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Abstract

A path in an edge-colored graph G, where adjacent edges may be colored
the same, is called a rainbow path if no two edges of it are colored the same.
A nontrivial connected graph G is rainbow connected if for any two vertices of
G there is a rainbow path connecting them. The rainbow connection number
of G, denoted rc(G), is defined as the smallest number of colors such that G
is rainbow connected. In this paper, we mainly study the rainbow connection
number rc(L(G)) of the line graph L(G) of a graph G which contains triangles.
We get two sharp upper bounds for rc(L(G)), in terms of the number of edge-
disjoint triangles of G. We also give results on the iterated line graphs.
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edge-disjoint triangles.
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1 Introduction

All graphs in this paper are simple, finite and undirected. Let G be a nontrivial
connected graph with an edge coloring c : E(G) → {1, 2, · · · , k}, k ∈ N, where
adjacent edges may be colored the same. A path of G is called rainbow if no two
edges of it are colored the same. An edge-colored graph G is rainbow connected if
for any two vertices there is a rainbow path connecting them. Clearly, if a graph
is rainbow connected, it must be connected. Conversely, any connected graph has
a trivial edge coloring that makes it rainbow connected, i.e., the coloring such that
each edge has a distinct color. Thus, we define the rainbow connection number
of a connected graph G, denoted by rc(G), as the smallest number of colors for
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which there is an edge coloring of G such that G is rainbow connected. An easy
observation is that if G has n vertices then rc(G) ≤ n− 1, since one may color the
edges of a spanning tree with distinct colors, and color the remaining edges with
one of the colors already used. Generally, if G1 is a connected spanning subgraph of
G, then rc(G) ≤ rc(G1). We notice the trivial fact that rc(G) = 1 if and only if G
is complete, and the fact that rc(G) = n− 1 if and only if G is a tree, as well as the
easy observation that a cycle Ck with k > 3 vertices has rainbow connection number
rc(Ck) = dk

2
e ([3]). Also notice that, clearly, rc(G) ≥ diam(G) where diam(G)

denotes the diameter of G.

In [3], Chartrand et al. also determined the precise rainbow connection num-
bers for other graph classes including wheels and complete bipartite (multipartite)
graphs. In [2], Caro et al. studied the rainbow connection number for further graph
classes in terms of some graph parameters, such as the minimum degree of a graph.

Theorem 1.1 ([2]) If G is a connected graph with n vertices and δ(G) ≥ 3, then
rc(G) < 5n

6
.

The constant in Theorem 1.1 is not optimal, but it cannot be replaced with a
constant smaller than 3

4
, since there are 3-regular connected graphs with rc(G) =

diam(G) = 3n−10
4

, so they conjectured:

Conjecture 1.2 ([2]) If G is a connected graph with n vertices and δ(G) ≥ 3, then
rc(G) < 3

4
n.

Conjecture 1.2 has been recently proved in [8]:

Theorem 1.3 ([8]) If G is a connected graph with n vertices and δ(G) ≥ 3, then
rc(G) ≤ 3n−1

4
.

In [2], the authors also derived the following upper bound.

Theorem 1.4 ([2]) If G is a connected graph with n vertices and minimum degree
δ, then

rc(G) ≤ min{n ln δ

δ
(1 + oδ(1)), n

4 ln δ + 3

δ
}.

This, naturally, raised the open problem of determining the true behavior of
rc(G) as a function of δ. Krivelevich and Yuster in [5] determined the behavior of
rc(G) as a function of the minimum degree δ(G) and the order n:

Theorem 1.5 ([5]) A connected graph G with n vertices has rc(G) < 20n
δ(G)

.
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Some graph classes, such as line graphs, have many special properties, and by
these properties, we can get some interesting results on their rainbow connection
numbers in terms of some graph parameters. For example, in [2] the authors got
a nice upper bound for the rainbow connection number of a 2-connected graph
according to their ear-decomposition and this result is an important ingredient in
the proof of Theorem 1.1.

Proposition 1.6 ([2]) If G is a 2-connected graph with n vertices, then rc(G) ≤ 2n
3
.

