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Abstract. We give a Newton type rational interpolation formula (Theorem
2.2). It contains as a special case the original Newton interpolation, as well
as the interpolation formula of Liu, which allows to recover many important
classical q-series identities. We show in particular that some bibasic identities
are a consequence of our formula.
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1. Introduction and Notation

As usual, (a; q)n (resp. (a; p)n) denotes

n−1∏
j=0

(1− aqj)
(
resp.

n−1∏
j=0

(1− apj)
)
, n = 0, 1, 2, . . . ,∞.

Newton obtained the following interpolation formula:

f(x) = f(x1) + f ∂1(x− x1) + f ∂1∂2(x− x1)(x− x2) + · · · ,
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where ∂i is the divided difference which will be defined below.

Special cases of Newton’s interpolation are the Taylor formula and the
q-Taylor formula (c.f. [5]), with derivatives or q-derivatives instead of divided
differences.

Using q-derivatives, Liu [7] gave an interpolation formula involving ratio-
nal functions in x as coefficients, instead of only polynomials in x as in the
q-Taylor formula:

f(x) =
∞∑

n=0

(1− aq2n)(aq/x; q)nx
n

(q; q)n(x; q)n

[Dqf(x)(x; q)n−1]
∣∣
x=aq

, (1.1)

Dq being defined by

Dqf(x) =
f(x)− f(xq)

x
.

Let us remark that Carlitz’s q-analog of a special case of the Lagrange
inversion formula is the limit for a → 0 of (1.1):

f(x) =
∞∑

n=0

xn

(q; q)n(x; q)n

[Dqf(x)(x; q)n−1]|x=0.

Our formula involves two sets of indeterminate X and C. Newton inter-
polation is the case when

C = {0, 0, . . .},
and Liu’s expansion is the case when

X = {aq1, aq2, . . .}, C = {q0, q1, q2, . . .}.

2. Rational Interpolation

By convenience, we denote

[x;X ]n = (x− x1)(x− x2) · · · (x− xn)

and
(x; C)n = (1− xc1)(1− xc2) · · · (1− xcn).
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The divided difference ∂i (acting on its left), i = 1, 2, 3, . . ., is defined by

f(x1, . . . , xi, xi+1, . . .) ∂i

=
f(x1, . . . , xi, xi+1, . . .)− f(x1, . . . , xi+1, xi, . . .)

xi − xi+1

.

Divided differences satisfy a Leibnitz type formula:

(f(x1)g(x1))∂1 = f(x1)
(
g(x1)∂1

)
+

(
f(x1)∂1

)
g(x2).

By induction, one obtains

f(x1)g(x1) ∂1∂2 · · · ∂n =
n∑

k=0

(
f(x1)∂1 · · · ∂k

) (
g(xk+1)∂k+1 · · · ∂n

)
.

Lemma 2.1 Letting i, n be two nonnegative integers, one has

[b1;X ]n ∂1∂2 · · · ∂i

∣∣
B=X =

{
0, i 6= n;
1, i = n,

where
∣∣
B=X denotes the specialization b1 = x1, b2 = x2, . . . , and the divided

differences are relative to b1, b2, . . ..

Proof. If i ≤ n, using Leibnitz formula, we have

[b1;X ]n ∂1∂2 · · · ∂i

∣∣
B=X

=
n∏

k=2

(b1 − xk) ∂1 · · · ∂i(b1 − x1)
∣∣
B=X +

n∏

k=2

(b2 − xk) ∂2 · · · ∂i(b1 − x1) ∂1

∣∣
B=X

=
n∏

k=2

(b2 − xk) ∂2 · · · ∂i

∣∣
B=X = · · · =

n∏

k=i

(bi − xk) ∂i

∣∣
B=X

=

{ ∏n
k=i+1(bi+1 − xk)

∣∣
B=X = 0, i < n;

(bn − xn) ∂n

∣∣
B=X = 1, i = n.

In the case i > n, nullity comes from the fact that each ∂i decreases
degree by 1.

3



Theorem 2.2 For any formal series f(x) in x, we have the following iden-
tity in the ring of formal series in x, x1, x2, . . .:

f(x) = f(x1) + f(x1) ∂1(1− x2c1)
[x;X ]1
(x; C)1

+f(x1)(1− x1c1) ∂1∂2(1− x3c2)
[x;X ]2
(x; C)2

+ · · ·

+f(x1)(x1; C)n−1 ∂1 · · · ∂n(1− xn+1cn)
[x;X ]n
(x; C)n

+ · · · . (2.2)

Proof. Let

f(b) =
∞∑

n=0

An
[b;X ]n
(b; C)n

.

Specializing b to x1 or x2, one gets the following coefficients:

A0 = f(x1), A1 = f(x1) ∂1(1− x2c1).

Now we have to check

[b1;X ]n
(b1; C)n

(b1; C)k−1 ∂1∂2 · · · ∂k

∣∣
B=X =

{
0, k 6= n;
1

1−xn+1cn
, k = n.

(2.3)

If k > n,
[b;X ]n
(b; C)n

(b; C)k−1 is a polynomial of degree k − 1, and therefore

annihilated by a product of k divided differences.

