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Abstract

A path in an edge-colored graph, where adjacent edges may be
colored the same, is a rainbow path if no two edges of it are colored
the same. A nontrivial connected graph G is rainbow connected if
there is a rainbow path connecting any two vertices, and the rainbow
connection number of G, denoted by rc(G), is the minimum number
of colors that are needed in order to make G rainbow connected. In
this paper, we provide a new approach to investigate the rainbow
connection number of a graph G according to some constraints to
its complement G. We first derive that for a connected graph G, if
G does not belong to the following two cases: (i) diam(G) = 2, 3,
(ii) G contains exactly two connected components and one of them
is trivial, then rc(G) ≤ 4, where diam(G) is the diameter of G.
Examples are given to show that this bound is best possible. Next
we derive that for a connected graph G, if G is triangle-free, then
rc(G) ≤ 6.

Keywords: edge-colored graph, rainbow path, rainbow connection
number, complement graph, diameter, triangle-free

AMS subject classification 2000: 05C15, 05C40

1 Introduction

All graphs in this paper are finite, undirected and simple. Let G
be a nontrivial connected graph on which an edge-coloring c : E(G) →
{1, 2, · · · , n}, n ∈ N, is defined, where adjacent edges may be colored the
same. A path is rainbow if no two edges of it are colored the same. An
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edge-coloring graph G is rainbow connected if any two vertices are con-
nected by a rainbow path. Clearly, if a graph is rainbow connected, it must
be connected, whereas any connected graph has a trivial edge-coloring that
makes it rainbow connected; just color each edge with a distinct color.
Thus, in [4] Chartrand et al. defined the rainbow connection number of
a connected graph G, denoted by rc(G), as the smallest number of colors
that are needed in order to make G rainbow connected. If G′ is a con-
nected spanning subgraph of G, then rc(G) ≤ rc(G′). They showed that
rc(G) = 1 if and only if G is complete, and that rc(G) = m if and only if
G is a tree, as well as that a cycle with k > 3 vertices has rainbow connec-
tion number dk

2 e, a triangle has rainbow connection number 1. Also notice
that, clearly, rc(G) ≥ diam(G) where diam(G) denotes the diameter of G.
In an edge-colored graph G, we use c(e) to denote the color of an edge e,
and for a subgraph H of G, c(H) denotes the set of colors of the edges
in H. For a subset X of V (G), we use E[X] to denote the edge set of
the induced subgraph G[X]. The distance between two vertices u and v
in a connected graph G, denoted by dist(u, v), is the length of a shortest
path between them in G. The eccentricity of a vertex v in G is defined as
eccG(v) = maxx∈V (G) dist(v, x). We follow the notation and terminology
of [1].

In this paper, we provide a new approach to investigate the rainbow
connection number of a graph G according to some constraints to its com-
plement G. We give two sufficient conditions to guarantee that rc(G) is
bounded by a constant.

One of our main results is:

Theorem 1.1 For a connected graph G, if G does not belong to the fol-
lowing two cases: (i) diam(G) = 2, 3, (ii) G contains exactly two connected
components and one of them is trivial, then rc(G) ≤ 4. Furthermore, this
bound is best possible.

For the remaining cases, rc(G) can be very large as discussed in Section
4. So we add a constraint, i.e., we let G be triangle-free. Then G is claw-
free, and we can derive our next main result:

Theorem 1.2 For a connected graph G, if G is triangle-free, then rc(G) ≤
6.

2 Preliminaries

We now give a necessary condition for an edge-colored graph to be
rainbow connected. If G is rainbow connected under some edge-coloring,
then for any two bridges (if two such edges should exist) e1 = u1u2, e2 =
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v1v2, there must exist some 1 ≤ i, j ≤ 2, such that any ui − vj path must
contain edges e1, e2. So we have:

Observation 2.1 If G is rainbow connected under some edge-coloring and
e1 and e2 are any two cut edges, then c(e1) 6= c(e2).

The following lemma will be useful in our discussion.

Lemma 2.2 ([2]) If G is a connected graph and H1, · · · ,Hk is a partition
of the vertex set of G into connected subgraphs, then rc(G) ≤ k − 1 +∑k

i=1 rc(Hi).

In [4], the authors derived the precise values of the rainbow connection
numbers of complete bipartite graph Ks,t(2 ≤ s ≤ t) and complete k-partite
graph (k ≥ 3).

Theorem 2.3 ([4]) For integers s and t with 2 ≤ s ≤ t,

rc(Ks,t) = min{d s
√

te, 4}.

