t)$, depicted in Figure 1.1.

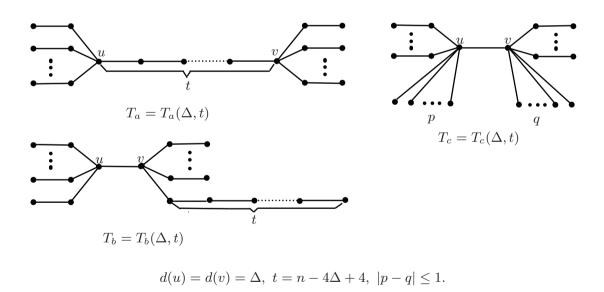


Figure 1.1 The maximal energy trees with n vertices and two vertices u, v of maximum degree Δ .

From Theorem 1.1, one can see that for $n \geq 4\Delta - 1$, they could not determine which one of the trees T_a and T_b has the maximal energy. They gave small examples showing that both cases could happen. In fact, the quasi-order method they used before is invalid for the special case. Recently, for these quasi-order incomparable problems, Huo et al. found an efficient way to determine which one attains the extremal value of the energy,

we refer to [9–15] for details. In this paper, we will use this newly developed method to determine which one of the trees T_a and T_b has the maximal energy, solving this unsolved problem. It turns out that this problem is more complicated than those in [9–15].

2 Preliminaries

In this section, we will give some properties of the new polynomial $m^+(G, x)$, which will be used in what follows. The proofs are omitted, since they are the same as those for matching polynomial.

Lemma 2.1 Let K_n be a complete graph with n vertices and $\overline{K_n}$ the complement of K_n , then

$$m^+(\overline{K_n}, x) = 1,$$

for any $n \geq 0$, defining $m^+(\overline{K_0}, x) = 1$, where both K_0 and $\overline{K_0}$ are the null graph.

Similar to the properties of a matching polynomial, we have

Lemma 2.2 Let G_1 and G_2 be two vertex disjoint graphs. Then

$$m^+(G_1 \cup G_2, x) = m^+(G_1, x) \cdot m^+(G_2, x).$$

Lemma 2.3 Let e = uv be an edge of graph G. Then we have

$$m^+(G, x) = m^+(G - e, x) + x^2m^+(G - u - v, x).$$

Lemma 2.4 Let v be a vertex of G and $N(v) = \{v_1, v_2, \dots, v_r\}$ the set of all neighbors of v in G. Then

$$m^+(G,x) = m^+(G-v,x) + x^2 \sum_{v_i \in N(v)} m^+(G-v-v_i,x).$$

The following recursive equations can be gotten from Lemma 2.3 immediately.

Lemma 2.5 Let P_t denote a path on t vertices. Then

(1)
$$m^+(P_t, x) = m^+(P_{t-1}, x) + x^2 m^+(P_{t-2}, x)$$
, for any $t \ge 1$,

(2)
$$m^+(P_t, x) = (1 + x^2)m^+(P_{t-2}, x) + x^2m^+(P_{t-3}, x)$$
, for any $t \ge 2$.

The initials are $m^+(P_0, x) = m^+(P_1, x) = 1$, and we define $m^+(P_{-1}, x) = 0$.

From Lemma 2.5, one can easily obtain

Corollary 2.6 Let P_t be a path on t vertices. Then for any real number x,

$$m^+(P_{t-1}, x) \le m^+(P_t, x) \le (1 + x^2)m^+(P_{t-1}, x)$$
, for any $t \ge 1$.

Although $m^+(G,x)$ has many other properties, the above ones are enough for our use.

3 Main results

Before giving our main results, we state some knowledge on real analysis, for which we refer to [19].

Lemma 3.1 For any real number X > -1, we have

$$\frac{X}{1+X} \le \log(1+X) \le X.$$

To compare the energies of T_a and T_b , or more precisely, $T_a(\Delta, t)$ and $T_b(\Delta, t)$, means to compare the values of two functions with the parameters Δ and t, which are denoted by $E(T_a(\Delta, t))$ and $E(T_b(\Delta, t))$. Since $E(T_a(2, t)) = E(T_b(2, t))$ for any $t \geq 2$ and $E(T_a(\Delta, 2)) = E(T_b(\Delta, 2))$ for any $\Delta \geq 2$, we always assume that $\Delta \geq 3$ and $t \geq 3$.

