
Complexity of conditional

colorability of graphs∗

Xueliang Li1, Xiangmei Yao1, Wenli Zhou1 and Hajo Broersma2

1Center for Combinatorics and LPMC-TJKLC, Nankai University

Tianjin 300071, P.R. China. Email: lxl@nankai.edu.cn

2Department of Computer Science, Durham University

DH1 3LE Durham, UK. Email: hajo.broersma@durham.ac.uk

Abstract

For positive integers k and r, a conditional (k, r)-coloring of a graph G is
a proper k-coloring of the vertices of G such that every vertex v of degree
d(v) in G is adjacent to vertices with at least min{r, d(v)} different colors.
The smallest integer k for which a graph G has a conditional (k, r)-coloring is
called the rth order conditional chromatic number, and is denoted by χr(G).
It is easy to see that conditional coloring is a generalization of traditional
vertex coloring (the case r = 1). In this paper, we consider the complexity
of the conditional colorability of graphs. Our main result is that conditional
(3, 2)-colorability remains NP -complete when restricted to planar bipartite
graphs with maximum degree at most 3 and arbitrarily high girth. This
differs considerably from the well-known result that traditional 3-colorability
is polynomially solvable for graphs with maximum degree at most 3. On
the other hand we show that (3, 2)-colorability is polynomially solvable for
graphs with bounded tree-width. We also prove that some other well-known
complexity results for traditional coloring still hold for conditional coloring.
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1 Introduction

We follow the terminology and notations of [1] and consider simple connected graphs
only. For a vertex v in a graph G, the neighborhood of v in G is NG(v) = {u ∈ V (G) :
u is adjacent to v in G}, and the degree of v is d(v) = |NG(v)|. Vertices in NG(v)
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are called neighbors of v. With δ(G) and ∆(G) we denote the minimum degree and
maximum degree of a graph G, respectively. With Pn we denote the path on n

vertices. An edge e is said to be subdivided when it is deleted and replaced by a
path P3 of length two connecting its ends, the internal vertex of this path being a
newly added vertex.

For a positive integer k, a proper k-coloring of a graph G is a surjective mapping
c : V (G) → {1, 2, . . . , k} with the property that if u and v are neighbors in G, then
c(u) 6= c(v). The smallest k such that G has a proper k-coloring is the chromatic

number of G, denoted by χ(G). For a subset S of V (G), we use c(S) to denote
{c(u)|u ∈ S}.

In the following we will consider a generalization of traditional coloring. For
integers k > 0 and r > 0, a proper (k, r)-coloring of a graph G is a surjective
mapping c : V (G) → {1, 2, . . . , k} such that both of the following two conditions
hold:

(C1) if u, v ∈ V (G) are neighbors in G, then c(u) 6= c(v); and

(C2) for any v ∈ V (G), |c(NG(v))| ≥ min{d(v), r}.

For a given integer r > 0, the smallest integer k > 0 such that G has a proper (k, r)-
coloring is called the rth order conditional chromatic number of G, and is denoted
by χr(G).

By the definition of χr(G), it follows immediately that χ(G) = χ1(G), and
so conditional coloring is a generalization of traditional graph coloring. The condi-
tional chromatic number has a very different behavior from the traditional chromatic
number. For example, when r = 2, Lai et al. [8] showed that for many graphs G,
χ2(G− v) > χ2(G) for at least one vertex v of G, and there are graphs G for which
χr(G) − χ(G) may be very large.

