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Abstract

The Randić index R(G) of a graph G is defined as the sum of the weights (d(u)d(v))−
1
2

of all edges uv of G, where d(u) denotes the degree of a vertex u in G. Bollobás and

Erdös proved that the Randić index of a graph of order n without isolated vertices

is at least
√

n− 1. They asked for the minimum value of R(G) for graphs G with

given minimum degree δ(G). Delorme et al answered their question for δ(G) = 2 and

proposed a conjecture. In this paper, we verify this conjecture for δ(G) = 3, which

can easily lead to the conclusion that the inequality of the conjecture holds for all

chemical graphs, i.e., graphs with maximum degree at most 4. Furthermore, we prove

that the conjecture is true for any graph G of order n ≥ 3
2
k3 ( or k ≤ 3

q
2n
3

) with

minimum degree δ(G) ≥ k ≥ 4.

Keywords: Randić index; minimum degree; complete bipartite graph; linear

programming
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1 Introduction

The Randić index R(G) of a graph G was introduced by the chemist Milan Randić under the name

“branching index” in 1975 [18] as the sum of 1/
√

d(u)d(v) over all edges uv of G, where d(u) denotes the

degree of a vertex u in G, i.e.,

R(G) =
∑

uv∈E

1√
d(u)d(v)

.

It is well known that R(G) was introduced as one of the many graph-theoretical parameters derived

from the graph underlying some molecule. Later, in 1998 Bollobás and Erdös [2] generalized this index by
∗Supported by PCSIRT, NSFC and the “973” program.



replacing − 1
2 with any real number α, which is called the general Randić index. The research background

of Randić index together with its generalization appears in chemistry or mathematical chemistry and can

be found in the literature (see [2], [3], [18]). Recently, finding bounds for the general Randić index of a

given class of graphs, as well as related problem of finding the graphs with maximum or minimum general

Randić index, attracted the attention of many researchers, and many results have been obtained (see [2],

[3], [5]-[18]). For a comprehensive survey of its mathematical properties see the recent book of Li and

Gutman on Mathematical Aspects of Randić-Type Molecular Structure Descriptors [9].

In 1998, Bollobás and Erdös [2] proved that the Randić index of a graph G of order n without isolated

vertices is at least
√

n− 1, with equality if and only if G is a star. In [6], Fajtlowicz mentioned that

Bollobás and Erdös asked for the minimum value of the Randić index for graphs G with given minimum

degree δ(G). In 2002, Delorme et al [5] gave a conjecture, which is also mentioned in [9].

Conjecture 1.1 Let G = (V, E) be a graph of order n with δ(G) ≥ k. Then

R(G) ≥ k(n− k)√
k(n− 1)

+
(

k

2

)
1

n− 1

with equality if and only if G = K∗
k,n−k, where K∗

k,n−k is obtained from a complete bipartite graph

G = Kk,n−k by joining each pair of vertices in the part with k vertices by a new edge.

They showed that the conjecture is true for k = 2. Using linear programming, Pavlović [14] verified

the conjecture for the case of k = 2. In [1] Aouchiche and Hansen found examples showing that the

conjecture is not true, and gave a modified form. In [16] Pavlović and Divnić introduced a new approach

based on quadratic programming and showed that the conjecture is true for nk ≥ n−k (k ≤ n/2), where

ni is the number of the vertices with degree i. There are many researches about this conjecture, see

[13, 14, 15]. In this paper, using linear programming we verify this conjecture for k = 3, which can easily

lead to the conclusion that the inequality of the conjecture holds for all chemical graphs, i.e., graphs with

maximum degree at most 4. Furthermore, we prove that for k ≥ 4, the conjecture is true for any graph of

order n ≥ 3
2k3 ( or k ≤ 3

√
2n
3 ). For convenience, we need some additional notations and terminologies.

Denote by d(u) and δ(u) the degree and the minimum degree of the vertex u, respectively. Denote by

xi,j the number of edges joining the vertices of degrees i and j. Undefined notations and terminologies

can be found in [4].

2 Some Lemmas

Lemma 2.1 ([2]) Let x1x2 be an edge of maximum weight in a graph G, then R(G− x1x2) < R(G).

Lemma 2.2 Let G be the graph with minimum Randić index among all simple graphs with order n and

minimum degree δ ≥ k ≥ 2. Then the minimum degree of G must be k.



