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Abstract
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1 Introduction and notation

Whitney [10] proved that every 4-connected planar triangulation contains a Hamilton
cycle. Tutte [8] extended Whitney’s result to every 4-connected planar graph. Malkevitch
[2] conjectured that every 4-connected planar n-vertex graph contains a cycle of length
k for every k ∈ {n, n − 1, . . . , 3} if it contains a 4-cycle. Note that the line graph of a
cyclically 4-edge-connected cubic planar graph with girth at least 5 contains no cycle of
length 4.

Malkevitch’s conjecture for k = n − 1 follows from a theorem of Tutte as observed by
Nelson, see [7]. The case for k = n − 2 was proved by Thomas and Yu [6]. Sanders [5]
showed that in any 4-connected planar graph with at least six vertices there are three ver-
tices whose deletion results in a Hamiltonian graph, establishing Malkevitch’s conjecture
for k = n− 3. Chen et al. [1] proved Malkevitch’s conjecture for k ∈ {n− 4, n− 5, n− 6}
with k ≥ 3. In this paper, we prove the following result.

Theorem 1.1. Let G be a 4-connected planar graph and let u ∈ V (G). Then there is a set
X ⊆ V (G) such that u ∈ X, |X| = 6, and G−X has a Hamilton cycle when |V (G)| ≥ 9.

We will show that Theorem 1.1 implies that G contains a cycle of length n− 7 for all
n ≥ 10 (see Corollary 4.1). The proof of Theorem 1.1 is similar to that in [1], in which
the notion of Tutte paths and contractible subgraphs technique are used. Let G be a
graph and let H ⊆ G. We use G/H to denote the graph obtained from G by contracting
H . If H is induced by an edge e, then we write G/e instead of G/H . A subgraph H in
a k-connected graph G is said to be k-contractible (or contractible) if the graph G/H is
also k-connected. A graph X is a minor of G (or G contains an X-minor) if X can be
obtained from a subgraph of G by contracting edges. Note that a graph is planar iff it
has no K5-minor or K3,3-minor.

Let X ⊆ E(G) (or X ⊆ V (G)). We use G − X to denote the graph obtained from G
by deleting X (and the edges of G incident with elements of X), and if X = {x} then
let G − x := G − {x}. Let P be a path (cycle) in G. A P -bridge of G is a subgraph
of G which either (1) is induced by an edge of G − E(P ) with both incident vertices in
V (P ) or (2) is induced by the edges in a component D of G−V (P ) and all edges between
D and P . For a P -bridge B of G, the vertices of B ∩ P are the attachments of B on
P . We say that P is a Tutte path (cycle) in G if every P -bridge of G has at most three
attachments on P . For any subgraph C of G, P is called a C-Tutte path (cycle) in G if
P is a Tutte path (cycle) in G and every P -bridge of G containing an edge of C has at
most two attachments on P . Note that if P is a Tutte path in a 4-connected graph and
|V (P )| ≥ 4, then P is in fact a Hamilton path.

We consider only simple graphs and use the notation and terminology in [1]. Let G
be a graph and let X ⊆ V (G). We use G[X] to denote the subgraph of G induced by X.
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Let Z be a set of 2-element subsets of V (G); then we use G+Z to denote the graph with
vertex set V (G) and edge set E(G) ∪ Z, and if Z = {{x, y}} then let G + xy := G + Z.
Let NG(X) := {u ∈ V (G) − X : u is adjacent to some vertex in X}, and if X = {x}
then let NG(x) := NG({x}). For any path P and x, y ∈ V (P ), we use xPy to denote the
subpath of P between x and y. Given two distinct vertices x and y on a cycle C in a
plane graph, we use xCy to denote the path in C from x to y in clockwise order. It is
well known that every face of a 2-connected plane graph is bounded by a cycle.

2 Known results

In this section, we list several results about Tutte paths and contractible subgraphs. The
following lemma is shown in [4] and [6].

Lemma 2.1. Let G be a 2-connected plane graph with a facial cycle C. Let e, f, g ∈ E(C),
and assume that e, f, g occur on C in clockwise order. Then G contains a C-Tutte cycle
P through e, f and g.

A block of a graph H is either (1) a maximal 2-connected subgraph of H or (2) a
subgraph of H induced by an edge of H not contained in any cycle. An end block of a
graph H is a block of H containing at most one cut vertex of H . We say that a connected
graph H is a chain of blocks if H has at most two end blocks. A connected graph H is a
chain of blocks from x to y if one of the following holds: (1) H is 2-connected and x and
y are distinct vertices of H ; or (2) H has exactly two end blocks, neither x nor y is a cut
vertex of H , and x and y belong to different end blocks of H . Note that if H is not a
chain of blocks from x to y, then there exist an end block B of H and a cut vertex b of
H such that b ∈ V (B) and (V (B) − {b}) ∩ {x, y} = ∅.

Let G be a graph and {a1, . . . , al} ⊆ V (G), where l is a positive integer. We say that
(G, a1, . . . , al) is planar if G can be drawn in a closed disc with no pair of edges crossing
such that a1, . . . , al occur on the boundary of the disc in cyclic order. The graph G is called
(4, {a1, . . . , al})-connected if |V (G)| ≥ l + 1 and for any T ⊆ V (G) with |T | ≤ 3, every
component of G−T contains some element of {a1, . . . , al}. Note that if G is 4-connected,
then G is (4, S)-connected for all S ⊆ V (G) with S 6= V (G).

The following four lemmas are proved in [1], using Tutte paths technique.

Lemma 2.2. Let G be a graph and {a1, a2, a3, a4} ⊆ V (G) such that G is (4, {a1, a2, a3, a4})-
connected. Then G − {a3, a4} is a chain of blocks from a1 to a2.

