Long Cycles in 4-connected Planar Graphs

Qing Cui ${ }^{1 *}$
Yumei $\mathrm{Hu}^{1,2 \dagger}$
Jian Wang ${ }^{1 \ddagger}$
${ }^{1}$ Center for Combinatorics, LPMC-TJKLC
Nankai University
Tianjin 300071, P.R. China
${ }^{2}$ Department of Mathematics
Tianjin University
Tianjin 300072, P.R. China

Abstract

Let G be a 4-connected planar graph on n vertices. Malkevitch conjectured that if G contains a cycle of length 4 , then G contains a cycle of length k for every $k \in\{n, n-1, \ldots, 3\}$. This conjecture is true for every $k \in\{n, n-1, \ldots, n-6\}$ with $k \geq 3$. In this paper, we prove that G also has a cycle of length $n-7$ provided $n \geq 10$.

Keywords: Hamilton cycle; Tutte path; contractible subgraph AMS Subject Classification: 05C38

[^0]
1 Introduction and notation

Whitney [10] proved that every 4-connected planar triangulation contains a Hamilton cycle. Tutte [8] extended Whitney's result to every 4-connected planar graph. Malkevitch [2] conjectured that every 4 -connected planar n-vertex graph contains a cycle of length k for every $k \in\{n, n-1, \ldots, 3\}$ if it contains a 4 -cycle. Note that the line graph of a cyclically 4 -edge-connected cubic planar graph with girth at least 5 contains no cycle of length 4.

Malkevitch's conjecture for $k=n-1$ follows from a theorem of Tutte as observed by Nelson, see [7]. The case for $k=n-2$ was proved by Thomas and Yu [6]. Sanders [5] showed that in any 4 -connected planar graph with at least six vertices there are three vertices whose deletion results in a Hamiltonian graph, establishing Malkevitch's conjecture for $k=n-3$. Chen et al. [1] proved Malkevitch's conjecture for $k \in\{n-4, n-5, n-6\}$ with $k \geq 3$. In this paper, we prove the following result.

Theorem 1.1. Let G be a 4-connected planar graph and let $u \in V(G)$. Then there is a set $X \subseteq V(G)$ such that $u \in X,|X|=6$, and $G-X$ has a Hamilton cycle when $|V(G)| \geq 9$.

We will show that Theorem 1.1 implies that G contains a cycle of length $n-7$ for all $n \geq 10$ (see Corollary 4.1). The proof of Theorem 1.1 is similar to that in [1], in which the notion of Tutte paths and contractible subgraphs technique are used. Let G be a graph and let $H \subseteq G$. We use G / H to denote the graph obtained from G by contracting H. If H is induced by an edge e, then we write G / e instead of G / H. A subgraph H in a k-connected graph G is said to be k-contractible (or contractible) if the graph G / H is also k-connected. A graph X is a minor of G (or G contains an X-minor) if X can be obtained from a subgraph of G by contracting edges. Note that a graph is planar iff it has no K_{5}-minor or $K_{3,3}$-minor.

Let $X \subseteq E(G)$ (or $X \subseteq V(G)$). We use $G-X$ to denote the graph obtained from G by deleting X (and the edges of G incident with elements of X), and if $X=\{x\}$ then let $G-x:=G-\{x\}$. Let P be a path (cycle) in G. A P-bridge of G is a subgraph of G which either (1) is induced by an edge of $G-E(P)$ with both incident vertices in $V(P)$ or (2) is induced by the edges in a component D of $G-V(P)$ and all edges between D and P. For a P-bridge B of G, the vertices of $B \cap P$ are the attachments of B on P. We say that P is a Tutte path (cycle) in G if every P-bridge of G has at most three attachments on P. For any subgraph C of G, P is called a C-Tutte path (cycle) in G if P is a Tutte path (cycle) in G and every P-bridge of G containing an edge of C has at most two attachments on P. Note that if P is a Tutte path in a 4 -connected graph and $|V(P)| \geq 4$, then P is in fact a Hamilton path.

We consider only simple graphs and use the notation and terminology in [1]. Let G be a graph and let $X \subseteq V(G)$. We use $G[X]$ to denote the subgraph of G induced by X.

Let Z be a set of 2-element subsets of $V(G)$; then we use $G+Z$ to denote the graph with vertex set $V(G)$ and edge set $E(G) \cup Z$, and if $Z=\{\{x, y\}\}$ then let $G+x y:=G+Z$. Let $N_{G}(X):=\{u \in V(G)-X: u$ is adjacent to some vertex in $X\}$, and if $X=\{x\}$ then let $N_{G}(x):=N_{G}(\{x\})$. For any path P and $x, y \in V(P)$, we use $x P y$ to denote the subpath of P between x and y. Given two distinct vertices x and y on a cycle C in a plane graph, we use $x C y$ to denote the path in C from x to y in clockwise order. It is well known that every face of a 2-connected plane graph is bounded by a cycle.

2 Known results

In this section, we list several results about Tutte paths and contractible subgraphs. The following lemma is shown in [4] and [6].

Lemma 2.1. Let G be a 2-connected plane graph with a facial cycle C. Let e, $f, g \in E(C)$, and assume that e, f, g occur on C in clockwise order. Then G contains a C-Tutte cycle P through e, f and g.

A block of a graph H is either (1) a maximal 2-connected subgraph of H or (2) a subgraph of H induced by an edge of H not contained in any cycle. An end block of a graph H is a block of H containing at most one cut vertex of H. We say that a connected graph H is a chain of blocks if H has at most two end blocks. A connected graph H is a chain of blocks from x to y if one of the following holds: (1) H is 2-connected and x and y are distinct vertices of H; or (2) H has exactly two end blocks, neither x nor y is a cut vertex of H, and x and y belong to different end blocks of H. Note that if H is not a chain of blocks from x to y, then there exist an end block B of H and a cut vertex b of H such that $b \in V(B)$ and $(V(B)-\{b\}) \cap\{x, y\}=\emptyset$.

Let G be a graph and $\left\{a_{1}, \ldots, a_{l}\right\} \subseteq V(G)$, where l is a positive integer. We say that $\left(G, a_{1}, \ldots, a_{l}\right)$ is planar if G can be drawn in a closed disc with no pair of edges crossing such that a_{1}, \ldots, a_{l} occur on the boundary of the disc in cyclic order. The graph G is called $\left(4,\left\{a_{1}, \ldots, a_{l}\right\}\right)$-connected if $|V(G)| \geq l+1$ and for any $T \subseteq V(G)$ with $|T| \leq 3$, every component of $G-T$ contains some element of $\left\{a_{1}, \ldots, a_{l}\right\}$. Note that if G is 4-connected, then G is $(4, S)$-connected for all $S \subseteq V(G)$ with $S \neq V(G)$.

The following four lemmas are proved in [1], using Tutte paths technique.
Lemma 2.2. Let G be a graph and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \subseteq V(G)$ such that G is $\left(4,\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)$ connected. Then $G-\left\{a_{3}, a_{4}\right\}$ is a chain of blocks from a_{1} to a_{2}.

Lemma 2.3. Let H be a graph and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \subseteq V(H)$. Assume that ($\left.H, a_{1}, a_{2}, a_{3}, a_{4}\right)$ is planar, H is $\left(4,\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)$-connected, and a_{1} has at least two neighbors contained in $V(H)-\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Then one of the following holds:
(1) $H-\left\{a_{2}, a_{3}, a_{4}\right\}$ is 2-connected; or
(2) both $H-\left\{a_{1}, a_{3}, a_{4}\right\}$ and $H-\left\{a_{1}, a_{2}, a_{3}\right\}$ are 2-connected.

