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Abstract

A vertex-colored graph G is rainbow vertex-connected if any

pair of distinct vertices are connected by a path whose internal

vertices have distinct colors. The rainbow vertex-connection

number of G, denoted by rvc(G), is the minimum number of

colors that are needed to make G rainbow vertex-connected.

In this paper we give a Nordhaus-Gaddum-type result of the

rainbow vertex-connection number. We prove that when G

and G are both connected, then 2 ≤ rvc(G) + rvc(G) ≤ n − 1.

Examples are given to show that both the upper bound and

the lower bound are best possible for all n ≥ 5.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected.
We follow the notation and terminology of [1]. An edge-colored graph G
is rainbow connected if any pair of distinct vertices are connected by a
path whose edges have distinct colors. Clearly, if a graph is rainbow edge-
connected, then it is also connected. Conversely, any connected graph has
trivial edge coloring that makes it rainbow edge-connected; just color each
edge with a distinct color. The rainbow connection number of a connected
graph G, denoted by rc(G), is the minimum number of colors that are
needed in order to make G rainbow connected, which was introduced by
Chartrand et al. Obviously, we always have diam(G) ≤ rc(G) ≤ n − 1,
where diam(G) denotes the diameter of a graph G of order n. Notice that
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rc(G) = 1 if and only if G is a complete graph, and that rc(G) = n − 1 if
and only if G is a tree.

In [3], Krivelevich and Yuster proposed the concept of rainbow vertex-
connection. A vertex-colored graph is rainbow vertex-connected if any pair
of distinct vertices are connected by a path whose internal vertices have
distinct colors. The rainbow vertex-connection of a connected graph G,
denoted by rvc(G), is the minimum number of colors that are needed to
make G rainbow vertex-connected. An easy observation is that if G is a
connected graph with n vertices then rvc(G) ≤ n− 2. We note the trivial
fact that rvc(G) = 0 if and only if G is a complete graph. Also, clearly,
rvc(G) ≥ diam(G)− 1 with equality if the diameter is 1 or 2.

A Nordhaus–Gaddum-type result is a (tight) lower or upper bound on
the sum or product of a parameter of a graph and its complement. The
name Nordhaus–Gaddum-type is used because in 1956 Nordhaus and Gad-
dum [4] first established the following inequalities for the chromatic num-
bers of graphs, they proved that if G and G are complementary graphs on
n vertices whose chromatic numbers are χ(G), χ(G) respectively, then

2
√

n ≤ χ(G) + χ(G) ≤ n + 1.

Since then, many analogous inequalities of other graph parameters are con-
cerned, such as domination number [6], Wiener index and some other chem-
ical indices [7], and so on.

In [8], the authors considered Nordhaus–Gaddum-type result for the
rainbow connection number. In this paper, we are concerned with analo-
gous inequalities involving the rainbow vertex-connection number of graphs.
We prove that

2 ≤ rvc(G) + rvc(G) ≤ n− 1.

The rest of this paper is organized as follows. Section 2 contains the
proof of the sharp upper bound. Section 3 contains the proof of the sharp
lower bound.

2 Upper bound for rvc(G) + rvc(G)

We begin this section with two lemmas that are needed in order to
establish the proof of the upper bound.

Lemma 1 Let G be a nontrivial connected graph of order n, and rvc(G) =
k. Add a new vertex v to G, and make v be adjacent to q (1 ≤ q ≤ n)
vertices of G, the resulting graph is denoted by G′. Then, if q ≥ n− k, we
have rvc(G′) ≤ k.
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Proof. Let c : V (G) → {1, 2, · · · , k} be a rainbow k-vertex-coloring of
G, X = {x1, x2, · · · , xq} be the vertices that are adjacent to v, V \X =
{y1, y2, · · · , yn−q}. We can assume that there exists some yo such that there
is no rainbow vertex-connected-path from v to yo; otherwise, the result
holds obviously. Because G is a rainbow k-vertex-coloring, there is a rain-
bow vertex-connected-path Pi from xi to yo for every xi, i ∈ {1, 2, · · · , q}.
Certainly, Pi

⋂
Pj may not be empty. We claim that no other vertices of

{x1, x2, · · · , xq} different from xi belong to Pi for each 1 ≤ i ≤ q. Sup-
pose that is not the case and let xi

′ be the last vertex in {x1, x2, · · · , xq}
which belongs to Pi, denote Pi by xiPi

′xi
′Qiyo, then vxi

′Qiyo is a rainbow
vertex-connected-path, a contradiction to our assumption. Since v and yo

are not rainbow vertex-connected, for each Pi, there is some yki such that
c(xi) = c(yki

). That means that the colors that are assigned to X are
among the colors that are assigned to V \X. So rvc(G) = k ≤ n − q.
By the hypothesis q ≥ n − k, we have rvc(G) = n − q, that is, all ver-
tices in V \X have distinct colors. Now we construct a new graph G′ =
P1

⋃
P2

⋃ · · ·⋃ Pq. To show that for every yt not in G′, there is a ys ∈ G′

such that ytys ∈ E(G), suppose that N(yt) j {x1, x2, · · · , xq}. Since G is
rainbow k-vertex-connected, there is a rainbow vertex-connected path from
yt to yo, denoted by ytxkQyo, where xk ∈ N(yt). Thus vxkQyo is a rainbow
vertex-connected path, a contradiction. It follows that G[y1, y2, · · · , yn−q]
is connected. Certainly, G[y1, y2, · · · , yn−q] has a spanning tree T , and T
has at least two pendant vertices. Then there must exist a pendant vertex
whose color is different from x1, and we assign the color to x1. It is easy
to check that G is still rainbow k-vertex-connected, and there is a rainbow
vertex-connected path between v and yo. If there still exists some yj such
that v and yj are not rainbow vertex-connected, we do the same operation,
until v and yj are rainbow vertex-connected for each j ∈ {1, 2, · · · , n− q}.
Thus G′ is rainbow vertex-connected. It follows that rvc(G′) ≤ k.

