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Abstract. This paper studies local connectivity of neutral networks of RNA secondary and

pseudoknot structures. A neutral network denotes the set of RNA sequences that fold into a

particular structure. It is called locally connected, if in the limit of long sequences, the distance of

any two of its sequences scales with their distance in the n-cube. One main result of this paper

is that λn = n
−

1
2
+δ is the threshold probability for local connectivity for neutral networks,

considered as random subgraphs of n-cubes. Furthermore, we analyze local connectivity for

finite sequence length and different alphabets. We show that it is closely related to the existence

of specific paths within the neutral network. We put our theoretical results into context with

folding algorithms into minimum-free energy RNA secondary and pseudoknot structures. Finally,

we relate our structural findings with dynamics by discussing the role of local connectivity in

the context of neutral evolution.

1. Introduction and background

In this paper, we introduce neutral networks of RNA pseudoknot structures and analyze their

local structure. We study these neutral nets, asking the following question: suppose we have

two sequences of small Hamming distance contained in a neutral network, when does there exist

a short neutral path connecting them? The property guaranteeing the existence of these short

neutral paths is called local connectivity and arises in the context of random graph modeling of

neutral nets in a natural way. In the process of bridging between the limit of long sequences

(the basis for the random graph construction) and finite sequence length, we discover that local

connectivity is closely related to the existence of specific paths. We show that locally connected

neutral networks of pseudoknot RNA are generic, employing recent combinatorial and probabilistic

results [17, 20, 14] and a new random graph theorem proved here.
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1.1. RNA structures. In the following we shall provide the basic background and context on

RNA secondary and pseudoknot structures, their representation and neutral networks. Without

doubt, over the last decade our perspective on RNA in organisms has shifted dramatically [34].

Once considered only an intermediate step between DNA and protein we have at present time an

impressive amount of data establishing a variety of RNA functions. Of particular interest for us is

one unique RNA feature: its ability to act as genotypic legislative in the form of viruses and viroids

and as phenotypic executive in the form of ribosomes, capable of catalytic activity, cleaving other

RNA molecules. This is one key feature of Schuster’s RNA world [36]. For us, RNA represents an

ideal conceptual arena in which Motoo Kimura’s neutral theory [21, 22] can be developed further.

It is clear that more complex genotype-phenotype mappings, for instance into RNA pseudoknot

structures, are of key interest in this context.

Let us proceed by reviewing some basic facts on RNA sequences and structures. An RNA (primary)

sequence is the sequence of nucleotides A, G, U and C and an RNA structure is the helical

configuration of an RNA primary sequence, together with the Watson-Crick (A-U, G-C) and

(U-G) base pairing rules. The central importance of RNA structures lies in the fact that their

structures is oftentimes tantamount to their function. However, also sequence specific information

(local information) is relevant. For instance, specific, “fixed” nucleotides play a particular role

for the folding pathways [6] and stabilization of the tertiary structure of the phenylalanine tRNA

structure [2]. We shall identify structures with diagrams [38]. That is, we draw the nucleotide-

labels 1, . . . , n in a horizontal line and draw arcs-labels (i, j) in the upper half-plane, if and only if

i and j are paired in the structure. We call a diagram k-noncrossing if it does not contain k arcs

that mutually cross each other. The length of an arc (i, j) is given by j − i and a stack of length

σ is a sequence of “parallel” arcs of the form ((i, j), (i + 1, j − 1), . . . , (i + (σ − 1), j − (σ − 1))).

A diagram is called σ-canonical or simply canonical instead of 2-canonical, if it does not contain

any isolated base pairs and has arc-length ≥ 2. In Figure 1 we display 2- 3- and 4-noncrossing

diagrams. While diagrams have a “Raison d’etre” as purely combinatorial objects [4] they offer a

very intuitive representation of k-noncrossing structures.

Neutral networks of RNA secondary structures, see Figure 2, have been investigated via:

(a) exhaustive enumeration: the studies [9, 10, 8] employ the algorithm ViennaRNA [11] which

derives for a given RNA sequence its minimum free energy secondary structure.

(b) structural analysis: considering the embedding of neutral networks into sequence space has led

to the Intersection Theorem [27], which guarantees the existence of at least one sequence which is

compatible to any two given secondary or pseudoknot structures. This shows that neutral networks
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1 2 3 4 5 6 7 8 9 10 1111 121 131

2-noncrossing

1 2 3 4 5 6 7 8 9 10 1111 121 131

3-noncrossing

1 2 3 4 5 6 7 8 9 10 1111 121 131

4-noncrossing

Figure 1. k-noncrossing structures: 2- 3- and 4-noncrossing structures (top to bottom).

The arcs contained in the maximal set of mutually crossing arcs are dashed.

Figure 2. Neutral networks: sequence space (left) and shape space (right) represented

as lattices. Edges between two sequences are drawn bold if they both map into the given

structure. Two key properties of neutral nets are connectivity and percolation. They

facilitate neutral evolution.

come “close” in sequence space and has led to exciting experimental work, see, for instance, [35].

(c) random graph modeling: the structure of neutral networks has been studied via random sub-

graphs of n-cubes [27, 28, 30, 29].
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Two important notions that originated from (c) are the concepts of connectivity and density of

neutral networks. A neutral network is connected if between any two of its sequences there exists a

neutral path connecting them. Neutral paths were investigated by Schuster et al. in [37]. Further-

more a neutral network is called ρ-dense if the Hamming ball of radius ρ for an arbitrary sequence

has nontrivial intersection with the neutral network. Density is closely related to Schuster’s shape

space covering conjecture [36, 10]. Of course, by construction, the neutral network depends on the

particular concept of structure being employed. In this paper we shall identify structure with the

sequence of pairs of nucleotides establishing chemical bonds and any notion of spatial embedding

is not considered.

1.2. Neutral Networks. In this section we extend the concept of neutral networks from RNA

secondary to RNA pseudoknot structures. We furthermore observe that sequence to structure map-

pings into canonical RNA secondary and pseudoknot structures exhibit two generic properties: (a)

there always exist neutral networks of exponential size and (b) there typically exist exponentially

many different structures. Remarkably, (a) and (b) are implied by the combinatorics of the struc-

tures themselves. Let us begin by remarking first that, for biophysical reasons, (folding maps

produce typically minimum free energy structures) only canonical structures, i.e. structures having

no isolated base pairs and arc-length ≥ 2 are of relevance, see Figure 3. Second, in the context

of k-noncrossing RNA structures, a secondary structure [26, 43, 42, 44, 13] is simply a diagram

having only parallel arcs and in which all bonds have at least length 2, see Figure 1.

Let us proceed by reviewing Schuster’s argument for the existence of neutral networks for sec-

ondary structures [12]. Based on some variant of Waterman’s basic recursion [42] for enumerating

secondary structures over n vertices, Schuster et al. proved, using Darboux-type theorems [46],

that there are asymptotically

(1.1) 1.4848 n−3/2 1.8444n

secondary structures with arc-length ≥ 4 and stack-size ≥ 2. Clearly, since there are 4n sequences

over the natural alphabet this proves the existence of neutral networks.