Lemma 2.4. Let G be a graph and $\left\{a_{1}, \ldots, a_{l}\right\} \subseteq V(G)$, where $3 \leq l \leq 5$. Assume that $\left(G, a_{1}, \ldots, a_{l}\right)$ is planar, G is $\left(4,\left\{a_{1}, \ldots, a_{l}\right\}\right)$-connected, and $G-\left\{a_{3}, \ldots, a_{l}\right\}$ is a chain of blocks from a_{1} to a_{2}. Then $G-\left\{a_{3}, \ldots, a_{l}\right\}$ has a Hamilton path from a_{1} to a_{2}.

Lemma 2.5. Let H be a graph and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \subseteq V(H)$. Assume that ($\left.H, a_{1}, a_{2}, a_{3}, a_{4}\right)$ is planar, H is $\left(4,\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)$-connected, and $|V(H)| \geq 6$. Then there is a vertex $z \in V(H)-\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ such that $H-\left\{z, a_{3}, a_{4}\right\}$ has a Hamilton path from a_{1} to a_{2}.

We now state some results on contractible subgraphs. Tutte [9] proved that K_{4} is the only 3 -connected graph with no 3 -contractible edges. On the other hand, there are infinitely many 4 -connected graphs with no 4 -contractible edges. Martinov [3] showed that if G is a 4-connected graph with no contractible edges, then G is either the square of a cycle of length at least 4 or the line graph of a cyclically 4-edge-connected cubic graph. Chen et al. [1] proved the following result which provides information about 4-contractible edges incident with a specific vertex in a 4 -connected planar graph.

Theorem 2.6. Let G be a 4-connected planar graph and let $u \in V(G)$. Then one of the following holds:
(1) G has a contractible edge incident with u; or
(2) there are two 4-cuts S and T of G such that $1 \leq|S \cap T| \leq 2$, S contains u and a neighbor of u, T contains u and a neighbor of u, and $G-S$ has a component consisting of only one vertex which is also contained in T.

Theorem 2.6 is used in [1] to prove the following result.
Theorem 2.7. Let G be a 4-connected planar graph and let $u \in V(G)$. Then for each $l \in\{1, \ldots, 5\}$ there is a set $X_{l} \subseteq V(G)$ such that $u \in X_{l},\left|X_{l}\right|=l$, and $G-X_{l}$ has a Hamilton cycle when $|V(G)| \geq l+3$.

3 A lemma

In this section, we prove the following special case of Theorem 1.1, which deals with a situation in (2) of Theorem 2.6.

Lemma 3.1. Let G be a 4-connected planar graph and let $u \in V(G)$. Let S, T be two 4-cuts of G such that $|S \cap T|=2, u \in S \cap T$, S has a neighbor of u, and $G-S$ has a component A consisting of only one vertex which is also contained in T. Then there

Figure 1: $|S \cap T|=2$.
is a set $X \subseteq V(G)$ such that $u \in X,|X|=6$, and $G-X$ has a Hamilton cycle when $|V(G)| \geq 9$.

Proof. Let a be the only vertex in $V(A)$, and let $B:=G-(\{a\} \cup S)$. Let C be a component of $G-T$ and let $D:=G-(V(C) \cup T)$. If $S \cap V(C)=\emptyset$, then $B \cap C=C \neq \emptyset$ is a component of $G-(T-\{a\})$, contradicting the assumption that G is 4-connected. Similarly, if $S \cap V(D)=\emptyset$ then $B \cap D=D \neq \emptyset$ is a component of $G-(T-\{a\})$, a contradiction. Hence $S \cap V(C) \neq \emptyset \neq S \cap V(D)$. Therefore $|S \cap V(C)|=1=|S \cap V(D)|$. By symmetry, we may assume that $|V(B \cap C)| \leq|V(B \cap D)|$. Let v denote the vertex in $(S \cap T)-\{u\}$, let w denote the vertex in $S \cap V(C)$, let b denote the vertex in $S \cap V(D)$, and let c denote the vertex in $V(B) \cap T$, as shown in Figure 1.

Let $H_{1}:=G[V(C) \cup\{u, v, c\}]$ and $H_{2}:=G[V(D) \cup\{u, v, c\}]$. Since $a u, a v \in E(G)$, in any plane representation of G, a and v are cofacial, and a and u are cofacial. As T is a cut set of G, we see that in any plane representation of G, c and v are cofacial, and c and u are cofacial. Therefore, since a is adjacent to both b and $w,\left(H_{1}, c, v, w, u\right)$ is planar and $\left(H_{2}, c, v, b, u\right)$ is planar. Since G is 4-connected, H_{1} is $(4,\{c, v, w, u\})$-connected (if $B \cap C \neq \emptyset$) and H_{2} is ($4,\{c, v, b, u\}$)-connected (if $B \cap D \neq \emptyset$). Therefore by Lemma 2.2, $H_{1}-\{w, u\}$ is a chain of blocks from c to v, and $H_{2}-\{b, u\}$ is a chain of blocks from c to v.

Suppose $|V(B \cap C)| \geq 2$. Then by Lemma 2.5, there is a vertex $x \in V(B \cap C)$ such that $H_{1}-\{x, w, u\}$ has a Hamilton path P from c to v. Similarly, since $|V(B \cap D)| \geq$ $|V(B \cap C)| \geq 2$, there is a vertex $y \in V(B \cap D)$ such that $H_{2}-\{y, b, u\}$ has a Hamilton path Q from c to v. Let $X:=\{a, b, u, w, x, y\}$; then $P \cup Q$ is a Hamilton cycle in $G-X$.

Now suppose $|V(B \cap C)|=1$. Then $|V(B \cap D)| \geq 2$; otherwise, $|V(B \cap D)|=1$ and $|V(G)|=8$, and there is nothing to prove. Let z denote the only vertex in $V(B \cap C)$.

We may assume that c has at least two neighbors in $V(B \cap D)$. Otherwise, since G is 4connected, c is adjacent to at least one element of $\{v, b, w\}$. If c is adjacent to v, then since $|V(B \cap D)| \geq 2$, it follows from Lemma 2.5 that there is a vertex $y \in V(B \cap D)$ such that $H_{2}-\{y, b, u\}$ has a Hamilton path Q from c to v. Let $X:=\{a, b, u, w, y, z\}$; then $Q+c v$ is a Hamilton cycle in $G-X$. If c is adjacent to b, then by contracting $a b$, contracting $w z$, and contracting $B \cap D$ to a single vertex, we produce a minor of G containing $K_{3,3}$, a contradiction. If c is adjacent to w, then by contracting $a w$, and contracting D to a single vertex, we produce a minor of G containing $K_{3,3}$, again a contradiction.

Hence by Lemma 2.3, there is some $x \in\{v, c\}$ such that $H_{2}-(\{v, b, u, c\}-\{x\})$ is 2connected. Choose a vertex x^{\prime} of $H_{2}-(\{v, b, u, c\}-\{x\})$ such that $x x^{\prime}$ is an edge and H_{2} can be drawn in a closed disc so that that $x x^{\prime}$ lies on the boundary and $x, x^{\prime},\{v, b, u, c\}-\{x\}$ occur in cyclic order on the boundary of the disc. By applying Lemma 2.4, we find a Hamilton path R from x to x^{\prime}. Let $X:=\{a, b, u, w, z\} \cup(\{v, c\}-\{x\})$; then $R+x x^{\prime}$ is a Hamilton cycle in $G-X$.

Therefore we may assume that $|V(B \cap C)|=0$. Then $|V(B \cap D)| \geq 3$; otherwise, $|V(G)| \leq 8$, and there is nothing to prove. Since H_{2} is $(4,\{c, v, b, u\})$-connected and (H_{2}, c, v, b, u) is planar, $B \cap D$ is connected. We consider two cases according to the connectivity of $B \cap D$.