Lemma 2.3. Let H be a graph and {a1, a2, a3, a4} ⊆ V (H). Assume that (H, a1, a2, a3, a4)
is planar, H is (4, {a1, a2, a3, a4})-connected, and a1 has at least two neighbors contained
in V (H) − {a1, a2, a3, a4}. Then one of the following holds:
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(1) H − {a2, a3, a4} is 2-connected; or

(2) both H − {a1, a3, a4} and H − {a1, a2, a3} are 2-connected.

Lemma 2.4. Let G be a graph and {a1, . . . , al} ⊆ V (G), where 3 ≤ l ≤ 5. Assume that
(G, a1, . . . , al) is planar, G is (4, {a1, . . . , al})-connected, and G − {a3, . . . , al} is a chain
of blocks from a1 to a2. Then G − {a3, . . . , al} has a Hamilton path from a1 to a2.

Lemma 2.5. Let H be a graph and {a1, a2, a3, a4} ⊆ V (H). Assume that (H, a1, a2, a3, a4)
is planar, H is (4, {a1, a2, a3, a4})-connected, and |V (H)| ≥ 6. Then there is a vertex
z ∈ V (H) − {a1, a2, a3, a4} such that H − {z, a3, a4} has a Hamilton path from a1 to a2.

We now state some results on contractible subgraphs. Tutte [9] proved that K4 is
the only 3-connected graph with no 3-contractible edges. On the other hand, there are
infinitely many 4-connected graphs with no 4-contractible edges. Martinov [3] showed
that if G is a 4-connected graph with no contractible edges, then G is either the square of
a cycle of length at least 4 or the line graph of a cyclically 4-edge-connected cubic graph.
Chen et al. [1] proved the following result which provides information about 4-contractible
edges incident with a specific vertex in a 4-connected planar graph.

Theorem 2.6. Let G be a 4-connected planar graph and let u ∈ V (G). Then one of the
following holds:

(1) G has a contractible edge incident with u; or

(2) there are two 4-cuts S and T of G such that 1 ≤ |S ∩ T | ≤ 2, S contains u and a
neighbor of u, T contains u and a neighbor of u, and G − S has a component consisting
of only one vertex which is also contained in T .

Theorem 2.6 is used in [1] to prove the following result.

Theorem 2.7. Let G be a 4-connected planar graph and let u ∈ V (G). Then for each
l ∈ {1, . . . , 5} there is a set Xl ⊆ V (G) such that u ∈ Xl, |Xl| = l, and G − Xl has a
Hamilton cycle when |V (G)| ≥ l + 3.

3 A lemma

In this section, we prove the following special case of Theorem 1.1, which deals with a
situation in (2) of Theorem 2.6.

Lemma 3.1. Let G be a 4-connected planar graph and let u ∈ V (G). Let S, T be two
4-cuts of G such that |S ∩ T | = 2, u ∈ S ∩ T , S has a neighbor of u, and G − S has
a component A consisting of only one vertex which is also contained in T . Then there
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a aa

b bb

c cc
u uu

v vv

w ww

zB ∩ C

B ∩ D B ∩ DB ∩ D

|V (B ∩ C)| ≥ 2 |V (B ∩ C)| = 1 |V (B ∩ C)| = 0

Figure 1: |S ∩ T | = 2.

is a set X ⊆ V (G) such that u ∈ X, |X| = 6, and G − X has a Hamilton cycle when
|V (G)| ≥ 9.

Proof. Let a be the only vertex in V (A), and let B := G − ({a} ∪ S). Let C be a
component of G−T and let D := G− (V (C)∪T ). If S ∩V (C) = ∅, then B ∩C = C 6= ∅
is a component of G − (T − {a}), contradicting the assumption that G is 4-connected.
Similarly, if S ∩ V (D) = ∅ then B ∩ D = D 6= ∅ is a component of G − (T − {a}), a
contradiction. Hence S ∩V (C) 6= ∅ 6= S ∩V (D). Therefore |S ∩V (C)| = 1 = |S ∩V (D)|.
By symmetry, we may assume that |V (B ∩C)| ≤ |V (B ∩D)|. Let v denote the vertex in
(S ∩ T )− {u}, let w denote the vertex in S ∩ V (C), let b denote the vertex in S ∩ V (D),
and let c denote the vertex in V (B) ∩ T , as shown in Figure 1.

Let H1 := G[V (C) ∪ {u, v, c}] and H2 := G[V (D) ∪ {u, v, c}]. Since au, av ∈ E(G), in
any plane representation of G, a and v are cofacial, and a and u are cofacial. As T is a
cut set of G, we see that in any plane representation of G, c and v are cofacial, and c and
u are cofacial. Therefore, since a is adjacent to both b and w, (H1, c, v, w, u) is planar
and (H2, c, v, b, u) is planar. Since G is 4-connected, H1 is (4, {c, v, w, u})-connected (if
B ∩C 6= ∅) and H2 is (4, {c, v, b, u})-connected (if B ∩D 6= ∅). Therefore by Lemma 2.2,
H1 − {w, u} is a chain of blocks from c to v, and H2 − {b, u} is a chain of blocks from c
to v.

Suppose |V (B ∩ C)| ≥ 2. Then by Lemma 2.5, there is a vertex x ∈ V (B ∩ C) such
that H1 − {x, w, u} has a Hamilton path P from c to v. Similarly, since |V (B ∩ D)| ≥
|V (B ∩ C)| ≥ 2, there is a vertex y ∈ V (B ∩ D) such that H2 − {y, b, u} has a Hamilton
path Q from c to v. Let X := {a, b, u, w, x, y}; then P ∪Q is a Hamilton cycle in G−X.