For notational convenience, we introduce the following things:

$$A_1 = (1+x^2)(1+\Delta x^2)(2x^4 + (\Delta + 2)x^2 + 1),$$

$$A_2 = x^2(1+x^2)(x^6 + (\Delta^2 + 2)x^4 + (2\Delta + 1)x^2 + 1),$$

$$B_1 = (\Delta + 2)x^8 + (2\Delta^2 + 6)x^6 + (\Delta^2 + 4\Delta + 4)x^4 + (2\Delta + 3)x^2 + 1,$$

$$B_2 = x^2(1+x^2)(x^6 + (\Delta^2 + 2)x^4 + (2\Delta + 1)x^2 + 1).$$

Using Lemmas 2.4 and 2.5 repeatedly, we can easily get the following two recursive formulas:

$$m^{+}(T_{a},x) = (1+x^{2})^{2\Delta-5}(A_{1}m^{+}(P_{t-3},x) + A_{2}m^{+}(P_{t-4},x)),$$
(2)

and

$$m^{+}(T_{b},x) = (1+x^{2})^{2\Delta-5}(B_{1}m^{+}(P_{t-3},x) + B_{2}m^{+}(P_{t-4},x)),$$
(3)

From Eqs. (2) and (3), by some elementary calculations we can obtain

$$m^{+}(T_a, x) - m^{+}(T_b, x) = (1 + x^2)^{2\Delta - 5}(\Delta - 2)x^6(x^2 - (\Delta - 2))m^{+}(P_{t-3}, x).$$
 (4)

Now we give one of our main results.

Theorem 3.2 Among trees with n vertices and two vertices of maximum degree Δ , the maximal energy tree has as many as possible 2-branches. If $\Delta \geq 8$ and $t \geq 3$, then the maximal energy tree is the graph T_b , where $t = n + 4 - 4\Delta$.

Proof. From Eq. (1), we have

$$E(T_a) - E(T_b) = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \frac{m^+(T_a, x)}{m^+(T_b, x)} dx$$
$$= \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} \right) dx.$$
(5)

We use $g(\Delta, t, x)$ to express

$$g(\Delta, t, x) = \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} \right).$$

Since $m^+(T_a, x) > 0$ and $m^+(T_b, x) > 0$, we have

$$\frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} = \frac{m^+(T_a, x)}{m^+(T_b, x)} - 1 > -1.$$

Therefore, by Lemma 3.1 we have

$$\frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_a, x)} \le g(\Delta, t, x) \le \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)}. \tag{6}$$

So.

$$\frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_a, x)} dx \le E(T_a) - E(T_b) \le \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} dx.$$

By Corollary 2.6, we have $m^+(P_{t-4}, x) \leq m^+(P_{t-3}, x)$ and $m^+(P_{t-4}, x) \geq \frac{m^+(P_{t-3}, x)}{1+x^2}$ for $\Delta \geq 3$ and $t \geq 4$. So, we have

$$E(T_a) - E(T_b)$$

$$\leq \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} dx$$

$$= \frac{2}{\pi} \int_0^{+\infty} \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))m^+(P_{t-3}, x)}{B_1 m^+(P_{t-3}, x) + B_2 m^+(P_{t-4}, x)} dx$$

$$\leq \frac{2}{\pi} \int_{\sqrt{\Delta - 2}}^{+\infty} \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{B_1 + B_2/(1 + x^2)} dx - \frac{2}{\pi} \int_0^{\sqrt{\Delta - 2}} \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{B_1 + B_2} dx.$$