From [7] we know that if G is a graph with ∆(G) ≤ 2, then for any r there
exists a simple polynomial time algorithm that gives a (k, r)-coloring of G. In
[9], Lai, Montgomery and Poon obtained the following upper bound on χ2(G): if
∆(G) ≥ 3, then χ2(G) ≤ ∆(G) + 1. The proof of this result is very long compared
with the almost trivial proof of a similar result for traditional coloring. In [7], Lai,
Lin, Montgomery, Shui and Fan got many new and interesting results on conditional
coloring. In the present paper, we are going to investigate the complexity of deciding
whether a given graph is (k, r)-colorable. We first give a simple proof that for any
k ≥ 3 and r ≥ 2 it is NP -complete to decide whether a given graph is (k, r)-
colorable. Then we give the main theorem in the paper that conditional (3, 2)-
colorability remains NP -complete when restricted to planar bipartite graphs with
maximum degree at most 3 and arbitrarily high girth. This differs considerably
from the well-known result that traditional 3-colorability is polynomially solvable
for graphs with maximum degree at most 3. On the other hand we know from
[7] that every tree is (3, 2)-colorable, and we will show that (3, 2)-colorability is
polynomially solvable for graphs with bounded tree-width. We also prove that some
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other well-known complexity results for traditional coloring still hold for conditional
coloring.

2 The complexity of conditional coloring

In this section, we shall analyze the complexity of (k, r)-colorability of graphs. We
refer to [4] for terminology, notations and basic results on complexity not given here.

If a connected graph G has only one vertex, then clearly χr(G) = 1; if a connected
graph G has only two vertices, then χr(G) = 2. For any other connected graph G,
we have χr(G) ≥ 3 for r ≥ 2. But the following theorem shows that for any integers
r and k with 2 ≤ r < k, the problem to decide whether a given graph is (k, r)-
colorable is NP -complete. Formulated as a decision problem, the (k, r)-colorability
problem, denoted by (k, r)-Col, is defined as follows:

Input: A graph G = (V, E) and two integers r and k with k > r ≥ 2.

Question: Is χr(G) ≤ k?

Theorem 2.1 For every fixed integers k and r with 2 ≤ r < k, (k, r)-Col is NP -

complete.

Proof. First, it is easy to see that the problem (k, r)-Col is in NP .

Secondly, it is known that the traditional k-colorability problem is NP -complete.
So, in order to complete the NP -completeness proof, it is sufficient to reduce the
traditional k-colorable problem to (k, r)-Col. We want to relate any instance G of
the k-colorability problem to a graph G′, such that G is k-colorable if and only if
G′ is (k, r)-colorable.

For each vertex v in V (G), we add a new complete graph Kr and add new edges
such that v and Kr form a complete graph of order r + 1. The resulting graph is
denoted by G′. So, G′ has (r+1)|V (G)| vertices, and every vertex in G′ is contained
in a Kr+1. It is easy to see that G is k-colorable if and only if G′ is (k, r)-colorable.

If we compare 3-colorability and (3, 2)-colorability, there are several interesting phe-
nomena to note. First of all, it is well-known within traditional coloring that all
graphs with maximum degree 3 are 3-colorable except for K4 (by Brook’s Theo-
rem). So the 3-colorability problem is trivial for this class of graphs. In contrast,
the next theorem tells us that the problem (3, 2)-Col remains NP -complete even
when restricted to planar bipartite graphs with maximum degree 3 and arbitrarily
large girth. The girth condition can be interpreted as that these graphs come “as
close to trees” as possible. On the other hand, from [7] we know that any tree
is (3, 2)-colorable, so for trees the related decision problem is trivial. Moreover, we
will use Monadic Second Order Logic (MSOL) to show that the problem (3, 2)-Col is
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polynomially solvable for graphs with bounded tree-width. The latter class includes,
e.g., all outerplanar graphs.

We begin with the NP -completeness result on (3, 2)-colorability.

Theorem 2.2 The problem (3, 2)-Col remains NP -complete for planar bipartite

graphs with maximum degree at most 3 and arbitrarily high girth.

Proof. First note that the problem (3, 2)-Col restricted to planar bipartite graphs
with maximum degree at most 3 and girth at least g for any integer g is obviously
in NP .