In [7], we studied the rainbow connection numbers of line graphs of triangle-free
graphs in the light of particular properties of line graphs of triangle-free graphs
shown in [4], and particularly, of 2-connected triangle-free graphs according to their
ear decompositions. However, we did not get bounds of the rainbow connection
numbers for line graphs of graphs that do contain triangles. In this paper, we aim
to investigate the remaining case, i.e., line graphs of graphs that do contain triangles,
and give two sharp upper bounds in terms of the number of edge-disjoint triangles
of original graphs.

We use V (G), E(G) for the sets of vertices and edges of G, respectively. For
any subset X of V (G), let G[X] denote the subgraph induced by X, and E[X]
the edge set of G[X]; similarly, for any subset E1 of E(G), let G[E1] denote the
subgraph induced by E1. Let G be a set of graphs, then V (G) =

⋃
G∈G V (G),

E(G) =
⋃

G∈G E(G). We define a clique in a graph G to be a complete subgraph
of G, and a maximal clique is a clique that is not contained in any larger clique.
The clique graph K(G) of G is the intersection graph of the maximal cliques of
G–that is, the vertices of K(G) correspond to the maximal cliques of G, and two of
these vertices are joined by an edge if and only if the corresponding maximal cliques
intersect. Let [n] = {1, · · · , n} denote the set of the first n natural numbers. For a
set S, |S| denotes the cardinality of S. We follow the notations and terminology of
[1] for those not defined here.

2 Some basic observations

We first list two observations which were given in [7] and will be used later.

Observation 2.1 ([7]) If G is a connected graph and {Ei}i∈[t] is a partition of the
edge set of G into connected subgraphs Gi = G[Ei], then

rc(G) ≤
t∑

i=1

rc(Gi).
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Let G be a connected graph, and X a proper subset of V (G). To shrink X is to
delete all the edges between vertices of X and then identify the vertices of X into a
single vertex, namely w. We denote the resulting graph by G/X.

Observation 2.2 ([7]) Let G′ and G be two connected graphs, where G′ is obtained
from G by shrinking a proper subset X of V (G), that is, G′ = G/X, such that any
two vertices of X have no common adjacent vertex in V \X. Then

rc(G′) ≤ rc(G).

Now we introduce two graph operations and two corresponding results which
will be used later.

Operation 1. As shown in Figure 2.1, for any edge e = uv ∈ G with min{degG(u),
degG(v)} ≥ 2, we first subdivide e, then replace the new vertex with two new vertices
ue, ve with degG′(ue) = degG′(ve) = 1 where G′ is the new graph.

Operation 1

u v
e

u v

ue
ve

G G
′

Figure 2.1 G′ is obtained from G by applying Operation 1 to edge e.

Recall that the line graph of a graph G is the graph L(G) whose vertex set
V (L(G)) = E(G) and two vertices e1, e2 of L(G) are adjacent if and only if they
are adjacent in G. The star, denoted S(v), at a vertex v of graph G, is the set of all
edges incident to v. Let 〈S(v)〉 be the subgraph of L(G) induced by S(v), clearly,
it is a clique of L(G).

Since degG′(ue) = degG′(ve) = 1 in G′, and by the definition of a line graph, it is
easy to show that L(G) can be obtained from L(G′) by shrinking a vertex set of two
nonadjacent vertices (these two vertices correspond to edges uue, vve, and belong to
cliques 〈S(u)〉, 〈S(v)〉, respectively, in L(G′)). So by Observation 2.2, we have

Observation 2.3 If a connected graph G′ is obtained from a connected graph G by
applying Operation 1 at some edge e ∈ G, then

rc(L(G)) ≤ rc(L(G′)).
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Operation 2. As shown in Figure 2.2, v is a common vertex of a set of edge-disjoint
triangles in G. We replace v by two nonadjacent vertices v′ and v′′ such that v′ is
the common vertex of some triangles, and v′′ is the common vertex of the remaining
triangles.

G

v
v

′′

v
′

G
′

Operation 2

Figure 2.2 Figure of Operation 2.

Since during this procedure, the number of edges does not change, the order of
the line graph L(G) is equal to that of L(G′). Furthermore, by the definition of a
line graph, L(G′) is a spanning subgraph of L(G). So we have

Observation 2.4 If a connected graph G′ is obtained from a connected graph G by
applying Operation 2 at some vertex v ∈ G, then

rc(L(G)) ≤ rc(L(G′)).