RNA pseudoknot structures [34, 45] exhibit crossing arcs in the diagram representation. They oc-

cur in functional RNA (RNAseP [24]), ribosomal RNA [23] and are conserved in the catalytic core

of group I introns. Several dynamic programming algorithms have been introduced for pseudo-

knot prediction [31, 41, 1]. Due to the cross-serial inter-dependencies [33] implied by pseudoknots,
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dynamic programming algorithms can a priori recognize only restricted types and oftentimes it

is nontrivial to formally specify a particular dynamic programming algorithm [32]. Arguably a

major drawback of the dynamic programming paradigm [31, 41, 1, 25] is its lack of control of the

maximum number of mutually crossing arcs. The maximal crossing number is a key parameter

for the molecular complexity and controls linearly the exponential growth factor, see Table 1. The

combinatorics of RNA pseudoknot structures has been derived in [17, 18]. Subsequent general-

izations to tertiary interactions via a bijection between vacillating tableaux and tangled diagrams

can be found in [4]. Again, only σ-canonical pseudoknot structures for σ ≥ 2 are of relevance,

see Figure 3. Canonical k-noncrossing structures have been studied in [20] where their asymptotic

A C CG A G G U G U C G U G A C G A C U

Figure 3. Canonical structures: each arc appears in a stack of size at least 2.

numbers are derived, see Table 1. Let S3(n) and S4(n) denote the numbers of canonical 3- and

4-noncrossing pseudoknot structures. The analogue of Schuster’s formula (eq. (1.1)) for arbitrary

k-noncrossing RNA pseudoknot structures is proved in [20]. In particular we have

(1.2) S3(n) ∼ c3 n−5 2.5881n and S4(n) ∼ c4 n− 21
2 3.0382n,

where c3, c4 are known constants. Accordingly, there exist exponentially large neutral networks for

all mappings into canonical k-noncrossing RNA pseudoknot structures.

Finally let us address (b). The key observation in this context are the central limit theorems for

the numbers of arcs of k-noncrossing RNA structures [19, 14]. The central limit theorems imply,

that the numbers of arcs of 2- and 3-noncrossing RNA structures are concentrated at 0.31 n and

0.4 n, respectively. From this we can conclude that the neutral networks are exponentially small

compared to sequence space over the natural alphabet. In other words, the number of different

canonical structures grows exponentially. Observations (a) and (b) imply the existence of nontrivial

sequence to structure maps, irrespective of details of the underlying energy model.
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k 2 3 4 5 6 7 8 9 10

σ = 1 2.6180 4.7913 6.8541 8.8875 10.9083 12.9226 14.9330 16.9410 18.9472

σ = 2 1.9680 2.5881 3.0382 3.4138 3.7438 4.0420 4.3162 4.5715 4.8115

σ = 3 1.7160 2.0477 2.2704 2.4466 2.5955 2.7259 2.8427 2.9490 3.0469

σ = 4 1.5782 1.7984 1.9410 2.0511 2.1423 2.2209 2.2904 2.3529 2.4100

σ = 5 1.4899 1.6528 1.7561 1.8347 1.8991 1.9540 2.0022 2.0454 2.0845

σ = 6 1.4278 1.5563 1.6368 1.6973 1.7466 1.7883 1.8248 1.8573 1.8866

σ = 7 1.3815 1.4872 1.5528 1.6019 1.6415 1.6750 1.7041 1.7300 1.7533

σ = 8 1.3454 1.4351 1.4903 1.5314 1.5645 1.5923 1.6165 1.6378 1.6571

σ = 9 1.3164 1.3941 1.4417 1.4770 1.5054 1.5291 1.5497 1.5679 1.5842

σ = 10 1.2925 1.3610 1.4028 1.4337 1.4585 1.4792 1.4971 1.5129 1.5270

Table 1. The exponential growth rates for pseudoknot RNA [20]: σ = 1 corresponds

to RNA structures with isolated arcs, σ = 2 are the canonical structures. Increasing σ

means to have larger and larger minimum stack-sizes.

1.3. Modeling neutral networks. Having established that neutral networks generically exist,

how can we understand their structural properties? Of course, there is always exhaustive enu-

meration. However, sequence to structure maps for RNA of length ≥ 40 are beyond current

computational capabilities and for larger sequence lengths all that is available are “local data”.

We can typically not decide whether two given sequences folding into the phenylalanine tRNA are

connected by a neutral path or what their neutral distance is. As a result, the modeling of neutral

networks is not just some mathematical exercise.

Our Ansatz is as follows: we consider a fixed RNA structure, s. Let C[s] denote the set of s-

compatible sequences, consisting of all sequences that have at any two paired positions one of the

6 nucleotide pairs (A,U), (U,A), (G,U), (U,G), (G,C), (C,G). We immediately realize that

the structure s gives rise to a new adjacency relation within C[s]. Indeed, we can reorganize a

sequence (x1, . . . , xn) into the tuple

(1.3)
(
(u1, . . . , unu), (p1, . . . , pnp)

)
,

where the uj denote the unpaired nucleotides and the pj = (xi, xk) all base pairs, respectively,

see Figure 4. We can view vu = (u1, . . . , unu) and vp = (p1, . . . , pnp) as elements of the cubes

Qnu
4 and Q

np

6 , implying the new adjacency relation for elements of C[s]. That is, C[s] carries

the natural graph structure Qnu
4 × Q

np

6 , where “×” denotes the direct product of graphs. We

remark that this decomposition is valid whether or not we have crossing arcs. We will discuss the
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Figure 4. Deriving the two subcubes, Qnu
4 and Q

np

6 : a structure gives rise to rearrange

a compatible sequence into unpaired and paired segment. The former is a sequence over

the original alphabet A, U, G, C and for the latter we derive a sequence over the

alphabet of base pairs, (A,U), (U,A), (G, U), (U,G), (G,C), (C,G) .

particular relation of the subcubes Qnu
4 and Q

np

6 with sequence space in detail in Section 3, see

Figure 6. Therefore, a priori, the neutral network of s is contained in its compatible sequences.

The next step is to decide whether or not some compatible sequence is contained in the neutral

network. The model Ansatz of [27] can be viewed as a mean-field approach and selects the vertices

vu and vp with independent probability λu and λp, respectively. The probability λu and λp is

easily measured locally via RNA computer folding maps: it coincides with the average fraction of

neutral neighbors within the compatible neighbors. Explicitly, λu is the percentage of sequences

that differ by a neutral mutation in an unpaired position, while λp corresponds to the percentage

of neutral sequences that are compatible via a base pair mutation (for instance (A,U) 7→ (G,C)),

see Figure 5.