We look at the last two parts separately. The first part is

$$\frac{2}{\pi} \int_{\sqrt{\Delta-2}}^{+\infty} \frac{(\Delta-2)x^4(x^2-(\Delta-2))}{B_1 + B_2/(1+x^2)} dx$$

$$= \frac{2}{\pi} \int_{\sqrt{\Delta-2}}^{+\infty} \frac{(\Delta-2)x^4(x^2-(\Delta-2))}{(\Delta+3)x^8 + (3\Delta^2+8)x^6 + (\Delta^2+6\Delta+5)x^4 + (2\Delta+4)x^2 + 1} dx$$

$$< \frac{2}{\pi} \int_{\sqrt{\Delta-2}}^{+\infty} \frac{(\Delta-2)x^4(x^2-(\Delta-2))}{(\Delta+3)x^8} dx = \frac{2}{\pi} \cdot \frac{2\sqrt{\Delta-2}}{3(\Delta+3)}.$$

The second part is

$$\frac{2}{\pi} \int_{0}^{\sqrt{\Delta-2}} \frac{(\Delta-2)x^{4}(\Delta-2-x^{2})}{B_{1}+B_{2}} dx$$

$$= \frac{2}{\pi} \int_{0}^{\sqrt{\Delta-2}} \frac{(\Delta-2)x^{4}(\Delta-2-x^{2})}{h(\Delta,x)} dx$$

$$> \frac{2}{\pi} \int_{0}^{1} \frac{(\Delta-2)x^{4}(\Delta-2-x^{2})}{\frac{5\Delta^{2}+11\Delta+26}{2}(x^{2}+1)} dx + \frac{2}{\pi} \int_{1}^{\sqrt{\Delta-2}} \frac{(\Delta-2)x^{4}(\Delta-2-x^{2})}{(5\Delta^{2}+11\Delta+26)x^{10}} dx$$

$$= \frac{2}{\pi} \left(\frac{-45\pi\Delta - 34\Delta^{2} + 74\Delta + 30\pi - 12 + 15\pi\Delta^{2} + \frac{4}{\sqrt{\Delta-2}}}{30(26+11\Delta+5\Delta^{2})} \right),$$

where $h(\Delta, x) = x^{10} + (\Delta^2 + \Delta + 5)x^8 + (3\Delta^2 + 2\Delta + 9)x^6 + (\Delta^2 + 6\Delta + 6)x^4 + (2\Delta + 4)x^2 + 1$. Now, when $\Delta \ge 65$ we get that

$$E(T_a) - E(T_b)$$

$$< \frac{2}{\pi} \cdot \frac{2\sqrt{\Delta - 2}}{3(\Delta + 3)} - \frac{2}{\pi} \left(\frac{-45\pi\Delta - 34\Delta^2 + 74\Delta + 30\pi - 12 + 15\pi\Delta^2 + \frac{4}{\sqrt{\Delta - 2}}}{30(26 + 11\Delta + 5\Delta^2)} \right) \le 0.$$

For t = 3, we have $m^+(P_{t-4}, x) = m^+(P_{-1}, x) = 0$. By a similar method as above, we can get that $E(T_a) - E(T_b) < 0$ when $\Delta \ge 24$.

Therefore, for $\Delta \geq 65$ and $t \geq 3$, we have $E(T_a) < E(T_b)$.

For $8 \le \Delta \le 64$, we can get that

$$E(T_a) - E(T_b) \le \frac{2}{\pi} \cdot f(\Delta, x) < 0$$

by direct calculations, using a computer with the Maple programm, as shown in Table 1, where

$$f(\Delta, x) = \int_{\sqrt{\Delta - 2}}^{+\infty} \frac{(\Delta - 2)x^4(x^2 - (\Delta - 2))}{B_1 + \frac{B_2}{1 + x^2}} dx - \int_0^{\sqrt{\Delta - 2}} \frac{(\Delta - 2)x^4(\Delta - 2 - x^2)}{B_1 + B_2} dx.$$

The proof is thus complete.

Now we are left with the cases $3 \le \Delta \le 7$. At first, we consider the case of $\Delta = 3$ and $t \ge 3$. In this case, we have $n = 4\Delta - 4 + t \ge 11$.

Theorem 3.3 Among trees with n vertices and two vertices of maximum degree $\Delta = 3$, the maximal energy tree has as many as possible 2-branches. If $n \geq 11$, then the maximal energy tree is the graph T_a .