3 Main results

3.1 A sharp upper bound

Recall that a clique decomposition of G is a collection C of cliques such that
each edge of G occurs in exactly one clique in C .

We now introduce a new terminology. For a connected graph G, we call G a
clique-tree-structure, if it satisfies the following condition:

T1. Each block is a maximal clique.

We call a graph H a clique-forest-structure, if H is a disjoint union of some
clique-tree-structures, that is, each component of a clique-forest-structure is a clique-
tree-structure. By condition T1, we know that any two maximal cliques of G have
at most one common vertex. Furthermore, G is formed by its maximal cliques.
The size of a clique-tree(forest)-structure is the number of its maximal cliques. An
example of clique-forest-structure is shown in Figure 3.1.
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Figure 3.1 A clique-forest-structure with size 6 and 2 components.

If each block of a clique-tree-structure is a triangle, we call it a triangle-tree-
structure. Let ` be the size of a triangle-tree-structure. Then, by definition, it
is easy to show that there are 2` + 1 vertices in it. Similarly, we can give the
definition of triangle-forest-structure and there are 2` + c vertices in a triangle-
forest-structure with size ` and c components. A clique-tree-structure G is called a
clique-path-structure if the clique graph K(G) is a path.

For a connected graph G, we call G a clique-cycle-structure, if it satisfies the
following three conditions:

C1. G has at least three maximal cliques;

C2. Each edge belongs to exactly one maximal clique;

C3. The clique graph is a cycle.

Similarly, the size of a clique-cycle-structure is the number of its maximal
cliques. In particular, if each maximal clique is a triangle, then it is a triangle-
cycle-structure. An example of triangle-cycle-structure of size 4 is shown in Figure
3.2.

Figure 3.2 An example of triangle-cycle-structure.

Let T = {T1, T2, · · · , Tt} be a set of edge-disjoint triangles of a graph G. Clearly,
by definition, if G[E(T )] is connected (not connected) and is not a triangle-tree(forest)-
structure, then it must contain a triangle-cycle-structure as a subgraph.

An inner vertex of a graph is a vertex with degree at least two. For a graph G,
we use V2 to denote the set of all inner vertices of G. Let n1 = |{v : degG(v) = 1}|,
n2 = |V2|. Recall that 〈S(v)〉 is the subgraph of L(G) induced by S(v) and it is a
clique of L(G). Let K0 = {〈S(v)〉 : v ∈ V (G)}, K = {〈S(v)〉 : v ∈ V2}. It is easy
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to show that K0 is a clique decomposition of L(G) ([6]) and each vertex of the line
graph belongs to at most two elements of K0. We know that each element 〈S(v)〉
of K0 \K , a single vertex of L(G), is contained in the clique induced by u that is
adjacent to v in G. So K is a clique decomposition of L(G).

Let X and Y be sets of vertices of a graph G. We denote by E[X,Y ] the set of
the edges of G with one end in X and the other end in Y . If Y = X, we simply
write E(X) for E[X,X]. When Y = V \X, the set E[X,Y ] is called the edge cut of
G associated with X, and is denoted by ∂(X).

Theorem 3.1 For any set T of t edge-disjoint triangles of a connected graph G, if
the subgraph induced by the edge set E(T ) is a triangle-forest-structure, then

rc(L(G)) ≤ n2 − t.

Moreover, the bound is sharp.

Proof. Let T =
⋃c

i=1 Ti =
⋃c

i=1{Ti,ji
is a triangle of G : 1 ≤ ji ≤ ti}(

∑c
i=1 ti = t)

be a set of t edge-disjoint triangles of G such that the subgraph of G, G[E(Ti)],
induced by each E(Ti) is a component of the subgraph G[E(T )], that is, a triangle-
tree-structure of size ti.

v1 v2

v4

v3

u1

v5 v6
v7

u2 u3

u4 u5 u6 u7

w

G

T1,1

T1,2 T1,3

T2,1

T2,2
T2,3

Figure 3.3 An example of Theorem 3.1.