Lemma 2 Let G be a connected graph of order 5. If G is connected, then
rvc(G) + rvc(G) ≤ 4.

Proof. We consider the situations of G.
First, if G is a path, then rvc(G) = 3. In this case diam(G) = 2, and

then rvc(G) = 1.
Second, if G is a tree but not a path, then rvc(G) < 3. Since G is a

bipartite graph, then G consists of a K2 and a K3 and two edges between
them. So we assign color 1 to the vertices of K2 and color 2 to the vertices
of K3, and this makes G rainbow vertex-connected, that is, rvc(G) ≤ 2.

Finally, if both G and G are not trees, then e(G) = e(G) = 5. If G
contains a cycle of length 5, then G = G = C5, thus rvc(G) = rvc(G) = 1.
If G contains a cycle of length 4, there is only one graph G which is showed
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in Figure 1, we can color G and G with 2 colors to make them rainbow
vertex-connected, see Figure 1. If G contains a cycle of length 3, then G
and G are showed in Figure 2. By the coloring showed in the graphs, we
have rvc(G) + rvc(G) = 4.
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Figure 1: G contains a cycle of length 4.
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Figure 2: G contains a cycle of length 3.

By these cases, we have rvc(G) + rvc(G) ≤ 4.
From the above lemmas, we have our first theorem.

Theorem 1 rvc(G) + rvc(G) ≤ n− 1 for all n ≥ 5, and this bound is best
possible.

Proof. We use induction on n. By Lemma 2, the result is evident for
n = 5. We assume that rvc(G) + rvc(G) ≤ n− 1 holds for complementary
graphs on n vertices. To the union of a connected graph G and its G, which
forms the complete graph on these n vertices, we adjoin a vertex v. Let
q (1 ≤ q ≤ n − 1) of the n edges between v and the union be adjoined
to G and the remaining n − q edges to G. If G′ and G′ are the graphs so
determined (each of order n + 1), then

rvc(G′) ≤ rvc(G) + 1, rvc(G′) ≤ rvc(G) + 1.

These inequalities are evident from the fact that if given a rainbow rvc(G)-
vertex-coloring (rvc(G)-vertex-coloring) of G (G), we assign a new color to
the vertex v and keep other vertices unchanged, the resulting coloring makes
G′ (G′) rainbow vertex-connected. Then rvc(G′) + rvc(G′) ≤ rvc(G) +
rvc(G) + 2 ≤ n + 1. And rvc(G′) + rvc(G′) ≤ n except possibly when

rvc(G′) = rvc(G) + 1, rvc(G′) = rvc(G) + 1.

4



In this case, by Lemma 1, q ≤ n − rvc(G) − 1, n − q ≤ n − rvc(G) − 1,
thus rvc(G) + rvc(G) ≤ n − 2, from which rvc(G′) + rvc(G′) ≤ n. This
completes the induction.

The following example shows that the bound established is sharp for
all n ≥ 5: If G be a path of order n, then rvc(G) = n − 2. It is easy to
obtain G, and check that diam(G) = 2. Then rvc(G) = 1, and so we have
rvc(G) + rvc(G) = n− 1.

Remark: For n ≤ 4, note that P4, the path on 4 vertices, is the only con-
nected graph with fewer than 5 vertices that has a connected complement,
and rvc(P4) = 2. So, the sum of the rainbow vertex-connection numbers
of P4 and its complement P4 is 4.

3 Lower bound for rvc(G) + rvc(G)

As we note that rvc(G) = 0 if and only if G is a complete graph. Thus
if we want both G and G are connected, and so rvc(G) ≥ 1, rvc(G) ≥ 1.
Then rvc(G) + rvc(G) ≥ 2. Our next theorem shows that the lower bound
is sharp for all n ≥ 5.

Theorem 2 For n ≥ 5, the lower bound of rvc(G) + rvc(G) ≥ 2 is best
possible, that is, there are graphs G and G with n vertices, such that
rvc(G) = rvc(G) = 1.

Proof. We only need to prove that for n ≥ 5, there are graphs G and G
with n vertices, such that diam(G) = diam(G) = 2.

We construct G as follows: if n = 2k + 1,

V (G) = {v, v1, v2, · · · , vk, u1, u2, · · · , uk}

E(G) = {vvi|1 ≤ i ≤ k}
⋃
{viui|1 ≤ i ≤ k}

⋃
{uiuj |1 ≤ i, j ≤ k};

if n = 2k,
V (G) = {v, v1, v2, · · · , vk, u1, u2, · · · , uk−1}

E(G) = {vvi|1 ≤ i ≤ k}⋃{viui|1 ≤ i < k}⋃{vkuk−1}
⋃{uiuj |1 ≤ i, j ≤

k − 1}.
We can easily check that diam(G) = diam(G) = 2.
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