A 2n-point Interpolation Formula with Its Applications to ¢-Identities
Sandy H.L. Chen', Amy M. Fu?
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China

lchenhuanlin@mail.nankai.edu.cn, >fu@nankai.edu.cn

Abstract

Based on Krattenthaler’s determinantal formula and divided difference operators, we
give a 2n-point interpolation formula for a polynomial of degree < n in one variable. Several
applications of this formula, such as g-identities related to divisor functions, finite forms
of the quintuple product identity and a bibasic hypergeometric identity, are discussed. We
also give an expansion formula for []}"_, (y — ug’~!) by using the supersymmetric complete
functions and determinant evaluation.
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1 Introduction

Let A = {a1,a2,...} be a set of indeterminates. The n-point Newton interpolation formula for
a function f(z) gives the unique polynomial P(z) of degree n — 1 :

n n—1 i
P(z) = f(z) = f(a1)010y - On [ [(z — @) = flar) + > f(a1)dr0--- 0 [ [ (& — @), (1.1)
i=1 i=1 j=1

where we take ap+1 = x and the divided difference 0; (i > 1), acting on its left, is defined by

)8 _ f(al, vy gy Q41 - - ) — f(al, ey Q415 Q4y . )
! a; — Ai41

f(al, ey Qg Qg 1y e e s

Unlike Newton’s formula (1.1), Lagrange’s interpolation formula does not need the knowl-
edge of the difference of a function:

P =3 o) 12

Based on the following determinantal formula due to Krattenthaler [7], we shall introduce
a 2n-point interpolation formula which gives a unique polynomial of degree < n. Given three
sets of variables X = {z1,...,zp41}, A = {a1,...,an}, and B = {by,...,b,}, Krattenthaler
has shown that

det ((3:Z —ag) - (@ —an)(@; —b1) - (@ — j—l))n—s_1

3,7=1
= H (CITZ - .CCj) H (aj - bz) (13)
1<i<j<n+1 1<i<j<n



Taking z,4+1 = y and using Laplace’s expansion to expand the determinant along the last row,
(1.3) can be reduced to the following formula :

= ekly—ant1) - (Y —an)(y —b1) - (y — by, (1.4)
k=0

where f(y) = (y —z1)--- (y — zp) and ¢ is a quotient whose numerator is the minor of the
above determinant with respect to the entry (y — axy1) -+ (y — an)(y — b1)---(y — bg) and

denominator is the product (—1)* [Ti<icj<n(a; = b)) [Ti<icjcn (@i — ).

Applying the techniques of the divided differences to determine the coefficients ¢z, 0 < k <
n, we obtain the main result of this paper and will prove it in the next section.

Theorem 1.1 Suppose f(y) is a polynomial in y with degree < n. Given two sets of points
A={ai,...,an} and B = {b1,...,b,} with a; # b;,1 <1i,j <n, we have the following 2n-point
interpolation formula:

(Y —ai) -
=f(b !
f(l)il_[l(bl_ai Hal—b

=1

n—1 f(b ) n—=k k
+ P : 01 Op(bpt1 — an—p+1) H(y —a;) H(y —by). (1.5)
k=1 H (bl - ai) i=1 i=1

Theorem 1.1 can be regarded as a terminating case of the Newton type rational interpolation
formula for a formal power series f(y) given in [4] :

n

00 n—1
Fly) = f(by) + Zf(bl) H(l —b1¢)01 - On(1 = bpyicy) H 1?J yb;
n=1 i=1 i=1 !

where by, bs,...,c1,cCo,... are complex numbers and the series is convergent when

ly| <1, ILm by---b, =0, and lim y"by---b, =0.

n—oo

Consider the case f(y) = 1 in Theorem 1.1. Comparing with the reminders of Newton’s
and Lagrange’s interpolation formulas for the function 1/(z — y), we are led to the following
identity.

Theorem 1.2 We have

n _az n n y
x—blll;[l b1 — a;) x—al (H al—b Hm )

i=1 i=1
n—1 n—k k
1/(z —by)
+ — 01+ Op(bgs1 — n—ki1) — a4
pr | kH( - a;) Z];[1 ’11
n—1 k n
1 1 (y — b)) L 1Ly =b)
pu— + =
x—b ;x—hjl;[l(fc_bﬂl) ;x_bknjsﬁk( —b)

The last equality has already appeared in [3] in the proofs of serval g-identities related to
divisor functions. A short proof of Theorem 1.2 and some applications of Theorem 1.1, such
as g-identities related to divisor functions, finite forms of the quintuple product identity and a
bibasic hypergeometric identity, will be discussed in Section 3.