In G, for each 1 ≤ i ≤ c, let Gi = G[E(Ti)], Vi = V (Gi), Ei = E(Ti); E0
i =

E(Vi)∪∂(Vi) ⊇ Ei, and G0
i = G[E0

i ]. We obtain a new graph G′ from G by applying
Operation 1 at each edge e ∈ E(Vi)\Ei for 1 ≤ i ≤ c (Note that here any edge e ∈
E(Vi)\Ei cannot be a bridge, so the graph obtained from G by applying Operation
1 at a such edge is still connected), and we denote by G′

i the new subgraph (of G′)
corresponding to G0

i . Applying Observation 2.3 repeatedly, we have rc(L(G)) ≤
rc(L(G′)).

For example, see Figure 3.3, here c = 2, t1 = t2 = 3, t = t1 + t2 = 6,
T =

⋃2
i=1 Ti =

⋃2
i=1{Ti,ji

: 1 ≤ ji ≤ 3} is a set of 6 edge-disjoint triangles
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of G. Clearly, the subgraph G[E(Ti)] of G induced by each E(Ti) is a triangle-
tree-structure of size 3, so G[E(T )] is a triangle-forest-structure with size 6 and
2 components. G1 = G[E(T1)], V1 = V (G1) = {ui : 1 ≤ i ≤ 7}, E1 = E(T1) =
{u1u2, u2u3, u1u3, u2u4, u4u5, u2u5, u3u6, u6u7, u3u7}, G0

1 = G[E0
1 ] where E0

1 = E(V1)∪
∂(V1) = E1∪{u3u5}∪{wu1, u1v3} with E(V1) = E1∪{u3u5} and ∂(V1) = {wu1, u1v3}.
The edge u3u5 ∈ E(V1)\E1 cannot be a bridge, similarly, neither is v2v7 ∈ E(V2)\E2.
We obtain G′ from G by applying Operation 1 at edges u3u5 and v2v7, the new sub-
graph G′

i (of G′) corresponding to G0
i contains exactly ti = 3 (edge-disjoint) triangles

{Ti,ji
} with i = 1, 2 and 1 ≤ ji ≤ 3.

Next we will show rc(L(G′)) ≤ n2 − t. By previous discussion, we know that

K = {〈S(v)〉 : v ∈ V2} =
c⋃

i=1

{〈S(v)〉 : v ∈ Vi}
⋃
{〈S(v)〉 : v ∈ V2\

c⋃
i=1

Vi}

is a clique decomposition of L(G). So

{E(〈S(v)〉) : v ∈ Vi}c
i=1

⋃
{E(〈S(v)〉) : v ∈ V2\

c⋃
i=1

Vi},

that is,

{E(L(G0
i ))}c

i=1

⋃
{E(〈S(v)〉) : v ∈ V2\

c⋃
i=1

Vi}

is an edge partition of L(G). So

{E(L(G′
i))}c

i=1

⋃
{E(〈S(v)〉) : v ∈ V2\

c⋃
i=1

Vi}

is an edge partition of L(G′). By Observation 2.1, we have

rc(L(G′)) ≤
c∑

i=1

rc(L(G′
i)) +

∑

v∈V2\
⋃c

i=1 Vi

rc(〈S(v)〉).

We know |Vi| = 2ti + 1, since the triangle-tree-structure Gi has size ti. So

rc(L(G′)) ≤
c∑

i=1

rc(L(G′
i)) + (n2 − 2t− c).

In order to get rc(L(G′)) ≤ n2 − t, we need to show rc(L(G′
i)) ≤ ti + 1.

Claim. rc(L(G′
i)) ≤ ti + 1.

Proof of the Claim. Since the graph G′
i is obtained from Gi by applying

Operation 1 at each edge e ∈ E(Vi)\Ei, G′
i contains exactly ti triangles: {Ti,ji

∈
Ti : 1 ≤ ji ≤ ti}. We will show that there is a (ti + 1)-rainbow coloring of L(G′

i)
by induction on ti. For ti = 1, G′

i contains exactly one triangle, and we give its line
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graph a 2-rainbow coloring as shown in Figure 3.4. We give color 1 to the edges of
〈S(u)〉 incident with vertex e1, edges of 〈S(v)〉 incident with vertex e2, and edges of
〈S(w)〉 incident with vertex e3; We then give color 2 to the edges of 〈S(u)〉 incident
with vertex e3, edges of 〈S(v)〉 incident with vertex e1, and edges of 〈S(w)〉 incident
with vertex e2; Finally, give color 2 to the rest of the edges. It is easy to show that
this is a rainbow coloring. So, the above conclusion holds for the case ti = 1. We

u

v

w

e1

e2

e3

1

1

1 2

2

2

Figure 3.4 2-rainbow coloring of line graph of graph with exactly one triangle.