If k < n, from Leibnitz formula, we get

[b1;X ]n
(b1; C)n

(b1; C)k−1 ∂1∂2 · · · ∂k

∣∣
B=X

=
[b1;X ]n∏n

p=k(1− b1cp)
∂1∂2 · · · ∂k

∣∣
B=X

=
k∑

i=0

1∏n
p=k(1− bi+1cp)

∂i+1 · · · ∂k[b1;X ]n ∂1 · · · ∂i

∣∣
B=X ,

and Lemma 2.1 shows that this function is equal to 0.
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If k = n, we have

[b1;X ]n
1− b1cn

∂1∂2 · · · ∂n

∣∣
B=X

=
n∑

i=0

1

1− bi+1cn

∂i+1 · · · ∂n[b1;X ]n ∂1 · · · ∂i

∣∣
B=X

=
1

1− bn+1cn

[b1;X ]n ∂1 · · · ∂n

∣∣
B=X

=
1

1− xn+1cn

.

Formula (2.3) thus implies

An = f(x1)(x1; C)n−1∂1 · · · ∂n(1− xn+1cn),

and the theorem.

3. Bibasic summation formulas

Proposition 3.3 Taking

f(x) =
1− c0x

1− vx

and
X = {x1, x2, . . .}, C = {c0, c1, c2, . . .},

we have

f(x) =
∞∑

k=0

[v; C]k
(v;X )k+1

[x;X ]k
(x; C)k

(1− xk+1ck). (3.4)

The proposition is a direct application of Theorem 2.2 and the following
lemma.

Lemma 3.4
(x1; C)k

1− vx1

∂1∂2 · · · ∂k = [v; C]k/(v;X )k+1. (3.5)
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We first need to recall some facts about symmetric functions [8]. The
generating functions for the elementary symmetric function ei(x1, x2, . . .),
and the complete symmetric function hi(x1, x2, . . .) are

∑
i≥0

ei(x1, x2, . . .)t
i =

∏
i≥0

(1 + xit),

and ∑
i≥0

hi(x1, x2, . . .)t
i =

∏
i≥0

(1− xit)
−1.

We shall need a slightly more general notion than usual, for a Schur
function. Given λ ∈ Nn, and n sets of variables A1, . . . , An, then the multi-
Schur function sλ(A1, . . . , An) is equal to

∣∣hλj+j−i(Aj)
∣∣
1≤i,j≤n

.

One has the following identity [6]:

sλ(x2, x3, · · · )xr
1 = sλ,r(X , x1), (3.6)

where one uses complete functions of x1 in the last column of the determinant
sλ,r(X , x1), and complete functions of X elsewhere.

Proof of Lemma 3.4 Multiply the denominator of (x1; C)k/(1 − vx1) by
the symmetrical factor (v;X )k+1, which commutes with ∂1 · · · ∂k. Let Xk =
{x1, x2, . . . , xk+1}. One has

k−1∏
i=0

(1− x1ci)
k+1∏
j=2

(1− vxj)

=
k∑

i=0

k∑
j=0

(−1)i(−v)jei(c0, c1, . . . , ck−1)ej(x2, x3, . . . , xk+1)x
i
1

=
k∑

i=0

k∑
j=0

(−1)i(−v)jei(c0, c1, . . . , ck−1)s1j ,i(Xk, . . . ,Xk︸ ︷︷ ︸
j

, x1),

thanks to (3.6), and to the fact that for every j, ej(X ) = s1j(X , . . . ,X︸ ︷︷ ︸
j

).

The image of a power of x1 under ∂1 · · · ∂k is a complete symmetric func-
tion in X [6]. Therefore,

s1j ,i(Xk, . . . ,Xk︸ ︷︷ ︸
j

, x1) ∂1 · · · ∂k = s1j ,i−k(Xk, . . . ,Xk︸ ︷︷ ︸
j+1

).
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This determinant is equal to 0 (because it has two identical columns), except
for i + j = k, in which case it is equal to s0j+1(X ) = (−1)j.

Now

(x1; C)k

1− vx1

(v;X )k+1 ∂1∂2 · · · ∂k =
∑

i+j=k

(−1)ivjei(c0, c1, . . . , ck−1) = [v; C]k,

thus (3.5) is true.

In [2], Gasper obtained the following identity:

∞∑

k=0

1− apkqk

1− a

(a; p)k(b
−1; q)kb

k

(q; q)k(abp; p)k

= 0. (3.7)

We also prove an identity due to Gosper (c.f. [3]):

n∑

k=0

1− apkqk

1− a

(a; p)k(c; q)kc
−k

(q; q)k, (ap/c; p)k

=
(ap; p)n(cq; q)nc

−n

(q; q)n(ap/c; p)n

,

or equivalently,

n∑

k=0

(1− apn−kqn−k)(qn−k+1; q)k(apn−k+1/c; p)k

(cqn−k; q)k+1(apn−k; p)k+1

ck =
1

1− c
. (3.8)

In fact, (3.7) and (3.8) are special cases of Proposition 3.3.

Taking c0 = 0 in (3.4), we get

1

1− vx
=

1

1− vx1

+
∞∑

k=1

[v; C]k
(v;X )k+1

[x;X ]k
(x; C)k

(1− xk+1ck). (3.9)

Multiplying both sides of (3.9) by (1− vx1), one has

1− vx1

1− vx
= 1 +

∞∑

k=1

[v; C]k
(v;X/x1)k

[x;X ]k
(x; C)k

(1− xk+1ck),

where X/x1 = {x2, x3, . . .}.
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Taking

X = {q0, q1, q2, . . .}, C = {ap1, ap2, . . .}, v = 1, x = b,

we get (3.7).

In (3.4), taking

X = {p−n/a, p−n+1/a, . . .}, C = {q−n+1, q−n+2, . . .},
c0 = q−n, v = 1, x = c−1, we get (3.8).
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