Theorem 1.3 We have

where [Z] is the q-Gauss coefficient defined by

m _ (@
k] (@ Ok Oni’
where (a;q)y is the q-shifted factorial defined by

(a;Q)n=0—-a)(l—aq)---(1—ag"™'), n=0,1,...00.

Theorem 1.3 can be deduced from Theorem 1.1 through the following specializations:

n

f) =] -ud™), A={vg" " ... ,vg" v}, B={wgwe, .. wg"}.
=1

Instead of using Theorem 1.1, we shall give an alternative proof of (1.6) in Section 4 by
evaluating the numerator of ¢, 0 < k < n.

Note that Theorem 1.3 can be considered as a variation of the terminating ¢¢s summation
formula [5]. On the other hand, one can view the terminating g¢s summation formula as an
interpolation formula. Writing wv™! as a, wy~' as bg~! and uv™! as cq' ™", we find

(ag; @)n(aq/bc; q)n _ Z": (1 — ag®®)(a; Q)w(b; O)rlc; Dula™"; Q)i (aq”“>k
(aq/b;@)n(ag/c;q)n = (1= a)(g; r(aq/b; Q)k(ag/c; Orlag" @)k \ be )

2 Proof of Theorem 1.1

In order to prove Theorem 1.1, it suffices to verify the following lemma. The main technique
we use in our proof is the following Leibnitz formula [8]:

n

f(;vl)g(xl)@lﬁg cee 0n = Z (f(l’l)al e Ok) (g(l‘k+1)ak+1 e 6n) (2.1)
k=0

Lemma 2.1 We have

_ fb) if k=
[T (b —a) h=0
= %81 o Op(beyr —ag), f1<k<n-—1, (2.2)
f Qan ; _
m, ifk=mn,

where ci, and f(y) are given as in (1.4).



Proof. According to (1.3), we have

det ((il] _ aj—l—l) e (-Tz — an)(iﬂz — bl) c. (xz — b]))n

i,7=1

n
= [ (@i = bo) det ((zi = aji1) -+ (@i = an) (@i = ba) -+~ (23 = b))},

=1
="y [ @—=) [ (a;—b)

1<i<j<n 2<i<j<n
Therefore,
f(b1)
o

T (0 —ai)

Similarly, one has

Specializing y to b in (1.4) to get

f(bﬁ)?znl%i(?a:)ai) + c1(b2 — b1) H

f(b2) =

2 — az
1=2

which implies
n

¢ = (f(b1)/H(b1 —a;) = f(ba)/ [ [ (b2 - ai)) (by —a1)/(by — b2)
=1

=1
B f(b) .
T - ay 102~ a)

Let g(y) = f(y)/(y —a1)--- (y — an). Rewrite (1.4) as

n—1 n ‘
o) =50+ 3 ey e e 9

= T (y—a) (Y —an)
Multiplying both sides by (y — a1) -+ (y — a;—1), then applying the operator 0 - - - 9;, we have

g(yl)(yl - al) T (yl - aifl)al e ai‘yj:bj,lgjgi—l-l

i—1

n—1
(y1 —b1) -+ (y1 — b) .
" Z o —a)n—an T Hwmasisin (24)

=1

Since 0 - - - 0; decreases degree by i and (y1 — ag+1) - (y1 — ai—1)(y1 — b1) -~ (y1 — bi) is a
polynomial of degree ¢ — 1, so the first sum on the right side vanishes.