Case 1. $B \cap D$ is connected but not 2-connected.
Let $J_{1}, \ldots, J_{m}(m \geq 2)$ be the end blocks of $B \cap D$, and let v_{i} be the cut vertex of $B \cap D$ contained in $V\left(J_{i}\right)$. We claim that $m=2$. Otherwise, since H_{2} is $(4,\{c, v, b, u\})$ connected, at least three elements of $\{c, v, b, u\}$ have neighbors in $V\left(J_{i}\right)-\left\{v_{i}\right\}$ (for each i), which contradicts the assumption that $\left(H_{2}, c, v, b, u\right)$ is planar.

Let $B_{1}:=J_{1}-v_{1}$ and $B_{2}:=(B \cap D)-V\left(J_{1}\right)$. Since H_{2} is $(4,\{c, v, b, u\})$-connected and $\left(H_{2}, c, v, b, u\right)$ is planar, either each element of $\{v, u\}$ has neighbors in both $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$ or each element of $\{c, b\}$ has neighbors in both $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$. Moreover, exactly three elements of $\{c, v, b, u\}$ have neighbors in each $V\left(B_{i}\right)$. We only consider the case that each element of $\{v, u\}$ has neighbors in both $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$; the other case can be treated in a similar way (by exchanging the roles of c and v and by exchanging the roles of b and $u)$. Then by planarity, those neighbors of b in $V(B \cap D)$ are contained in $V\left(B_{1}\right)$, and those neighbors of c in $V(B \cap D)$ are contained in $V\left(B_{2}\right)$.

Let $L_{1}:=G\left[V\left(B_{1}\right) \cup\left\{v, v_{1}, u, b\right\}\right]$ and let $L_{2}:=G\left[V\left(B_{2}\right) \cup\left\{v, v_{1}, u, c\right\}\right]$. Note that $\left(L_{1}, v, v_{1}, u, b\right)$ and $\left(L_{2}, v, v_{1}, u, c\right)$ are planar. Since H_{2} is $(4,\{c, v, b, u\})$-connected, L_{1} is $\left(4,\left\{v, v_{1}, u, b\right\}\right)$-connected and L_{2} is $\left(4,\left\{v, v_{1}, u, c\right\}\right)$-connected. Then by Lemma 2.2, $L_{1}-\{u, b\}$ is a chain of blocks from v to v_{1}, and $L_{2}-\{u, c\}$ is a chain of blocks from v to v_{1}. By applying Lemma 2.4, $L_{1}-\{u, b\}$ has a Hamilton path R_{1} from v to v_{1}, and $L_{2}-\{u, c\}$ has a Hamilton path R_{2} from v to v_{1}.

Suppose $|V(B \cap D)|=3$. Then $B \cap D$ is a path $x_{1} x_{2} x_{3}$, where $V\left(B_{1}\right)=\left\{x_{1}\right\}$,
$V\left(B_{2}\right)=\left\{x_{3}\right\}$, and $x_{2}=v_{1}$. Since G is 4 -connected and by planarity, x_{1} is adjacent to each element of $\{v, u, b\}, x_{2}$ is adjacent to both v and u, and x_{3} is adjacent to each element of $\{v, u, c\}$. Let $X:=\left\{a, b, c, u, w, x_{1}\right\}$; then $v x_{2} x_{3} v$ is a Hamilton cycle in $G-X$.

So we may assume that $|V(B \cap D)| \geq 4$. If $\left|V\left(B_{1}\right)\right| \geq 2$, then by Lemma 2.5 , there is a vertex $z_{1} \in V\left(B_{1}\right)$ such that $L_{1}-\left\{z_{1}, u, b\right\}$ has a Hamilton path R_{1}^{\prime} from v to v_{1}. Let $X:=\left\{a, b, c, u, w, z_{1}\right\}$; then $R_{1}^{\prime} \cup R_{2}$ is a Hamilton cycle in $G-X$. Otherwise, if $\left|V\left(B_{2}\right)\right| \geq 2$, then there is a vertex $z_{2} \in V\left(B_{2}\right)$ such that $L_{2}-\left\{z_{2}, u, c\right\}$ has a Hamilton path R_{2}^{\prime} from v to v_{1}. Let $X:=\left\{a, b, c, u, w, z_{2}\right\}$; then $R_{1} \cup R_{2}^{\prime}$ is a Hamilton cycle in $G-X$.

Case 2. $B \cap D$ is 2-connected.
Let F denote the outer cycle of $B \cap D$. Choose $v_{1}, v_{2}, v_{3}, v_{4} \in V(F)$ such that $v_{1}, v_{2}, v_{3}, v_{4}$ occur on F in clockwise order, $N_{G}(v) \cap V(F) \subseteq V\left(v_{1} F v_{2}\right), N_{G}(c) \cap V(F) \subseteq$ $V\left(v_{2} F v_{3}\right), N_{G}(u) \cap V(F) \subseteq V\left(v_{3} F v_{4}\right)$, and $N_{G}(b) \cap V(F) \subseteq V\left(v_{4} F v_{1}\right)$.

By Lemma 2.1, we find an F-Tutte cycle H in $B \cap D$ through three edges on F incident with v_{2}, v_{3}, v_{4}, respectively. If H is a Hamilton cycle in $B \cap D$, let $X:=\{a, b, c, u, v, w\}$; then H is a Hamilton cycle in $G-X$. So we may assume that H is not a Hamilton cycle in $B \cap D$. Then there is an H-bridge B_{1} in $B \cap D$ with $v_{1} \in V\left(B_{1}-H\right)$. Note that $\left|V\left(B_{1} \cap H\right)\right|=2$. Moreover, each element of $\{b, v\}$ has a neighbor in $V\left(B_{1}-H\right)$; otherwise, $V\left(B_{1} \cap H\right) \cup\{v\}$ or $V\left(B_{1} \cap H\right) \cup\{b\}$ is a 3 -cut in G, a contradiction. Let $V\left(B_{1} \cap H\right)=\left\{s_{1}, t_{1}\right\}$ such that s_{1}, v_{1}, t_{1} occur on F in clockwise order.

Similarly, by finding an F-Tutte cycle through three edges on F incident with v_{1}, v_{3}, v_{4}, respectively, we may assume that there exist a 2 -cut $\left\{s_{2}, t_{2}\right\}$ in $B \cap D$ and an $\left\{s_{2}, t_{2}\right\}$ bridge B_{2} in $B \cap D$ with $v_{2} \in V\left(B_{2}\right)-\left\{s_{2}, t_{2}\right\}$ such that each element of $\{v, c\}$ has a neighbor in $V\left(B_{2}\right)-\left\{s_{2}, t_{2}\right\}$ and s_{2}, v_{2}, t_{2} occur on F in clockwise order.

By finding an F-Tutte cycle through three edges on F incident with v_{1}, v_{2}, v_{4}, respectively, we may assume that there exist a 2 -cut $\left\{s_{3}, t_{3}\right\}$ in $B \cap D$ and an $\left\{s_{3}, t_{3}\right\}$-bridge B_{3} in $B \cap D$ with $v_{3} \in V\left(B_{3}\right)-\left\{s_{3}, t_{3}\right\}$ such that each element of $\{c, u\}$ has a neighbor in $V\left(B_{3}\right)-\left\{s_{3}, t_{3}\right\}$ and s_{3}, v_{3}, t_{3} occur on F in clockwise order.