Theorem 2.4 ([4]) Let G = Kn1,n2,...,nk
be a complete k-partite graph,

where k ≥ 3 and n1 ≤ n2 ≤ . . . ≤ nk such that s =
∑k−1

i=1 ni and t = nk.
Then

rc(G) =





1 if nk = 1,
2 if nk ≥ 2 and s > t,
min{d s

√
te, 3} if s ≤ t.

From the above two theorems, we know that rc(Ks,t) ≤ 4 for any s, t ≥ 2
and rc(G) ≤ 3 where G is a complete k-partite graph with k ≥ 3.

The following notions are taken from [3], which will be used later. A
dominating set D in a graph G is called a two-way dominating set if every
pendant vertex of G is included in D. In addition, if G[D] is connected, we
call D a connected two-way dominating set. Note that if δ(G) ≥ 2, then
every (connected) dominating set in G is a (connected) two-way dominating
set. We also need the following result.

Theorem 2.5 ([3]) If D is a connected two-way dominating set in a graph
G, then rc(G) ≤ rc(G[D]) + 3.
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3 Proof of Theorem 1.1

We first investigate the rainbow connection numbers of connected com-
plement graphs of graphs with diameter at least 4.

Theorem 3.1 If G is a connected graph with diam(G) ≥ 4, then rc(G) ≤
4.

Proof. First of all, we see that G must be connected, since otherwise,
diam(G) ≤ 2, contradicting the condition diam(G) ≥ 4.

We choose a vertex x with eccG(x) = diam(G) = d ≥ 4. Let N i
G(x) =

{v : dist(x, v) = i} where 0 ≤ i ≤ d. So N0
G(x) = {x}, N1

G(x) = NG(x) as
usual. Then

⋃
0≤i≤d N i

G(x) is a vertex partition of V (G) with |N i
G(x)| = ni.

Let A =
⋃

i is even N i
G(x), B =

⋃
i is odd N i

G(x). For example, see Figure
3.1, a graph with diam(G) = 4.

A B

x

N 0

G(x)

N 1

G(x)

N 2

G(x)

N 3

G(x)

N 4

G(x)

G

Figure 3.1 Graph for the example with d = 4.

So, if d = 2k(k ≥ 2) then A =
⋃

0≤i≤d is even N i
G(x),

B =
⋃

1≤i≤d−1 is odd N i
G(x); if d = 2k + 1(k ≥ 2) then

A =
⋃

0≤i≤d−1 is even N i
G(x), B =

⋃
1≤i≤d is odd N i

G(x). Then by the def-
inition of complement graphs, we know that G[A](G[B]) contains a span-
ning complete k1-partite subgraph (complete k2-partite subgraph) where
k1 = dd+1

2 e(k2 = dd
2e). For example, see Figure 3.1, G[A] contains a

spanning complete tripartite subgraph Kn0,n2,n4 , G[B] contains a spanning
complete bipartite subgraph Kn1,n3 .

Case 1. d ≥ 5. Then k1, k2 ≥ 3. From Theorem 2.4, we have
rc(G[A]), rc(G[B]) ≤ 3.

We now give G an edge-coloring as follows: we first give the subgraph
G[A] a rainbow edge-coloring using three colors; then give the subgraph
G[B] a rainbow edge-coloring using the same colors as that of the subgraph

4



G[A]; next we give a fresh color to all edges between the subgraph G[A]
and the subgraph G[B].

We will show that this coloring is rainbow. It suffices to show that for
any u ∈ G[A], v ∈ G[B], there is a rainbow path connecting them in G.
We first choose an edge uv1 where v1 ∈ G[B] (it must exist, without loss
of generality, we assume u ∈ N2

G(x), then u is adjacent to all vertices in
N5

G(x)). Then by adding a rainbow v1 − v path in G[B], we obtain our
desired path. So rc(G) ≤ 4 in this case.

Case 2. d = 4, that is, A = N0
G(x) ∪ N2

G(x) ∪ N4
G(x), B = N1

G(x) ∪
N3

G(x). So G[A](G[B]) contains a spanning complete 3-partite subgraph
Kn0,n2,n4 (complete bipartite subgraph Kn1,n3). So, from Theorem 2.4 we
have rc(G[A]) ≤ 3.

Subcase 2.1. n1, n3 ≥ 2. Since now G[B] contains a spanning complete
bipartite subgraph Kn1,n3 , from Theorem 2.3 we have rc(G[B]) ≤ 4.

We now give G an edge-coloring as follows: we first give the subgraph
G[B] a rainbow edge-coloring using four colors, say a, b, c, d; then give the
subgraph G[A] a rainbow edge-coloring using colors a, b, c; next we give the
color d to all edges between the subgraph G[A] and the G[B].