Now we want to reduce a variant of the 3-colorability problem to the problem
(3, 2)-Col for planar bipartite graphs with maximum degree at most 3 and girth at
least g. We use the following restricted version 3-Col* of planar 3-colorability, in
which one is given a planar graph G with δ(G) ≥ 3, and the question is whether G is
3-colorable. To verify that 3-Col* is NP -complete, we first note the following easy
observation: if a graph G has a vertex v with degree less than 3, then G − v is 3-
colorable if and only if G is 3-colorable. One way is trivial, and for the other way we
can always use a color for v that has not been used for its at most two neighbors. So,
starting with a planar instance graph G for 3-colorability, one can recursively delete
vertices with degree less than 3 in the current graph. If this process terminates with
a trivial graph (on one vertex), then G is clearly 3-colorable; otherwise, we end up
with a planar graph G∗ with δ(G∗) ≥ 3, and such that G∗ is 3-colorable if and only
if G is 3-colorable. This clearly shows that 3-Col* is an NP -complete problem.

To complete the proof that (3, 2)-Col is NP -complete for our restricted graph
class, we start with a planar instance graph G for 3-Col*. We replace each vertex
v of G by a cycle Cv of length 6d(v), with an outgoing “half-edge” at each of
the positions 1, 4, 7, 10, 13, . . . along the cycle, representing twice the d(v) edges in
G incident with v, and all other vertices on Cv having degree 2. For every edge
uv ∈ E(G) we identify one of the half-edges at positions 1, 7, 13, . . . from each of
the Cu and Cv, and we glue the two half-edges together at a newly added vertex
xuv with degree 2. So xuv is the internal vertex of a P2 representing the edge uv

of G. For each of the half-edges at positions 4, 10, . . . we put a newly added vertex
with degree 1 at the other end. We denote the resulting graph by G̃. The local
transformation is shown in Figure 1.

The new graph G̃ is clearly bipartite, since every edge of G is replaced by a P2

while the segments of the cycles representing the vertices of G are obviously of even
length equal to 6. One easily checks that G̃ has maximum degree 3 and girth at least
18. We can clearly push up the girth arbitrarily further by extending the segments
and adding more half-edges ending in newly added vertices with degree 1, as long
as the size of the new graph is polynomial in the size of G. This can all be done
without destroying the planarity of the graph.

We complete the NP -completeness proof by showing that G is 3-colorable if and
only if G̃ is (3, 2)-colorable.

4



uv

u1v1

cu
cv

xuv

Figure 1: The local transformation in the proof of Theorem 2.2

Suppose first that G̃ is (3, 2)-colorable. Observe that any (3, 2)-coloring forces
the same colors at the two ends of a P3 with internal vertices with degree 2. This
implies that in any (3, 2)-coloring of G̃ all vertices at positions 1, 4, 7, 10, 13, . . . of a
Cv have the same color. We use this color on vertex v in G. Since every edge uv of G

is represented in G̃ by a P2 with an internal vertex with degree 2, any (3, 2)-coloring
forces different colors at the ends of this P2. So the restriction of any (3, 2)-coloring
of G̃ to G yields indeed a 3-coloring of G.

For the converse, assume we have a particular 3-coloring of G. For each vertex
vi ∈ V (G) we assign the color of vi to all vertices at positions 1, 4, 7, . . . of the Cvi

representing vi in G̃. The middle vertex of the P2 representing the edge vivj of G

in G̃ can receive the color which is not used for vi or vj in G. For each neighbor in
the Cvi

of a vertex at position 1, 7, 13, . . . we use the third color (that is not used at
vi or the middle vertex adjacent to it). This fixes the other colors in the Cvi

. We
can extend this to a (3, 2)-coloring by assigning suitable colors to the vertices with
degree 1.

Alternatively, we could have modified the method given in [5] to prove the NP -
completeness of 3-colorability, by reducing the 3-SAT problem to the problem (3, 2)-
Col for graphs with maximum degree at most 3. Pushing up the girth and guaran-
teeing bipartiteness can then be accomplished by using similar arguments as in the
above proof. It is more tricky to cope with the planarity, though.