Now suppose |V (B ∩ C)| = 1. Then |V (B ∩ D)| ≥ 2; otherwise, |V (B ∩ D)| = 1 and
|V (G)| = 8, and there is nothing to prove. Let z denote the only vertex in V (B ∩ C).
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We may assume that c has at least two neighbors in V (B∩D). Otherwise, since G is 4-
connected, c is adjacent to at least one element of {v, b, w}. If c is adjacent to v, then since
|V (B∩D)| ≥ 2, it follows from Lemma 2.5 that there is a vertex y ∈ V (B ∩D) such that
H2 − {y, b, u} has a Hamilton path Q from c to v. Let X := {a, b, u, w, y, z}; then Q + cv
is a Hamilton cycle in G − X. If c is adjacent to b, then by contracting ab, contracting
wz, and contracting B ∩ D to a single vertex, we produce a minor of G containing K3,3,
a contradiction. If c is adjacent to w, then by contracting aw, and contracting D to a
single vertex, we produce a minor of G containing K3,3, again a contradiction.

Hence by Lemma 2.3, there is some x ∈ {v, c} such that H2 − ({v, b, u, c} − {x}) is 2-
connected. Choose a vertex x′ of H2−({v, b, u, c}−{x}) such that xx′ is an edge and H2 can
be drawn in a closed disc so that that xx′ lies on the boundary and x, x′, {v, b, u, c}−{x}
occur in cyclic order on the boundary of the disc. By applying Lemma 2.4, we find a
Hamilton path R from x to x′. Let X := {a, b, u, w, z} ∪ ({v, c}− {x}); then R + xx′ is a
Hamilton cycle in G − X.

Therefore we may assume that |V (B ∩ C)| = 0. Then |V (B ∩ D)| ≥ 3; otherwise,
|V (G)| ≤ 8, and there is nothing to prove. Since H2 is (4, {c, v, b, u})-connected and
(H2, c, v, b, u) is planar, B ∩ D is connected. We consider two cases according to the
connectivity of B ∩ D.

Case 1. B ∩ D is connected but not 2-connected.

Let J1, . . . , Jm (m ≥ 2) be the end blocks of B ∩ D, and let vi be the cut vertex of
B ∩ D contained in V (Ji). We claim that m = 2. Otherwise, since H2 is (4, {c, v, b, u})-
connected, at least three elements of {c, v, b, u} have neighbors in V (Ji) − {vi} (for each
i), which contradicts the assumption that (H2, c, v, b, u) is planar.

Let B1 := J1 − v1 and B2 := (B ∩ D) − V (J1). Since H2 is (4, {c, v, b, u})-connected
and (H2, c, v, b, u) is planar, either each element of {v, u} has neighbors in both V (B1)
and V (B2) or each element of {c, b} has neighbors in both V (B1) and V (B2). Moreover,
exactly three elements of {c, v, b, u} have neighbors in each V (Bi). We only consider the
case that each element of {v, u} has neighbors in both V (B1) and V (B2); the other case
can be treated in a similar way (by exchanging the roles of c and v and by exchanging
the roles of b and u). Then by planarity, those neighbors of b in V (B ∩ D) are contained
in V (B1), and those neighbors of c in V (B ∩ D) are contained in V (B2).

Let L1 := G[V (B1) ∪ {v, v1, u, b}] and let L2 := G[V (B2) ∪ {v, v1, u, c}]. Note that
(L1, v, v1, u, b) and (L2, v, v1, u, c) are planar. Since H2 is (4, {c, v, b, u})-connected, L1

is (4, {v, v1, u, b})-connected and L2 is (4, {v, v1, u, c})-connected. Then by Lemma 2.2,
L1 − {u, b} is a chain of blocks from v to v1, and L2 − {u, c} is a chain of blocks from v
to v1. By applying Lemma 2.4, L1 − {u, b} has a Hamilton path R1 from v to v1, and
L2 − {u, c} has a Hamilton path R2 from v to v1.

Suppose |V (B ∩ D)| = 3. Then B ∩ D is a path x1x2x3, where V (B1) = {x1},
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V (B2) = {x3}, and x2 = v1. Since G is 4-connected and by planarity, x1 is adjacent
to each element of {v, u, b}, x2 is adjacent to both v and u, and x3 is adjacent to each
element of {v, u, c}. Let X := {a, b, c, u, w, x1}; then vx2x3v is a Hamilton cycle in G−X.

So we may assume that |V (B ∩ D)| ≥ 4. If |V (B1)| ≥ 2, then by Lemma 2.5, there
is a vertex z1 ∈ V (B1) such that L1 − {z1, u, b} has a Hamilton path R′

1
from v to v1.

Let X := {a, b, c, u, w, z1}; then R′

1
∪ R2 is a Hamilton cycle in G − X. Otherwise, if

|V (B2)| ≥ 2, then there is a vertex z2 ∈ V (B2) such that L2 − {z2, u, c} has a Hamilton
path R′

2
from v to v1. Let X := {a, b, c, u, w, z2}; then R1 ∪ R′

2
is a Hamilton cycle in

G − X.

Case 2. B ∩ D is 2-connected.

Let F denote the outer cycle of B ∩ D. Choose v1, v2, v3, v4 ∈ V (F ) such that
v1, v2, v3, v4 occur on F in clockwise order, NG(v) ∩ V (F ) ⊆ V (v1Fv2), NG(c) ∩ V (F ) ⊆
V (v2Fv3), NG(u) ∩ V (F ) ⊆ V (v3Fv4), and NG(b) ∩ V (F ) ⊆ V (v4Fv1).

By Lemma 2.1, we find an F -Tutte cycle H in B∩D through three edges on F incident
with v2, v3, v4, respectively. If H is a Hamilton cycle in B ∩ D, let X := {a, b, c, u, v, w};
then H is a Hamilton cycle in G − X. So we may assume that H is not a Hamilton
cycle in B ∩ D. Then there is an H-bridge B1 in B ∩ D with v1 ∈ V (B1 − H). Note
that |V (B1 ∩ H)| = 2. Moreover, each element of {b, v} has a neighbor in V (B1 − H);
otherwise, V (B1 ∩ H) ∪ {v} or V (B1 ∩ H) ∪ {b} is a 3-cut in G, a contradiction. Let
V (B1 ∩ H) = {s1, t1} such that s1, v1, t1 occur on F in clockwise order.

