Nordhaus-Gaddum-type Bounds for the Rainbow Vertex-connection Number of a Graph*

Lily Chen, Xueliang Li, Mengmeng Liu Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P. R. China
Email: lily60612@126.com, lxl@nankai.edu.cn, liumm05@163.com

Abstract

A vertex-colored graph G is rainbow vertex-connected if any pair of distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by $\operatorname{rvc}(G)$, is the minimum number of colors that are needed to make G rainbow vertex-connected. In this paper we give a Nordhaus-Gaddum-type result of the rainbow vertex-connection number. We prove that when G and \bar{G} are both connected, then $2 \leq \operatorname{rvc}(G)+\operatorname{rvc}(\bar{G}) \leq n-1$. Examples are given to show that both the upper bound and the lower bound are best possible for all $n \geq 5$.

Keywords: rainbow vertex-connection number, Nordhaus-Gaddum-type.

AMS subject classification 2010: 05C15, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the notation and terminology of [1]. An edge-colored graph G is rainbow connected if any pair of distinct vertices are connected by a path whose edges have distinct colors. Clearly, if a graph is rainbow edgeconnected, then it is also connected. Conversely, any connected graph has trivial edge coloring that makes it rainbow edge-connected; just color each edge with a distinct color. The rainbow connection number of a connected graph G, denoted by $r c(G)$, is the minimum number of colors that are needed in order to make G rainbow connected, which was introduced by Chartrand et al. Obviously, we always have $\operatorname{diam}(G) \leq r c(G) \leq n-1$, where $\operatorname{diam}(G)$ denotes the diameter of a graph G of order n. Notice that

[^0]$r c(G)=1$ if and only if G is a complete graph, and that $r c(G)=n-1$ if and only if G is a tree.

In [3], Krivelevich and Yuster proposed the concept of rainbow vertexconnection. A vertex-colored graph is rainbow vertex-connected if any pair of distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by $\operatorname{rvc}(G)$, is the minimum number of colors that are needed to make G rainbow vertex-connected. An easy observation is that if G is a connected graph with n vertices then $r v c(G) \leq n-2$. We note the trivial fact that $\operatorname{rvc}(G)=0$ if and only if G is a complete graph. Also, clearly, $\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1$ with equality if the diameter is 1 or 2 .

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. The name Nordhaus-Gaddum-type is used because in 1956 Nordhaus and Gaddum [4] first established the following inequalities for the chromatic numbers of graphs, they proved that if G and \bar{G} are complementary graphs on n vertices whose chromatic numbers are $\chi(G), \chi(\bar{G})$ respectively, then

$$
2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1
$$

Since then, many analogous inequalities of other graph parameters are concerned, such as domination number [6], Wiener index and some other chemical indices [7], and so on.

In [8], the authors considered Nordhaus-Gaddum-type result for the rainbow connection number. In this paper, we are concerned with analogous inequalities involving the rainbow vertex-connection number of graphs. We prove that

$$
2 \leq r v c(G)+r v c(\bar{G}) \leq n-1
$$

The rest of this paper is organized as follows. Section 2 contains the proof of the sharp upper bound. Section 3 contains the proof of the sharp lower bound.

2 Upper bound for $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G})$

We begin this section with two lemmas that are needed in order to establish the proof of the upper bound.

Lemma 1 Let G be a nontrivial connected graph of order n, and $\operatorname{rvc}(G)=$ k. Add a new vertex v to G, and make v be adjacent to $q(1 \leq q \leq n)$ vertices of G, the resulting graph is denoted by G^{\prime}. Then, if $q \geq n-k$, we have $\operatorname{rvc}\left(G^{\prime}\right) \leq k$.