From [7] we know that if ∆(G) = 1 or 2, χ2(G) can be determined in polynomial
time. From [9] we also know that if ∆(G) = 3, then χ2(G) = 3 or 4. So by Theorem
2.2 we can get the following result.

Corollary 2.3 Within the class of graphs with ∆(G) = 3, it is NP -hard to deter-

mine whether χ2(G) = 3 or χ2(G) = 4.
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3 Tree-like graphs

We have seen in the previous section that (3, 2)-Col remains NP -complete when
restricted to graphs with high girth, so that are “locally” the same as trees. In [7]
there is a simple proof of the fact that all trees are (3, 2)-colorable, implying that the
corresponding decision problem is trivial for trees. Moreover, we are going to use
MSOL, that is, that fragment of second-order logic where quantified relation symbols
must have arity 1, to show that (3, 2)-Col is polynomially solvable for graphs with
bounded tree-width.

To start with, it is well-known that the following sentence which expresses that
a graph (whose edges are given by the binary relation E) can be 3-colored, is a
sentence of monadic second-order logic:

∃R∃W∃B

{

∀x

(

(R(x) ∨ W (x) ∨ B(x)) ∧ ¬(R(x) ∧ W (x))

∧¬(R(x) ∧ B(x)) ∧ ¬(W (x) ∧ B(x))

)

∧ ∀x∀y

(

E(x, y) ⇒

(¬(R(x) ∧ R(y)) ∧ ¬(W (x) ∧ W (y)) ∧ ¬(B(x) ∧ B(y)))

)}

(the quantified unary relation symbols are R, W and B, and should be read as sets
of ‘red’, ‘white’ and ‘blue’ vertices, respectively). Thus, in particular, there exist
NP -complete problems that can be defined in monadic second-order logic.

A seminal result of Courcelle [3] is that on any class of graphs of bounded tree-
width, every problem definable in MSOL can be solved in time linear in the number
of vertices of the graph. Moreover, Courcelle’s result holds not just when graphs are
given in terms of their edge relation, as in the example above, but also when the
domain of a structure encoding a graph G consists of the disjoint union of the set
of vertices and the set of edges, as well as unary relations V and E to distinguish
the vertices and the edges, respectively, and also a binary incidence relation I which
denotes when a particular vertex is incident with a particular edge (thus, I ⊆ V ×E).
The reader is referred to [3] for more details as regards MSOL on graphs and also
for the definition of tree-width which is not required here. For the proof of our
claim that the (3, 2)-Col problem is solvable in linear time for graphs with bounded
tree-width, it is sufficient to show the following.

Theorem 3.1 The problem (3, 2)-Col can be defined in MSOL.

Proof. We already have the sentence that expresses 3-colorability in MSOL. Let
V (v) denote that v ∈ V , and let E(u, v) denote that uv ∈ E. (To be precise,
instead of uv ∈ E, we should write ∃e : e ∈ E ∧ (u, e) ∈ I ∧ (v, e) ∈ I.)

If we can write a formula of MSOL that says

a vertex with degree larger than 1 has at least two neighbors with different

colors,
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then we have proven the proposition by combining this for all vertices of V with the
expression for 3-colorability.

It is very simple to find the proper expression for this as a logical implication
A ⇒ B, where A expresses that a vertex v has at least two neighbors, whereas B

expresses that such a v has at least two neighbors with different colors.

For A consider the following:

∃V (u)∃V (w) (u 6= w ∧ E(u, v) ∧ E(w, v))

For B consider the following:

∃V (x)∃V (y) {E(x, v) ∧ E(y, v) ∧ ((B(x) ∧ ¬B(y))∨

(R(x) ∧ ¬R(y)) ∨ (W (x) ∧ ¬W (y)))}

4 Further NP -completeness results

Next we will briefly show how we can establish further NP -completeness results if
we consider special classes of graphs, e.g., hamiltonian graphs, planar graphs, and
claw-free graphs.