assume that the conclusion holds for the case ti = h− 1(h ≥ 2), and now show that
it holds for the case ti = h. By the definition of triangle-tree-structure, there must
exist one triangle: T = {u, v, w}, which has exactly one common vertex, namely u,
with other triangles and v, w do not belong to any other triangle. We now obtain a
new graph G′

i from G′
i by doing Operation 1 at edges e1 and e2, this produces two

subgraphs H1 and H2 (see Figure 3.5). It is clear that L(G′
i) can be obtained from

G
′

i

u

v w

e1
e2

G′

i

u

v w

e
′

1e
′

2

e
′′

1e
′′

2

H1

H2

Figure 3.5 G′
i is obtained from G′

i by applying Operation 1 to edges e1 and e2.

L(G′
i) by subdividing vertex e1 into two vertices {e′1, e′′1} and e2 into two vertices

{e′2, e′′2}. Since H1 has h − 1 (edge-disjoint) triangles, by induction hypothesis,
rc(L(H1)) ≤ h. As the subgraph of L(G′

i) induced by {〈S(v)〉 : v ∈ Vi\{v, w}} is
isomorphic to L(H1), so it also has a rainbow h-coloring. The remaining edges of
L(G′

i) belong to 〈S(v)〉 and 〈S(w)〉, we color them as follows: give a new color to the
edges of 〈S(w)〉 incident with vertex e1, and edges of 〈S(v)〉 incident with vertex e2.
Let e3 = vw, we then give any one color, say c1, of the former h colors to the edges
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of 〈S(w)〉 incident with vertex e3, and give a distinct color, say c2, of the former h
colors to the edges of 〈S(v)〉 incident with vertex e3. It is easy to show that, with
the above coloring, L(G′

i) is rainbow connected, and so L(G′
i) ≤ ti + 1 holds for

ti = h.

For the sharpness of the upper bound, see Example 3.3.

We call a set of triangles independent if any two of them are vertex-disjoint. Since
each single triangle is a triangle-tree-structure, applying Theorem 3.1, we have the
following corollary, and for the sharpness of the upper bound, see Example 3.3:

Corollary 3.2 If G is a connected graph with t′ independent triangles, then

rc(L(G)) ≤ n2 − t′.

Moreover, the bound is sharp.

Example 3.3 Let G consist of t (independent) triangles and t − 1 edges which do
not belong to any triangles, as shown in Figure 3.6. Since G has 3t inner vertices, by
Theorem 3.1(Corollary 3.2), we know rc(L(G)) ≤ 2t; on the other hand, it is easy to
show that the diameter of the line graph L(G) is 2t, and so we have rc(L(G)) = 2t.
Then the bound of the above theorem(corollary) is sharp.

G

Figure 3.6 Figure of Example 3.3.

3.2 Another sharp upper bound

Now we give another upper bound which is derived from Theorem 3.1 and, of
course, it is sharp.

Theorem 3.4 If G is a connected graph, T is a set of t edge-disjoint triangles
that cover all but n′2 inner vertices of G and c is the number of components of the
subgraph G[E(T )], then

rc(L(G)) ≤ t + n′2 + c.

Moreover, the bound is sharp.

Proof. Let T =
⋃c

i=1 Ti =
⋃c

i=1{Ti,ji
is a triangle of G : 1 ≤ ji ≤ ti}(

∑c
i=1 ti = t)

be a set of t edge-disjoint triangles of G such that the subgraph of G, G[E(Ti)],
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v1 v2

v4

v3u1

v5

v6 v7

u2 u3

u4 u5

u6

u7

w

G

T1,1 T1,2

T1,3

T2,1 T2,2

T2,3T1,4

u8

T2,4

v8

Figure 3.7 Figure of Example of Theorem 3.4.

induced by each E(Ti) is a connected component of the subgraph G[E(T )]. If each
G[E(Ti)] is a triangle-tree-structure, then the number of inner vertices covered by
all these t triangles is 2t + c, that is, n′2 = n2 − (2t + c). So by Theorem 3.1, in
this case we have rc(L(G)) ≤ n2 − t = n′2 + (2t + c) − t = t + n′2 + c. Now we
consider the case that there exists at least one i such that the subgraph G[E(Ti)] is
not a triangle-tree-structure, that is, it may contain a triangle-cycle-structure as a
subgraph. An example is shown in Figure 3.7, the subgraph induced by the edges
of triangles: {T1,1, T1,2, T1,3} is a triangle-cycle-structure of size 3.