Δ	$f(\Delta, x)$						
8	-0.00377	23	-0.20792	38	-0.29961	53	-0.35353
9	-0.02418	24	-0.21611	39	-0.30403	54	-0.35638
10	-0.04352	25	-0.22390	40	-0.30830	55	-0.35917
11	-0.06168	26	-0.23132	41	-0.31244	56	-0.36188
12	-0.07866	27	-0.23841	42	-0.31644	57	-0.36454
13	-0.09452	28	-0.24518	43	-0.32032	58	-0.36713
14	-0.10933	29	-0.25165	44	-0.32409	59	-0.36965
15	-0.12317	30	-0.25786	45	-0.32774	60	-0.37213
16	-0.13613	31	-0.26381	46	-0.33129	61	-0.37454
17	-0.14829	32	-0.26953	47	-0.33473	62	-0.37691
18	-0.15972	33	-0.27502	48	-0.33808	63	-0.37922
19	-0.17048	34	-0.28031	49	-0.34134	64	-0.38148
20	-0.18063	35	-0.28540	50	-0.34451	65	-0.38369
21	-0.19022	36	-0.29031	51	-0.34759	66	-0.38586
22	-0.19931	37	-0.29504	52	-0.35060	67	-0.38798

Table 1 The values of $f(\Delta, x)$ for $8 \le \Delta \le 67$.

Proof. For $\Delta = 3$ and $t \geq 4$, by Eqs. (1), (6) and Corollary 2.6, we have

$$E(T_{a}) - E(T_{b}) \geq \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \cdot \frac{m^{+}(T_{a}, x) - m^{+}(T_{b}, x)}{m^{+}(T_{a}, x)} dx$$

$$= \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \cdot \frac{x^{6}(x^{2} - 1)m^{+}(P_{t-3}, x)}{A_{1}m^{+}(P_{t-3}, x) + A_{2}m^{+}(P_{t-4}, x)} dx$$

$$\geq \frac{2}{\pi} \int_{1}^{+\infty} \frac{x^{4}(x^{2} - 1)}{A_{1} + A_{2}} dx - \frac{2}{\pi} \int_{0}^{1} \frac{x^{4}(1 - x^{2})}{A_{1} + \frac{A_{2}}{1 + x^{2}}} dx$$

$$= \frac{2}{\pi} \int_{1}^{+\infty} \frac{x^{4}(x^{2} - 1)}{x^{10} + 18x^{8} + 41x^{6} + 33x^{4} + 10x^{2} + 1} dx$$

$$-\frac{2}{\pi} \int_{0}^{1} \frac{x^{4}(1 - x^{2})}{7x^{8} + 34x^{6} + 32x^{4} + 10x^{2} + 1} dx$$

$$> \frac{2}{\pi} \cdot 0.00996 > 0.$$

For $\Delta = 3$ and t = 3, we can compute the energies of the two graphs directly and get that $E(T_a) > E(T_b)$.

Therefore, for $\Delta = 3$ and $t \geq 3$, we have $E(T_a) > E(T_b)$.

We now we give two lemmas about the properties of the new polynomial $m^+(P_t, x)$ for our later use.

Lemma 3.4 For $t \geq -1$, the polynomial $m^+(P_t, x)$ has the following form

$$m^{+}(P_t, x) = \frac{1}{\sqrt{1+4x^2}} (\lambda_1^{t+1} - \lambda_2^{t+1}),$$

where $\lambda_1 = \frac{1 + \sqrt{1 + 4x^2}}{2}$ and $\lambda_2 = \frac{1 - \sqrt{1 + 4x^2}}{2}$.

Proof. By Lemma 2.5, $m^+(P_t,x) = m^+(P_{t-1},x) + x^2m^+(P_{t-2},x)$ for any $t \ge 1$. Thus, it satisfies the recursive formula $h(t,x) = h(t-1,x) + x^2h(t-2,x)$, and the general solution of this linear homogeneous recurrence relation is $h(t,x) = P(x)\lambda_1^t + Q(x)\lambda_2^t$, where $\lambda_1 = \frac{1+\sqrt{1+4x^2}}{2}$ and $\lambda_2 = \frac{1-\sqrt{1+4x^2}}{2}$. Considering the initial values $m^+(P_1,x) = 1$ and $m^+(P_2,x) = 1+x^2$, by some elementary calculations, we can easily obtain that

$$P(x) = \frac{1+\sqrt{1+4x^2}}{2\sqrt{1+4x^2}}, \qquad Q(x) = \frac{-1+\sqrt{1+4x^2}}{2\sqrt{1+4x^2}}.$$