By finding an F-Tutte cycle through three edges on F incident with v_{1}, v_{2}, v_{3}, respectively, we may further assume that there exist a 2 -cut $\left\{s_{4}, t_{4}\right\}$ in $B \cap D$ and an $\left\{s_{4}, t_{4}\right\}$-bridge B_{4} in $B \cap D$ with $v_{4} \in V\left(B_{4}\right)-\left\{s_{4}, t_{4}\right\}$ such that each element of $\{u, b\}$ has a neighbor in $V\left(B_{4}\right)-\left\{s_{4}, t_{4}\right\}$ and s_{4}, v_{4}, t_{4} occur on F in clockwise order.

Therefore each element of $\{c, v, b, u\}$ has at least two neighbors in $V(B \cap D)$.
We claim that $s_{1}, t_{1}, \ldots, s_{4}, t_{4}$ occur on F in clockwise order. Otherwise, without loss of generality, we may assume that $s_{1}, s_{2}, t_{1}, t_{2}$ occur on F in clockwise order, where $s_{2} \neq t_{1}$. In this case, neither c nor b has a neighbor in $V\left(s_{2} F t_{1}\right)-\left\{s_{2}, t_{1}\right\}$. If $V\left(s_{2} F t_{1}\right)-\left\{s_{2}, t_{1}\right\} \neq \emptyset$, then $\left\{s_{2}, t_{1}, v\right\}$ is a 3 -cut in G, contradicting the assumption that H_{2} is $(4,\{c, v, b, u\})$ -
connected. Therefore $V\left(s_{2} F t_{1}\right)=\left\{s_{2}, t_{1}\right\}$ and $s_{2} t_{1} \in E(G)$. But this implies that $t_{1} \notin$ $V(H)$, a contradiction.

Let $J:=(B \cap D)-\left(V\left(B_{1}\right)-\left\{s_{1}, t_{1}\right\}\right)$; then H is a Hamilton cycle in J and those neighbors of c in $V(B \cap D)$ are contained in $V(J)$. Hence $J, J_{1}:=G[V(J) \cup\{c\}]+s_{1} t_{1}$, and $J_{2}:=G[V(J) \cup\{c\}]$ are 2-connected. Let F_{1} denote the outer cycle of J_{1}. Then $c, v_{4}, s_{1}, t_{1} \in V\left(F_{1}\right)$ and $s_{1} t_{1} \in E\left(F_{1}\right)$. By Lemma 2.1, there exists an F_{1}-Tutte cycle C_{1} in J_{1} through $s_{1} t_{1}$ and two edges on F_{1} incident with c, v_{4}, respectively. Then C_{1} is a Hamilton cycle in J_{1}. Let $L:=G\left[V\left(B_{1}\right) \cup\{v, b\}\right]$; then $\left(L, s_{1}, t_{1}, v, b\right)$ is planar. Since H_{2} is $(4,\{c, v, b, u\})$-connected, L is $\left(4,\left\{s_{1}, t_{1}, v, b\right\}\right)$-connected. Therefore by Lemma 2.2, B_{1} is a chain of blocks from s_{1} to t_{1}.

We may assume that $V\left(B_{i}\right)=\left\{s_{i}, t_{i}, v_{i}\right\}$, for $1 \leq i \leq 4$. Otherwise, without loss of generality, we may assume that $V\left(B_{1}\right) \neq\left\{s_{1}, t_{1}, v_{1}\right\}$. By applying Lemma 2.5, there is a vertex $z \in V\left(B_{1}\right)-\left\{s_{1}, t_{1}\right\}$ such that $B_{1}-z$ has a Hamilton path P from s_{1} to t_{1}. Let $X:=\{a, b, u, v, w, z\}$; then $P \cup t_{1} C_{1} s_{1}$ is a Hamilton cycle in $G-X$.

Let F_{2} denote the outer cycle of J_{2}; then $c, v_{4}, s_{1}, t_{1} \in V\left(F_{2}\right)$. By Lemma 2.1, we find an F_{2}-Tutte cycle C_{2} in J_{2} through three edges on F_{2} incident with c, v_{4}, t_{1}, respectively. If C_{2} is a Hamilton cycle in J_{2}, let $X:=\left\{a, b, u, v, w, v_{1}\right\} ;$ then C_{2} is a Hamilton cycle in $G-X$. So we may assume that C_{2} is not a Hamilton cycle in J_{2}. Then there is a C_{2}-bridge B_{1}^{\prime} in J_{2} such that $s_{1} \in V\left(B_{1}^{\prime}-C_{2}\right)$. Let $V\left(B_{1}^{\prime} \cap C_{2}\right)=\left\{s_{1}^{\prime}, t_{1}^{\prime}\right\}$.

Let $B^{\prime}:=(B \cap D)-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then $B_{1}^{\prime} \subseteq B^{\prime}$ and $\left\{s_{1}^{\prime}, t_{1}^{\prime}\right\}$ is a 2 -cut in B^{\prime}. Since H_{2} is $(4,\{c, v, b, u\})$-connected, b has a neighbor in $V\left(B_{1}^{\prime}\right)-\left\{s_{1}^{\prime}, t_{1}^{\prime}\right\}$.

Similarly, we may assume that there exist a 2 -cut $\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$ in B^{\prime} and an $\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$-bridge B_{2}^{\prime} in B^{\prime} such that $s_{2} \in V\left(B_{2}^{\prime}\right)-\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$ and v has a neighbor in $V\left(B_{2}^{\prime}\right)-\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$. We may further assume that there exist a 2 -cut $\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$ in B^{\prime} and an $\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$-bridge B_{3}^{\prime} in B^{\prime} such that $s_{3} \in V\left(B_{3}^{\prime}\right)-\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$ and c has a neighbor in $V\left(B_{3}^{\prime}\right)-\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$.

Then each element of $\{c, v, b\}$ has at least three neighbors in $V(B \cap D)$. Hence it is easy to see that $G-\{a, u, w\}$ is 3 -connected. Therefore the triangle L induced by the vertices $\{a, u, w\}$ is a contractible triangle in G. Let u^{*} denote the vertex of G / L resulting from the contraction of L. Now by Theorem 2.7, there is some $X^{*} \subseteq V(G / L)$ such that $u^{*} \in X^{*},\left|X^{*}\right|=4$, and $G / L-X^{*}$ has a Hamilton cycle when $|V(G / L)| \geq 7$. Let $X:=\left(X^{*}-\left\{u^{*}\right\}\right) \cup\{a, u, w\}$; then $G-X=G / L-X^{*}$ has a Hamilton cycle.

4 Proof of main result

We now prove Theorem 1.1.
We may assume that G contains no contractible edge incident with u. Otherwise, let
$e=u v$ be a contractible edge of G incident with u. Then G / e is also a 4-connected planar graph. Let u^{*} denote the vertex of G / e resulting from the contraction of e. By Theorem 2.7, there is a set $X^{*} \subseteq V(G / e)$ such that $u^{*} \in X^{*},\left|X^{*}\right|=5$, and $G / L-X^{*}$ has a Hamilton cycle when $|V(G / L)| \geq 8$. Let $X:=\left(X^{*}-\left\{u^{*}\right\}\right) \cup\{u, v\}$; then $G-X=G / e-X^{*}$ has a Hamilton cycle.

Let \mathcal{F} denote the set of 4 -cuts of G containing u and a neighbor of u. Hence by Theorem 2.6, there are two 4 -cuts $S, T \in \mathcal{F}$ such that $1 \leq|S \cap T| \leq 2$ and $G-S$ has a component A consisting of only one vertex which is also contained in T. Let a be the only vertex in $V(A)$, and let $B:=G-(\{a\} \cup S)$. Let C be a component of $G-T$ and let $D:=G-(V(C) \cup T)$. Hence $S \cap V(C) \neq \emptyset \neq S \cap V(D)$. For if $S \cap V(C)=\emptyset$, then $B \cap C=C \neq \emptyset$ is a component of $G-(T-\{a\})$, contradicting the assumption that G is 4-connected. Similarly, if $S \cap V(D)=\emptyset$ then $B \cap D=D \neq \emptyset$ is a component of $G-(T-\{a\})$, a contradiction.