Proof. Let $c: V(G) \rightarrow\{1,2, \cdots, k\}$ be a rainbow k-vertex-coloring of $G, X=\left\{x_{1}, x_{2}, \cdots, x_{q}\right\}$ be the vertices that are adjacent to $v, V \backslash X=$ $\left\{y_{1}, y_{2}, \cdots, y_{n-q}\right\}$. We can assume that there exists some y_{o} such that there is no rainbow vertex-connected-path from v to y_{o}; otherwise, the result holds obviously. Because G is a rainbow k-vertex-coloring, there is a rainbow vertex-connected-path P_{i} from x_{i} to y_{o} for every $x_{i}, i \in\{1,2, \cdots, q\}$. Certainly, $P_{i} \bigcap P_{j}$ may not be empty. We claim that no other vertices of $\left\{x_{1}, x_{2}, \cdots, x_{q}\right\}$ different from x_{i} belong to P_{i} for each $1 \leq i \leq q$. Suppose that is not the case and let $x_{i}{ }^{\prime}$ be the last vertex in $\left\{x_{1}, x_{2}, \cdots, x_{q}\right\}$ which belongs to P_{i}, denote P_{i} by $x_{i} P_{i}{ }^{\prime} x_{i}{ }^{\prime} Q_{i} y_{o}$, then $v x_{i}{ }^{\prime} Q_{i} y_{o}$ is a rainbow vertex-connected-path, a contradiction to our assumption. Since v and y_{o} are not rainbow vertex-connected, for each P_{i}, there is some $y_{k_{i}}$ such that $c\left(x_{i}\right)=c\left(y_{k_{i}}\right)$. That means that the colors that are assigned to X are among the colors that are assigned to $V \backslash X$. So $\operatorname{rvc}(G)=k \leq n-q$. By the hypothesis $q \geq n-k$, we have $\operatorname{rvc}(G)=n-q$, that is, all vertices in $V \backslash X$ have distinct colors. Now we construct a new graph $G^{\prime}=$ $P_{1} \bigcup P_{2} \bigcup \cdots \bigcup P_{q}$. To show that for every y_{t} not in G^{\prime}, there is a $y_{s} \in G^{\prime}$ such that $y_{t} y_{s} \in E(G)$, suppose that $N\left(y_{t}\right) \subseteq\left\{x_{1}, x_{2}, \cdots, x_{q}\right\}$. Since G is rainbow k-vertex-connected, there is a rainbow vertex-connected path from y_{t} to y_{o}, denoted by $y_{t} x_{k} Q y_{o}$, where $x_{k} \in N\left(y_{t}\right)$. Thus $v x_{k} Q y_{o}$ is a rainbow vertex-connected path, a contradiction. It follows that $G\left[y_{1}, y_{2}, \cdots, y_{n-q}\right]$ is connected. Certainly, $G\left[y_{1}, y_{2}, \cdots, y_{n-q}\right]$ has a spanning tree T, and T has at least two pendant vertices. Then there must exist a pendant vertex whose color is different from x_{1}, and we assign the color to x_{1}. It is easy to check that G is still rainbow k-vertex-connected, and there is a rainbow vertex-connected path between v and y_{o}. If there still exists some y_{j} such that v and y_{j} are not rainbow vertex-connected, we do the same operation, until v and y_{j} are rainbow vertex-connected for each $j \in\{1,2, \cdots, n-q\}$. Thus G^{\prime} is rainbow vertex-connected. It follows that $\operatorname{rvc}\left(G^{\prime}\right) \leq k$.

Lemma 2 Let G be a connected graph of order 5. If \bar{G} is connected, then $r v c(G)+r v c(\bar{G}) \leq 4$.

Proof. We consider the situations of G.
First, if G is a path, then $\operatorname{rvc}(G)=3$. In this case $\operatorname{diam}(\bar{G})=2$, and then $\operatorname{rvc}(\bar{G})=1$.

Second, if G is a tree but not a path, then $\operatorname{rvc}(G)<3$. Since G is a bipartite graph, then \bar{G} consists of a K_{2} and a K_{3} and two edges between them. So we assign color 1 to the vertices of K_{2} and color 2 to the vertices of K_{3}, and this makes \bar{G} rainbow vertex-connected, that is, $\operatorname{rvc}(\bar{G}) \leq 2$.

Finally, if both G and \bar{G} are not trees, then $e(G)=e(\bar{G})=5$. If G contains a cycle of length 5 , then $G=\bar{G}=C_{5}$, thus $\operatorname{rvc}(G)=\operatorname{rvc}(\bar{G})=1$. If G contains a cycle of length 4 , there is only one graph G which is showed
in Figure 1, we can color G and \bar{G} with 2 colors to make them rainbow vertex-connected, see Figure 1. If G contains a cycle of length 3 , then G and \bar{G} are showed in Figure 2. By the coloring showed in the graphs, we have $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G})=4$.

Figure 1: G contains a cycle of length 4.

G

Figure 2: G contains a cycle of length 3.
By these cases, we have $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G}) \leq 4$.
From the above lemmas, we have our first theorem.
Theorem $1 \operatorname{rvc}(G)+\operatorname{rvc}(\bar{G}) \leq n-1$ for all $n \geq 5$, and this bound is best possible.
Proof. We use induction on n. By Lemma 2, the result is evident for $n=5$. We assume that $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G}) \leq n-1$ holds for complementary graphs on n vertices. To the union of a connected graph G and its \bar{G}, which forms the complete graph on these n vertices, we adjoin a vertex v. Let $q(1 \leq q \leq n-1)$ of the n edges between v and the union be adjoined to G and the remaining $n-q$ edges to \bar{G}. If G^{\prime} and $\overline{G^{\prime}}$ are the graphs so determined (each of order $n+1$), then

$$
\operatorname{rvc}\left(G^{\prime}\right) \leq \operatorname{rvc}(G)+1, \quad \operatorname{rvc}\left(\overline{G^{\prime}}\right) \leq \operatorname{rvc}(\bar{G})+1
$$