Proof. Suppose δ(G) > k, we construct a new graph G′ from G by deleting an edge of maximum weight

of G. It is easy to see δ(G′) ≥ k. By Lemma 2.1, we have R(G′) < R(G), contradicting to the choice of

G. Thus, δ(G) = k.

From Lemma 2.2, we can rewrite Conjecture 1.1 as the following equivalent form, and consider Con-

jecture 2.3 only in the sequel.

Conjecture 2.3 Let G = (V, E) be a graph of order n with δ(G) = k. Then

R(G) ≥ k(n− k)√
k(n− 1)

+
(

k

2

)
1

n− 1

with equality if and only if G = K∗
k,n−k, where K∗

k,n−k is obtained from a complete bipartite graph Kk,n−k

by joining each pair of vertices in the part with k vertices by a new edge.

Lemma 2.4 Let k, p, n be nonnegative integers, for k ≥ 4, 0 ≤ p ≤ k − 1 and n ≥ 3
2k3, we have

(i) g(k, p, n) = (k − p)

(
n + k − 2p− 2

k
− 2(n− p− 2)√

k(n− 2)
+

2p√
k(n− 1)

− 2p√
(n− 1)(n− 2)

)
> 0;

(ii) a(k, p, n) =
1

n− 2
+

2p

(n− p− 2)
√

(n− 2)(n− 1)
− 2

n + k − 2p− 2
·

(
p√

k(n− 1)
+

p(k − p)
(n− p− 2)

√
(n− 2)(n− 1)

+
k − p√
k(n− 2)

)
> 0;

(iii) s(k, p, n) =

(
p
2

)

n− 1
+

n− p

n + k − 2p− 2

(
p(n− p− 2)√

k(n− 1)
+

p(k − p)√
(n− 1)(n− 2)

+
(k − p)(n− p− 2)√

k(n− 2)

)

−
((

k

2

)
1

n− 1
+

√
k(n− k)√

n− 1

)
> 0.

Proof. (i) Let g1(k, p, n) = k
√

(n−1)(n−2)

k−p g(k, p, n), i.e.,

g1(k, p, n) = (n + k − 2p− 2)
√

(n− 1)(n− 2)− 2(n− p− 2)
√

k(n− 1) + 2p
√

k(n− 2)− 2pk.

Since ∂g1(k,p,n)
∂p = −√n− 1

(√
n− 2−

√
4k

)
− √n− 2

(√
n− 1−

√
4k

)
− 2k, g1(k, p, n) is a strict de-

creasing function in p when n ≥ 3
2k3 and k ≥ 4, and then

g1(k, p, n) > g1(k, k, n)

= (n− k − 2)
√

n− 1
(√

n− 2− 2
√

k
)

+ 2k
√

k
(√

n− 2−
√

k
)

> 0,



since when n ≥ 3
2k3 and k ≥ 4,

√
(n− 2)−

√
k >

√
n− 2−

√
4k > 0. Then g(k, p, n) > 0.

(ii) Let a1(k, p, n) = (n− 2)(n + k − 2p− 2)(n− p− 2)
√

k(n− 1) a(k, p, n), i.e.,

a1(k, p, n) =(n + k − 2p− 2)(n− p− 2)
√

k(n− 1) + 2p(n + k − 2p− 2)
√

k(n− 2)

− 2p(n− 2)(n− p− 2)− 2p(k − p)
√

k(n− 2)− 2(k − p)(n− p− 2)
√

(n− 1)(n− 2).

Then we have

a1(k, p, n)

> (n + k − 2p− 2)(n− p− 2)
√

k(n− 2) + 2p(n + k − 2p− 2)
√

k(n− 2)

− 2p(n− 1)(n− p− 2)− 2p(k − p)
√

k(n− 2)− 2(k − p)(n− p− 2)(n− 1)

=
√

k(n− 2) ((n + k − 2p− 2)(n + p− 2)− 2p(k − p))− 2k(n− 1)(n− p− 2)

= (n− p− 2)
(
(n + k − 2)

√
k(n− 2)− 2k(n− 1)

)

> (n− p− 2)(n− 1)
√

k
(√

n− 2−
√

4k
)

> 0,

since when n ≥ 3
2k3 and k ≥ 4,

√
n− 2− 2

√
k > 0. So a(k, p, n) > 0.