Similarly, by finding an F -Tutte cycle through three edges on F incident with v1, v3, v4,
respectively, we may assume that there exist a 2-cut {s2, t2} in B ∩ D and an {s2, t2}-
bridge B2 in B ∩ D with v2 ∈ V (B2) − {s2, t2} such that each element of {v, c} has a
neighbor in V (B2) − {s2, t2} and s2, v2, t2 occur on F in clockwise order.

By finding an F -Tutte cycle through three edges on F incident with v1, v2, v4, respec-
tively, we may assume that there exist a 2-cut {s3, t3} in B ∩D and an {s3, t3}-bridge B3

in B ∩ D with v3 ∈ V (B3) − {s3, t3} such that each element of {c, u} has a neighbor in
V (B3) − {s3, t3} and s3, v3, t3 occur on F in clockwise order.

By finding an F -Tutte cycle through three edges on F incident with v1, v2, v3, re-
spectively, we may further assume that there exist a 2-cut {s4, t4} in B ∩ D and an
{s4, t4}-bridge B4 in B ∩ D with v4 ∈ V (B4) − {s4, t4} such that each element of {u, b}
has a neighbor in V (B4) − {s4, t4} and s4, v4, t4 occur on F in clockwise order.

Therefore each element of {c, v, b, u} has at least two neighbors in V (B ∩ D).

We claim that s1, t1, . . . , s4, t4 occur on F in clockwise order. Otherwise, without loss
of generality, we may assume that s1, s2, t1, t2 occur on F in clockwise order, where s2 6= t1.
In this case, neither c nor b has a neighbor in V (s2Ft1)−{s2, t1}. If V (s2Ft1)−{s2, t1} 6= ∅,
then {s2, t1, v} is a 3-cut in G, contradicting the assumption that H2 is (4, {c, v, b, u})-
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connected. Therefore V (s2Ft1) = {s2, t1} and s2t1 ∈ E(G). But this implies that t1 /∈
V (H), a contradiction.

Let J := (B ∩ D) − (V (B1) − {s1, t1}); then H is a Hamilton cycle in J and those
neighbors of c in V (B ∩ D) are contained in V (J). Hence J , J1 := G[V (J) ∪ {c}] + s1t1,
and J2 := G[V (J) ∪ {c}] are 2-connected. Let F1 denote the outer cycle of J1. Then
c, v4, s1, t1 ∈ V (F1) and s1t1 ∈ E(F1). By Lemma 2.1, there exists an F1-Tutte cycle C1

in J1 through s1t1 and two edges on F1 incident with c, v4, respectively. Then C1 is a
Hamilton cycle in J1. Let L := G[V (B1) ∪ {v, b}]; then (L, s1, t1, v, b) is planar. Since H2

is (4, {c, v, b, u})-connected, L is (4, {s1, t1, v, b})-connected. Therefore by Lemma 2.2, B1

is a chain of blocks from s1 to t1.

We may assume that V (Bi) = {si, ti, vi}, for 1 ≤ i ≤ 4. Otherwise, without loss of
generality, we may assume that V (B1) 6= {s1, t1, v1}. By applying Lemma 2.5, there is a
vertex z ∈ V (B1) − {s1, t1} such that B1 − z has a Hamilton path P from s1 to t1. Let
X := {a, b, u, v, w, z}; then P ∪ t1C1s1 is a Hamilton cycle in G − X.

Let F2 denote the outer cycle of J2; then c, v4, s1, t1 ∈ V (F2). By Lemma 2.1, we find
an F2-Tutte cycle C2 in J2 through three edges on F2 incident with c, v4, t1, respectively.
If C2 is a Hamilton cycle in J2, let X := {a, b, u, v, w, v1}; then C2 is a Hamilton cycle
in G − X. So we may assume that C2 is not a Hamilton cycle in J2. Then there is a
C2-bridge B′

1
in J2 such that s1 ∈ V (B′

1
− C2). Let V (B′

1
∩ C2) = {s′

1
, t′

1
}.

Let B′ := (B ∩D)− {v1, v2, v3, v4}. Then B′

1
⊆ B′ and {s′

1
, t′

1
} is a 2-cut in B′. Since

H2 is (4, {c, v, b, u})-connected, b has a neighbor in V (B′

1
) − {s′

1
, t′

1
}.

Similarly, we may assume that there exist a 2-cut {s′
2
, t′

2
} in B′ and an {s′

2
, t′

2
}-bridge

B′

2
in B′ such that s2 ∈ V (B′

2
) − {s′

2
, t′

2
} and v has a neighbor in V (B′

2
) − {s′

2
, t′

2
}. We

may further assume that there exist a 2-cut {s′
3
, t′

3
} in B′ and an {s′

3
, t′

3
}-bridge B′

3
in B′

such that s3 ∈ V (B′

3
) − {s′

3
, t′

3
} and c has a neighbor in V (B′

3
) − {s′

3
, t′

3
}.

Then each element of {c, v, b} has at least three neighbors in V (B ∩ D). Hence it
is easy to see that G − {a, u, w} is 3-connected. Therefore the triangle L induced by
the vertices {a, u, w} is a contractible triangle in G. Let u∗ denote the vertex of G/L
resulting from the contraction of L. Now by Theorem 2.7, there is some X∗ ⊆ V (G/L)
such that u∗ ∈ X∗, |X∗| = 4, and G/L − X∗ has a Hamilton cycle when |V (G/L)| ≥ 7.
Let X := (X∗ − {u∗}) ∪ {a, u, w}; then G − X = G/L − X∗ has a Hamilton cycle.

