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Abstract. We give a Newton type rational interpolation formula (Theorem
2.2). It contains as a special case the original Newton interpolation, as well
as the interpolation formula of Liu, which allows to recover many important
classical g-series identities. We show in particular that some bibasic identities
are a consequence of our formula.
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1. Introduction and Notation

As usual, (a;q), (resp. (a;p),) denotes

n—1 n—1
H(l — aqj)<resp. H(l — apj)>, n=0,1,2,...,00.
3=0 j=0

Newton obtained the following interpolation formula:
(@) = f(z1) + fOi(z —21) + [ O10x(x — 1) (2w — 22) + -+ -,
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where 0; is the divided difference which will be defined below.

Special cases of Newton’s interpolation are the Taylor formula and the
g-Taylor formula (c.f. [5]), with derivatives or ¢-derivatives instead of divided
differences.

Using g-derivatives, Liu [7] gave an interpolation formula involving ratio-
nal functions in x as coefficients, instead of only polynomials in x as in the
g-Taylor formula:

-5 C T b o i)l (01
D, being defined by
qu<m) — f(.il?) ;f(mCJ)

Let us remark that Carlitz’s g-analog of a special case of the Lagrange
inversion formula is the limit for a — 0 of (1.1):

[e.e] TL

Z 1Dy f (2)(2; @)1 oo-

n=

Our formula involves two sets of indeterminate X and C. Newton inter-
polation is the case when

¢ =1{0,0,...}.

and Liu’s expansion is the case when

X = {aq17aq27 . ’}7 C = {q07q17q27 A '}'

2. Rational Interpolation
By convenience, we denote

(2, X], = (x — 1) (2 —29) -+ - (x — )

and
(2;C) = (1 —zc)(1 — xeg) -+ (1 — xey).
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The divided difference 0; (acting on its left), i = 1,2, 3, ..., is defined by

f(&?l, ey Lgy Lja1y - - ) @
f(;r:l, N . T P ) - f(.ﬁCl, e L1, L, - - )

Ty — Tit1

Divided differences satisfy a Leibnitz type formula:

(f(z1)g(x1))00 = f(a1) (9(z1)0n) + (f(21)01) g(x2).

By induction, one obtains

n

F@1)g(z1) 0105+ -0, =Y (f(21)01 - Ok) (9(T141)Fpesr - - On)-

k=0

Lemma 2.1 Letting ¢, n be two nonnegative integers, one has

0, @ #n;
T e
where | denotes the specialization by = x1,by = x9,..., and the divided

B=X
differences are relative to by, bs,. . ..

Proof. If i < n, using Leibnitz formula, we have
[b1; X1, 0105 - - '@"B:X

H(bl — l‘k) 81 . al(bl — $1)|B:X + H(bg — l’k) 02 . 8Z(b1 — 371)01}8:)(

k=2 k=2

= H(bQ — T) 32"-&“8:)( == H(bl _zk)ai‘B:X
k=2 k=i

_ HZ:i+1(bi+1 - xk)‘B:X =0, 7 <n;

B (bn—xn)an‘szle, 1=n.

In the case ¢ > n, nullity comes from the fact that each 0; decreases
degree by 1. 1



Theorem 2.2 For any formal series f(x) in x, we have the following iden-
tity in the ring of formal series in x,x1, 2o, ...:

[z; X1

(z:C)

flx) = flo1) + f(21) O1(1 — 2201)

+f(x1)(1 — l’lCl) 0162(1 — 1'302)

Proof. Let

oy b
$6) =2 Ay,

Specializing b to x; or xs, one gets the following coefficients:

A(] = f($1), Al = f(l’l) 81(1 — 13201).

Now we have to check

[515 /Hn
(bl;c)n

0, k ;
(b1;C)p—1 010 - - 'ak’B:X = { 1 7 n (2.3)

[ k=n.

[b; X
(B:0)s
annihilated by a product of k divided differences.

Ifk>n

(b;C)g—1 is a polynomial of degree k — 1, and therefore

If k£ < n, from Leibnitz formula, we get

bi; X,
[<b11; C)]n (13 C)k=1 010 -+ O 5_,
[bl;X]n
szk(l - blcp) s k‘B:X
k 1
:Z — a,'+1"'ak[b1§X]n81"'ai|B:X’

i—0 Hp:k(l —biy16y)

and Lemma 2.1 shows that this function is equal to 0.