Thus,

$$m^{+}(P_{t},x) = P(x)\lambda_{1}^{t} + Q(x)\lambda_{2}^{t} = \frac{1}{\sqrt{1+4x^{2}}}(\lambda_{1}^{t+1} - \lambda_{2}^{t+1}).$$

As we have defined, the initials are $m^+(P_{-1},x)=0$ and $m^+(P_0,x)=1$, from which we can get the result for all $t\geq -1$.

Lemma 3.5 Suppose $t \geq 4$. If t is even, then

$$\frac{2}{1+\sqrt{1+4x^2}} < \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \le 1.$$

If t is odd, then

$$\frac{1}{1+x^2} \le \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} < \frac{2}{1+\sqrt{1+4x^2}}.$$

Proof. From Corollary 2.6, we know that

$$\frac{1}{1+x^2} \le \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \le 1.$$

By the definitions of λ_1 and λ_2 , we conclude that $\lambda_1 > 0$ and $\lambda_2 < 0$ for any x. By Lemma 3.4, if t is even, then

$$\frac{m^{+}(P_{t-4},x)}{m^{+}(P_{t-3},x)} - \frac{2}{1+\sqrt{1+4x^{2}}} = \frac{\lambda_{1}^{t-3} - \lambda_{2}^{t-3}}{\lambda_{1}^{t-2} - \lambda_{2}^{t-2}} - \frac{1}{\lambda_{1}} = \frac{-\lambda_{2}^{t-3}(\lambda_{1} - \lambda_{2})}{\lambda_{1}(\lambda_{1}^{t-2} - \lambda_{2}^{t-2})} > 0.$$

Thus,

$$\frac{2}{1+\sqrt{1+4x^2}} < \frac{m^+(P_{t-4},x)}{m^+(P_{t-3},x)} \le 1.$$

If t is odd, then obviously

$$\frac{1}{1+x^2} \le \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} < \frac{2}{1+\sqrt{1+4x^2}}.$$

Now we are ready to deal with the case $\Delta = 4$ and $t \geq 3$.

Theorem 3.6 Among trees with n vertices and two vertices of maximum degree $\Delta = 4$, the maximal energy tree has as many as possible 2-branches. The maximal energy tree is the graph T_b if t = 4, and the graph T_a otherwise, where $t = n + 4 - 4\Delta$.

Proof. By Eqs. (2), (3), (4) and (5), we have

$$E(T_a) - E(T_b) = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} \right) dx$$

$$= \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{(\Delta - 2)x^6(x^2 - (\Delta - 2))}{B_1 + B_2 \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)}} \right) dx.$$
 (7)

We first consider the case that t is odd and $t \geq 5$. By Eq. (7) and Lemma 3.5, we have

$$E(T_a) - E(T_b)$$

$$> \frac{2}{\pi} \int_{\sqrt{2}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx + \frac{2}{\pi} \int_0^{\sqrt{2}} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2 \frac{1}{1 + x^2}} \right) dx$$

$$> \frac{2}{\pi} \cdot 0.02088 > 0.$$

If t is even, we want to find t and x satisfying that

$$\frac{m^{+}(P_{t-4},x)}{m^{+}(P_{t-3},x)} < \frac{2}{-1+\sqrt{1+4x^{2}}}.$$
(8)