Accordingly, the above construction reduces the random graph analysis of neutral networks to

random subgraphs of the subcubes Qnu
4 and Q

np

6 . From a conceptual point of view these two

cubes “only” differ by the respective alphabet-length. This Ansatz allows to study random neutral

networks via random subgraphs of n-cubes.

Maybe the most prominent structural feature of random induced subgraphs of n-cubes is the

sudden emergence of a unique giant component at remarkably small vertex-selection probabilities

[30].
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Figure 5. Compatible mutations: here we represent a secondary structure as a planar

graph. The dashed edges correspond to the arcs in the upper halfplane of its diagram rep-

resentation. We illustrate the different alphabets for compatible mutations in unpaired

(a) and paired (b) positions, respectively.

Theorem 1.1. Let Qn
2,λn

be the random graph consisting of Qn
2 -subgraphs, Γn, induced by selecting

each Qn
2 -vertex with independent probability λn = 1+ǫ

n , where ǫ > 0. Let C
(1)
n denote the largest

component in Γn. Then we have

lim
n→∞

P( |C(1)
n | ∼ c(ǫ)

1 + ǫ

n
2n and C(1)

n is unique ) = 1, where c(ǫ) > 0.(1.4)

Remarkably, Theorem 1.1 remains valid for probabilities λn = 1+χn

n , where o(1) = χn ≥ n− 1
3+δ.

Then the largest component grows at the rate

|C(1)
n | ∼ 2χn

1 + ǫ

n
2n,

i.e. we have a “sleeping giant”: despite the fact that the probability for a given vertex to be

contained in it tends to zero, a unique largest component exists. While the result is originally

formulated for binary alphabets, all proofs work verbatim in case of generalized n-cubes. In

addition it is shown that the giant component is surprisingly uniformly distributed within the

n-cube, see Lemma 5 [30]. Accordingly, only an average of 1 + ǫ neutral neighbors is needed in

order to assure that a constant fraction of the neutral network is organized in a giant component.
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However, sequence to structure maps exhibit significantly higher neutrality degrees [9, 10, 8]. The

neutrality degrees found there are close to the random graph connectivity threshold [27, 28],

λ∗ = 1 − α−1
√

α−1,

where α denotes the alphabet size. At this point isolated sequences suddenly disappear and the

neutral networks become almost surely (a.s.) connected. Close inspection of the structure of

neutral networks at the connectivity threshold shows that the random graph does not undergo

major structural changes. “All” that happens is that the isolated vertices suddenly vanish. This

gives rise to the question, whether there exists another key threshold probability in the evolution

of these random graphs between the emergence of the giant component at λn = 1+ǫ
n and the

connectivity, localized at λ∗ = 1 − α−1
√

α−1.

1.4. Background and context. The results of this paper build on the framework and ideas

developed in [27, 29]. They are motivated by the extensive studies on sequence to structure maps

[9, 10, 8] and recent insights in RNA pseudoknot structures [17, 20]. In particular the growth rate

of 2.5881 for 3-noncrossing pseudoknot structures is of key importance for considering sequence

to structure maps into pseudoknot RNA structures. In the proof of the connectivity theorem

(in difference to the random graph literature where the nonexistence of certain components is

established) short paths between sequences are explicitly constructed. In [29] (as a pure random

graph result) it is shown that beyond the threshold probability λn = n− 1
2+δ short paths exist. On

the level of random graphs alone our results improve this in two aspects: first our construction

improves on the length of the paths by a factor of at least 7/4 and secondly we prove that the

probability in question is exactly the threshold probability. This is possible by proving Lemma 5.2

and using a different approach. We do not “avoid” but “control” the actual correlations between

the paths. We use the notion “local connectivity” tossed by Forst et al. in a computational study

[7] on connectivity of neutral nets. There the objective is to derive a local criterion for testing

connectedness.

As already pointed out in the previous section, our interest lies in a property of neutral networks

that suddenly emerges long after the giant component already contains almost all vertices [28].

Suppose we have two sequences v and v′ contained in a neutral network that are at Hamming

distance 2. Then there are exactly two shortest paths starting at v and ending at v′. None of

them is necessarily a path contained in the neutral net but in light of the existence of the giant

component and exhaustive analysis of sequence to structure maps [9, 10, 8], v and v′ are likely to be

connected via some neutral path. Therefore it is possible that, in order to neutrally connect v and
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v′, we have to traverse the entire sequence space! In locally connected neutral networks the above

scenario is not likely to appear. There typically exist short neutral paths between elements of small

Hamming distance. We will localize the threshold value for local connectivity in Section 2 and in

Section 3 we study local connectivity in the context of folding algorithms into minimum free energy

secondary and pseudoknot structures. In the process we develop some structural understanding of

local connectivity for finite sequence length and its role for neutral evolution. Finally we integrate

our results in Section 4.

2. Local connectivity in random subgraphs of n-cubes

Without loss of generality we restrict our analysis in the following to binary n-cubes. All results

remain valid for generalized n-cubes and the binary case allows us to formulate the key results

avoiding unnecessary notational burden. However, wherever needed, we formulate our findings

explicitly for generalized n-cubes, see Corollary 2.2. Let us recall some basics of random induced

subgraphs of n-cubes: we select Qn
2 -vertices with independent probability λn. Each selection

process yields a subset A ⊂ Qn
2 . The set A induces an induced subgraph in Qn

2 in a natural way:

a1, a2 ∈ A are adjacent if and only if a1, a2 are adjacent in Qn
2 . We have the probability measure

P(A) = λ|A|
n (1 − λn)2

n−|A|.

Suppose Γn denotes a random subgraph of Qn
2 . A property P, is a subset of Qn

2 -subgraphs (closed

under graph-isomorphisms) and “P holds a.s.” means limn→∞ P(P) = 1. For instance, for the

property “A is connected” for λ > 1/2 a.s. every random graph is connected and for λ < 1/2

a.s. none is.

We arrive at the following problem formulation: Given two Qn
2 -vertices v, v′ with Hamming distance

d–what is their Γn-distance? To be precise:

(†) ∃∆ > 0; dΓn(v, v′) ≤ ∆ dQn
2
(v, v′) a.s., provided v, v′ are in Γn.

In order to avoid any confusion: of course, trivially, for any finite n such a ∆ exists. Since (†)
employs the notion “a.s.” it is valid for arbitrarily large n. In other words, one fixed ∆ has to

exist for any sequence length larger than some n0. In the following we will study under which

circumstances such a constant ∆ exists. We shall prove that for λn smaller than nδ/
√

n, where

δ > 0 is arbitrarily small, there exists a.s. no finite ∆ satisfying (†). On the other hand, for λn
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larger or equal than nδ/
√

n, there exists a.s. some finite ∆ satisfying (†). The proofs given in

Section 5 show how to compute ∆ as function of δ.