4 Proof of main result

We now prove Theorem 1.1.

We may assume that G contains no contractible edge incident with u. Otherwise, let
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e = uv be a contractible edge of G incident with u. Then G/e is also a 4-connected planar
graph. Let u∗ denote the vertex of G/e resulting from the contraction of e. By Theorem
2.7, there is a set X∗ ⊆ V (G/e) such that u∗ ∈ X∗, |X∗| = 5, and G/L−X∗ has a Hamilton
cycle when |V (G/L)| ≥ 8. Let X := (X∗ − {u∗}) ∪ {u, v}; then G − X = G/e − X∗ has
a Hamilton cycle.

Let F denote the set of 4-cuts of G containing u and a neighbor of u. Hence by
Theorem 2.6, there are two 4-cuts S, T ∈ F such that 1 ≤ |S ∩ T | ≤ 2 and G − S has
a component A consisting of only one vertex which is also contained in T . Let a be the
only vertex in V (A), and let B := G − ({a} ∪ S). Let C be a component of G − T and
let D := G − (V (C) ∪ T ). Hence S ∩ V (C) 6= ∅ 6= S ∩ V (D). For if S ∩ V (C) = ∅, then
B ∩ C = C 6= ∅ is a component of G − (T − {a}), contradicting the assumption that
G is 4-connected. Similarly, if S ∩ V (D) = ∅ then B ∩ D = D 6= ∅ is a component of
G − (T − {a}), a contradiction.

Then by Lemma 3.1, we may assume that

(∗) S ∩ T = {u} for all choices of S and T from F .

We may choose C, D such that |S ∩ V (C)| = 2 and |S ∩ V (D)| = 1. Let v, w denote
the vertices in S ∩V (C), let b denote the only vertex in S ∩V (D), and let c, d denote the
vertices in V (B) ∩ T , as shown in Figure 2.

Let H1 := G[V (C) ∪ {u, c, d}] and let H2 := G[V (D) ∪ {u, c, d}]. Since a is adjacent
to u and T is a 4-cut of G, c and d are cofacial. Likewise, v and w are cofacial. Without
loss of generality, we may assume that (H1, c, d, u, v, w) is planar. Then (H2, c, d, u, b) is
planar. Since G is 4-connected, H1 is (4, {c, d, u, v, w})-connected (if B ∩ C 6= ∅) and H2

is (4, {c, d, u, b})-connected (if B ∩ D 6= ∅).

Case 1. B ∩ D 6= ∅.

We claim that B∩C 6= ∅. Suppose on the contrary that B∩C = ∅. Then one element of
{v, w} is not adjacent to some element of {c, d}; otherwise, by contracting G[V (D)∪{u}]
to a single vertex, we produce a minor of G containing K3,3, a contradiction. If v is
not adjacent to some element of {c, d}, then T ′ := NG(v) ∈ F and |S ∩ T ′| = 2, which
contradicts our assumption (∗). Similarly, if w is not adjacent to some element of {c, d},
then T ′ := NG(w) ∈ F and |S ∩ T ′| = 2, contradicting (∗).

We claim that H1 − {u, v, w} is a chain of blocks from c to d. Otherwise, let K be
an end block of H1 − {u, v, w} and r be the cut vertex of H1 − {u, v, w} contained in
V (K) such that (V (K) − {r}) ∩ {c, d} = ∅. As H1 is (4, {c, d, u, v, w})-connected, each
element of {u, v, w} has a neighbor in V (K) − {r}. Since (H1, c, d, u, v, w) is planar,
T ′ := {a, r, u, w} ∈ F and |S ∩ T ′| = 2, contradicting our assumption (∗).

Since (H1, c, d, u, v, w) is planar, by Lemma 2.4, there is a Hamilton path P in H1 −
{u, v, w} from c to d.
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Figure 2: |S ∩ T | = 1.

Suppose |V (B ∩ D)| ≥ 2. Since H2 is (4, {c, d, u, b})-connected and (H2, c, d, u, b)
is planar, it follows from Lemma 2.5 that there is a vertex y ∈ V (B ∩ D) such that
H2 − {y, u, b} has a Hamilton path Q from c to d. Let X := {a, b, u, v, w, y}; then P ∪ Q
is a Hamilton cycle in G − X.

So we may assume that

(∗∗) |V (B ∩ D)| = 1 for all choices of S, T, A, B, C, D with |S ∩ V (C)| = 2 and
|S ∩ V (D)| = 1.

Let z denote the only vertex in V (B∩D). Then we may assume that c is not adjacent
to d; otherwise, P + cd is a Hamilton cycle in G − X, where X := {a, b, u, v, w, z}.

We claim that H1 −{c, d, u} is a chain of blocks from v to w. Otherwise, let K denote
an end block of H1 − {c, d, u} and let r be the cut vertex of H1 − {c, d, u} contained
in V (K) such that (V (K) − {r}) ∩ {v, w} = ∅. As H1 is (4, {c, d, u, v, w})-connected,
each element of {c, d, u} has a neighbor in V (K) − {r}. Since (H1, c, d, u, v, w) is planar,
T ′ := {a, c, r, u} ∈ F . Let C ′ be the component of G − T ′ containing {v, w}, and let
D′ := G − (V (C ′) ∪ T ′). Then |S ∩ V (C ′)| = 2, |S ∩ V (D′)| = 1, and |V (B ∩ D′)| ≥ 2,
contradicting (∗∗).

Since (H1, c, d, u, v, w) is planar, by Lemma 2.4, there is a Hamilton path R in H1 −
{c, d, u} from v to w. Then we may assume that v is not adjacent to w; otherwise, R+vw
is a Hamilton cycle in G − X, where X := {a, b, c, d, u, z}.