(iii) Let s1(k, p, n) = (n− 1)(n + k − 2p− 2)
√

k(n− 2) s(k, p, n), we have

s1(k, p, n)

=
(

p

2

)
(n + k − 2p− 2)

√
k(n− 2) + p(n− p)(n− p− 2)

√
(n− 1)(n− 2)

+ p(k − p)(n− p)
√

k(n− 1) + (n− p− 2)(k − p)(n− p)(n− 1)

−
(

k

2

)
(n + k − 2p− 2)

√
k(n− 2)− k(n− k)(n + k − 2p− 2)

√
(n− 1)(n− 2).

Then s1(k, p, n)

>

√
k(n− 2)

2
[p(p− 1)(n + k − 2p− 2) + 2p(k − p)(n− p)− k(k − 1)(n + k − 2p− 2)]

+ [p(n− p)(n− p− 2)− k(n− k)(n + k − 2p− 2)]
√

(n− 1)(n− 2)

+ (n− 1)(n− p)(k − p)(n− p− 2)

=
(k − p)

√
k(n− 2)

2
[
(p + 1− k)n + pk + 3k − 2− k2

]

+ (k − p)[−n2 + 2n(p + 1)− p2 − pk − 2k − 2p + k2]
√

(n− 1)(n− 2)

+ (n− 1)(n− p)(k − p)(n− p− 2).

Since when 0 ≤ p ≤ k − 1 and n ≥ 3
2k3,



−n2 + 2n(p + 1)− p2 − pk − 2k − 2p + k2 < 0 and
√

(n− 1)(n− 2) ≤ 2n− 3
2

,

then we have

s1(k, p, n)

≥ (k − p)
√

k(n− 2)
2

[
(p + 1− k)n + pk + 3k − 2− k2

]
+ (k − p)

·
(

(−n2 + 2n(p + 1)− p2 − pk − 2k − 2p + k2)
2n− 3

2
+ (n− 1)(n− p)(n− p− 2)

)

=
(k − p)

2
[
n2 + 2(k2 − pk − 2k − p− 1)n− 3k2 + 3pk + 6k + p2 + 2p

+
(
(p + 1− k)n + pk + 3k − 2− k2

)√
k(n− 2)

]

>
(k − p)

2

[
n2 + 2(k2 − k2 − 2k − k)n− 3kn + (−kn− k2)

√
kn

]

=
(k − p)

√
n

2

[
n
√

n− 9k
√

n− (kn + k2)
√

k
]
.

Let t(n, k) = (n
√

n− 9k
√

n)2−
(
(kn + k2)

√
k
)2

= n3−(k3+18k)n2+(81k2−2k4)n−k5. When n ≥ 3
2k3,

∂t(n, k)
∂n

= 3n2 − 2k(k2 + 18)n− k2(2k2 − 81) > 0,

then when k ≥ 6,

t(n, k) > t(
3
2
k3, k) = k5

(
9
8
k4 − 87

2
k2 +

241
2

)
> 0.

This implies s(k, p, n) > 0 for k ≥ 6.

For the cases k = 4 and 5, we can verify that when 0 ≤ p ≤ k − 1 and n ≥ 3
2k3, s(k, p, n) > 0 by

considering all possible values of p.

3 Main Results

Let G be a simple graph of order n with δ(G) = k ≥ 3. At first, we will give some linear equalities.

Mathematical description of the problem is as follows:

min R(G) =
∑

k≤i≤n−1
i≤j≤n−1

xi,j√
ij



subject to:

2xk,k + xk,k+1 + xk,k+2+ · · · +xk,n−1 = knk

xk+1,k + 2xk+1,k+1 + xk+1,k+2+ · · · +xk+1,n−1 = (k + 1)nk+1

xk+2,k + xk+2,k+1 + 2xk+2,k+2+ · · · +xk+2,n−1 = (k + 2)nk+2

... (3.1)

xn−1,k + xn−1,k+1 + xn−1,k+2+ · · · +2xn−1,n−1 = (n− 1)nn−1

and

nk + nk+1 + nk+2 + · · ·+ nn−1 = n (3.2)

These constraints do not completely determine the problem. In order to have a better description

for this problem we have to add the next constraints: xi,n−1 = ninn−1 for i = k, k + 1, · · · , n − 2 and

xn−1,n−1 =
(
nn−1

2

)
, which much more complicate the problem. Now the problem becomes a quadratic

programming. To avoid the complexity of these quadratic inequalities, we will consider all the possible

values of nn−1 solve the problem using linear programming.