Then by Lemma 3.1, we may assume that
(*) $S \cap T=\{u\}$ for all choices of S and T from \mathcal{F}.
We may choose C, D such that $|S \cap V(C)|=2$ and $|S \cap V(D)|=1$. Let v, w denote the vertices in $S \cap V(C)$, let b denote the only vertex in $S \cap V(D)$, and let c, d denote the vertices in $V(B) \cap T$, as shown in Figure 2.

Let $H_{1}:=G[V(C) \cup\{u, c, d\}]$ and let $H_{2}:=G[V(D) \cup\{u, c, d\}]$. Since a is adjacent to u and T is a 4-cut of G, c and d are cofacial. Likewise, v and w are cofacial. Without loss of generality, we may assume that $\left(H_{1}, c, d, u, v, w\right)$ is planar. Then $\left(H_{2}, c, d, u, b\right)$ is planar. Since G is 4 -connected, H_{1} is $(4,\{c, d, u, v, w\}$)-connected (if $B \cap C \neq \emptyset)$ and H_{2} is ($4,\{c, d, u, b\}$)-connected (if $B \cap D \neq \emptyset$).

Case 1. $B \cap D \neq \emptyset$.
We claim that $B \cap C \neq \emptyset$. Suppose on the contrary that $B \cap C=\emptyset$. Then one element of $\{v, w\}$ is not adjacent to some element of $\{c, d\}$; otherwise, by contracting $G[V(D) \cup\{u\}]$ to a single vertex, we produce a minor of G containing $K_{3,3}$, a contradiction. If v is not adjacent to some element of $\{c, d\}$, then $T^{\prime}:=N_{G}(v) \in \mathcal{F}$ and $\left|S \cap T^{\prime}\right|=2$, which contradicts our assumption (*). Similarly, if w is not adjacent to some element of $\{c, d\}$, then $T^{\prime}:=N_{G}(w) \in \mathcal{F}$ and $\left|S \cap T^{\prime}\right|=2$, contradicting $(*)$.

We claim that $H_{1}-\{u, v, w\}$ is a chain of blocks from c to d. Otherwise, let K be an end block of $H_{1}-\{u, v, w\}$ and r be the cut vertex of $H_{1}-\{u, v, w\}$ contained in $V(K)$ such that $(V(K)-\{r\}) \cap\{c, d\}=\emptyset$. As H_{1} is $(4,\{c, d, u, v, w\})$-connected, each element of $\{u, v, w\}$ has a neighbor in $V(K)-\{r\}$. Since $\left(H_{1}, c, d, u, v, w\right)$ is planar, $T^{\prime}:=\{a, r, u, w\} \in \mathcal{F}$ and $\left|S \cap T^{\prime}\right|=2$, contradicting our assumption (*).

Since $\left(H_{1}, c, d, u, v, w\right)$ is planar, by Lemma 2.4, there is a Hamilton path P in $H_{1}-$ $\{u, v, w\}$ from c to d.

Figure 2: $|S \cap T|=1$.
Suppose $|V(B \cap D)| \geq 2$. Since H_{2} is $(4,\{c, d, u, b\})$-connected and $\left(H_{2}, c, d, u, b\right)$ is planar, it follows from Lemma 2.5 that there is a vertex $y \in V(B \cap D)$ such that $H_{2}-\{y, u, b\}$ has a Hamilton path Q from c to d. Let $X:=\{a, b, u, v, w, y\}$; then $P \cup Q$ is a Hamilton cycle in $G-X$.

So we may assume that
$(* *)|V(B \cap D)|=1$ for all choices of S, T, A, B, C, D with $|S \cap V(C)|=2$ and $|S \cap V(D)|=1$.

Let z denote the only vertex in $V(B \cap D)$. Then we may assume that c is not adjacent to d; otherwise, $P+c d$ is a Hamilton cycle in $G-X$, where $X:=\{a, b, u, v, w, z\}$.

We claim that $H_{1}-\{c, d, u\}$ is a chain of blocks from v to w. Otherwise, let K denote an end block of $H_{1}-\{c, d, u\}$ and let r be the cut vertex of $H_{1}-\{c, d, u\}$ contained in $V(K)$ such that $(V(K)-\{r\}) \cap\{v, w\}=\emptyset$. As H_{1} is $(4,\{c, d, u, v, w\})$-connected, each element of $\{c, d, u\}$ has a neighbor in $V(K)-\{r\}$. Since $\left(H_{1}, c, d, u, v, w\right)$ is planar, $T^{\prime}:=\{a, c, r, u\} \in \mathcal{F}$. Let C^{\prime} be the component of $G-T^{\prime}$ containing $\{v, w\}$, and let $D^{\prime}:=G-\left(V\left(C^{\prime}\right) \cup T^{\prime}\right)$. Then $\left|S \cap V\left(C^{\prime}\right)\right|=2,\left|S \cap V\left(D^{\prime}\right)\right|=1$, and $\left|V\left(B \cap D^{\prime}\right)\right| \geq 2$, contradicting ($* *$).

Since $\left(H_{1}, c, d, u, v, w\right)$ is planar, by Lemma 2.4, there is a Hamilton path R in $H_{1}-$ $\{c, d, u\}$ from v to w. Then we may assume that v is not adjacent to w; otherwise, $R+v w$ is a Hamilton cycle in $G-X$, where $X:=\{a, b, c, d, u, z\}$.

We may assume that d has at least two neighbors in $V(B \cap C)$. Otherwise, assume that d has at most one neighbor in $V(B \cap C)$. As $\left(H_{2}, c, d, u, b\right)$ is planar, d is not adjacent
to b. Since $\left(H_{1}, c, d, u, v, w\right)$ is planar and c is not adjacent to d, d is adjacent to both u and v, u is adjacent to v, u has no neighbor in $V(B \cap C)$, and d has exactly one neighbor in $V(B \cap C)$. Let $H^{\prime}:=H_{1}-u$. Then $\left(H^{\prime}, d, v, w, c\right)$ is planar and H^{\prime} is $(4,\{d, v, w, c\})$ connected (since G is 4 -connected). Hence by Lemma 2.2, $H^{\prime}-\{w, c\}$ is a chain of blocks from d to v. By Lemma 2.4, $H^{\prime}-\{w, c\}$ contains a Hamilton path P^{\prime} from d to v. Let $X:=\{a, b, c, u, w, z\} ;$ then $P^{\prime}+d v$ is a Hamilton cycle in $G-X$.

Similarly, by exchanging the roles of d and v and by exchanging the roles of c and w, we may further assume that v has at least two neighbors in $V(B \cap C)$.