It is equivalent to solve

$$\frac{\lambda_1^{t-3} - \lambda_2^{t-3}}{\lambda_1^{t-2} - \lambda_2^{t-2}} < -\frac{1}{\lambda_2},$$

which means to solve

$$\left(\frac{\lambda_1}{-\lambda_2}\right)^{t-3} > -2\lambda_2,$$

that is

$$\left(\frac{1+\sqrt{1+4x^2}}{2x}\right)^{2t-6} > \sqrt{1+4x^2} - 1.$$

Thus,

$$2t - 6 > \log_{\frac{1+\sqrt{1+4x^2}}{2}}(\sqrt{1+4x^2} - 1).$$

Since for $x \in (0, +\infty)$, $\frac{1+\sqrt{1+4x^2}}{2x}$ is decreasing and $\sqrt{1+4x^2}-1$ is increasing, we have that $\log_{\frac{1+\sqrt{1+4x^2}}{2x}}(\sqrt{1+4x^2}-1)$ is increasing. Thus, if $x \in [\sqrt{2}, 5]$, then

$$\log_{\frac{1+\sqrt{1+4x^2}}{2\pi}}(\sqrt{1+4x^2}-1) \le \log_{\frac{1+\sqrt{101}}{10}}(\sqrt{101}-1) < 23.$$

Therefore, when $t \ge 15$, i.e., 2t - 6 > 23, we have that Ineq. (8) holds for $x \in [\sqrt{2}, 5]$.

Now we calculate the difference of $E(T_a)$ and $E(T_b)$. When t is even and $t \geq 15$, from Eq. (7) we have

$$E(T_a) - E(T_b)$$

$$> \frac{2}{\pi} \int_{5}^{+\infty} \frac{1}{x^2} \log\left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2}\right) dx + \frac{2}{\pi} \int_{\sqrt{2}}^{5} \frac{1}{x^2} \log\left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2 \frac{2}{-1 + \sqrt{1 + 4x^2}}}\right) dx$$

$$+ \frac{2}{\pi} \int_{0}^{\sqrt{2}} \frac{1}{x^2} \log\left(1 + \frac{2x^6(x^2 - 2)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}}\right) dx$$

$$> \frac{2}{\pi} \cdot 0.003099 > 0.$$

For t=3 and any even t with $4 \le t \le 14$, by computing the energies of the two graphs directly by a computer with the Maple programm, we can get that $E(T_a) < E(T_b)$ for t=4, and $E(T_a) > E(T_b)$ for the other cases.

The proof is now complete.

The following theorem gives the result for the cases of $\Delta = 5, 6, 7$.

Theorem 3.7 For trees with n vertices and two vertices of maximum degree Δ , let $t = n - 4\Delta + 4 \geq 3$. Then

- (i) for $\Delta = 5$, the maximal energy tree is the graph T_a if t is odd and $3 \le t \le 89$, and the graph T_b otherwise.
- (ii) for $\Delta = 6$, the maximal energy tree is the graph T_a if t = 3, 5, 7, and the graph T_b otherwise.
- (iii) for $\Delta = 7$, the maximal energy tree is the graph T_b for any $t \geq 3$.

Proof. We consider the following cases separately:

(i)
$$\Delta = 5$$
.

If t is even, we want to find t and x satisfying that

$$\frac{m^{+}(P_{t-4}, x)}{m^{+}(P_{t-3}, x)} < \frac{2.1}{1 + \sqrt{1 + 4x^{2}}}.$$
(9)

It is equivalent to solve

$$\frac{\lambda_1^{t-3} - \lambda_2^{t-3}}{\lambda_1^{t-2} - \lambda_2^{t-2}} < \frac{2.1}{2\lambda_1},$$

which means to solve

$$\left(\frac{\lambda_1}{-\lambda_2}\right)^{t-3} > \frac{-2.1\lambda_2 + 2\lambda_1}{0.1\lambda_1},$$

that is,

$$\left(\frac{1+\sqrt{1+4x^2}}{2x}\right)^{2t-6} > 41 - \frac{42}{\sqrt{1+4x^2}+1}.$$

Thus,

$$2t - 6 > \log_{\frac{1+\sqrt{1+4x^2}}{2x}} \left(41 - \frac{42}{\sqrt{1+4x^2}+1} \right).$$