We only consider the case of k ≤ n− 2, since the graph is unique when k = n− 1.

Theorem 3.1 For a given minimum degree δ(G) = k ≥ 4, the conjecture is true when the order of the

graph n ≥ 3
2k3. That is, for a given minimum degree δ(G) = k ≥ 4 and n ≥ 3

2k3, we have

R(G) ≥ k(n− k)√
k(n− 1)

+
(

k

2

)
1

n− 1
,

with equality if and only if G is a graph with nk = n − k, nn−1 = k, nk+1 = · · · = nn−2 = 0, xk,n−1 =

k(n− k), xn−1,n−1 =
(
k
2

)
and all other xi,j and xi,i being equal to 0, i.e., G ∼= K∗

k,n−k.

Proof. Since the minimum degree is k, we have nn−1 ≤ k. So, we will consider two cases: nn−1 = k and

nn−1 = p, where p is an integer such that 0 ≤ p ≤ k−1. Let G be a graph with order n and δ(G) = k ≥ 4.

Denote G by G(i) if nn−1(G) = i (i = 0, 1, · · · , k). Let R(i) = R(G(i)).

Case 1: nn−1 = k

Since xi,n−1 = kni for i = k, k + 1, · · · , n − 2 and xn−1,n−1 =
(
k
2

)
, the constraints in (3.1) become:

xj,k + · · ·+ xj,j−1 + 2xj,j + xj,j+1 + · · ·+ xj,n−2 = (j − k)nj , for j = k, k + 1, · · · , n− 2. Then we have



R(k) =
∑

k≤i≤n−1
i≤j≤n−1

xi,j√
ij

=
n−2∑

j=k

knj√
j(n− 1)

+
(

k

2

)
1

n− 1

+
1
2

n−2∑

j=k

(
xj,k√

jk
+ · · ·+ xj,j−1√

j(j − 1)
+

2xj,j√
jj

+
xj,j+1√
j(j + 1)

+ · · ·+ xj,n−2√
j(n− 2)

)

≥
n−2∑

j=k

knj√
j(n− 1)

+
(

k

2

)
1

n− 1
+

1
2

n−2∑

j=k

xj,k + · · ·+ xj,j−1 + 2xj,j + xj,j+1 + · · ·+ xj,n−2√
j(n− 1)

=
n−2∑

j=k

knj√
j(n− 1)

+
(

k

2

)
1

n− 1
+

1
2

n−2∑

j=k

(j − k)nj√
j(n− 1)

=
(

k

2

)
1

n− 1
+

1
2
√

n− 1

n−2∑

j=k

(√
j +

k√
j

)
nj

=
(

k

2

)
1

n− 1
+

1
2
√

n− 1

(√
k +

k√
k

)
nk +

1
2
√

n− 1

n−2∑

j=k+1

(√
j +

k√
j

)
nj

By substituting nk = n− k − (nk+1 + nk+2 + · · ·+ nn−2) into the last equality, we have

R(k) ≥
(

k

2

)
1

n− 1
+

√
k(n− k)√

n− 1
+

1
2
√

n− 1

n−2∑

j=k+1

(√
j +

k√
j
− 2

√
k

)
nj .

Since
√

j + k√
j
− 2

√
k > 2

√
k− 2

√
k = 0 for k + 1 ≤ j ≤ n− 2, this function attains minimum for nj = 0,

j = k + 1, k + 2, · · · , n− 2. Therefore, when nn−1 = k, the minimum value of the Randić index is

R∗(k) =
(

k

2

)
1

n− 1
+

√
k(n− k)√

n− 1
.

The extremal graph must have nk = n− k, nk+1 = nk+2 = · · · = nn−2 = 0, nn−1 = k, xk,n−1 = k(n− k),

xn−1,n−1 =
(
k
2

)
and all other xi,j and xi,i are equal to 0, i.e., G = K∗

k,n−k.