Consider the case ¢ < k. By the Leibnitz type formula (2.1), we find

(yl—bl)"'(yl—bk)a

(1 —ai) (g —a) ”aibj:bj,lﬁjsiﬂ
(y1 — ba) - (y1 — b) (y2 — ba) -+ (y2 — bp) )
- —b - 0; + Dy -0 .
((y1 V (y1—ai)-- (1 —ap) (v2—ai) (o —ax) }éjjgfil
(Y2 —b2) -~ (y2 — by)
= By 05| uims,
(Y2 —ai) - (y2 — ax) ? {2;]7';1'11
:...:(yi_bi)"'(yi_bk)a - 0, 1 <k,
N R DR 1/(bks1 —ag), i=
Now (2.4) becomes
f(bl) Ck
b )by —a1) - (b1 —ap_1)04---Op = o Op=—>n
g(b1) (b1 —ar) -+ (br — ag—1)0r - - O o—an) o —a) % o —an)
as desired. 1

It is easy to see that Theorem 1.1 can be deduced from (1.4) and Lemma 2.1 by replacing
a; by an_ijy1 for 1 <i <n.

There is an obvious symmetry between a;’s and b;’s in Theorem 1.1 :

n-1 F(b1) n—k k
Z n—k+1 81 ...8k(bk+1 —an,kJrl) H(y—ai) H(y—bi)

k=1 [L5 (0 —ai) i=1 i=1
n—1 f(a ) n—k k
1
= — O Ok(ag+1 — bn—kt1) || (v —bi) | | (v — i),
k=1 Hi:1k+1(a1 —b;) zl_I1 zl_Il

which implies the following identity.

Corollary 2.2 For1 <k <n—1, we have
fla1)

f(b1) e fla)
T by — ay) 1o O T (a1 — by 01+ O, (2.5)

where f is a polynomial with degree < n.

3 Interpolation formulas for f(y) =1

As an immediate consequence of Theorem 1.1, we have

i=1 =1
n—1 1 n—k k
+ — O+ O(brrr — an—iy1) [ [ —a) [J(w =), (3.1)
k=1 [Lo (b —a) i=1 j=1

which is a 2n-point interpolation formula for f(y) = 1. In this section, we shall apply (3.1) to
derive several g-identities and a bibasic hypergeometric identity.



3.1 g¢-identities related to divisor functions

Multiply both sides of (3.1) by 1/(y — a1) and then set a; = x,b, = y. Since
1 1
010, 1 = 7
y—bi b)) (y—ba)

the last term of the summation in (3.1) becomes

1 n—1
== O e L=
= . + ! o0 1(y—a2)nl_f(y—b')
(x —az2)(ag —b1)  (ag —x)(x — by) ne Pl !
L (=t b 1 T (v —b)
_a2—x<£[1(a2—bz‘) il;ll(x—bi) +y—xil;[1(x—bi)'

For 1 <4 <n — 1, replacing a;+1 by a;, and multiplying both sides by —1, we find

1 _nfl(y_bi)
—1/(1 }_[l(x—bi)>
IR o VYD B S URT B v SV
x_blizl(bl_ai) T —aq (a1 — Ll (z—b)

i=1

n—2

1/1’—()1 "3 i
—I—Z — 01 Op(bks1 — an—i) H _azH — b;).

bl - al) 7j=1 i=1
Since the n-point Newton’s formula and the n-point Lagrange’s formula for 1/(z — y) have
the same reminder [ (y — b;)((z — y) [T/~ (z — b;)) ™!, Theorem 1.2 holds.

Let A= {¢™1,....¢" ™, B={qg"'q¢2...,¢"), z=q¢", y=1 Theorem 1.2
implies

M—-17n+1 1 +1 k+1
En: i ¢! _niz q¢" /[k—i‘M] _HE:[”‘*‘l] (~1)k1q("2)
M+n+1—k] [M+n—1-2k] 1 _ 4k+1 _ ok - —_ ogM+k
ol I | R il & el B 1-4q
Note that the second equality is given by Uchimura [9], see also [3].
3.2 Finite forms of the quintuple product identity
By setting a; = vg"~™ and b; = wq’ for 1 <i < n in (3.1), one can verify that
1 n 1
n—k+1 — OO = k n—k+1 k41 i k 1—k i
[L=T (by —vg ™) Hj:l (wghtt —vgI=m) Hj:l(”q —wgd)
Substituting the above relation into (3.1), we obtain
Z[ } Ty — v ™) Ty (v — we) (32)
T (gt —ogi ) TT5 (vg* — wgd) '



Setting v = w1 and y = ¢ in (3.2), we reach the following g-identity [2] :
- n] _(w;q)
2
kZ::O( ) k| (w?q"; q)nt1
Note that above identity is a finite form of Watson’s quintuple product identity [5]:

o)