We may assume that d has at least two neighbors in V (B ∩ C). Otherwise, assume
that d has at most one neighbor in V (B∩C). As (H2, c, d, u, b) is planar, d is not adjacent
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to b. Since (H1, c, d, u, v, w) is planar and c is not adjacent to d, d is adjacent to both u
and v, u is adjacent to v, u has no neighbor in V (B ∩C), and d has exactly one neighbor
in V (B ∩ C). Let H ′ := H1 − u. Then (H ′, d, v, w, c) is planar and H ′ is (4, {d, v, w, c})-
connected (since G is 4-connected). Hence by Lemma 2.2, H ′−{w, c} is a chain of blocks
from d to v. By Lemma 2.4, H ′ − {w, c} contains a Hamilton path P ′ from d to v. Let
X := {a, b, c, u, w, z}; then P ′ + dv is a Hamilton cycle in G − X.

Similarly, by exchanging the roles of d and v and by exchanging the roles of c and w,
we may further assume that v has at least two neighbors in V (B ∩ C).

We claim that H1 − {c, u, w} is 2-connected. Otherwise, let J1, . . . , Jm (m ≥ 2)
denote the end blocks of H1 − {c, u, w}, and let vi be the cut vertex of H1 − {c, u, w}
contained in V (Ji). Then for each 1 ≤ i ≤ m, either v ∈ V (Ji)−{vi} or d ∈ V (Ji)−{vi};
otherwise, since H1 is (4, {c, d, u, v, w})-connected, each element of {c, u, w} has a neighbor
in V (Ji)− {vi}, which contradicts the assumption that (H1, c, d, u, v, w) is planar. Hence
m = 2, and we may assume that v ∈ V (J1) − {v1} and d ∈ V (J2) − {v2}. As both d
and v have at least two neighbors in V (B ∩ C), |V (J1)| ≥ 3 and |V (J2)| ≥ 3. Since
H1 is (4, {c, d, u, v, w})-connected and (H1, c, d, u, v, w) is planar, only u, w of {c, u, w}
have neighbors in V (J1) − {v1}; or only c, u of {c, u, w} have neighbors in V (J2) − {v2}.
Hence T ′ := {a, u, v1, w} ∈ F or T ′′ := {a, c, u, v2} ∈ F . If T ′ ∈ F , then |S ∩ T ′| = 2,
contradicting our assumption (∗). So T ′′ ∈ F . Let C ′ be the component of G − T ′′

containing {v, w}, and let D′ := G−(V (C ′)∪T ′′). Then |S∩V (C ′)| = 2, |S∩V (D′)| = 1,
and |V (B ∩ D′)| ≥ 2, contradicting (∗∗).

So let F denote the outer cycle of H1 − {c, u, w}. Let y ∈ V (vFd) such that v, y, d
occur on F in clockwise order, NG(w)∩V (F ) ⊆ V (vFy), and NG(c)∩V (F ) ⊆ V (yFd). By
Lemma 2.1, we find an F -Tutte cycle H in H1−{c, u, w} through three edges on F incident
with v, y, d, respectively. Since H1 is (4, {c, d, u, v, w})-connected, H is a Hamilton cycle
in H1 − {c, u, w}. Let X := {a, b, c, u, w, z}; then H is a Hamilton cycle in G − X.

Case 2. B ∩ D = ∅.

In this case, |V (B ∩ C)| ≥ 2. Otherwise, |V (G)| ≤ 8, and there is nothing to prove.
Since H1 is (4, {c, d, u, v, w})-connected and (H1, c, d, u, v, w) is planar, B∩C is connected.
We consider two subcases according to the connectivity of B ∩ C.

Subcase 2.1. B ∩ C is connected but not 2-connected.

Let J1, . . . , Jm (m ≥ 2) be the end blocks of B ∩ C, and let vi be the cut vertex of
B∩C contained in V (Ji). We claim that m = 2. Otherwise, since H1 is (4, {c, d, u, v, w})-
connected, at least three elements of {c, d, u, v, w} have neighbors in V (Ji)−{vi} (for each
i), contradicting the assumption that (H1, c, d, u, v, w) is planar.

Let B1 := J1 − v1 and B2 := (B ∩ C) − V (J1). We claim that there is some element
x ∈ {c, d, v, w} such that x has neighbors in both V (B1) and V (B2). Otherwise, u must
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have neighbors in both V (B1) and V (B2) (since G is 4-connected). Hence we may assume
that only u, v, w of {c, d, u, v, w} have neighbors in V (B1), and only c, d, u of {c, d, u, v, w}
have neighbors in V (B2). Since (H1, c, d, u, v, w) is planar, T ′ := {a, u, v1, w} ∈ F and
|S ∩ T ′| = 2, contradicting our assumption (∗).

By symmetry, we may assume that d has neighbors in both V (B1) and V (B2). Since H1

is (4, {c, d, u, v, w})-connected and (H1, c, d, u, v, w) is planar, both u and v have neighbors
in V (B1), both c and w have neighbors in V (B2), and at most one element of {v, w} has
neighbors in both V (B1) and V (B2). Without loss of generality, we may assume that v
has no neighbor in V (B2); the other case can be treated in the same way.

Let L1 := G[V (B1) ∪ {d, v1, w, v, u}] and let L2 := G[V (B2) ∪ {d, v1, w, c}]. Then
(L1, d, v1, w, v, u) and (L2, d, v1, w, c) are planar. Since H1 is (4, {c, d, u, v, w})-connected,
L1 is (4, {d, v1, w, v, u})-connected and L2 is (4, {d, v1, w, c})-connected. Therefore L1 −
{w, v, u} is a chain of blocks from d to v1, and L2 − {w, c} is a chain of blocks from d
to v1. Hence by Lemma 2.4, L1 − {w, v, u} has a Hamilton path P1 from d to v1, and
L2 − {w, c} has a Hamilton path P2 from d to v1. Now let X := {a, b, c, d, u, v}; then
P1 ∪ P2 is a Hamilton cycle in G − X.