Case 2: nn−1 = p (0 ≤ p ≤ k − 1)

By substituting xi,n−1 = pni for i = k, k + 1, · · · , n− 2 and xn−1,n−1 =
(
p
2

)
(if p = 0, 1,

(
p
2

)
= 0) into

the constraints in (3.1), they become (3.3)

2xk,k + xk,k+1 + xk,k+2+ · · · +xk,n−2 = (k − p)nk

xk+1,k + 2xk+1,k+1 + xk+1,k+2+ · · · +xk+1,n−2 = (k + 1− p)nk+1

xk+2,k + xk+2,k+1 + 2xk+2,k+2+ · · · +xk+2,n−2 = (k + 2− p)nk+2

... (3.3)

xn−2,k + xn−2,k+1 + xn−2,k+2+ · · · +2xn−2,n−2 = (n− 2− p)nn−2

Since nn−1 = p, equality (3.2) becomes (3.4)

nk + nk+1 + nk+2 + . . . + nn−2 = n− p. (3.4)



We have the next problem: minimize R(p) subject to (3.3) and (3.4). It is easy to express ni for

i = k + 1, k + 2, · · · , n− 3 from the constraints in (3.3) as follows

ni =
xi,k + · · ·+ xi,i−1 + 2xi,i + xi,i+1 + · · ·+ xi,n−2

i− p
(3.5)

Using the first and the last constraint of (3.3), (3.4) and constraint (3.5), by some calculations, we can

obtain

nk =
(n− p− 2)(n− p)

n + k − 2p− 2
+

2xk,k

n + k − 2p− 2
−

n−3∑

j=k+1

(n− j − 2)xk,j

(j − p)(n + k − 2p− 2)

−
∑

k+1≤i≤n−2
i≤j≤n−2

(
n− p− 2

i− p
+

n− p− 2
j − p

)
xi,j

n + k − 2p− 2
, (3.6)

nn−2 =
(n− p)(k − p)
n + k − 2p− 2

−
∑

k≤i≤n−3
i≤j≤n−3

(
k − p

i− p
+

k − p

j − p

)
xi,j

n + k − 2p− 2

−
n−3∑

i=k+1

(
k − p

i− p
− 1

)
xn−2,i

n + k − 2p− 2
+

2xn−2,n−2

n + k − 2p− 2
, (3.7)

xk,n−2 =
(n− p− 2)(n− p)(k − p)

n + k − 2p− 2
−

n−3∑

j=k

(n− p− 2)(k + j − 2p)
(j − p)(n + k − 2p− 2)

xk,j

−
∑

k+1≤i≤n−2
i≤j≤n−2

(
n− p− 2

i− p
+

n− p− 2
j − p

)
(k − p)xi,j

n + k − 2p− 2
. (3.8)

By substituting xi,n−1 = pni (i = k, k + 1, · · · , n − 2), xn−1,n−1 =
(
p
2

)
, (3.5), (3.6), (3.7) and (3.8) into

R(p), we have

R(p) = R(p) +
n−3∑

j=k

ak,jxk,j +
∑

k+1≤i≤n−2
i≤j≤n−2

ai,jxi,j

where

R(p) =

(
p
2

)

n− 1
+

n− p

n + k − 2p− 2

(
p(n− p− 2)√

k(n− 1)
+

p(k − p)√
(n− 1)(n− 2)

+
(k − p)(n− p− 2)√

k(n− 2)

)

and

ai,j =
1√
ij
− p√

k(n− 1)
·

n−p−2
i−p + n−p−2

j−p

n + k − 2p− 2
− p√

(n− 1)(n− 2)
·

k−p
i−p + k−p

j−p

n + k − 2p− 2

− k − p√
k(n− 2)

·
n−p−2

i−p + n−p−2
j−p

n + k − 2p− 2
+

p
i−p√

i(n− 1)
+

p
j−p√

j(n− 1)
.



We will prove that all functions ai,j are nonnegative for corresponding i and j.

Let f(i, j) = (n + k − 2p− 2)(i− p)(j − p)aij , then

f(i, j) =
(n + k − 2p− 2)(i− p)(j − p)√

ij
− p(n− p− 2)(i + j − 2p)√

k(n− 1)

− p(k − p)(i + j − 2p)√
(n− 1)(n− 2)

− (k − p)(n− p− 2)(i + j − 2p)√
k(n− 2)

+
p(n + k − 2p− 2)(j − p)√

i(n− 1)
+

p(n + k − 2p− 2)(i− p)√
j(n− 1)

.