Theorem 4.1 The problem (3, 2)-Col remains NP -complete when restricted to hamil-

tonian graphs with ∆(G) ≤ 6.

Proof. A known result is that to determine whether a hamiltonian graph with max-
imum degree at most 4 is 3-colorable is NP -complete. Now, suppose we are given
a hamiltonian graph G with V (G) = {v1, v2, . . . , vn} and, without loss of generality,
let v1v2 . . . vnv1 be a hamiltonian cycle of G. We construct a new hamiltonian graph
G′ as follows: For each vi we add two new vertices xi1 and xi2 and three new edges
vixi1, xi1xi2 and xi2vi (a triangle). Then, add new edges x12x21, x32x41, x52x61, . . . ,
x(n−1)2xn1 for n even; add new edges x12x21, x32x41, x52x61, . . . , x(n−2)2x(n−1)1 and
add a new vertex u and three edges xn1u, xn2u and x(n−1)2u for n odd.

It is easy to check that G′ is a hamiltonian graph with ∆(G′) ≤ 6. Now first
suppose that G′ is (3, 2)-colorable. Then restricting a (3, 2)-coloring to the vertices
v1, v2, . . . , vn, one easily sees that it is a proper 3-coloring of G. For the converse,
suppose G is 3-colorable. Then we color the vertices v1, v2, . . . , vn in G′ by the same
color as they are colored in G. Since there are 3 colors, the remaining vertices of G′

can easily be colored properly, in such a way that we obtain a 3-coloring of G′. Since
every vertex in G′ is contained in a triangle, G′ is 3-colorable means G′ is (3, 2)-
colorable. So we have shown that G is 3-colorable if and only if G′ is (3, 2)-colorable.
This gives the result.
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Next we consider planar graphs. From [2] we know that the 3-colorability problem
for planar hamiltonian graphs is NP -complete. With the help of this result we can
prove the following theorem.

Theorem 4.2 The problem (3, 2)-Col is NP -complete for planar hamiltonian graphs.

Proof. Suppose we are given a planar hamiltonian graph G with V (G) = {v1, v2, . . . ,

vn} in which, without loss of generality, v1v2 . . . vnv1 is a hamiltonian cycle Cn of G.
For each edge vivi+1 of Cn, we do a local transformation to get a new graph G′ as
follows: For each edge vivi+1 in Cn, we add 4 new vertices xi1, xi2, y(i+1)1, y(i+1)2

and 7 new edges xi1vi, xi2vi, xi1xi2, y(i+1)1vi+1, y(i+1)2vi+1, y(i+1)1y(i+1)2, xi2y(i+1)1,
so two triangles with an edge connecting them. Then G′ has 5|V (G)| vertices, and
every vertex is in a triangle, and moreover, each “two triangles with an edge joining
them” can be drawn in the local space of vivi+1 without crossing the boundary of
any face, so that the new graph G′ remains planar. It is easy to see that it is also
hamiltonian. By the same reasoning as in the proof of Theorem 4.1, it is easy to see
that G is 3-colorable if and only if G′ is (3, 2)-colorable. This completes the proof.

In a similar way, we can easily show that (3, 2)-Col remains NP -complete for claw-
free graphs. The details are omitted here.

To conclude the paper, we point out that there are polynomial algorithms to
solve the (k, r)-Col problem for some other special classes of graphs. From the proof
of [9], one can design a polynomial algorithm to color the graph G by ∆(G) + 1
colors when ∆(G) ≥ 3. For some classes of perfect graphs, such as triangulated (or
chordal) graphs and comparability graphs, there are polynomial algorithms to color
the graph G by χ(G) colors for traditional coloring in [6]. For these classes of graphs,
one can also design polynomial algorithms to obtain colorings corresponding to the
conditional coloring number, with minor adaptations of the original algorithms in
[6]. The details are omitted.
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