Theorem 2.1. Let 0 < δ ≤ 1
2 and v, v′ be arbitrary but fixed Qn

2 -vertices, having distance

dQ2(v, v′) = d, d ≥ 2, d ∈ N. Let Γn denote the random subgraph of Qn
2 , obtained by inde-

pendently selecting Qn
2 -vertices with probability λn. Suppose v, v′ are contained in Γn, then the

following assertions hold

(a) For λn < nδ− 1
2 , δ > 0, there exists a.s. no ∆ > 0 satisfying

(2.1) dΓn(v, v′) ≤ ∆ dQn
2
(v, v′) .

(b) For λn ≥ nδ− 1
2 , δ > 0, there exists a.s. some finite ∆ = ∆(δ) > 0 such that

(2.2) dΓn(v, v′) ≤ ∆ dQn
2
(v, v′) .

In view of Theorem 2.1 we shall call a random graph Γn locally connected if λn ≥ nδ− 1
2 for some

δ > 0. We observe that, beyond the critical probability nδ− 1
2 , a.s. a Qn

2 -ball of radius d centered

at v, transforms into a Γn-ball of radius ∆ d. This means that if Γn is locally connected it can be

viewed as a ∆-dilated n-cube.

Theorem 2.1 proves that the giant component undergoes significant structural changes besides just

growing in size. At its emergence, around λn = 1+χn

n , where χn = o(1) it is according to [30]

a.s. of size 2χn
1+χn

n 2n. At this stage the giant component is of limited usefulness for evolutionary

optimization: for λn close to 6
n an argument given by Balister et al. [3] can be used in order to

prove that typical distances are of the order n. Consequently, the entire sequence space has to be

traversed in order to connect two sequences of distance 2. According to Theorem 2.1, structural

change occurs for probabilities around 1/
√

n. Suddenly, if two sequences contained in the neutral

network have small Hamming distance, then there exists a short neutral path with high probability.

We next study ∆ for constant probabilities 0 < λ ≤ 1. Revisiting the proof of Theorem 2.1 we can

immediately conclude

Corollary 2.2. Let b, d ∈ N, b, d ≥ 2, v, v′ be arbitrary but fixed Qn
b -vertices, having distance

dQb
(v, v′) = d and n′ = n − (d − 1). Suppose we select Qn

b -vertices with the probability 0 < λ < 1.

Then there exists a Γn-path connecting v and v′ of length exactly 2 + d with probability at least

(2.3) σ
[b]
λ,d(n) = 1 − exp

(

− (b − 1)n′ λ2+(d−1)

4

)

,



12 CHRISTIAN M. REIDYS

provided v, v′ are contained in Γn.

We remark that Corollary 2.2 “almost” implies the connectivity theorem for random subgraphs

of n-cubes. In order to recover the connectivity theorem we only need to observe that at the

threshold any Γn-vertex has arbitrarily large finite degree. This allows us to employ Corollary 2.2

“in parallel” for each of those vertices.

Unfortunately, for all practical purposes n is never sufficiently large. To make this precise let, for

instance, n = 70, d = 2 and λ = 0.5. According to Corollary 2.2, a Γn-path exists in the binary

n-cube with probability

(2.4) σ
[2]
1
2 ,2

(70) = 1 − exp
(
−69 · 0.53/4

)
≈ 0.8843.

Therefore, although in the limit of long sequences we are a.s. guaranteed to find such a Γn-path of

length 4, de facto, for binary alphabets there is still more than 11% chance of failure. But what

about the natural alphabet? Here we immediately obtain

(2.5) σ
[4]
1
2 ,2

(70) = 1 − exp
(
−3 · 69 · 0.53/4

)
≈ 0.9984.

This illustrates a key difference between binary and quaternary alphabets: sequence space over

the natural alphabet does guarantee significantly higher probability of finding the short neutral

paths. This gives rise to the question whether or not there exists an alternative to larger alphabet

sizes? To this end we observe that Theorem 2.1 implies a second corollary, which is a consequence

of considering slightly longer paths.

Corollary 2.3. Let v, v′ be arbitrary but fixed Qn
2 -vertices, having distance dQ2(v, v′) = d, d ≥ 2

and n′ = n − (d − 1). Suppose we select Qn
2 -vertices with the probability 0 < λ < 1. Then there

exists a Γn-path connecting v and v′ of length exactly 4 + d with probability at least

(2.6) τλ,d(n) = 1 − exp




−




2

λ2
[

n′−2
n′−1

]

n′
+

2(2 + λ2)

n′(n′ − 1)λ4+(d−1)





−1



 ,

provided v, v′ are contained in Γn.
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Indeed, Corollary 2.3 represents a significant improvement over Corollary 2.2: for sufficiently large

n we have

(2.7) τλ,d(n) = 1 − exp




−




2

λ2
[

n′−2
n′−1

]

n′
+

2(2 + λ2)

(n′(n′ − 1)λ3+d





−1



 ∼ 1 − exp

(

−λ2n′

2

)

.

That is, the actual distance between v and v′ does not factor in. We remark that we compute the

exact correlation terms in Corollary 2.2 and Corollary 2.3. In this sense we obtain best possible

results. The only possible improvement could result from revisiting Janson’s inequality itself, see

Lemma 5.1. As for the natural alphabet, we observe that in order to obtain an improvement

over σ
[4]
1
2 ,2

(n), Corollary 2.3 requires a sequence length of n > 51, see Figure 12 in Section 4 and

the discussion therein. For shorter sequence length the longer alphabet size is the only way to

guarantee reliably local connectivity. We remark that the improvement is “only” by a constant

factor despite the fact that O(n2) path were considered. It confirms the intuition that the critical

stage for finding the neutral path is checking the immediate v and v′ neighbors. Not surprisingly,

additional improvement by increasing the length of the neutral path beyond 4+ d is only marginal

and as a result, if short paths exist, they can be found quickly.

3. From random graphs to RNA

In this section we put the theory to a test and provide some data on local connectivity for RNA

secondary and pseudoknot structures. Since it is not the scope of this paper to provide exhaustive

computer data, we restrict ourselves to a few paradigmatic studies. Suppose we are given a

structure s and sequence v, contained in its neutral network. One main objective is to make

local connectivity measurable for finite sequence length. Local connectivity refers to the two n-

cubes Qnu
4 and Q

np

6 , induced by rearranging a sequence of the neutral network into its unpaired

and paired segments, see eq. (1.3) and Figure 4. Accordingly, there are two types of compatible

neighbors in sequence space: u- and p-neighbors: a u-neighbor has Hamming distance one and

differs exactly by a point mutation at an unpaired position. Analogously a p-neighbor differs by

a compatible base pair-mutation, see Figures 5. A p-neighbor has either Hamming distance one

((G,C) 7→ (G,U))) or Hamming distance two ((G,C) 7→ (C,G))). We call a u- or a p-neighbor, y,

a compatible neighbor. If y is contained in the neutral network we refer to y as a neutral neighbor.