We will show that this coloring is rainbow. It suffices to show that for
any u ∈ G[A], v ∈ G[B], there is a rainbow path connecting them in G.
We first choose an edge vu1 where u1 ∈ G[A] (it must exist, without loss
of generality, we assume v ∈ N1

G(x), then v is adjacent to all vertices in
N4

G(x)). Then by adding a rainbow u1 − u path in G[B], we obtain our
desired path. So rc(G) ≤ 4 in this case.

Subcase 2.2. At least one of n1, n3 is 1, say n1 = 1.
We now give G an edge-coloring as follows: we give the edges between

N0
G(x) and N4

G(x) a color a; give the edges between N0
G(x) and N2

G(x) a
new color b; give the edges between N2

G(x) and N4
G(x) a new color c; give

the edges between N1
G(x) and N4

G(x) a new color d; give the edges between
N0

G(x) and N3
G(x) the color b; give the edges between N1

G(x) and N3
G(x)

the color c.
We will show that this coloring is rainbow. We only need to show that

there is a rainbow path connecting two vertices u, v ∈ N3
G(x), the remaining

cases are easy. Let P := u, x, x1, x2, v where x1 ∈ N4
G(x), x2 ∈ N1

G(x).
Clearly, it is rainbow. So rc(G) ≤ 4 in this case.

With a similar argument to that of Theorem 3.1, we have:

Proposition 3.2 If G is a tree with diam(G) ≥ 3, then rc(G) ≤ 3.

Proof. It is easy to show that if G is a tree with diam(G) ≥ 3, then
G is connected. We now use the same terminology as in the argument of
Theorem 3.1. Note that A and B are independent sets in G (consider the
BFS-tree of G). So, G[A] and G[B] are two disjoint cliques in G. Then by
Lemma 2.2 we have rc(G) ≤ 3.
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Theorem 3.1 is equivalent to the following result.

Theorem 3.3 For a connected graph G, if G is connected and diam(G) ≥
4, then rc(G) ≤ 4.

If G is a graph with h ≥ 2 connected components, then G contains a
complete h-partite spanning subgraph, and so we have

Proposition 3.4 If G is a graph with h ≥ 2 connected components Gi and
n′i = n(Gi)(1 ≤ i ≤ h), then rc(G) ≤ rc(Kn′1,··· ,n′h).

Proof of Theorem 1.1. If G is connected, since diam(G) 6= 2, 3
and clearly diam(G) 6= 1, from Theorem 3.3 we have rc(G) ≤ 4. If G is
disconnected, since by the assumption, it has either at least three connected
components or exactly two nontrivial components, then from Theorems 2.3
and 2.4 and Proposition 3.4 we have rc(G) ≤ 4.

Let G contain two connected components, one is a clique with s ≥ 2
vertices, the other is a clique with t ≥ 3s + 1 vertices. We have G = Ks,t,
then from Theorem 2.3, rc(G) = min{d s

√
te, 4} = 4, and so the bound is

best possible.

4 Proof of Theorem 1.2

For the remaining cases, since the complement of G is G itself, we need
to investigate rc(G) in two cases: (i) diam(G) = 2, 3, (ii) G contains
two connected components and one of them is trivial. We first give some
discussion about the case diam(G) = 3. We use the same terminology as
that of Theorem 3.1.

Theorem 4.1 For a vertex x of G satisfying eccG(x) = diam(G) = 3, we
have rc(G) ≤ 5 for the three cases (i) n1 = n2 = n3 = 1, (ii) n1, n2 =
1, n3 ≥ 2, and (iii) n2 = 1, n1, n3 ≥ 2. For the remaining cases, rc(G) may
be very large. Furthermore, if G is triangle-free and G is connected, then
rc(G) ≤ 5.

Proof. If n1 = n2 = n3 = 1, then G is a 4-path P4, and so rc(G) = 3.
Thus, we could consider the following three cases.

Case 1. Two of n1, n2, n3 are equal to 1.
Subcase 1.1. n1, n2 = 1. Then it is easy to show that the subgraph

G[N0
G(x) ∪N1

G(x) ∪N3
G(x)] contains a bipartite spanning subgraph K2,n3 ,

and so from Lemma 2.2 and Theorem 2.3 we have rc(G) ≤ rc(K2,n3)+1 ≤
5.

Subcase 1.2. n1, n3 = 1. Let n′2 = |{v ∈ N2
G(x) : degG(v) = 1}|.

