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Abstract

The minimum degree-sum σ2(G), or simply denoted by σ2, of a graph G is
defined as min{d(u) + d(v)|u, v ∈ V (G), uv 6∈ E(G)}. The rainbow connection
number rc(G) of a graph G was introduced by Chartrand et al. Chandran et al.
proved that if G is a connected graph of order n with minimum degree δ, then
rc(G) ≤ 3n/(δ + 1) + 3, and they gave an example to show that the bound is tight
up to additive factors. In this paper, we prove that if G is a connected graph of
order n, then rc(G) ≤ 6n

σ2+2 + 8. Moreover, we give two examples to show that our
bound is tight up to additive factors. We also give another example G to show that
from our bond one gets that rc(G) < 14 which is a constant, whereas from their
bound one can only get that rc(G) ≤ 3n

2 + 3 which is very large, linear in n.
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1 Introduction

All graphs in the paper are finite, undirected and simple. Let G = (V (G), E(G)) be

a graph and define σ2(G) = min{d(u) + d(v)|u, v ∈ V (G), uv 6∈ E(G)} as the minimum

degree-sum of G, or simply denoted by σ2. Let Y ⊆ V (G). The subgraph G[Y ] of

G induced by Y is the graph with vertex set Y and edge set consisting of the edges
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of G with both ends in Y . The distance between two vertices u and v in G, denoted

by d(u, v), is the length of a shortest path between them in G. The eccentricity of a

vertex v is defined as ecc(v) := maxx∈V (G) d(v, x). The diameter of G is then defined as

diam(G) := maxx∈V (G) ecc(x). Undefined terminology and notation can be found in [1]

The following notations were introduced in [5]. A path in an edge-colored graph with

no two edges sharing the same color is called a rainbow path. An edge-colored graph is

said to be rainbow connected if every pair of distinct vertices are connected by at least one

rainbow path. Such a coloring is called a rainbow coloring of the graph. The minimum

number of colors required to rainbow color a connected graph G is called its rainbow

connection number, denoted by rc(G). Note that disconnected graphs cannot be rainbow

colored and hence the rainbow connection number for them is left undefined. An easy

observation is that rc(G) ≥ diam(G).

It was shown by Chakraborty et al. [3] that computing the rainbow connection number

of an arbitrary graph is NP-Hard. Chandran et al. [4] proved that if D is a connected

two-way two-step dominating set in a graph G, then rc(G) ≤ rc(G[D]) + 6, and they

showed that if G is a connected graph of order n with minimum degree δ, then rc(G) ≤
3n/(δ + 1) + 3 and the bound is tight up to additive factors. The result nearly settles

the investigation for an upper bound of rainbow connection number in terms of minimum

degree, which was initiated by Caro et al. in [2]. However, if a graph has a small minimum

degree δ and a large number n of vertices, then the upper bound could be very large, even

linear in n. How to find a parameter to replace the parameter minimum degree δ and get

a better upper bound is a natural question to ask for. Since σ2 is a generalization of δ, a

natural idea is to investigate the the bound in terms of the parameter σ2. In the following

we will see that in some graphs, their δ is very small, but their σ2 could be very large,

and this gives a better upper bound for the rainbow connection number.

Theorem 1. If G is a connected graph of order n, then rc(G) ≤ 6n
σ2+2

+ 8.

We give two examples, Examples 1 and 2, to show that our bound is tight up to

additive factors. Furthermore, we give another example, Example 3, to show that from

our bound one gets that rc(G) < 14 which is a constant, whereas from their bound one

can only get that rc(G) ≤ 3n
2

+ 3 which is very large, linear in n.

The following notions are needed in the sequel. Given a graph G, a set D ⊆ V (G)

is called a k-step dominating set of G if every vertex in G is at a distance at most k

from D. Furthermore, if D induces a connected subgraph of G, it is called a connected

k-step dominating set of G. The k-step open neighborhood of a set D ⊆ V (G) is defined

as Nk(D) := {x ∈ V (G)|d(x,D) = k} for k = {0, 1, 2, · · · }. A dominating set D in a

graph G is called a two-way dominating set if every pendant vertex of G is included in
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D. In addition, if G[D] is connected, we call D a connected two-way dominating set.