Since for $x \in (0, +\infty)$, $\frac{1+\sqrt{1+4x^2}}{2x}$ is decreasing and $-\frac{42}{\sqrt{1+4x^2}+1}$ is increasing, we have that $\log_{\frac{1+\sqrt{1+4x^2}}{2x}}\left(41-\frac{42}{\sqrt{1+4x^2}+1}\right)$ is increasing. Thus, if $x \in (0, \sqrt{3}]$,

$$\log_{\frac{1+\sqrt{1+4x^2}}{2x}} \left(41 - \frac{42}{\sqrt{1+4x^2}+1} \right) \le \log_{\frac{1+\sqrt{13}}{2\sqrt{3}}} \left(41 - \frac{42}{1+\sqrt{13}} \right) < 13.$$

Therefore, when $t \ge 10$, i.e., 2t - 6 > 13, we have that Ineq. (9) holds for $x \in (0, \sqrt{3}]$. Thus, if t is even and $t \ge 10$, from Eq. (7) and Lemma 3.5 we have

$$E(T_a) - E(T_b) < \frac{2}{\pi} \int_{\sqrt{3}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$
$$+ \frac{2}{\pi} \int_0^{\sqrt{3}} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{2 \cdot 1}{1 + \sqrt{1 + 4x^2}}} \right) dx$$
$$< \frac{2}{\pi} \cdot (-4.43 \times 10^{-4}) < 0.$$

If t is odd, we want to find t and x satisfying that

$$\frac{m^{+}(P_{t-4},x)}{m^{+}(P_{t-3},x)} > \frac{1.99}{1+\sqrt{1+4x^{2}}},\tag{10}$$

that is

$$2t - 6 > \log_{\frac{1+\sqrt{1+4x^2}}{2x}} \left(399 - \frac{398}{\sqrt{1+4x^2}+1} \right).$$

Since for $x \in (0, +\infty)$, $\log_{\frac{1+\sqrt{1+4x^2}}{2x}} \left(399 - \frac{398}{\sqrt{1+4x^2}+1}\right)$ is increasing, we have that if $x \in [\sqrt{3}, 390]$, then

$$\log_{\frac{1+\sqrt{1+4x^2}}{2x}} \left(399 - \frac{398}{\sqrt{1+4x^2}+1} \right) < 4671.$$

Therefore, for $t \ge 2339$, i.e., $2t-6 \ge 4671$, we have that Ineq. (10) holds for $x \in [\sqrt{3}, 390]$. Thus, if t is odd and $t \ge 2339$, from Eq. (7) and Lemma 3.5 we have

$$E(T_a) - E(T_b)$$

$$< \frac{2}{\pi} \int_{390}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{1}{1 + x^2}} \right) dx + \frac{2}{\pi} \int_{\sqrt{3}}^{390} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{1.99}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$+ \frac{2}{\pi} \int_0^{\sqrt{3}} \frac{1}{x^2} \log \left(1 + \frac{3x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$< \frac{2}{\pi} \cdot (-6.66 \times 10^{-6}) < 0.$$

For any even t with $4 \le t \le 8$ and any odd t with $3 \le t \le 2337$, by computing the energies of the two graphs directly by a computer with the Matlab programm, we get that $E(T_a) > E(T_b)$ for any odd t with $3 \le t \le 89$, and $E(T_a) < E(T_b)$ for the other cases.

(ii)
$$\Delta = 6$$
.

If t is even and $t \geq 4$, from Eq. (7) and Lemma 3.5, we have

$$E(T_a) - E(T_b) < \frac{2}{\pi} \int_2^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$
$$+ \frac{2}{\pi} \int_0^2 \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2} \right) dx$$
$$< \frac{2}{\pi} \cdot (-0.02027) < 0.$$

If t is odd, similar to the proof in (i), we can show that when $t \geq 27$ and $x \in [2, 22]$, the following inequality holds:

$$\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} > \frac{1}{1 + \sqrt{1 + 4x^2}}.$$

Hence, if t is odd and $t \geq 27$, we have

$$E(T_a) - E(T_b)$$

$$< \frac{2}{\pi} \int_{22}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2 \frac{1}{1 + x^2}} \right) dx + \frac{2}{\pi} \int_{2}^{22} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2 \frac{1}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$+ \frac{2}{\pi} \int_{0}^{2} \frac{1}{x^2} \log \left(1 + \frac{4x^6(x^2 - 4)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$< \frac{2}{\pi} \cdot (-2.56 \times 10^{-4}) < 0.$$

For any odd t with $3 \le t \le 25$, by computing the energies of the two graphs directly by a computer with the Matlab programm, we can get that $E(T_a) > E(T_b)$ for t = 3, 5, 7, and $E(T_a) < E(T_b)$ for the other cases.