Then there are n′2 cut edges in G, and so from Observation 2.1 we have
rc(G) ≥ n′2.
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Furthermore, if G is triangle-free, then N2
G(x) is a stable set in G, and

so a clique in G, and thus from Lemma 2.2 we have rc(G) ≤ 4.
Subcase 1.3. n2, n3 = 1. With a similar argument to that of Subcase

1.2, we have rc(G) ≥ n′1 where n′1 = |{v ∈ N1
G(x) : degG(v) = 1}|.

Furthermore, if G is triangle-free, then N1
G(x) is a stable set in G, and

so a clique in G, and thus from Lemma 2.2 we have rc(G) ≤ 4.
Case 2. One of n1, n2, n3 is equal to 1.
Subcase 2.1. n1 = 1. With a similar argument to that of Subcase

1.2, we have rc(G) ≥ n′2 where n′2 = |{v ∈ N2
G(x) : degG(v) = 1}|.

Furthermore, if G is triangle-free, then N2
G(x) is a stable set in G, and

so a clique in G. In G, the subgraph G[N0
G(x)∪N1

G(x)∪N3
G(x)] contains a

spanning bipartite subgraph K2,n3 . So from Theorem 2.3, it needs at most
four colors to rainbow it; we then give a new color to the edges between x
and N2

G(x). Clearly, this coloring is rainbow and we have rc(G) ≤ 5.
Subcase 2.2. n2 = 1. Then it is easy to show that the subgraph

G[N0
G(x)∪N1

G(x)∪N3
G(x)] contains a spanning bipartite subgraph K1+n1,n3 .

So from Lemma 2.2 and Theorem 2.3, we have rc(G) ≤ rc(K1+n1,n3)+1 ≤
5.

Subcase 2.3. n3 = 1. Let N3
G(x) = {u}. With a similar argument to

that of Subcase 1.2, we have rc(G) ≥ n′1 + n′2 where n′i = |{v ∈ N i
G(x) :

degG(v) = 1}| with i = 1, 2.
Furthermore, if G is triangle-free, then N1

G(x) is a stable set in G, and
so a clique in G. Let Vu be the set of vertices of N2

G(x) which are adjacent
to u in G. So Vu is a stable set in G and a clique in G. We now give G an
edge-coloring: We give the edges of the complete graph G[N1

G(x) ∪ {u}] a
color a; give the edge xu a new color b, give the edges (they may not exist,
but now N2

G(x) = Vu is a clique and the procedure is easy) between u and
N2

G(x)\Vu a new color c; the edges between x and N2
G(x) a new color d. It

is easy to check that the coloring is rainbow and rc(G) ≤ 4 in this case.
Case 3. n1, n2, n3 ≥ 2. With a similar argument to that of Subcase

1.2, we have rc(G) ≥ n′2 where n′2 = |{v ∈ N2
G(x) : degG(v) = 1}|.

Furthermore, if G is triangle-free, then N1
G(x) is a stable set in G,

and so a clique in G. If every vertex in N3
G(x) is adjacent to all vertices

of N2
G(x) in G, then both N2

G(x) and N3
G(x) are stable sets in G, and

so cliques in G, since G is triangle-free. Then in G, G[N0
G(x) ∪ N3

G(x)],
G[N2

G(x)], G[N1
G(x)] are complete graphs. So from Lemma 2.2 we have

rc(G) ≤ rc(G[N0
G(x) ∪ N3

G(x)]) + rc(G[N2
G(x)]) + rc(G[N1

G(x)]) + 2 = 5.
Thus we choose a vertex u ∈ N3

G(x) with Vu 6= ∅, N2
G(x), where Vu denotes

the set of neighbors of u in N2
G(x) in G, and so it is a stable set in G and

a clique in G.
We now give G an edge-coloring: We give a new color a to the edges

of G[N1
G(x)]; for every vertex w of N3

G(x)\{u}, since w is adjacent to all
vertices of N1

G(x) in G, we give a new color b to an edge between w and
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N1
G(x), give a new color c to the remaining edges between w and N1

G(x);
give color a to the edges between x and N3

G(x)\{u}; give the edge xu a
new color d; give a new color e to the edges between x and N2

G(x); give the
color b to the edges between u and N2

G(x)\Vu. It is easy to check that the
above coloring is rainbow and rc(G) ≤ 5 in this case.

From the above discussion, we know that rc(G) ≤ 5 for the three cases
(i) n1 = n2 = n3 = 1, (ii) n1, n2 = 1, n3 ≥ 2, and (iii) n2 = 1, n1, n3 ≥ 2.
For the remaining cases, rc(G) can be very large if n′i(i = 1, 2) is sufficiently
large. Furthermore, if G is triangle-free, then rc(G) ≤ 5.