In G, for each 1 ≤ i ≤ c, let Gi = G[E(Ti)], Vi = V (Gi), Ei = E(Ti); E0
i =

E(Vi) ∪ ∂(Vi) ⊇ Ei, and G0
i = G[E0

i ]. We obtain a new graph G′ from G by
applying Operation 1 at each edge e ∈ E(Vi)\Ei for 1 ≤ i ≤ c (Note that here any
edge e ∈ E(Vi)\Ei cannot be a bridge, so the graph obtained from G by applying
Operation 1 at one such edge is still connected), and we denote by G′

i the new
subgraph (of G′) corresponding to G0

i . Applying Observation 2.3 repeatedly, we
have rc(L(G) ≤ rc(L(G′). Now each G′

i contains exactly ti triangles: Ti,ji
where

1 ≤ ji ≤ ti. We now obtain a new graph G′′ from G′ by applying Operation 2 to
those G′

is which contain triangle-cycle-structures such that each subgraph (of G′′)
G′′

i corresponding to G′
i contains no triangle-cycle-structure (During this procedure,

we can make sure that G′′ is connected).

For example, see Figure 3.7, here c = 2, t1 = t2 = 4, t = t1 + t2 = 8,
T =

⋃2
i=1 Ti =

⋃2
i=1{Ti,ji

: 1 ≤ ji ≤ 4} is a set of 8 edge-disjoint triangles of
G. Clearly, the subgraph of G, G[E(Ti)], induced by each E(Ti) is not a triangle-
tree-structure, G[E(T1)] contains a triangle-cycle-structure of size 3 and G[E(T2)] is
a triangle-cycle-structure of size 4. G1 = G[E(T1)], V1 = V (G1) = {ui : 1 ≤ i ≤ 8},
E1 = E(T1) = {u1u2, u2u4, u1u4, u2u3, u3u5, u2u5, u4u5, u4u6, u6u5, u6u7, u6u8, u7u8},
G0

1 = G[E0
1 ] where E0

1 = E(V1) ∪ ∂(V1) = E1 ∪ {u3u8} ∪ {wu1, u3v6} with E(V1) =
E1 ∪ {u3u8} and ∂(V1) = {wu1, u3v6}. Edge u3u8 ∈ E(V1)\E1 cannot be a bridge,
similarly, v3v8 ∈ E(V2)\E2. We obtain G′ from G by applying Operation 1 at edges
u3u8 and v3v8, the new subgraph G′

i (of G′) corresponding to G0
i contains exactly

ti = 4 (edge-disjoint) triangles: {Ti,ji
} with i = 1, 2 and 1 ≤ ji ≤ 4. We now
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obtain a new graph G′′ from G′ by applying Operation 2 at vertex u4 (or u5) and v4

(or v5) such that G′′
i contains no triangle-cycle-structure. Clearly, during the above

procedure, G′′ is connected.

Let op(G′) be the minimum times of doing Operation 2 needed during the above
procedure. Clearly, op(G′) = op(G[E(T )]) (minimum times of applying Opera-
tion 2 needed for G[E(T )] such that the resulting graph is connected and con-
tains no triangle-cycle-structure). For example, in the above example, op(G′) =
op(G[E(T )]) = 2. As the number of inner vertices increases 1 after we applied
Operation 2 once, there are op(G′) new inner vertices totally produced, then by
Observation 2.4 and the discussion of Theorem 3.1(before the Claim), we have
rc(L(G)) ≤ rc(L(G′)) ≤ rc(L(G′′)) ≤ ∑c

i=1 rc(L(G′′
i )) + (n2 + op(G′) − 2t − c) ≤∑c

i=1(ti + 1) + (n2 + op(G[E(T )]) − 2t − c) = n2 + op(G[E(T )]) − t, that is, our
following claim holds:

Claim. For any set T of t edge-disjoint triangles of a connected graph G with
n2 inner vertices, we have rc(L(G)) ≤ n2 + op(G[E(T )])− t.