(iii)
$$\Delta = 7$$
.

If t is even and $t \ge 4$, by the same method as used in (ii), we get that $E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-0.04445) < 0$.

If t is odd and $t \geq 5$, we have that

$$E(T_a) - E(T_b) < \frac{2}{\pi} \int_{\sqrt{5}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{5x^6(x^2 - 5)}{B_1 + B_2 \frac{1}{1 + x^2}} \right) dx$$

$$+ \frac{2}{\pi} \int_0^{\sqrt{5}} \frac{1}{x^2} \log \left(1 + \frac{5x^6(x^2 - 5)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx$$

$$< \frac{2}{\pi} \cdot (-0.01031) < 0.$$

For t = 3, we can compute the energies of the two graphs directly by a computer with the Matlab programm and get that $E(T_a) < E(T_b)$.

The proof is now complete.

Chemical trees are interested in chemical literature. A chemical tree is a tree whose maximum degree is at most 4. From the above theorems, one can observe the following interesting result:

Corollary 3.8 For all chemical trees of order n with two vertices of maximum degree at least 3, the graph T_a has maximal energy, with only one exception that $\Delta = 4$ and t = 4, for which $T_b(4,4)$ has larger energy than $T_a(4,4)$.

Acknowledgement: The authors would like to thank the referees for helpful comments and suggestions.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.
- [2] C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, *Proc, Cambridge Phil. Soc.* **36** (1940), 201–203.

- [3] C.A. Coulson and J. Jacobs, Conjugation across a single bond, *J. Chem. Soc.* (1949), 2805–2812.
- [4] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Application, third ed., *Johann Ambrosius Barth Verlag, Heidelberg*, 1995.
- [5] I. Gutman, Acyclic systems with extremal Hückel π -electron energy, Theoret. Chim. Acta (Berlin) 45 (1977), 79–87.
- [6] I. Gutman, The energy of a graph, Ber. Math. -Statist. Sekt. Forschungszentrum Graz 103 (1978), 1–22.
- [7] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim (2009), 145–174.
- [8] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
- [9] B. Huo, J. Ji and X. Li, Note on unicyclic graphs with given number of pendent vertices and minimal energy, *Linear Algebra Appl.* **433** (2010), 1381–1387.
- [10] B. Huo, J. Ji and X. Li, Solutions to unsolved problems on the minimal eneries of two classes of graphs, MATCH Commun. Math. Comput. Chem. 66(3) (2011), 943–958.
- [11] B. Huo, J. Ji, X. Li and Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, MATCH Commun. Math. Comput. Chem. 66(3) (2011), 903–912.
- [12] B. Huo, J. Ji, X. Li and Y. Shi, Solution to a conjecture on the maximal energy of bipartite bicyclic graphs, *Linear Algebra Appl.*, doi:10.1016/j.laa.2011.02.001.
- [13] B. Huo, X. Li and Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, *Linear Algebra Appl.* **434** (2011), 1370–1377.
- [14] B. Huo, X. Li and Y. Shi, Complete solution to a conjecture on the maximal energy of uncicyclic graphs, *European J. Combin.* **32** (2011), 662–673.
- [15] B. Huo, X. Li, Y. Shi and L. Wang, Determining the conjugated trees with the third through the sixth minimal energies, *MATCH Commun. Math. Comput. Chem.* **65** (2011), 521–532.
- [16] X. Li, X. Yao, J. Zhang and I. Gutman, Maximum energy trees with two maximum degree vertices, *J. Math. Chem.* **45** (2009), 962–973.

- [17] W. Lin, X. Guo and H. Li, On the extremal energies of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 54(2)(2005), 363–378.
- [18] X. Yao, Maximum energy trees with one maximum and one second maximum degree vertex, MATCH Commun. Math. Comput. Chem. 64(1)(2010), 217–230.
- [19] V.A. Zorich, Mathematical Analysis, MCCME, Moscow, 2002.