Subcase 2.2. B ∩ C is 2-connected.

Let F denote the outer cycle of B ∩ C. Choose v1, v2, v3, v4, v5 ∈ V (F ) such that
v1, v2, v3, v4, v5 occur on F in clockwise order, NG(c)∩V (F ) ⊆ V (v1Fv2), NG(d)∩V (F ) ⊆
V (v2Fv3), NG(u)∩ V (F ) ⊆ V (v3Fv4), NG(v)∩ V (F ) ⊆ V (v4Fv5), and NG(w)∩ V (F ) ⊆
V (v5Fv1).

We may assume that v has at least two neighbors in V (B ∩ C). Suppose on the
contrary that v has at most one neighbor in V (B∩C). If u has no neighbor in V (B∩C),
then let H ′ := H1 − u. So (H ′, c, d, v, w) is planar and H ′ is (4, {c, d, v, w})-connected
(since G is 4-connected). Hence by Lemma 2.2, H ′ − {c, d} is a chain of blocks from v to
w, and H ′ −{c, w} is a chain of blocks from v to d. Since |V (B ∩C)| ≥ 2, it follows from
Lemma 2.5 that there is a vertex z1 ∈ V (B ∩C) such that H ′ − {z1, c, d} has a Hamilton
path P1 from v to w. Similarly, there is a vertex z2 ∈ V (B ∩C) such that H ′ − {z2, c, w}
has a Hamilton path P2 from v to d. If v is adjacent to w, let X := {a, b, c, d, u, z1}; then
P1 + vw is a Hamilton cycle in G − X. If v is adjacent to d, let X := {a, b, c, u, w, z2};
then P2 + vd is a Hamilton cycle in G − X. So assume that v is adjacent to neither w
nor d. But this contradicts the assumption that G is 4-connected. Therefore we may
assume that u has a neighbor in V (B ∩ C). If w has no neighbor in V (B ∩ C), then
T ′ := {a, c, u, v} ∈ F and |S ∩ T ′| = 2, contradicting our assumption (∗). Hence we may
further assume that w has a neighbor in V (B ∩ C). Since (H1, c, d, u, v, w) is planar, v
is adjacent to neither c nor d. Since G is 4-connected and by planarity, v is adjacent to
both u and w. Then T ′ := NG(v) ∈ F and |S ∩ T ′| = 2, contradicting (∗).

Hence T1 := G[(V (B ∩ C)) ∪ {v}] is 2-connected. Let D1 denote the outer cycle of
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T1. Then v, vi ∈ V (D1) (1 ≤ i ≤ 5). By Lemma 2.1, we find a D1-Tutte cycle H in T1

through three edges on D1 incident with v, v2, v3, respectively. If H is a Hamilton cycle
in T1, let X := {a, b, c, d, u, w}; then H is a Hamilton cycle in G−X. So we may assume
that H is not a Hamilton cycle in T1. Then there is an H-bridge B1 in T1 such that
v1 ∈ V (B1 − H). Note that |V (B1 ∩ H)| = 2. Since B ∩ C is 2-connected, B1 ⊆ B ∩ C.
Moreover, each element of {w, c} has a neighbor in V (B1−H); otherwise, V (B1∩H)∪{w}
or V (B1 ∩ H) ∪ {c} is a 3-cut in G, a contradiction. Let V (B1 ∩ H) = {s1, t1} such that
s1, v1, t1 occur on D1 (also on F ) in clockwise order.

Similarly, by finding a D1-Tutte cycle through three edges on D1 incident with v, v1, v3,
respectively, we may assume that there exist a 2-cut {s2, t2} in B ∩ C and an {s2, t2}-
bridge B2 in B ∩ C with v2 ∈ V (B2) − {s2, t2} such that each element of {c, d} has a
neighbor in V (B2) − {s2, t2} and s2, v2, t2 occur on D1 (also on F ) in clockwise order.

By finding a D1-Tutte cycle through three edges on D1 incident with v, v1, v2, respec-
tively, we may assume that there exist a 2-cut {s3, t3} in B ∩C and an {s3, t3}-bridge B3

in B ∩ C with v3 ∈ V (B3) − {s3, t3} such that each element of {d, u} has a neighbor in
V (B3) − {s3, t3} and s3, v3, t3 occur on D1 (also on F ) in clockwise order.

So each element of {c, d} has at least two neighbors in V (B ∩ C). Hence T2 :=
G[(V (B∩C))∪{c}] is 2-connected. Let D2 denote the outer cycle of T2. Then c, vi ∈ V (D2)
(1 ≤ i ≤ 5). As before, by finding a D2-Tutte cycle through three edges on D2 incident
with c, v3, v5, respectively, we may assume that there exist a 2-cut {s4, t4} in B ∩ C and
an {s4, t4}-bridge B4 in B∩C with v4 ∈ V (B4)−{s4, t4} such that each element of {u, v}
has a neighbor in V (B4)−{s4, t4} and s4, v4, t4 occur on D2 (also on F ) in clockwise order.

By finding a D2-Tutte cycle through three edges on D2 incident with c, v3, v4, re-
spectively, we may further assume that there exist a 2-cut {s5, t5} in B ∩ C and an
{s5, t5}-bridge B5 in B ∩ C with v5 ∈ V (B5) − {s5, t5} such that each element of {v, w}
has a neighbor in V (B5)−{s5, t5} and s5, v5, t5 occur on D2 (also on F ) in clockwise order.

Therefore each element of {c, d, u, v, w} has at least two neighbors in V (B ∩ C).