Recall that a triangle-forest-structure of size ` contains 2` + c (inner) vertices
where c is the number of components of it. Operation 2 does not change the number
of edge-disjoint triangles, but the number of inner vertices increases 1 after we
applied Operation 2 once. Then it is easy to show that after applying Operation 2
op(G[E(T )]) times, the number of inner vertices of the new graph G′′ is op(G[E(T )])
+ n2=2t + c+n′2 where n′2 denotes the number of inner vertices not covered by the
original t edge-disjoint triangles. So, by the above claim, we have rc(L(G)) ≤
n2 + op(G[E(T )])− t = 2t+ c +n′2− t = n′2 + t+ c. For the sharpness of the bound,
we can see Example 3.5.

Example 3.5 Let G be a graph shown in Figure 3.8. The set T = {ui, vi, ui+1}k−1
i=1

is a set of k− 1 edge-disjoint triangles, n′2 = 1 and c = 1. By Theorem 3.4, we have
rc(L(G)) ≤ k + 1; on the other hand, it is easy to show that the diameter of L(G)
is k + 1, and so rc(L(G)) = k + 1.

x

y

u1
u2 u3 uk

v1 v2 v3 vk

G

Figure 3.8 Figure of Example 3.5.
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4 Bounds for iterated line graphs

Recall that the iterated line graph of a graph G, denoted by L2(G), is the line
graph of the graph L(G). The following corollary deduced from Theorem 3.4 is an
upper bound of the rainbow connection numbers of iterated line graphs of connected
cubic graphs.

Corollary 4.1 If G is a connected cubic graph with n vertices, then

rc(L2(G)) ≤ n + 1.

Proof. Since G is a connected cubic graph, each vertex is an inner vertex and the
clique 〈S(v)〉 in L(G) corresponding to each vertex v is a triangle. We know that
K = {〈S(v)〉 : v ∈ V2} = {〈S(v)〉 : v ∈ V } is a clique decomposition of L(G). Let
T = K . Then T is a set of n edge-disjoint triangles that cover all vertices of L(G)
and L(G) = L(G)[E(T )]. So n′2 = 0 and c = 1, by Theorem 3.4, the conclusion
holds.

In a graph G, we call a path of length k a pendant k-length path if one of its
end vertex has degree 1 and all inner vertices has degree 2. By definition, a pendant
k-length path contains a pendant `-length path(1 ≤ ` ≤ k). A pendant 1-length
path is a pendant edge.

Theorem 4.2 Let G be a connected graph with m edges and m1 pendant 2-length
paths. Then rc(L2(G)) ≤ m −m1, the equality holds if and only if G is a path of
length at least 3.

Proof. Now L(G) is a graph with m vertices and m1 pendant edges. Then it
has m − m1 inner vertices. By the discussion before Theorem 3.1, we give each
clique 〈S(v)〉 in L2(G) a fresh color, where v is an inner vertex of L(G). It is
easy to show that this gives a rainbow (m − m1)-edge-coloring of L2(G), and so
rc(L2(G)) ≤ m−m1.

If G is a path of length at least 3, then the equality clearly holds.

If G contains a cycle, then L(G) clearly contains a minimal cycle C : v1, · · · , v`.
So L2(G) contains a clique-cycle-structure of size ` which is formed by cliques
{〈S(vi)〉}`

i=1. By a result in [7], we know that this structure needs at most d `+1
2
e

colors to make sure that it is rainbow connected. The rest part of L2(G) is formed
by cliques {〈S(v)〉 : v ∈ V 2\{vi}`

i=1} where V 2 is the set of inner vertices of
L(G). We give each such 〈S(v)〉 a fresh color, by Observation 2.1, rc(L2(G)) ≤
d `+1

2
e+ (m−m1 − `) < m−m1, a contradiction.

If G is a tree with a vertex of degree at least 3, then L(G) contains a cycle, with
a similar argument, we can derive that rc(L2(G)) < m−m1. This also produces a
contradiction
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So G is a tree with maximum degree 2, and hence it must be a path of length at
least 3.
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