We have

∂2f(i, j)/∂j2 =
(n + k − 2p− 2)(i− p)

4
√

j5

(
3p√
n− 1

− j + 3p√
i

)

≤ (n + k − 2p− 2)(i− p)

4
√

j5

(
3p√
n− 1

− i + 3p√
i

)

≤ (n + k − 2p− 2)(i− p)

4
√

j5

(
3p√
n− 1

− 2
√

3p

)

=
(n + k − 2p− 2)(i− p)

4
√

j5
·
√

3p√
n− 1

(
√

3p− 2
√

n− 1) < 0,

since i+3p√
i

=
√

i + 3p√
i
≥ 2

√
3p and n − 1 > k > p. Thus, f(i, j) is concave in j. We have to check that

ai,i and ai,n−2 are nonnegative in order to conclude that ai,j ≥ 0 for k ≤ i ≤ n − 2 and i ≤ j ≤ n − 2.

Let g(i, p, n) = (n + k − 2p− 2)(i− p)ai,i, then

g(i, p, n) =
(n + k − 2p− 2)(i− p)

i
− 2p(n− p− 2)√

k(n− 1)
− 2p(k − p)√

(n− 1)(n− 2)

− 2(k − p)(n− p− 2)√
k(n− 2)

+
2p(n + k − 2p− 2)√

i(n− 1)
.

We have ∂g(i, p, n)/∂i = p(n+k−2p−2)√
i3

(
1√
i
− 1√

n−1

)
> 0, then for i ≥ k, g(i, p, n) ≥ g(k, p, n), where

g(k, p, n) = (k − p)

(
n + k − 2p− 2

k
− 2(n− p− 2)√

k(n− 2)
+

2p√
k(n− 1)

− 2p√
(n− 1)(n− 2)

)
.

By Lemma 2.4 (i), for k ≥ 4, 0 ≤ p ≤ k − 1 and n ≥ 3
2k3, we have g(k, p, n) > 0, then ai,i > 0.

Let q(i, p, n) = (n + k − 2p− 2)(i− p)ai,n−2, then

q(i, p, n) =
(n + k − 2p− 2)(i− p)√

(n− 2)i
− p(n− 2p− 2 + i)√

k(n− 1)
−

p
(
k − p + (k−p)(i−p)

n−p−2

)
√

(n− 1)(n− 2)

− (k − p)(n− 2p− 2 + i)√
k(n− 2)

+
p(n + k − 2p− 2)√

(n− 1)i
+

p(n + k − 2p− 2)(i− p)
(n− p− 2)

√
(n− 1)(n− 2)

.



Since

∂2q(i, p, n)/∂i2 = −n + k − 2p− 2
4
√

i5

(
i + 3p√
n− 2

− 3p√
n− 1

)
< 0,

and q(k, p, n) = 0, we only need to prove

an−2,n−2 =
1

n− 2
+

2p

(n− p− 2)
√

(n− 2)(n− 1)
− 2

n + k − 2p− 2

·
(

p√
k(n− 1)

+
p(k − p)

(n− p− 2)
√

(n− 2)(n− 1)
+

k − p√
k(n− 2)

)
≥ 0.

By Lemma 2.4 (ii), for k ≥ 4, 0 ≤ p ≤ k − 1 and n ≥ 3
2k3, we have an−2,n−2 > 0, then ai,n−2 > 0.

Since ai,j ≥ 0 for k ≤ i ≤ n− 2 and i ≤ j ≤ n− 2, then R(p) attains minimum if we put xk,j = 0 for

j = k, k + 1, · · · , n− 3 and xi,j = 0 for k + 1 ≤ i ≤ n− 2, i ≤ j ≤ n− 2. The minimum value is R(p) and

nk =
(n− p− 2)(n− p)

n + k − 2p− 2
, nn−2 =

(n− p)(k − p)
n + k − 2p− 2

, nn−1 = p, ni = 0

for i = k + 1, · · · , n− 3. This solution may not correspond to any graph, and the real graphical solution

R∗(P ) ≥ R(p). Now we only need to show that R(p) ≥ R∗(k). Let

s(k, p, n) = R(p) −R∗(k)

=

(
p
2

)

n− 1
+

n− p

n + k − 2p− 2

(
p(n− p− 2)√

k(n− 1)
+

p(k − p)√
(n− 1)(n− 2)

+
(k − p)(n− p− 2)√

k(n− 2)

)

−
((

k

2

)
1

n− 1
+

√
k(n− k)√

n− 1

)
.