> (1-wg BT = (4 0)oo (1 0)o0 (010 0)o0 (020; )0 (0/10% )0

k=—00

Consider the case v = w™lg~! and y = 1. Then (3.2) implies another finite form of the
quintuple product identity [6]:

- w? 2k+1 (wq; @)n k k2
Z [k] (w? ) weq -

— " @)nt

3.3 A bibasic hypergeometric identity

Let f(y) =1and a; = p’, b; = ¢~* for 1 < i < n. Then (2.5) implies the following p, g-identity:

- j (”1) (n=k)(G+1) ' (”1) +(G+1)(n—k)

k
Z p)n k=i (aP ™ @ ; i@ Dk—i(P@7 Y P)n—rr1 (3:3)
Proof. By the partial fraction expansion, we find
q() ”il —1)ig("2 )
H (z—4q") ]:0 s Dn—1-j(z — @ 11)’
Thus,
1 .y ip("a )=
(br —p) - (b —pr=F) 1 :jz;) ;) (05 P)n—i—j (b1 — pi+1) O
n- k( 1)k+jp(’§ )*(n*k)(jﬂ)q(k;?)
- = 0ip)j (P P)n—k—j (P75 Qi1
In the same manner, we deduce that
1 k 1)k+i+1 ( N+ +G+1) (n—k)
(a1 —q71) (a1 —q7F" 1) JZO 0);(; Q)k—j(qu+1§p)n—k+1
Now (3.3) immediately follows from (2.5). This completes the proof. 1

4 An expansion of the ¢-shifted factorials

In this section, we shall give a different proof of Theorem 1.3 by computing certain minors of
Krattenthaler’s determinant. Expanding the determinant in (1.3) with respect to the last row,



we obtain

I @i—)

1<i<j<n

=

(wi—y) [ (a—03)

1 1<i<j<n

-.
Il

1
(—1)™ (X, A By —ag) -+ (y — an)(y = b1) -+~ (y —br—1), (41)

3
+

el
Il
—

where C), (X, A, B) denotes the minor of the determinant with respect to the entry (y —
ag) - (y — an)(y = b1) -+ (y — bp—1).

To present our proof, let us give a quick review of some basic properties of supersymmetric
complete functions. Given two sets of indeterminates X = {x1,x9,...} and Y = {y1,99,...},
the supersymmetric complete function h,(X —Y) is defined by

M = i(—l)kek(Y)hn—k(X),

ze k=0

where [t"]f(t) stands for the coefficient of ¢" in f(t), ex(X) denotes the k-th elementary sym-
metric function and hi(X) denotes the k-th complete symmetric function in X. Clearly,
ho(X -Y)=1.

Lemma 4.1 [8] Let {j1,jo,...,jn} be a sequence of integers, and let X1, ..., X, and Y1, ..
Y, be sets of indeterminates. The following relation holds

*)

n

det (hjk—l—k—l(Xk — Yk))k: - = det (hjk—l—k—l(Xk -Y, — Dk_l))k _t

where Dy, D1, ..., D,_1 are sets of indeterminates such that the cardinality of D; is equal to
or less than 1.

Lemma 4.2 For1 <k <n+1, set

{aj,...,;an,b1,...,bj1}, 1<j<k;

Y}: {aj—‘,-la-"?anabla"'?bj}v kS]STL,
{a:l,xg,...,a:n} j=n+1.
Then we have
Cok(X,A,B)= [ (@i — =) det(hi(X — ¥} (4.2)
1<i<j<n
=(-DE) T (i — ) det(ea (7)1 (4.3)
1<i<j<n

Proof. The identity (4.2) easily follows from the definition of the supersymmetric complete
function and Lemma 4.1. Since

ho(X = X) =1, hy(X =X) =) (=1)*ex(X)hn 1(X) =0, n#0,
k=0



we deduce that

det(hi(X — ;)i =y = (=1)" det(hi—1 (X — Y;))i 12

1,] 3,7=1
= (—1)" det(hi—; (X))} 12, det((—1)" e (Y)))i /2
= (=)&) det(eia (V)12
This completes the proof. |

Setting X = {u,uq,...,uq¢" 1y}, A= {v,ug7t,...;v¢'™"} and B = {wq,wq?, ..., wq"}
n (4.1), we find

i=1 1<i<j<n
n+1 n . k—1 '
=Y ()" D (X, A, B) [ [(v —va" ™) [[ (v — we),
k=1 i=k i=1
where

Dy (X, A, B) = Cope(X, A, B)/ ] (ug™" —ug’™).