These inequalities are evident from the fact that if given a rainbow $r v c(G)$ -vertex-coloring $(\operatorname{rvc}(\bar{G})$-vertex-coloring) of $G(\bar{G})$, we assign a new color to the vertex v and keep other vertices unchanged, the resulting coloring makes $G^{\prime}\left(\overline{G^{\prime}}\right)$ rainbow vertex-connected. Then $\operatorname{rvc}\left(G^{\prime}\right)+\operatorname{rvc}\left(\overline{G^{\prime}}\right) \leq \operatorname{rvc}(G)+$ $\operatorname{rvc}(\bar{G})+2 \leq n+1$. And $\operatorname{rvc}\left(G^{\prime}\right)+\operatorname{rvc}\left(\overline{G^{\prime}}\right) \leq n$ except possibly when

$$
\operatorname{rvc}\left(G^{\prime}\right)=\operatorname{rvc}(G)+1, \quad \operatorname{rvc}\left(\overline{G^{\prime}}\right)=\operatorname{rvc}(\bar{G})+1 .
$$

In this case, by Lemma $1, q \leq n-r v c(G)-1, n-q \leq n-r v c(\bar{G})-1$, thus $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G}) \leq n-2$, from which $\operatorname{rvc}\left(G^{\prime}\right)+\operatorname{rvc}\left(\overline{G^{\prime}}\right) \leq n$. This completes the induction.

The following example shows that the bound established is sharp for all $n \geq 5$: If G be a path of order n, then $\operatorname{rvc}(G)=n-2$. It is easy to obtain \bar{G}, and check that $\operatorname{diam}(\bar{G})=2$. Then $\operatorname{rvc}(\bar{G})=1$, and so we have $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G})=n-1$.

Remark: For $n \leq 4$, note that P_{4}, the path on 4 vertices, is the only connected graph with fewer than 5 vertices that has a connected complement, and $\operatorname{rvc}\left(P_{4}\right)=2$. So, the sum of the rainbow vertex-connection numbers of P_{4} and its complement P_{4} is 4 .

3 Lower bound for $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G})$

As we note that $\operatorname{rvc}(G)=0$ if and only if G is a complete graph. Thus if we want both G and \bar{G} are connected, and so $\operatorname{rvc}(G) \geq 1, \operatorname{rvc}(\bar{G}) \geq 1$. Then $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G}) \geq 2$. Our next theorem shows that the lower bound is sharp for all $n \geq 5$.

Theorem 2 For $n \geq 5$, the lower bound of $\operatorname{rvc}(G)+\operatorname{rvc}(\bar{G}) \geq 2$ is best possible, that is, there are graphs G and \bar{G} with n vertices, such that $\operatorname{rvc}(G)=\operatorname{rvc}(\bar{G})=1$.

Proof. We only need to prove that for $n \geq 5$, there are graphs G and \bar{G} with n vertices, such that $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$.

We construct G as follows: if $n=2 k+1$,

$$
\begin{gathered}
V(G)=\left\{v, v_{1}, v_{2}, \cdots, v_{k}, u_{1}, u_{2}, \cdots, u_{k}\right\} \\
E(G)=\left\{v v_{i} \mid 1 \leq i \leq k\right\} \bigcup\left\{v_{i} u_{i} \mid 1 \leq i \leq k\right\} \bigcup\left\{u_{i} u_{j} \mid 1 \leq i, j \leq k\right\}
\end{gathered}
$$

if $n=2 k$,

$$
V(G)=\left\{v, v_{1}, v_{2}, \cdots, v_{k}, u_{1}, u_{2}, \cdots, u_{k-1}\right\}
$$

$E(G)=\left\{v v_{i} \mid 1 \leq i \leq k\right\} \bigcup\left\{v_{i} u_{i} \mid 1 \leq i<k\right\} \bigcup\left\{v_{k} u_{k-1}\right\} \bigcup\left\{u_{i} u_{j} \mid 1 \leq i, j \leq\right.$ $k-1\}$.

We can easily check that $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$.
Acknowledgement: The authors are very grateful to the referee for helpful comments and suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
[3] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-19
[4] E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63(1956), 175-177.
[5] F. Harary, R.W. Robinson, The diameter of a graph and its complement, The American Mathematical Monthly 92(1985), 211-212.
[6] F. Harary, T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155(1996), 99-10.
[7] L. Zhang, B. Wu, The Nordhaus-Gaddum type inequalities of some chemical indices, MATCH Commun. Math. Comput. Chem. 54(2005), 189-194.
[8] L. Chen, X. Li, H. Lian, Nordhaus-Gaddum-type theorem for rainbow connection number of graphs, arXiv:1012.2641.

[^0]: *Supported by NSFC No. 11071130.