We claim that $H_{1}-\{c, u, w\}$ is 2 -connected. Otherwise, let $J_{1}, \ldots, J_{m}(m \geq 2)$ denote the end blocks of $H_{1}-\{c, u, w\}$, and let v_{i} be the cut vertex of $H_{1}-\{c, u, w\}$ contained in $V\left(J_{i}\right)$. Then for each $1 \leq i \leq m$, either $v \in V\left(J_{i}\right)-\left\{v_{i}\right\}$ or $d \in V\left(J_{i}\right)-\left\{v_{i}\right\}$; otherwise, since H_{1} is $(4,\{c, d, u, v, w\})$-connected, each element of $\{c, u, w\}$ has a neighbor in $V\left(J_{i}\right)-\left\{v_{i}\right\}$, which contradicts the assumption that $\left(H_{1}, c, d, u, v, w\right)$ is planar. Hence $m=2$, and we may assume that $v \in V\left(J_{1}\right)-\left\{v_{1}\right\}$ and $d \in V\left(J_{2}\right)-\left\{v_{2}\right\}$. As both d and v have at least two neighbors in $V(B \cap C),\left|V\left(J_{1}\right)\right| \geq 3$ and $\left|V\left(J_{2}\right)\right| \geq 3$. Since H_{1} is $(4,\{c, d, u, v, w\})$-connected and $\left(H_{1}, c, d, u, v, w\right)$ is planar, only u, w of $\{c, u, w\}$ have neighbors in $V\left(J_{1}\right)-\left\{v_{1}\right\}$; or only c, u of $\{c, u, w\}$ have neighbors in $V\left(J_{2}\right)-\left\{v_{2}\right\}$. Hence $T^{\prime}:=\left\{a, u, v_{1}, w\right\} \in \mathcal{F}$ or $T^{\prime \prime}:=\left\{a, c, u, v_{2}\right\} \in \mathcal{F}$. If $T^{\prime} \in \mathcal{F}$, then $\left|S \cap T^{\prime}\right|=2$, contradicting our assumption $(*)$. So $T^{\prime \prime} \in \mathcal{F}$. Let C^{\prime} be the component of $G-T^{\prime \prime}$ containing $\{v, w\}$, and let $D^{\prime}:=G-\left(V\left(C^{\prime}\right) \cup T^{\prime \prime}\right)$. Then $\left|S \cap V\left(C^{\prime}\right)\right|=2,\left|S \cap V\left(D^{\prime}\right)\right|=1$, and $\left|V\left(B \cap D^{\prime}\right)\right| \geq 2$, contradicting ($* *$).

So let F denote the outer cycle of $H_{1}-\{c, u, w\}$. Let $y \in V(v F d)$ such that v, y, d occur on F in clockwise order, $N_{G}(w) \cap V(F) \subseteq V(v F y)$, and $N_{G}(c) \cap V(F) \subseteq V(y F d)$. By Lemma 2.1, we find an F-Tutte cycle H in $H_{1}-\{c, u, w\}$ through three edges on F incident with v, y, d, respectively. Since H_{1} is $(4,\{c, d, u, v, w\})$-connected, H is a Hamilton cycle in $H_{1}-\{c, u, w\}$. Let $X:=\{a, b, c, u, w, z\}$; then H is a Hamilton cycle in $G-X$.

Case 2. $B \cap D=\emptyset$.
In this case, $|V(B \cap C)| \geq 2$. Otherwise, $|V(G)| \leq 8$, and there is nothing to prove. Since H_{1} is $(4,\{c, d, u, v, w\})$-connected and $\left(H_{1}, c, d, u, v, w\right)$ is planar, $B \cap C$ is connected. We consider two subcases according to the connectivity of $B \cap C$.

Subcase 2.1. $B \cap C$ is connected but not 2-connected.
Let $J_{1}, \ldots, J_{m}(m \geq 2)$ be the end blocks of $B \cap C$, and let v_{i} be the cut vertex of $B \cap C$ contained in $V\left(J_{i}\right)$. We claim that $m=2$. Otherwise, since H_{1} is $(4,\{c, d, u, v, w\})$ connected, at least three elements of $\{c, d, u, v, w\}$ have neighbors in $V\left(J_{i}\right)-\left\{v_{i}\right\}$ (for each i), contradicting the assumption that $\left(H_{1}, c, d, u, v, w\right)$ is planar.

Let $B_{1}:=J_{1}-v_{1}$ and $B_{2}:=(B \cap C)-V\left(J_{1}\right)$. We claim that there is some element $x \in\{c, d, v, w\}$ such that x has neighbors in both $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$. Otherwise, u must
have neighbors in both $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$ (since G is 4-connected). Hence we may assume that only u, v, w of $\{c, d, u, v, w\}$ have neighbors in $V\left(B_{1}\right)$, and only c, d, u of $\{c, d, u, v, w\}$ have neighbors in $V\left(B_{2}\right)$. Since $\left(H_{1}, c, d, u, v, w\right)$ is planar, $T^{\prime}:=\left\{a, u, v_{1}, w\right\} \in \mathcal{F}$ and $\left|S \cap T^{\prime}\right|=2$, contradicting our assumption (*).

By symmetry, we may assume that d has neighbors in both $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$. Since H_{1} is $(4,\{c, d, u, v, w\})$-connected and $\left(H_{1}, c, d, u, v, w\right)$ is planar, both u and v have neighbors in $V\left(B_{1}\right)$, both c and w have neighbors in $V\left(B_{2}\right)$, and at most one element of $\{v, w\}$ has neighbors in both $V\left(B_{1}\right)$ and $V\left(B_{2}\right)$. Without loss of generality, we may assume that v has no neighbor in $V\left(B_{2}\right)$; the other case can be treated in the same way.

Let $L_{1}:=G\left[V\left(B_{1}\right) \cup\left\{d, v_{1}, w, v, u\right\}\right]$ and let $L_{2}:=G\left[V\left(B_{2}\right) \cup\left\{d, v_{1}, w, c\right\}\right]$. Then $\left(L_{1}, d, v_{1}, w, v, u\right)$ and $\left(L_{2}, d, v_{1}, w, c\right)$ are planar. Since H_{1} is $(4,\{c, d, u, v, w\})$-connected, L_{1} is $\left(4,\left\{d, v_{1}, w, v, u\right\}\right)$-connected and L_{2} is $\left(4,\left\{d, v_{1}, w, c\right\}\right)$-connected. Therefore $L_{1}-$ $\{w, v, u\}$ is a chain of blocks from d to v_{1}, and $L_{2}-\{w, c\}$ is a chain of blocks from d to v_{1}. Hence by Lemma $2.4, L_{1}-\{w, v, u\}$ has a Hamilton path P_{1} from d to v_{1}, and $L_{2}-\{w, c\}$ has a Hamilton path P_{2} from d to v_{1}. Now let $X:=\{a, b, c, d, u, v\}$; then $P_{1} \cup P_{2}$ is a Hamilton cycle in $G-X$.

Subcase 2.2. $B \cap C$ is 2-connected.
Let F denote the outer cycle of $B \cap C$. Choose $v_{1}, v_{2}, v_{3}, v_{4}, v_{5} \in V(F)$ such that $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ occur on F in clockwise order, $N_{G}(c) \cap V(F) \subseteq V\left(v_{1} F v_{2}\right), N_{G}(d) \cap V(F) \subseteq$ $V\left(v_{2} F v_{3}\right), N_{G}(u) \cap V(F) \subseteq V\left(v_{3} F v_{4}\right), N_{G}(v) \cap V(F) \subseteq V\left(v_{4} F v_{5}\right)$, and $N_{G}(w) \cap V(F) \subseteq$ $V\left(v_{5} F v_{1}\right)$.