1<i<j<n

To prove (1.6), it suffices to establish the following theorem.
Theorem 4.3 For1 <k <n-+1, we have

N

1

n—k k—1 n n

[T we—ug) [Twg™ " =o® M [] TI (va"7 —wd). (4.4)
=0 =1 i=1 i

It is convenient for us to present the proof of Theorem 4.3 via two steps. In the first
step (Lemma 4.4) we shall evaluate a special case of D, (X, A, B), where u = wq®. The
second step (Lemma 4.5) is to show that D, (X, A, B) is a polynomial in v with n roots

1+k— 1- 3—k—
wq,w, ..., wg TR pgl T L g ",

Lemma 4.4 Let A" = {v,vq7},...,v¢' ™"} and B’ = {wq,wq®, we>, ..., wq" ™}, For1 <k <
n, we have

n+1 _ n—
LA B = (=) e gk g gy,

n n k—1
[k " 1] U H (vg" 7 —wg) [ (vg®* = wg" ). (4.5)

= Jj= =1
itk j#£k—1

where
! (A B) = (-1)5) D, (X, A, B)

u=wq?



Proof. From Lemma 4.2 it follows that

ne(A' BY) = det(eim1 (V)2 (4.6)
where
{vgt=7, .. vt " wq, .. wg Y, 1< <k
Yi=19 {vg7,...,0¢) ™ wg,... , wg}, k<j<n,
{wg?, ... wg" "} j=n+1,

We shall proceed by induction on n. When n =1 and k = 1,2, we have D} | ({v}, {wg, wq?}) =
—wq(1 - q), D 5({v}, {wg, wq?}) = —(v — wq?), which are in accordance with the right hand

side of (4.5). We now assume that (4.5) holds for 1 <n < m — 1, where m > 2. Since
ej(Vi) = €;(Yir1) = (vg' ™ —wg®)ej 1 (vg ™, ... wg"™)

and
¢j(Ym) = ¢j(Yint1) = (wg — wg™ Hej1(wg?, ..., wg™),
it is easy to verify that

L (A B = ()" wmg™ (g ) [ ] H(vql‘j —wq'),

which is equal to the right side of (4.5).

We now consider that case 1 < k < m — 1. Since

ej(Yi) — €j(Yiya) =(vg' ™ —wg")e; 1 (vg ™, ..., wg* )
+ (Uq_k - qu+1)ej—1(vq_l_k7 cee 7qu)7
it follows that
i1 (AL B) = (1) H —wq')(wg — wg™ ")
Dy, k(A/ \ {v}, B\ {wg™*'}) N Dy, g (AN {o}, B\ {wg™ 1Y)
v~ gk v F — wght ,

where A\ B denotes the set difference of A and B.
By the inductive hypothesis, we get

(AN {0, B {wg™ 1Y) = (1) wm R R (g; g)

=1 Jj=1 =1
i£k jAtk—1
and
Dy gt (AN {0}, B\ {wg™ 1)) = (=) B =1gm =Y g q),
m— 1 m—1 m—1 4 k
|: N ] (vq j_qu)H(Uq k wqm z+1)



Therefore,

(AL B = <—1><”2“>wm—’fqm—’f<q;q>m_k[ } I1 [Ltea™ = wa)
o, i

i#Ek+1
k
_ _~ w(l—g" v —wgh)g "
H(Uql k wqm z+2) ( Ek )k + ( — ) - 7
i—1 vg " —wq vg "t —wq
as desired.
Finally, we are left with the case k = m + 1. Since, by (1.3),
Dm,m+1(X7A7B) H (uqiil - qu71>
1<i<j<m
i—1 1—j i—1 i—1,\™
— det ((uqz— — g —J)...(uql— _qu— )) )
/[/7.]:
m ‘ m—1m—1
=[Jwe™ —ve"™™ [ (uq ¢ I II(wa"7 —wq),
=1 1<i<j<m =1 j=1t
we have
(AL B) = (1) 5Dy (X, A, B)
’ ’ u=wq?
m m—1m—1
= (1)) [T (ug ! ™11 T (vd" 7 —we)| |
=1 =1 j=1i u=wa
— m m—1m—1
:(_1)( 5 )H(vqlfm 'L+1 H H —wq ’
=1 =1 j=1
which is equal to the right hand side of (4.5). This completes the proof. |
Lemma 4.5 We have
n—=k ‘ k—1 '
D, y(X,A,B)=C l_I(uqZ —wq) 1_[(uq”_Z —vg® ),
i=0 i=1

where C' is independent of u.