It is therefore natural to consider the compatible- and neutral distance, denoted by C(v, v′) and

N(v, v′). These are the minimum length of a C[s]-path and path in the neutral network between

v and v′, respectively.
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1
3

1
3

4

2

G U,C,A

A U,C,G

AU UA,UG,GC,CG

AU GU

A AG U

1 2 3 4

Figure 6. Compatible neighbors in sequence space: diagram representation of an RNA

structure (upper right) and its induced compatible neighbors in sequence space (lower

left). Note that each base pair gives rise to 5 compatible neighbors exactly one of which

is in Hammimg distance one.

Let C2 = |{v′ | C(v, v′) = 2}|. We proceed by defining a measure of local connectivity:

(3.1) ∂s(v) = |{v′ | C(v, v′) = 2, N(v, v′) ≤ 4}| C−1
2 .

We call ∂s(v) the degree of local connectivity of s at v. In other words, ∂s(v) is the fraction of the

compatible distance two neighbors of v, that are connected via Corollary 2.2-paths. Eq. (3.1) can

be viewed as a “testable” criterion for local connectivity of RNA structures. Corollary 2.2 implies

that for neutral networks, modeled as random graphs above the threshold, a.s. all neutral vertices

at compatible distance two are locally connected. Accordingly, we then have, in the limit of long

sequences

(3.2) ∂s(v) ∼ |{v′ | v′ is neutral and C(v′, v) = 2 }|C−1
2 .

That is, the degree of local connectivity simply coincides then with the binomially distributed ran-

dom variable counting the fraction of neutral sequences at compatible distance two. In particular,

∂s(v) is in this case independent of v. In the following we shall, by abuse of notation, refer to the

degree of local connectivity and the absolute number of locally connected sequences simply as local

connectivity.
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3.1. Local connectivity for RNA secondary structures. We study in the following local

connectivity of the phenylalanine tRNA denoted by sphe, see Figure 7, whose natural sequence,

vphe, is given by

ACCACGCUUAAGACACCUAGCUUGUGUCCUGGAGGUCUAAAAGUCAGACCGCGAGAGGGUUGACUCGAUUUAGGCG

For our analysis of RNA secondary structures we use the folding algorithm ViennaRNA [11].

1 10 20 30 40 50 60 70

20

30 40

60

70

76
3’end

5’end

((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

5’end 3’end

Figure 7. The phenylalanine tRNA secondary structure: represented as a planar graph

(top), diagram (middle) and dot/bracket-sequence (bottom).

While local connectivity of random neutral networks is a priori an isotropic property, i.e. it does

not depend on the choice of the base sequence, folding algorithms into minimum free energy RNA

secondary structures are based on sequence specific loop-energies. As a result, we can expect

systematic deviations from the random graph model. However, it is not a priori evident, how

these deviations affect local connectivity.
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We begin by generating via Inversefold of the ViennaRNA-package 240 sequences of the neutral

network. Then we compute for each sequence, the number of locally connected sequences. These

data are presented on the left hand side of Figure 8 in terms of a frequency histogram. Comple-

menting the above, local connectivity is studied by inductively walking from the natural sequence

vphe with steps of compatible distance two and with strictly increasing the distance to the starting

point. The corresponding data are obtained from 240 neutral sequences along such paths and

shown on the right hand side of Figure 8.

Figure 8. Local connectivities of the phenylalanine tRNA: we display the frequency

distribution of local connectivities of 240 randomly sampled neutral sequences of the

phenylalanine tRNA (left hand side). The x-axis shows the number of locally connected

sequences and the y-axis shows the frequencies of the latter. The right hand side shows

the frequency distribution of the local connectivities of 240 sequences sampled along a

neutral path originated at the natural sequence.

We observe that the degrees of locally connectivity are very close to one. This fact suggests that

the local connectivity of RNA secondary structures is in accordance with the predictions of random

graph theory. The data displayed in Figure 8 exhibit distinct sequence dependencies, i.e. deviations

from the random graph model. Inversefold-sequences exhibit an average of ≈ 5216 and a variance

of ≈ 5.1021×106 locally connected sequences, while sequences of paths originated at vphe have the

significantly larger average local connectivity of ≈ 7111 with a variance of ≈ 3.7291× 106.
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In order to provide further context we randomly select ten 3-canonical RNA secondary structures of

length 76 and generate via Inversefold 240 random sequences of their respective neutral networks.

Again we analyze local connectivity observing an average of ≈ 4035 locally connected sequences

with a standard deviation of ≈ 4.2559× 106.

3.2. Local connectivity for RNA pseudoknot structures. Next we analyze local connectiv-

ity of RNA pseudoknot structures. To this end we use the algorithm cross [15], which computes the

minimum free energy 3-noncrossing 4-canonical structure [15]. Cross is a hybrid algorithm employ-

ing branch and bound, as well as dynamic programming routines. It constructs the minimum free

energy 3-noncrossing, 4-canonical structure via a sequence of substructures called shadows. The

latter are obtained via motifs, i.e. 3-noncrossing diagrams with stack-size exactly 4, whose cores

(see [20] for details) are nonnesting. A shadow of a motif is a structure obtained by extending some

motif-stacks from top to bottom. Note that a given motif has in general many shadows. Clearly,

any k-noncrossing diagram has a unique core, which is obtained by identifying its stacks by single

arcs. It is straightforward to show [15], that each k-noncrossing σ-canonical RNA structure can

be constructed inductively via motifs and shadows. Accordingly, cross is capable of searching all

3-noncrossing, canonical pseudoknot structures. As for our local connectivity study via cross, we

choose the UTR pseudoknot of the mouse hepatitis virus (of length 56), see Figure 9. Its natural

sequence is given by

(3.3) CUCUCUAUCAGAAUGGAUGUCUUGCUGUCAUAACAGAUAGAGAAGGUUGUGGCAGA.

In Figure 10 we display the frequency distribution of the local connectivities of 240 sequences

sampled along a neutral path originated at the natural sequence. The particular construction of

these paths is completely analogous to that of Section 3.1. The data show that local connectivity is

also a reality for pseudoknot RNA. We find a mean of ≈ 7547 and variance of ≈ 1.9791×106 locally

connected sequences. Our data confirm the hypothesis that many important features observed for

genotype phenotype maps into RNA secondary structures also hold for RNA pseudoknot structures.

4. Discussion

We have studied local connectivity of neutral networks of RNA secondary and pseudoknot struc-

tures using the random graph model of [27]. In the process we showed that local connectivity

implies the existence of “short paths” between neutral sequences. Local connectivity reflects a
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5’end

3’end

10

20

30

40

50

56

1

1 10 20 30 40 50 56

3’end5’end

Figure 9. The UTR pseudoknot structure of the mouse hepatitis virus: planar graph-

(top), diagram- (middle) and dot/bracket-representation. The algorithm cross confirms

this particular structure for the natural sequence given in eq. (3.3).

structural relation between the neutral network and the sequence space. One may draw the anal-

ogy between the properties “Γn is ∆-connected at v” and “f has a derivative at v”. Along these

lines, local connectivity can be paraphrased as the “derivative of a graph”. In more graph theoretic

terms, local connectivity implies that a graph is locally not “tree-like”. In fact, the key idea for

proving Theorem 2.1 is to construct specific trees of arbitrary polynomial size, eventually limiting

the number of ways for deriving certain splits.