A connected two-step dominating set D of vertices in a graph G is called a connected

two-way two-step dominating set if (i) every pendant vertex of G is included in D and (ii)

every vertex in N2(D) has at least two neighbors in N1(D).

2 Examples

First of all, we denote by K∗
a,b the graph obtained from the complete bipartite graph

Ka,b by joining every pair of vertices in the b-part by a new edge.

Example 1: When σ2 is even, we denote K∗
2,σ2/2−1 by H, and denote K∗

2,σ2/2 by H ′.

Take t copies of H, denoted by H1, · · · , Ht and label the two non-neighbor vertices of

Hi by xi,1, xi,2 for 1 ≤ i ≤ t. Take two copies of H ′, denoted by H0, Ht+1 and label the

two non-neighbor vertices of H0 by x0,1, x0,2, and label the two non-neighbor vertices of

Ht+1 by xt+1,1, xt+1,2. Now, join xi,2 and xi+1,1 for i = 0, · · · , t by an edge. The obtained

graph G has n = (t + 2)(σ2/2 + 1) + 2 vertices. We can get that d(x0,2) = σ2/2 + 1,

d(xt+1,2) = σ2/2 + 1, and for any x ∈ {xi,1, xi,2, x0,1, xt+1,1}, 1 ≤ i ≤ t, d(x) = σ2/2.

Hence, min{d(x) + d(y)|xy 6∈ E(G)} = σ2. It is straightforward to verify that a shortest

path from x0,1 to xt+1,2 has length 2(t+2)+ t+1 = 3t+5 = diam(G) = 6n
σ2+2

− ( 12
σ2+2

+1).

Since rc(G) ≥ diam(G) and rc(G) ≤ 6n
σ2+2

+ 8, our bound is tight up to addition factors.

Example 2: When σ2 is odd, we denote K∗
2,(σ2−1)/2 by H, and denote K∗

2,(σ2+1)/2 by H ′.

Take t + 1 copies of H, denoted by H0, · · · , Ht and label the two non-neighbor vertices

of Hi by xi,1, xi,2 for 0 ≤ i ≤ t. Take a copy of H ′, denoted by Ht+1 and label the two

non-neighbor vertices of Ht+1 by xt+1,1, xt+1,2. Now, join xi,2 and xi+1,1 for i = 0, · · · , t by

an edge. The obtained graph G has n = (t + 2)(σ2 − 1)/2 + 1 vertices. We can get that

d(x0,1) = (σ2−1)/2, d(xt+1,2) = (σ2 +1)/2+1, and for any x ∈ {xi,1, xi,2, x0,2, xt+1,1}, 1 ≤
i ≤ t, d(x) = (σ2+1)/2. Hence, min{d(x)+d(y)|xy 6∈ E(G)} = σ2. It is straightforward to

verify that a shortest path from x0,1 to xt+1,2 has length 2(t+2)+t+1 = 3t+5 = diam(G).

Since rc(G) ≥ diam(G) and rc(G) ≤ 6n
σ2+2

+ 8, similar to the discussion of Example 1,

our bound is tight up to addition factors.

Example 3: Let V1 = {v1}, and let K2 be a complete graph of order 2 and Kn−3 be a

complete graph of order n − 3. Denote V (K2) = {v2, v3}. We join v1 to every vertex of

K2 by an edge, join v2 to every vertex of Kn−3 by an edge, and join v3 to every vertex of

Kn−3 by an edge. Thus we have constructed a graph G. In G, δ = d(v1) = 2, and for any

v ∈ Kn−3, vv1 6∈ E(G), d(v) = n− 2. So we can get that σ2 = n. Thus, in this example,

our bound gives that 6n
σ2+2

+ 8 = 6n
n+2

+ 8 < 14, which is a constant. However, from the

bound above in terms of minimum degree δ we get that rc(G) ≤ 3n
δ

+ 3 = 3n
2

+ 3, which

is very large, linear in n.
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3 Proof of Theorem 1

If G is a complete graph, then rc(G) = 1, the theorem holds. In the following we

assume that G is not complete. When σ2 ≤ 4, 6n
σ2+2

+ 8 ≥ n + 8. However, rc(G) ≤ n− 1,

and hence when σ2 ≤ 4, the theorem is obvious true.