We may assume that v has at least two neighbors in $V(B \cap C)$. Suppose on the contrary that v has at most one neighbor in $V(B \cap C)$. If u has no neighbor in $V(B \cap C)$, then let $H^{\prime}:=H_{1}-u$. So $\left(H^{\prime}, c, d, v, w\right)$ is planar and H^{\prime} is $(4,\{c, d, v, w\})$-connected (since G is 4 -connected). Hence by Lemma 2.2, $H^{\prime}-\{c, d\}$ is a chain of blocks from v to w, and $H^{\prime}-\{c, w\}$ is a chain of blocks from v to d. Since $|V(B \cap C)| \geq 2$, it follows from Lemma 2.5 that there is a vertex $z_{1} \in V(B \cap C)$ such that $H^{\prime}-\left\{z_{1}, c, d\right\}$ has a Hamilton path P_{1} from v to w. Similarly, there is a vertex $z_{2} \in V(B \cap C)$ such that $H^{\prime}-\left\{z_{2}, c, w\right\}$ has a Hamilton path P_{2} from v to d. If v is adjacent to w, let $X:=\left\{a, b, c, d, u, z_{1}\right\}$; then $P_{1}+v w$ is a Hamilton cycle in $G-X$. If v is adjacent to d, let $X:=\left\{a, b, c, u, w, z_{2}\right\}$; then $P_{2}+v d$ is a Hamilton cycle in $G-X$. So assume that v is adjacent to neither w nor d. But this contradicts the assumption that G is 4 -connected. Therefore we may assume that u has a neighbor in $V(B \cap C)$. If w has no neighbor in $V(B \cap C)$, then $T^{\prime}:=\{a, c, u, v\} \in \mathcal{F}$ and $\left|S \cap T^{\prime}\right|=2$, contradicting our assumption (*). Hence we may further assume that w has a neighbor in $V(B \cap C)$. Since $\left(H_{1}, c, d, u, v, w\right)$ is planar, v is adjacent to neither c nor d. Since G is 4 -connected and by planarity, v is adjacent to both u and w. Then $T^{\prime}:=N_{G}(v) \in \mathcal{F}$ and $\left|S \cap T^{\prime}\right|=2$, contradicting (*).

Hence $T_{1}:=G[(V(B \cap C)) \cup\{v\}]$ is 2-connected. Let D_{1} denote the outer cycle of
T_{1}. Then $v, v_{i} \in V\left(D_{1}\right)(1 \leq i \leq 5)$. By Lemma 2.1, we find a D_{1}-Tutte cycle H in T_{1} through three edges on D_{1} incident with v, v_{2}, v_{3}, respectively. If H is a Hamilton cycle in T_{1}, let $X:=\{a, b, c, d, u, w\}$; then H is a Hamilton cycle in $G-X$. So we may assume that H is not a Hamilton cycle in T_{1}. Then there is an H-bridge B_{1} in T_{1} such that $v_{1} \in V\left(B_{1}-H\right)$. Note that $\left|V\left(B_{1} \cap H\right)\right|=2$. Since $B \cap C$ is 2-connected, $B_{1} \subseteq B \cap C$. Moreover, each element of $\{w, c\}$ has a neighbor in $V\left(B_{1}-H\right)$; otherwise, $V\left(B_{1} \cap H\right) \cup\{w\}$ or $V\left(B_{1} \cap H\right) \cup\{c\}$ is a 3 -cut in G, a contradiction. Let $V\left(B_{1} \cap H\right)=\left\{s_{1}, t_{1}\right\}$ such that s_{1}, v_{1}, t_{1} occur on D_{1} (also on F) in clockwise order.

Similarly, by finding a D_{1}-Tutte cycle through three edges on D_{1} incident with v, v_{1}, v_{3}, respectively, we may assume that there exist a 2 -cut $\left\{s_{2}, t_{2}\right\}$ in $B \cap C$ and an $\left\{s_{2}, t_{2}\right\}$ bridge B_{2} in $B \cap C$ with $v_{2} \in V\left(B_{2}\right)-\left\{s_{2}, t_{2}\right\}$ such that each element of $\{c, d\}$ has a neighbor in $V\left(B_{2}\right)-\left\{s_{2}, t_{2}\right\}$ and s_{2}, v_{2}, t_{2} occur on D_{1} (also on F) in clockwise order.

By finding a D_{1}-Tutte cycle through three edges on D_{1} incident with v, v_{1}, v_{2}, respectively, we may assume that there exist a 2 -cut $\left\{s_{3}, t_{3}\right\}$ in $B \cap C$ and an $\left\{s_{3}, t_{3}\right\}$-bridge B_{3} in $B \cap C$ with $v_{3} \in V\left(B_{3}\right)-\left\{s_{3}, t_{3}\right\}$ such that each element of $\{d, u\}$ has a neighbor in $V\left(B_{3}\right)-\left\{s_{3}, t_{3}\right\}$ and s_{3}, v_{3}, t_{3} occur on D_{1} (also on F) in clockwise order.

So each element of $\{c, d\}$ has at least two neighbors in $V(B \cap C)$. Hence $T_{2}:=$ $G[(V(B \cap C)) \cup\{c\}]$ is 2-connected. Let D_{2} denote the outer cycle of T_{2}. Then $c, v_{i} \in V\left(D_{2}\right)$ $(1 \leq i \leq 5)$. As before, by finding a D_{2}-Tutte cycle through three edges on D_{2} incident with c, v_{3}, v_{5}, respectively, we may assume that there exist a 2 -cut $\left\{s_{4}, t_{4}\right\}$ in $B \cap C$ and an $\left\{s_{4}, t_{4}\right\}$-bridge B_{4} in $B \cap C$ with $v_{4} \in V\left(B_{4}\right)-\left\{s_{4}, t_{4}\right\}$ such that each element of $\{u, v\}$ has a neighbor in $V\left(B_{4}\right)-\left\{s_{4}, t_{4}\right\}$ and s_{4}, v_{4}, t_{4} occur on D_{2} (also on F) in clockwise order.

By finding a D_{2}-Tutte cycle through three edges on D_{2} incident with c, v_{3}, v_{4}, respectively, we may further assume that there exist a 2 -cut $\left\{s_{5}, t_{5}\right\}$ in $B \cap C$ and an $\left\{s_{5}, t_{5}\right\}$-bridge B_{5} in $B \cap C$ with $v_{5} \in V\left(B_{5}\right)-\left\{s_{5}, t_{5}\right\}$ such that each element of $\{v, w\}$ has a neighbor in $V\left(B_{5}\right)-\left\{s_{5}, t_{5}\right\}$ and s_{5}, v_{5}, t_{5} occur on D_{2} (also on F) in clockwise order.

Therefore each element of $\{c, d, u, v, w\}$ has at least two neighbors in $V(B \cap C)$.
We claim that $s_{1}, t_{1}, \ldots, s_{5}, t_{5}$ occur on F in clockwise order. Otherwise, without loss of generality, we may assume that $s_{1}, s_{2}, t_{1}, t_{2}$ occur on F in clockwise order, where $s_{2} \neq t_{1}$. Then neither w nor d has a neighbor in $V\left(s_{2} F t_{1}\right)-\left\{s_{2}, t_{1}\right\}$. If $V\left(s_{2} F t_{1}\right)-\left\{s_{2}, t_{1}\right\} \neq \emptyset$, then $\left\{s_{2}, t_{1}, c\right\}$ is a 3 -cut in G, which contradicts the assumption that H_{1} is $(4,\{c, d, u, v, w\})$ connected. Therefore $V\left(s_{2} F t_{1}\right)=\left\{s_{2}, t_{1}\right\}$ and $s_{2} t_{1} \in E(G)$. But this implies that $t_{1} \notin$ $V(H)$, a contradiction.

Let $J:=T_{1}-\left(V\left(B_{1}\right)-\left\{s_{1}, t_{1}\right\}\right)$; then H is a Hamilton cycle in J and those neighbors of d in $V\left(T_{1}\right)$ are contained in $V(J)$. Hence $J, J_{1}:=G[V(J) \cup\{d\}]+s_{1} t_{1}$, and $J_{2}:=$ $G[V(J) \cup\{d\}]$ are 2-connected. Let F_{1} denote the outer cycle of J_{1}. Then $d, v, s_{1}, t_{1} \in$ $V\left(F_{1}\right)$ and $s_{1} t_{1} \in E\left(F_{1}\right)$. By applying Lemma 2.1 , there exists an F_{1}-Tutte cycle C_{1} in J_{1} through $s_{1} t_{1}$ and two edges on F_{1} incident with d, v, respectively. Then C_{1} is a

Hamilton cycle in J_{1}. Let $L:=G\left[V\left(B_{1}\right) \cup\{c, w\}\right]$; then $\left(L, s_{1}, t_{1}, c, w\right)$ is planar. Since H_{1} is $(4,\{c, d, u, v, w\})$-connected, L is $\left(4,\left\{s_{1}, t_{1}, c, w\right\}\right)$-connected. Therefore by Lemma $2.2, B_{1}$ is a chain of blocks from s_{1} to t_{1}.