By Lemma 2.4 (iii), for k ≥ 4, 0 ≤ p ≤ k − 1 and n ≥ 3
2k3, we have s(k, p, n) > 0. The proof is thus

complete.

Theorem 3.2 Let G be a simple graph of order n with minimum degree k = 3. Then we have

R(G) ≥ 3(n− 3)√
3(n− 1)

+
(

3
2

)
1

n− 1
,

with equality if and only if G = K∗
k,n−k.

Proof. By the proof of Theorem 3.1, we only need to prove the inequalities g(k, p, n) ≥ 0, an−2,n−2 ≥ 0

and s(k, p, n) ≥ 0 for k = 3 and 0 ≤ p ≤ 2. In the following we only consider n ≥ 6, since the graph with

4 vertices and k = 3 is unique, the number of graphs with 5 vertices and k = 3 are only two (see Figure

3.1). Now we consider all the possible values of p.

Case 1: p = 0



We have

g(3, 0, n) = n + 1− 6(n− 2)√
3n− 6

≥ g(3, 0, 6) > 0;

an−2,n−2 =
1

n− 2
− 6

(n + 1)
√

3(n− 2)
=

1√
n− 2

(
1√

n− 2
− 2

√
3

n + 1

)
≥ 0;

s(3, 0, n) =
√

3n(n− 1)
√

n− 2− 3(n + 1)−√3(n− 3)(n + 1)
√

n− 1
(n + 1)(n− 1)

.

Let s0(n) =
√

3n(n− 1)
√

n− 2− 3(n + 1)−
√

3(n− 3)(n + 1)
√

n− 1

=
√

3n
(
(n− 1)

√
n− 2−

√
3− (n− 2)

√
n− 1

)
+ 3

√
3
√

n− 1− 3.

By simple calculation, we can prove that 3
√

3
√

n− 1−3 > 0 and (n−1)
√

n− 2−√3−(n−2)
√

n− 1 > 0

for n ≥ 14, i.e., s0(n) ≥ 0 for n ≥ 14. We can directly verify that s0(n) ≥ 0 for 6 ≤ n ≤ 13.

Case 2: p = 1

We have

g(3, 1, n) =
2
√

n− 1
(
(n− 1)

√
n− 2− 2

√
3(n− 3)

)
+ 4

√
3

(√
n− 2−√3

)

3
√

(n− 1)(n− 2)

For n ≥ 6, we have
√

n− 2 − √
3 > 0. Let g1(n) = (n − 1)

√
n− 2 − 2

√
3(n − 3), we have g′1(n) =

1
2
√

n−2
+ 3

2

√
n− 2 − 2

√
3 > 1

2
√

n−2
> 0 for n ≥ 9, then g1(n) is a strictly increasing function in n ≥ 9 .

So g1(n) > g1(9) = 8
√

7− 12
√

3 > 0. By some calculations we obtain that g(3, 1, n) > 0 for 6 ≤ n ≤ 8.

an−2,n−2 =
1

n− 2
− 2√

3(n− 1)

(
1√

n− 1
+

2√
n− 2

)
+

2
(n− 1)

√
(n− 1)(n− 2)

≥ 1
n− 2

− 2√
3(n− 1)

· 3√
n− 2

=
1√

n− 2

(
1√

n− 2
− 2

√
3

n− 1

)

For n ≥ 12, 1√
n−2

− 2
√

3
n−1 > 0, i.e., an−2,n−2 > 0. For smaller n, we can verify it easily.

Let s1(n) =
√

3(n− 1)
√

n− 2 s(3, 1, n), i.e.,

s1(n) = −2(n− 3)
√

(n− 1)(n− 2) + 2
√

3
√

n− 1 + 2(n− 3)(n− 1)− 3
√

3
√

n− 2.

By some calculations, we have

s1(n) > 2(n− 3)
(
n− 1−

√
(n− 1)(n− 2)

)
−
√

3
√

n− 2

>
√

3(n− 2)
[√

n− 2
(
n− 1−

√
(n− 1)(n− 2)

)
− 1

]
> 0,



since 2(n−3) >
√

3(n−2) and
√

n− 2
(
n− 1−

√
(n− 1)(n− 2)

)
−1 > 0 for n ≥ 10. Thus, s(3, 1, n) > 0

for n ≥ 10. We can directly verify that s(3, 1, n) ≥ 0 for 6 ≤ n ≤ 9.