In the following we assume σ2 ≥ 4. So we can get that G has at most a pendant

vertex. First, we prove the following two claims:

Claim 1. If G is a connected graph of order n with σ2 ≥ 4, then G has a connected

two-step dominating set D such that |D| ≤ 6n−|N2(D)|
σ2+2

.

Proof of Claim 1. Let u ∈ V (G) and d(u) = δ. Then for any v ∈ V (G) \ N [u], we

get d(v) ≥ dσ2

2
e. Let D = {u}. If N3(D) 6= ∅ for any v ∈ N3(D), let P = vv2v1v0 be a

shortest v − D path, where v2 ∈ N2(D), v1 ∈ N1(D), v0 ∈ D. Let D = D ∪ {v, v2, v1}.
While N3(D) = ∅, let t1 be the number of iterations executed in the above procedure, we

can get t1 ≤ |D∪N1(D)|−(δ+1)

dσ2
2
e+1

< |D∪N1(D)|
dσ2

2
e+1

≤ |D∪N1(D)|
σ2
2

+1
= 2 |D∪N1(D)|

σ2+2
= 2n−|N2(D)|

σ2+2
. Hence,

|D| = 1 + 3t1 < 1 + 6n−|N2(D)|
σ2+2

. Therefore, Claim 1 is true.

Claim 2. Every connected graph G of order n with at most one pendant vertex has a

connected two-way two-step dominating set D of size at most 6n
σ2+2

+ 3.

Proof of Claim 2. We consider the connected two-step dominating set D which was

obtained in Claim 1. While there exist two vertices u, v ∈ N2(D) with uv 6∈ E(G) and

d(u) ≥ d(v) such that u has only one neighbor in N1(D) and v has only one neighbor

in N1(D), we set D = D ∪ {u, u1} where uu1u0 is a shortest u − D path with u0 ∈ D.

Clearly, D remains a connected two-step dominating set. The procedure ends only when

N2(D) can be partitioned into two parts N2
1 (D) and N2

2 (D) such that for any v ∈ N2
1 (D),

v has at least two neighbors in N1(D), and for any v ∈ N2
2 (D), v has only a neighbor in

N1(D), and G[N2
2 (D)] is a complete subgraph, where |N2

1 (D)| ≥ 0, |N2
2 (D)| ≥ 0.

Let k2 be the number of iterations executed, we add to D a vertex which has at least
σ2

2
− 1 neighbors in N2(D). Then |N2(D)| reduces by at least σ2

2
in every iteration. Since

we start with |N2(D)| vertices, then k2 ≤ |N2(D)|
σ2
2

. Since we add two vertices to D in each

iteration, then |D| = |D| + 2k2 and so |D| ≤ 6n−|N2(D)|
σ2+2

+ 4 |N
2(D)|
σ2

≤ 6n
σ2+2

. Then we get

that |D| ≤ 6n
σ2+2

.

Take a vertex w ∈ N2
2 (D), let ww1w0, w0 ∈ D be a shortest w − D path, and let

D = D ∪ {w, w1}. It is obvious that D also remains connected, and |D| ≤ 6n
σ2+2

+ 2.

If G has no pendant vertex, then D is exactly the two-way two-step dominating set

and so Claim 2 follows. If u is the pendant vertex of G and u is in D, then D is exactly

the two-way two-step dominating set and Claim 2 also follows. If u is the pendant vertex
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of G and u is in N1(D), then we add u to D and let D = D ∪ {u}. We get that D is

exactly the two-way two-step dominating set of size at most 6n
σ2+2

+ 3 and so Claim 2 is

true.

We know that if D is a connected two-way two-step dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 6, and by Claim 2 we know that |D| ≤ 6n
σ2+2

+ 3. Hence, we can get

that rc(G) ≤ rc(G[D]) + 6 ≤ 6n
σ2+2

+ 3 − 1 + 6 = 6n
σ2+2

+ 8. This completes the proof of

Theorem 1.
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