The following corollary clearly holds.

Corollary 4.2 For a connected graph G, if G is triangle-free and diam(G)
= 3, then rc(G) ≤ 5.

For a graph G with diam(G) = 2, let x be a vertex satisfying eccG(x) =
diam(G). Then, the two cases: (i) n1 = n2 = n3 = 1 and (ii) n1 =
1, n2 ≥ 2 do not hold, since in both cases G are disconnected and rc(G) are
undefined. For the remaining two cases, that is, n1 ≥ 2, n2 = 1, n1, n2 ≥ 2,
with a similar argument to that of Theorem 4.1, we have rc(G) ≥ n′1,
rc(G) ≥ n′2, respectively. So rc(G) can be very large if n′i(i = 1, 2) is
sufficiently large. So we add an additional constraint, i.e., we let G be
triangle-free.

Proposition 4.3 Let G be a triangle-free graph with diam(G) = 2. If G
is connected, then rc(G) ≤ 5.

Proof. We choose a vertex x with eccG(x) = diam(G) = 2, and we use
the same terminology as that of Theorem 3.1. By the above discussion, we
only need to consider the following two cases.

Case 1. n1 ≥ 2, n2 = 1. Since G is triangle-free, N1
G(x) is a stable set

in G and so a clique in G. Thus, rc(G) ≤ 3.
Case 2. n1, n2 ≥ 2. Since G is triangle-free, N1

G(x) is a stable set in
G and so a clique in G. Since G is connected, there exist u ∈ N1

G(x), v ∈
N2

G(x) such that uv ∈ E(G).
If there exists some vertex w ∈ N2

G(x) with degG(w) = n− 2, then w is
adjacent to the remaining vertices except x in G. Since diam(G) = 2, there
exists w1w2 ∈ E(G) with w1 ∈ N1

G(x), w2 6= w ∈ N2
G(x). So {w, w1, w2} is

a triangle in G, this produces a contradiction. So degG(w) < n− 2 for all
w ∈ N2

G(x), and degG(w) ≥ 2 for all w ∈ N2
G(x). Let D = {x, v} ∪N1

G(x).
Then D is a connected two-way dominated set in G. So from Theorem 2.5,
we have rc(G) ≤ rc(G[D]) + 3 ≤ 5.

If G contains two connected components, say G1, G2. Let n′1 = |{v ∈
G2 : degG(v) = n − 2}|. Then in G, there are n′1 pendant vertices and so
there are n′1 cut edges. From Observation 2.1, we have rc(G) ≥ n′1. So in
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this case, rc(G) can be very large if n′1 is sufficiently large. So we also add
an additional constraint, i.e., we let G be triangle-free.

Proposition 4.4 If G is triangle-free and contains two connected compo-
nents one of which is trivial, then rc(G) ≤ 6.

Proof. Suppose that G contains two components, one is trivial, the other
is not trivial. Since G is triangle-free, then G is claw-free. Let u be the
isolated vertex in G, so it is adjacent to any other vertex in G, and so
diam(G) = 2. We will consider two cases according to the value of δG

where δG denotes the minimum degree of G.
Case 1. δG = 1. Let degG(v1) = δG and v1v2 ∈ G (v2 = u). Since G is

claw-free, the subgraph G[V \{v1}] is a complete graph, so rc(G) = 2.
Case 2. δG ≥ 2. Let degG(v1) = δG. Then u ∈ N1

G
(v1) and is adjacent

to any other vertex in G. So the subgraph G[D] contains a spanning bipar-
tite subgraph K2,δG−1 where D = {v1}∪N1

G
(v1). Clearly, D is a connected

two-way dominating set. We give the edge uv1 a color a, give the edges
between v1 and N1

G
(v1)\{u} a new color b, give the edges between u and

N1
G

(v1)\{u} a new color c. It is easy to check that this coloring is rainbow.
From Theorems 2.5 and 2.3, we have rc(G) ≤ rc(G[D]) + 3 ≤ 6.

From Theorem 1.1, Corollary 4.2, and Propositions 4.3 and 4.4, our
next main result can be derived.

Proof of Theorem 1.2. We consider two cases:
Case 1. G is connected. The result holds for the case diam(G) ≥ 4

from Theorem 1.1, the case diam(G) = 3 from Corollary 4.2 and the case
diam(G) = 2 from Proposition 4.3.

Case 2. G is disconnected. The result holds for the case that G contains
two connected components with one of them trivial from Proposition 4.4,
and holds for the remaining case from Theorem 1.1.
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comments and suggestions.
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