Case 3: p = 2

Suppose n ≥ 8. We have

g(3, 2, n) =
(n− 3)

√
(n− 1)(n− 2)− 2

√
3(n− 4)

√
n− 1 + 4

√
3
√

n− 2− 12
3
√

(n− 1)(n− 2)

≥ (n− 3)(n− 2)− 2
√

3(n− 4)
√

n− 1 + 4
√

3
√

n− 2− 12
3
√

(n− 1)(n− 2)
=

g2(n)
3
√

(n− 1)(n− 2)
,

where g2(n) = (n− 3)(n− 2)− 2
√

3(n− 4)
√

n− 1 + 4
√

3
√

n− 2− 12. Since

g′2(n) = n− 2 + n− 3− 2
√

3
√

n− 1−
√

3(n− 4)√
n− 1

+
2
√

3√
n− 2

> 2n− 5− 2
√

3
√

n− 1−
√

3
√

n− 1 = 2n− 5− 3
√

3
√

n− 1,

and for n ≥ 11, g′2(n) ≥ g′2(11) > 0, we have g2(n) ≥ g2(11) = 60 + 12
√

3 − 14
√

30 > 0. By some

calculations for smaller n, we have g(3, 2, n) > 0 for n ≥ 8.

an−2,n−2 =
1

n− 2
− 2√

3(n− 3)

(
2√

n− 1
+

1√
n− 2

)
+

4
(n− 3)

√
(n− 1)(n− 2)

≥ 1
n− 2

− 2√
3(n− 3)

3√
n− 2

=
1√

n− 2

(
1√

n− 2
− 2

√
3

n− 3

)

For n ≥ 16, 1√
n−2

− 2
√

3
n−3 > 0, i.e., an−2,n−2 > 0. For smaller n, we can verify it easily.

Let s2(n) =
√

3(n− 1)(n− 3)
√

n− 2 s(3, 2, n), where

s2(n) = (n− 2)(n− 1)(n− 4) + 2
√

3(n− 2)
√

n− 1− 2
√

3(n− 3)
√

n− 2

− (n2 − 6n + 11)
√

(n− 1)(n− 2).

Since 2
√

3(n− 2)
√

n− 1− 2
√

3(n− 3)
√

n− 2 > 0 for n ≥ 8, we have

s2(n) ≥ (n− 2)(n− 1)(n− 4)− (n2 − 6n + 11)
√

(n− 1)(n− 2).

Then we only need to prove

((n− 2)(n− 1)(n− 4))2 >
(
(n2 − 6n + 11)

√
(n− 1)(n− 2)

)2

,

i.e., (n−1)(n−2)
(
(n−3)(n2−13n+29)−2

)
> 0. By some calculations, we have (n−3)(n2−13n+29)−2 > 0

when n ≥ 11. Thus, s(3, 2, n) > 0 for n ≥ 8, since we can verify easily for 8 ≤ n ≤ 10.



For 6 ≤ n ≤ 7, all the graphs with minimum degree 3 and 2 ≤ p ≤ 3 and the values of their Randić

Index are shown in Figure 3.1. By easy comparisons, we can check the result of the theorem. The proof

is now complete.

2.488 2.482 2.932 2.955 2.924

3.413

3.328 3.889

3.371 3.383 3.412 3.418

3.412 3.437 3.447

3.4503.650

Figure 3.1 The graphs of order 5 ≤ n ≤ 7 with minimum degree k = 3 and 2 ≤ p ≤ 3.

Theorem 3.3 The inequality of the conjecture holds for all chemical graphs, i.e., graphs with maximum

degree at most 4.

Proof. From the the result of Delorme et al for minimum degree k = 2 and the above Theorem 3.2 for

minimum degree k = 3, we know that we only need to check the inequality of the conjecture for 4-regular

graphs. It is easy to see that a 4-regular graph of order n has 2n edges, and each edge has a weight equal

to 1
4 . So, any 4-regular graph G has a Randić index equal to n

2 . It is then not difficult to check that

R(G) =
n

2
≥ 4(n− 4)√

4(n− 1)
+

(
4
2

)
1

n− 1
=

2(n− 4)√
(n− 1)

+
6

n− 1
.

The proof is complete.
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[17] L. Pavlovć, I. Gutman, Graph with extremal connectivity index, Novi Sad J. Math. 31 (2001), 53–58.
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