We claim that s1, t1, . . . , s5, t5 occur on F in clockwise order. Otherwise, without loss
of generality, we may assume that s1, s2, t1, t2 occur on F in clockwise order, where s2 6= t1.
Then neither w nor d has a neighbor in V (s2Ft1)−{s2, t1}. If V (s2Ft1)−{s2, t1} 6= ∅, then
{s2, t1, c} is a 3-cut in G, which contradicts the assumption that H1 is (4, {c, d, u, v, w})-
connected. Therefore V (s2Ft1) = {s2, t1} and s2t1 ∈ E(G). But this implies that t1 /∈
V (H), a contradiction.

Let J := T1 − (V (B1)−{s1, t1}); then H is a Hamilton cycle in J and those neighbors
of d in V (T1) are contained in V (J). Hence J , J1 := G[V (J) ∪ {d}] + s1t1, and J2 :=
G[V (J) ∪ {d}] are 2-connected. Let F1 denote the outer cycle of J1. Then d, v, s1, t1 ∈
V (F1) and s1t1 ∈ E(F1). By applying Lemma 2.1, there exists an F1-Tutte cycle C1

in J1 through s1t1 and two edges on F1 incident with d, v, respectively. Then C1 is a
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Hamilton cycle in J1. Let L := G[V (B1) ∪ {c, w}]; then (L, s1, t1, c, w) is planar. Since
H1 is (4, {c, d, u, v, w})-connected, L is (4, {s1, t1, c, w})-connected. Therefore by Lemma
2.2, B1 is a chain of blocks from s1 to t1.

We may assume that V (Bi) = {si, ti, vi}, for i = 1, 3, 4. Otherwise, without loss of
generality, we may assume that V (B1) 6= {s1, t1, v1}. By Lemma 2.5, there is a vertex
z ∈ V (B1) − {s1, t1} such that B1 − z has a Hamilton path P from s1 to t1. Let X :=
{a, b, c, u, w, z}; then P ∪ t1C1s1 is a Hamilton cycle in G − X.

Let F2 denote the outer cycle of J2; then d, v, s1, t1 ∈ V (F2). By Lemma 2.1, we find
an F2-Tutte cycle C2 in J2 through three edges on F2 incident with d, v, t1, respectively.
If C2 is a Hamilton cycle in J2, let X := {a, b, c, u, w, v1}; then C2 is a Hamilton cycle
in G − X. So we may assume that C2 is not a Hamilton cycle in J2. Then there is a
C2-bridge B′

1
in J2 with s1 ∈ V (B′

1
− C2). Let V (B′

1
∩ C2) = {s′

1
, t′

1
}.

Let B′ := (B ∩ C) − (∪5

i=1
(V (Bi) − {si, ti})). Then B′

1
⊆ B′ and {s′

1
, t′

1
} is a 2-cut in

B′. Since H1 is (4, {c, d, u, v, w})-connected, w has a neighbor in V (B′

1
) − {s′

1
, t′

1
}.

Similarly, we may assume that there exist a 2-cut {s′
2
, t′

2
} in B′ and an {s′

2
, t′

2
}-bridge

B′

2
in B′ such that t1 ∈ V (B′

2
) − {s′

2
, t′

2
} and c has a neighbor in V (B′

2
) − {s′

2
, t′

2
}. We

may assume that there exist a 2-cut {s′
3
, t′

3
} in B′ and an {s′

3
, t′

3
}-bridge B′

3
in B′ such

that s3 ∈ V (B′

3
) − {s′

3
, t′

3
} and d has a neighbor in V (B′

3
) − {s′

3
, t′

3
}. We may further

assume that there exist a 2-cut {s′
4
, t′

4
} in B′ and an {s′

4
, t′

4
}-bridge B′

4
in B′ such that

t4 ∈ V (B′

4
) − {s′

4
, t′

4
} and v has a neighbor in V (B′

4
) − {s′

4
, t′

4
}.

Then each element of {c, d, v, w} has at least three neighbors in V (B ∩ C). Hence
it is easy to see that G − {a, b, u} is 3-connected. Therefore the triangle L induced by
the vertices {a, b, u} is a contractible triangle in G. Let u∗ denote the vertex of G/L
resulting from the contraction of L. Now by Theorem 2.7, there is some X∗ ⊆ V (G/L)
such that u∗ ∈ X∗, |X∗| = 4, and G/L − X∗ has a Hamilton cycle when |V (G/L)| ≥ 7.
Let X := (X∗ − {u∗}) ∪ {a, b, u}; then G − X = G/L − X∗ has a Hamilton cycle.

We now use Theorem 1.1 to prove the following result.

Corollary 4.1. Let G be a 4-connected planar graph on n vertices. Then G contains a
cycle of length n − 7 for all n ≥ 10.

Proof. Suppose this is not true and let G be a counter example. If G contains a contractible
edge e, we consider G/e. Let u be the vertex resulting from the contraction of e. By
applying Theorem 1.1, there is some X ⊆ V (G/e) such that u ∈ X, |X| = 6, and
G/e − X has a Hamilton cycle when |V (G/e)| ≥ 9. Hence, if n ≥ 10 then G has a cycle
of length n − 7, a contradiction.

So G contains no contractible edge. Then G is either the square of a cycle of length at
least 4 or the line graph of a cyclically 4-edge-connected cubic graph. It is not hard to see
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that if G is the square of a cycle, then G has cycles of length k for all 3 ≤ k ≤ n. Since
G is a counter example, G is the line graph of a cyclically 4-edge-connected cubic graph.
Therefore G is 4-regular, every vertex is contained in exactly two triangles, and no two
triangles share an edge. Using these properties and by planarity, we can see that every
triangle T in G is contractible. Let u denote the vertex resulting from the contraction of
T . Now by Theorem 2.7, there is some X∗ ⊆ V (G/T ) such that u ∈ X∗, |X∗| = 5, and
G/T −X∗ has a Hamilton cycle when |V (G/T )| ≥ 8. Hence G has a cycle of length n−7
for all n ≥ 10, a contradiction.
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