We may assume that $V\left(B_{i}\right)=\left\{s_{i}, t_{i}, v_{i}\right\}$, for $i=1,3,4$. Otherwise, without loss of generality, we may assume that $V\left(B_{1}\right) \neq\left\{s_{1}, t_{1}, v_{1}\right\}$. By Lemma 2.5 , there is a vertex $z \in V\left(B_{1}\right)-\left\{s_{1}, t_{1}\right\}$ such that $B_{1}-z$ has a Hamilton path P from s_{1} to t_{1}. Let $X:=$ $\{a, b, c, u, w, z\}$; then $P \cup t_{1} C_{1} s_{1}$ is a Hamilton cycle in $G-X$.

Let F_{2} denote the outer cycle of J_{2}; then $d, v, s_{1}, t_{1} \in V\left(F_{2}\right)$. By Lemma 2.1, we find an F_{2}-Tutte cycle C_{2} in J_{2} through three edges on F_{2} incident with d, v, t_{1}, respectively. If C_{2} is a Hamilton cycle in J_{2}, let $X:=\left\{a, b, c, u, w, v_{1}\right\}$; then C_{2} is a Hamilton cycle in $G-X$. So we may assume that C_{2} is not a Hamilton cycle in J_{2}. Then there is a C_{2}-bridge B_{1}^{\prime} in J_{2} with $s_{1} \in V\left(B_{1}^{\prime}-C_{2}\right)$. Let $V\left(B_{1}^{\prime} \cap C_{2}\right)=\left\{s_{1}^{\prime}, t_{1}^{\prime}\right\}$.

Let $B^{\prime}:=(B \cap C)-\left(\cup_{i=1}^{5}\left(V\left(B_{i}\right)-\left\{s_{i}, t_{i}\right\}\right)\right)$. Then $B_{1}^{\prime} \subseteq B^{\prime}$ and $\left\{s_{1}^{\prime}, t_{1}^{\prime}\right\}$ is a 2-cut in B^{\prime}. Since H_{1} is $(4,\{c, d, u, v, w\})$-connected, w has a neighbor in $V\left(B_{1}^{\prime}\right)-\left\{s_{1}^{\prime}, t_{1}^{\prime}\right\}$.

Similarly, we may assume that there exist a 2 -cut $\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$ in B^{\prime} and an $\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$-bridge B_{2}^{\prime} in B^{\prime} such that $t_{1} \in V\left(B_{2}^{\prime}\right)-\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$ and c has a neighbor in $V\left(B_{2}^{\prime}\right)-\left\{s_{2}^{\prime}, t_{2}^{\prime}\right\}$. We may assume that there exist a 2 -cut $\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$ in B^{\prime} and an $\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$-bridge B_{3}^{\prime} in B^{\prime} such that $s_{3} \in V\left(B_{3}^{\prime}\right)-\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$ and d has a neighbor in $V\left(B_{3}^{\prime}\right)-\left\{s_{3}^{\prime}, t_{3}^{\prime}\right\}$. We may further assume that there exist a 2-cut $\left\{s_{4}^{\prime}, t_{4}^{\prime}\right\}$ in B^{\prime} and an $\left\{s_{4}^{\prime}, t_{4}^{\prime}\right\}$-bridge B_{4}^{\prime} in B^{\prime} such that $t_{4} \in V\left(B_{4}^{\prime}\right)-\left\{s_{4}^{\prime}, t_{4}^{\prime}\right\}$ and v has a neighbor in $V\left(B_{4}^{\prime}\right)-\left\{s_{4}^{\prime}, t_{4}^{\prime}\right\}$.

Then each element of $\{c, d, v, w\}$ has at least three neighbors in $V(B \cap C)$. Hence it is easy to see that $G-\{a, b, u\}$ is 3 -connected. Therefore the triangle L induced by the vertices $\{a, b, u\}$ is a contractible triangle in G. Let u^{*} denote the vertex of G / L resulting from the contraction of L. Now by Theorem 2.7, there is some $X^{*} \subseteq V(G / L)$ such that $u^{*} \in X^{*},\left|X^{*}\right|=4$, and $G / L-X^{*}$ has a Hamilton cycle when $|V(G / L)| \geq 7$. Let $X:=\left(X^{*}-\left\{u^{*}\right\}\right) \cup\{a, b, u\}$; then $G-X=G / L-X^{*}$ has a Hamilton cycle.

We now use Theorem 1.1 to prove the following result.
Corollary 4.1. Let G be a 4-connected planar graph on n vertices. Then G contains a cycle of length $n-7$ for all $n \geq 10$.

Proof. Suppose this is not true and let G be a counter example. If G contains a contractible edge e, we consider G / e. Let u be the vertex resulting from the contraction of e. By applying Theorem 1.1, there is some $X \subseteq V(G / e)$ such that $u \in X,|X|=6$, and $G / e-X$ has a Hamilton cycle when $|V(G / e)| \geq 9$. Hence, if $n \geq 10$ then G has a cycle of length $n-7$, a contradiction.

So G contains no contractible edge. Then G is either the square of a cycle of length at least 4 or the line graph of a cyclically 4-edge-connected cubic graph. It is not hard to see
that if G is the square of a cycle, then G has cycles of length k for all $3 \leq k \leq n$. Since G is a counter example, G is the line graph of a cyclically 4-edge-connected cubic graph. Therefore G is 4-regular, every vertex is contained in exactly two triangles, and no two triangles share an edge. Using these properties and by planarity, we can see that every triangle T in G is contractible. Let u denote the vertex resulting from the contraction of T. Now by Theorem 2.7, there is some $X^{*} \subseteq V(G / T)$ such that $u \in X^{*},\left|X^{*}\right|=5$, and $G / T-X^{*}$ has a Hamilton cycle when $|V(G / T)| \geq 8$. Hence G has a cycle of length $n-7$ for all $n \geq 10$, a contradiction.

Acknowledgements. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China Project 10628102.

References

[1] G. Chen, G. Fan, X. Yu, Cycles in 4-connected planar graphs, European J. Combin. 25(2004) 763-780.
[2] J. Malkevitch, Polytopal graphs, in: Beineke, Wilson (Eds.), Selected Topics in Graph Theory, vol. 3, Academic Press, New York, 1988, pp. 169-188.
[3] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6(1982) 343-344.
[4] D.P. Sanders, On Hamiltonian cycles in certain planar graphs, J. Graph Theory 21(1996) 43-50.
[5] D.P. Sanders, On paths in planar graphs, J. Graph Theory 24(1997) 341-345.
[6] R. Thomas, X. Yu, 4-Connected projective-planar graphs are Hamiltonian, J. Combin. Theory Ser. B 62(1994) 114-132.
[7] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7(1983) 169176.
[8] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82(1956) 99-116.
[9] W.T. Tutte, How to draw a graph, Proc. London Math. Soc. 13(1963) 743-768.
[10] H. Whitney, A theorem on graphs, Ann. of Math. 32(1931) 378-390.

[^0]: *E-mail addresses: allen_cq@mail.nankai.edu.cn (Corresponding author)
 \dagger †ym.hu@eyou.com
 \ddagger wangjian@cfc.nankai.edu.cn