Proof. We view D, (X, A, B) as a polynomial in u of degree n with coeflicients depending on
v and w. The essence of the proof is to show that wq, w, ..., wg"tF=" vg'=", ... vg®* ™ are
the roots of the polynomial.

For w = wqg®>™*, where 1 <i<n—k+1, let
DO:(Da Dq :{wq2_i}7"'7Di—1 :{qu_iv"'aw}7

2—i 1—i 2-i 1—i 2
D; = {wg*™", ..., w,wg """} o Doy = {wg L w,wgt T L weP )

Clearly, e;(X) = 0 if the cardinality of X is less than k. In view of Lemma 4.1, D,, (X, A, B)
can be transformed into a determinant whose (i, j)-th entry is equal to 0 if

(i,5) €{(4,5):2<j<k—landn—j+2<i<n,ork<j<nandn—k+1<i<n}

11



Thus D, x(X, A, B)| =0.

u=wq2~?
Similarly, for v = vg®> "%, 1 <i <k — 1, we take
Dy=0, D= {qu_”_i}, oo, D1 = {qu_”_i, N I
Di = {vg* " g v Y, Dy = {vg® v et v
Now D,, (X, A, B) becomes a determinant with the (4, j)-th entry being 0 if

(,j) e{(i,j):k<j<n—-land j+1<i<n,orl<j<k—1land k—1<i<n}.

So we deduce that D, (X, A, B)‘u:'uq2 _; = 0. This completes the proof. |
We are now ready to complete the proof of Theorem 4.3.
Proof of Theorem 4.3:

In Lemma 4.5, we have established that

n—Fk k—1
Dnp(X,A,B) = C [] (ug' —wq) [J(ug"™" — vg*™"),
1=0 =1

where C' is independent of .

To determine C, we set © = wq?. Applying Lemma 4.2 and Lemma 4.4, we obtain

n—k k—1
C [ we®" —w) [J(ug" " = vg* %) = (=1)"w™ " 1q" (g )1
i=0 i=1
n n n k—1 '
[k_1:| H H (vql ]_qu)H(qu k qu71+2)
27:&11 J?Jf:il =
This implies that
n n n L
o=[," I TT e~ - s
2k jEho
Therefore,
Dpi(X,A,B) = (1) k1| "
’ k—1
n—k ' k—1 n n
H(wq —uq") H(uq” L g?h) H H (vg " —wqg’), (4.7)
1=0 i=1 j=1 i=j
Jj#k i#k—1
as desired. This completes the proof. |

To conclude this paper, we give two special cases of (1.6). Bailey [1] found the following two
identities as the g-analogues of Dixon’s theorem for the cubic-sums of binomial coefficients :

n 3 .
I R TS 4

12



and
n

on+11° (¢ @)3nt1
1 k[ ] k(3k+1)/2 _ & ‘ 19
kz;_l( Plaswri] (¢ )3 (4)

Replacing y by u¢®", v and w by ug®~! in (1.6), we obtain

(@5 ) = zn:(—l)k [”] =1)/2 (" " 9F (@ a)n
’ k @5 a)r (@5 )k
; " e (@ (@ )2 (g
_ n 1)k (1 4 gF)gPR-1)/2
2 (D +de (6 (G Dt

n+k+1. \2
9 q)nfk

Multiplying both sides by (¢;¢)2n/(q;q)3 gives (4.8).

3n+1 2n—1

Taking y = uq , U= uq and w = ug®" in (1.6), we find

n

(@) =) (-1)* [Z] gF BT/ (4

n=ktL )2 ("R )2

n—k

P (@ a)e (20—
. k k
Y (—1)F(1 — PR BRI/ ( @)n(@" @@ a)
k=0 <q7q n— k(qv Q)n+k+1

Multiplying both sides by (¢;q)2n+1/(q;q)2, we arrive at (4.9).
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