If K =n, we have

[b1; X]n
1-— blcn 8182 an‘B:X
- 1
= ;maiﬂ"‘8n[b1;X]n81“'ai|B:X
1
" Ty, O Pl
B 1
B 1 _anrlcn‘

Formula (2.3) thus implies

An = f(xl)(xla C)nflal e an(l - anrlCn),

and the theorem. (]

3. Bibasic summation formulas

Proposition 3.3 Taking

1—cox
flo)=3——
and
X = {l’l,iCQ, .. .}, C= {Co, C1,Co, .. .},
we have
1-— 3.4
ZO (v; X Yert ( C)k( Th1Ck)- (3.4)

The proposition is a direct application of Theorem 2.2 and the following
lemma.

Lemma 3.4

(ZEl,C)

1—vxy

MLk By - O = [03Cl1/ (03 X ). (3.5)



We first need to recall some facts about symmetric functions [8]. The
generating functions for the elementary symmetric function e;(zy,xs,...),
and the complete symmetric function h;(z1, xo,...) are

Z ei(x1, 2o, .. )t = H(l + z;t),

120 120
and
Z hi(l'l, o, .. )tz = H(l - l’it)_l.
>0 >0

We shall need a slightly more general notion than usual, for a Schur
function. Given A\ € N" and n sets of variables Ay, ..., A,, then the multi-
Schur function sy(A41,...,A,) is equal to |h/\j+j—i(AJ)‘1gi,j§n'

One has the following identity [6]:
sa(wo, w3, )x] = S50 (X, 11), (3.6)

where one uses complete functions of x; in the last column of the determinant
sy, (X, 1), and complete functions of X elsewhere.

Proof of Lemma 3.4 Multiply the denominator of (z1;C)./(1 — vzy) by
the symmetrical factor (v; X')41, which commutes with 0y - - - 0. Let &} =
{z1,29,...,2k11}. One has

k—1 k+1
H(l — 1¢;) H(l —vx;j)
i=0 =2
k k
= Z Z(_l)l(_vyei(c()? Ciy ... 7Ck71)ej(x27 T3y .- 7xk+1)xll
i=0 j=0
k k
= (_1)i(_v>j€i(007 Clye - 7ck71)517,i<Xk7 R Xk; xl)u
i=0 j=0 _—

J

thanks to (3.6), and to the fact that for every j, e;(X) = s1i (X, ..., X).
—
j

The image of a power of z; under 0, - - - 0y is a complete symmetric func-
tion in X' [6]. Therefore,

Slj,i(an ) Xkaxl) a1 T ak - Slj,i—k(le R 7Xk>
——— — —

J Jj+1



This determinant is equal to 0 (because it has two identical columns), except
for i + j = k, in which case it is equal to sg;+1(X) = (—1).

Now
(SCIQC)k: . . Qg o
) +1 V102 - - i\¢0, C1y - oo Ck=1) — |V )
o (0; X) g1 0102 - - - O Z( 1)'v7e;(co, c k1) = [v;Clg
! it+j=k
thus (3.5) is true. ]

n [2], Gasper obtained the following identity:

Zl—ap ¢" (@p)s(0 " _ (3.7)

— 1-a (¢ qk(abp;p)

We also prove an identity due to Gosper (c.f. [3]):

—k

i 1—ap’e® (aip)u(cialic™ _ (apsp)n(cq; @)nc
—~ l—a (¢ (ap/c;p) (@ Qnlap/c;p)n

?

or equivalently,

z": (L= ap" " ) (q" ™ @ulap" ™ fepli p 1 (3.8)
o (cq" " @1 (ap™*; p)i Tl
In fact, (3.7) and (3.8) are special cases of Proposition 3.3.
Taking ¢o = 0 in (3.4), we get
1— . 3.9
l—vz 1-— VI + Z (v; X Vit ( C)k( Tht16) (3.9)

=1

Multiplying both sides of (3.9) by (1 — vx;), one has

1 — vy N Cli |z Xk
— 1—
1 — vz ; U X/.Tl (.CL' C)k( -Tk-l-lck)?

where X' /1 = {x2, 23,...}.



Taking
X - {q07q17q27 A ‘}7 C - {ap17ap27 A '}7 U= 17 xr = b?

we get (3.7).

In (3.4), taking
X={p"fa,p7" " a,.. .}, C={q¢ " ¢ .},

co=q ", v=11=c"' weget (3.8).
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