Since local connectivity is a monotone graph property (i.e. once Γn is locally connected increasing

the probability λn is not changing local connectedness), there exists a threshold value, localized via

Theorem 2.1. This means that suddenly neutral networks become a.s. locally connected. If locally

connected, neutral networks can be viewed as ∆-dilated n-cubes. Therefore, a small Hamming

distance for two sequences on the neutral network implies the existence of a short neutral path

connecting them.
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Figure 10. Local connectivity of the UTR pseudoknot of the mouse hepatitis virus via

cross: we display the frequency distribution of the local connectivities of 240 sequences

sampled along a neutral path originated at the natural sequence, given in eq. (3.3).

We have studied the immediate question arising in the context of an “almost surely”-formulation:

the likeliness of local connectivity for finite sequence length n. In this context we have analyzed

in Corollary 2.2 and Corollary 2.3 alternative path-classes. Of course it is of interest to find a

neutral path for two sequences in the neutral network within the boundary of some shortest path

in sequence space. The key difference between Corollary 2.2 and Corollary 2.3 is that the path-class

of the former tests O(n) and the latter tests O(n2) paths, respectively. We find in this context,

that the natural alphabet plays a particular role: it does not imply the existence of shorter paths

but it significantly lowers the probability of failure to find one.

Let us take a closer look: set ν(λ) to be the maximal sequence length such that

(4.1) σ
[4]
λ,2(n) ≥ τλ,2(n).
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neutrality

Figure 11. The role of the natural alphabet for local connectivity in random neutral

networks: we display the curve ν(λ), i.e. the smallest sequence length at which local

connectivity is improved by longer neutral paths. On the x-axis we have λ from 0 to 1

and the y-axis displays the sequence length ν(λ). The minimum of ν(λ) is located at

µ∗

≈ 0.4311, where ν(µ∗) = 51 holds.

In particular, if eq. (4.1) holds for any n, we have ν(λ) = ∞. Solving eq. (4.1) for n we derive

(4.2) ν(λ) =







⌊ 6λ3−7λ2−6
λ2 (3λ−2) ⌋ for 0 < λ < 2

3

∞ for λ = 0 and 2
3 ≤ λ ≤ 1,

which we display in Figure 11. ν(λ) exhibits some intriguing features: for 0.4 ≤ λ ≤ 0.5, ν(λ)

obtains its smallest values and exactly at λ = 2
3 we pass from finite to infinite sequence length.

Beyond neutrality degrees of λ = 2
3 we observe that σ

[4]
λ,2(n) cannot be exceeded by τλ,2(n) for

any n. In other words, for sufficiently high neutrality degrees there is no need to consider longer

neutral paths.

For all neutrality degrees and sequences over the natural alphabet, local connectivity is guaranteed

by the short paths of Corollary 2.2. Our analysis shows that, within a certain range of neutrality,
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considering longer paths marginally increases the probability of finding one, see Figure 12. If one

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

n

Figure 12. The critical neutrality λ♯: we display the success probabilities σ
[4]

λ♯,2
(n)

(solid) and τ
λ♯,2(n) (dashed) as functions in n. Both curves intersect at ≈ 51.3, i.e. we

have ν(λ♯) = 51 which is the minimum of ν(λ), see in Figure 11. We observe, that for

sequences of length > 51 longer neutral paths provide a marginal improvement in local

connectivity.

believes in evolution to have started with short sequences the results suggest that the natural

alphabet has indeed a key role by assuring local connectivity for short sequence length. At its

minimum at λ♯ ≈ 0.4311 we have ν(λ♯) = 51, see Figure 12 for details. For λ♯ ≈ 0.4311 the

natural alphabet remains vital for sequence lengths ≤ 51, since longer paths cannot improve local

connectivity in this parameter range.

Furthermore our results show that local connectivity of neutral networks becomes more and more

likely with increasing sequence length. We may paraphrase the situation by saying that evolving

larger and larger molecules facilitates evolutionary search.
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We have also shown that local connectivity is a reality for folding algorithms into minimum free

energy structures. First, in the case of RNA secondary structures, we find local connectivity degrees

of almost one, indicating that already for n = 76 there are neutral networks in which almost all

sequences are connected via the path of Corollary 2.2. Second, we observe specific deviations

from the isotropic model: for the phenylalanine tRNA displayed in Figure 7, the sequences related

to the natural sequence exhibit a significantly higher local connectivities than randomly sampled

sequences of its neutral network, see Figure 8. Furthermore we find that the local connectivity of

the phenylalanine tRNA is significantly higher than that of random structures.

For RNA pseudoknot structures we have at present time no Inversefold algorithm. Therefore we

cannot produce data on random sequences of their neutral networks. Further difficulty arises from

the fact that currently there exists no polynomial time generation of random RNA pseudoknot

structures (with uniform probability). This prohibits any comparative analysis with random RNA

pseudoknot structures. However our neutral path data indicate, that we have for the UTR pseu-

doknot of the mouse hepatitis virus locally connected neutral networks. Interestingly, the far more

complex class of pseudoknot structures appears to have neutral networks very similar to those of

secondary structures.

The fact that the observed local connectivity degrees are so close to one implies that for the tRNA

and the UTR pseudoknot structure the short paths of Corollary 2.2 connect neutral sequences in

compatible distance two. However, there are for the tRNA and the UTR pseudoknot structure

sequences in compatible distance two, that are not connected by Corollary 2.2-paths. For instance,

for the tRNA we have

ACCACGCUUAAGACAUCUAGCUUGUGUCCUGGGGGUCUAAAAGUCAGACCGCGAGAGGGUUGACUCGAUUUAGGCG

ACCACGCUUAAGACACCUAGCUUGUGUCCUGGAGGUCUAAAAGUCAGACCGCGAGAGGGUUGACUCGAUUUAGGCG

and for the UTR pseudoknot structure, such a pair of sequences is given by

CUCUCUAUCAGAAUGGAUGUCUUGCUGUCAUAACAGAUAGAGAAGGUUGUGGCAGA

CUCUCUAUCAGAAUGGAUGUCUUUCUGUCAUAACAGAUAGAGAAGGUUGUGGCAGC.

Let us finally discuss local connectivity in the context of neutral evolution. For this purpose we

consider erroneously replicating RNA strings, evolving on a neutral network. Suppose we have

a disc with infinite radius, spinning at high speed (the speed being the mutation rate). Suppose

further we have some entities (with mass) located close to the center of the disc. Instantly, these
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entities will be catapulted “away” from each other and there is only a chance of coming mutually

close at infinity. This thought-experiment illustrates what it means to be locally disconnected. A

locally disconnected neutral network is locally a tree. The implication for an evolving population

is the following: the only relation between two elements in the population comes from the fact

that they had a common ancestor some generations ago. Consequently, the mutational force pulls

the population apart. Only the dynamics itself, that is the particular replication scheme and the

finite life time of individuals produce clusters within the population. It is clear that without local

connectivity the population will inevitably split in the course of evolution into isolated individuals.

It could not preserve any type of local, i.e. sequence specific information. A particular instance of

local connectivity in neutral evolution appears in the work of Derrida and Peliti [5] who studied

neutral evolution in the extreme case where the neutral network coincides with sequence space

itself. The latter is obviously locally connected and the authors take this into consideration by

relating the branching process with random walks on n-cubes.

5. Proof of Theorem 2.1

The first result in this section is Janson’s inequality [16]. It is the key tool for proving Theo-

rem 2.1. Intuitively, Janson’s inequality can be viewed as a large deviation result in the presence

of correlation.

Lemma 5.1. Let R be a random subset of [n] = {1, . . . , n}, obtained by selecting each element

v ∈ [n] independently with probability λ. Let S1, . . . , Ss be subsets of [n] and X be the r.v. counting

the number of Si, for which Si ⊂ R holds. Let furthermore

(5.1) Ω =
∑

(i,j); Si∩Sj 6=∅

P(Si ∪ Sj ⊂ R),

where the sum is taken over all ordered pairs (i, j). Then, for any γ > 0, we have

(5.2) P(X ≤ (1 − γ)E[X ]) ≤ e−
γ2

E[X]
2+2Ω/E[X] .

Let us explain how we can employ Lemma 5.1. The Si will be specific paths connecting v and v′.

R will be the vertex set of a random induced subgraph of Qn
2 . Clearly, Si ⊂ R means that the

path is contained in the random graph Γn. Similarly, P(Si ∪ Sj ⊂ R) means that both, Si and Sj

are contained in Γn. We finally remark that for the indicator r.v. of the event Si ⊂ R, denoted by

XSi , E[XSi ] = P(Si ⊂ R) and E[XSiXSj ] = P(Si ∪ Sj ⊂ R) hold.
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Our next lemma is instrumental for the proof of Theorem 2.1 and provides an upper bound on the

number of Qn
2 -paths between two given Qn

2 -vertices.

Lemma 5.2. Let d ∈ N, d ≥ 2 and let v, v′ be two Qn
2 -vertices where d(v, v′) = d. Then any

Qn
2 -path from v to v′ has length 2ℓ + d and there are at most

(5.3)

(
2ℓ + d

ℓ + d

)(
ℓ + d

ℓ

)

nℓ ℓ! d!

Qn
2 -paths from v to v′ of length 2ℓ + d.

Proof. W.l.o.g. we can assume v = (0, . . . , 0) and v′ = (xi)i, where xi = 1 for 1 ≤ i ≤ d and xi = 0,

otherwise. Each path of length m induces the family of steps (ǫs)1≤s≤m, where ǫs ∈ {ej | 1 ≤ j ≤
n}. Since each path ends at v′, we have for fixed 1 ≤ i ≤ n

(5.4)
∑

{ǫs|ǫs=ei}

ǫs =







1 for 1 ≤ i ≤ d

0 otherwise.

Hence the families induced by these paths contain necessarily the set {e1, . . . , ed}. Let (ǫ′s)1≤s≤m′

be the family obtained from (ǫs)1≤s≤m by removing the steps e1, . . . , ed, at the smallest index at

which they occur. Then (ǫ′s)1≤s≤m′ represents a cycle starting and ending at v. Furthermore,

we have for all i;
∑

{ǫ′s|ǫ
′
s=ei}

ǫ′s = 0, i.e. all steps must come in up-step/down-step pairs. As a

result we derive m = 2ℓ + d and there are exactly ℓ steps of the form ej that can be freely chosen

(free up-steps). We proceed by counting the number of (2ℓ + d)-tuples (ǫs)1≤s≤2ℓ+d. There are

exactly
(
2ℓ+d
ℓ+d

)
ways to select the (ℓ+ d) indices for the up-steps within the set of all 2ℓ+ d indices.

Furthermore there are at most
(
ℓ+d

ℓ

)
ways to select the positions for the ℓ up-steps and nℓ ways to

choose the free up-steps themselves (once their positions are fixed). Since a free up-step is paired

with a unique down-step reversing it, the ℓ free up-steps determine all ℓ down-steps. Clearly, there

are at most ℓ! ways to assign the down steps to their ℓ indices. Finally, there are at most d! ways

to assign the fixed up-steps and the lemma follows. �

Proof of Theorem 2.1. Suppose d = d(v, v′) and ∆ > 0 are fixed. Let Z = Z(d, ∆) be the

r.v. counting the paths of length ≤ ∆ d from v to v′. According to Lemma 5.2, we have

(5.5) E[Z] ≤
∑

2ℓ+d≤∆ d

(
2ℓ + d

ℓ + d

) (
ℓ + d

ℓ

)

nℓ ℓ! d! λ2ℓ+d−1
n .
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Since λn < nδ− 1
2 for any δ > 0, we obtain

(5.6)
∑

2ℓ+d≤∆ d

(
2ℓ + d

ℓ + d

) (
ℓ + d

ℓ

)

nℓ ℓ! d! λ2ℓ+d−1
n ≤

∑

2ℓ+d≤∆ d

(
2ℓ + d

ℓ + d

) (
ℓ + d

ℓ

)

ℓ! d! nδ 2ℓ

[
1

n
1
2−δ

]d−1

.

For given d ≥ 2 and ∆, the quantity ℓ is bounded and choosing δ sufficiently small, we derive the

upper bound

(5.7) E[Z] ≤ O(n−µ) for some µ > 0,

proving assertion (a). To prove (b) we consider a specific subset of paths, Aσ, where σ is some

permutation of d − 1 elements. The Aσ-elements are called α-paths and given by the following

data:

(I) some family (ej1 , . . . , ejℓ
), where d − 1 < ji ≤ n and |{ji | 1 ≤ i ≤ ℓ}| = ℓ.

(II) the fixed family (eσ(1), . . . , eσ(d−1))

(III) the family (ejℓ
, . . . , ej1), i.e. the mirror image of the family chosen in (I).

Let Xα be the indicator r.v. for the event “α is a path in Γn”. Clearly, A =
∑

α∈Aσ
Xα is the

r.v. counting the number of α-paths contained in Γn. Let n′ = n − (d − 1). By construction of

α-paths and linearity of expectation we observe

(5.8) E[A] = ℓ!

(
n′

ℓ

)

λ2ℓ+(d−1)
n = (n′)ℓ λ2ℓ+(d−1)

n ,

where (n)ℓ = n(n − 1) · · · (n − (ℓ − 1)). Since λn ≥ n− 1
2+δ for some 0 < δ < 1

2

(5.9) E[A] ≥
[
(n′ − ℓ)

n

]ℓ

n2ℓδ
[

n− 1
2+δ

]d−1

.

The idea is now to use Janson’s inequality (Lemma 5.1) in order to show that a.s. at least one

α-path is contained in Γn. For this purpose we estimate the correlation between the indicator

r.v. Xα and Xα′ . The key term we have to analyze is

Ω =
∑

α∈Aσ

∑

α′∈Aσ ;

α′∩α 6=∅

E[XαXα′ ].

Let us = v+(
∑s

i=1 eji), where s ≤ ℓ. Since the sequence given in (III) represents the mirror-image

of the sequence (ej1 , . . . , ejℓ
) we inspect

(5.10) |α ∩ α′| = 2 |{us ∈ α ∩ α′ | 1 ≤ s ≤ ℓ}| +







d − 1 if uℓ ∈ α ∩ α′

0 otherwise.
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Indeed, only if α and α′ intersect at uℓ, the subsequent (d − 1) steps of (II) coincide. In view of

eq. (5.10), we distinguish the cases

(5.11) (i) uℓ 6∈ α ∩ α′ and (ii) uℓ ∈ α ∩ α′ .

Case (i): in this case we have |α ∩ α′| = 2h, where 1 ≤ h ≤ ℓ − 1. For fixed h, there are exactly
(
ℓ−1
h

)
ways to select the h vertices where α and α′ intersect. For each such selection, there at most

h! (n′ − h)ℓ−h paths α′, whence

(5.12) |{α′ | |α′ ∩ α| = 2h}| ≤
(

ℓ − 1

h

)

h! (n′ − h)ℓ−h.

The probability for choosing a correlated α′-path is given by λ
2[2ℓ+(d−1)]−2h
n and we compute

∑

α∈Aσ

∑

α′∈Aσ ;

uℓ 6∈α′∩α 6=∅

E[XαXα′ ] = E[A]

ℓ−1∑

h=1

|{α′ | |α′ ∩ α| = 2h}|λ[2ℓ+(d−1)]−2h
n

≤ E[A]
ℓ−1∑

h=1

h!

(
ℓ − 1

h

)

(n′ − h)ℓ−hλ[2ℓ+(d−1)]−2h
n

= E[A]2
ℓ−1∑

h=1

h!

(
ℓ − 1

h

)

(n′)−1
h λ−2h

n

≤ E[A]2
ℓ−1∑

h=1

h!

(
ℓ − 1

h

)
nh

(n′)h
n−2hδ,

where the last inequality is implied by λn ≥ n− 1
2+δ. We have for sufficiently large n

ℓ−1∑

h=1

h!

(
ℓ − 1

h

)
nh

(n′)h
n−2hδ = (ℓ − 1)

n

n′
n−2δ

︸ ︷︷ ︸

h=1

+ O
(
n−4δ

)

︸ ︷︷ ︸

h>1

.(5.13)

Consequently, in case of (i), we can give the following upper bound :

∑

α∈Aσ

∑

α′∈Aσ ;

uℓ 6∈α′∩α 6=∅

E[XαXα′ ] ≤
[

(ℓ − 1)
n

n′
n−2δ + O(n−4δ)

]

E[A]2.(5.14)

Case (ii): the key observation is that for fixed α, there are at most ℓ! paths α′ that intersect α at

least in uℓ. Each of these appears with probability at most 1 whence

(5.15)
∑

α∈Aσ

∑

α′∈Aσ ;

uℓ∈α′∩α 6=∅

E[XαXα′ ] ≤ ℓ! E[A].
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Using eq. (5.14) and eq. (5.15), we arrive at

Ω ≤








(ℓ − 1)
n

n′
n−2δ + O(n−4δ)

︸ ︷︷ ︸

(i)

+
ℓ!

E[A]
︸ ︷︷ ︸

(ii)








E[A]2.(5.16)

According to Lemma 5.1, we have P(A ≤ (1 − γ)E[A]) ≤ e−
γ2

E[A]
2+2Ω/E[A] , i.e.

(5.17) P(A ≤ (1 − γ)E[A]) ≤ exp



− γ2

2/E[A] + 2
(

(ℓ − 1) n
n′ n−2δ + O(n−4δ) + ℓ!

E[A]

)



 .

In view of E[A] ≥
[

(n′−ℓ)
n

]ℓ

n2ℓδ
[

n− 1
2+δ

]d−1

, we observe, for sufficiently large ℓ,

(5.18)




γ2

2/E[A] + 2
(

(ℓ − 1) n
n′ n−2δ + O(n−4δ) + ℓ!

E[A]

)



 = O(n2δ).

Setting γ = 1, eq. (5.17) becomes

(5.19) P(A = 0) ≤ e−c′n2δ

for some c′ > 0 .

Since an α-path has length 2ℓ + d, eq. (5.19) proves (b) and the proof of the theorem is complete.

�

Proof of Corollary 2.2. The expected number of α-paths is according to Theorem 2.1

E[A] = (b − 1) (n − (d − 1))λ2+(d−1) = (b − 1)n′ λd+1.

For ℓ = 1 we have only type (ii) correlation, which is given via eq. (5.15). In this case any two

correlated paths necessarily coincide, whence

∑

α∈Aσ

∑

α′∈Aσ ;

uℓ∈α′∩α 6=∅

E[XαXα′ ] = (b − 1)n′ λd+1.

Consequently, eq. (5.17) becomes

P(A = 0) ≤ exp

[

−E[A]

4

]

= exp
[
−(b − 1) (n − (d − 1))λd+1/4

]
,

whence the corollary. �
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Proof of Corollary 2.3. We compute E[A] = n′(n′ − 1)λ4+(d−1),

∑

α∈Aσ

∑

α′∈Aσ ;

u2 6∈α′∩α 6=∅

E[XαXα′ ] = E[A] (n′ − 2)λ(d+3)−2 = E[A]2 (n′)−1

[
n′ − 2

n′ − 1

]

︸ ︷︷ ︸

µ(n′)

λ−2

∑

α∈Aσ

∑

α′∈Aσ ;

u2∈α′∩α 6=∅

E[XαXα′ ] = (1 + λ2) E[A] .

Indeed, the second equality results from the following alternative: α′ either intersects α at u1 in

which case they coincide or not. In the latter case we obtain the factor λ2 since then u′
1 and its

mirror image for the down-step have also to be selected and there is exactly one choice to select

u′
1. Therefore Lemma 5.1 implies

(5.20) P(A = 0) ≤ exp

[

− 1

2/E[A] + 2 {n′−1 µ(n′)λ−2 + (1 + λ2)/E[A]}

]

and Corollary 2.3 follows. �
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[9] Grüner, W., Giegerich, R., Strothmann, D., Reidys, C.M., Weber, J., Hofacker, I.L., Stadler, P.F., Schuster, P.,

1996. Analysis of RNA Sequence Structure Maps by Exhaustive Enumeration I. Neutral Networks, Chemical

Monthly”, 127, 355-374.
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