Bipartite rainbow numbers of matchings*

Xueliang Li, Jianhua Tu
Center for Combinatorics and LPMC, Nankai University
Tianjin 300071, P.R. China. Email: lxl@nankai.edu.cn
Zemin Jin
Department of Mathematics, Zhejiang Normal University
Jinhua, Zhejiang 321004, P.R. China. Email: zeminjin@zjnu.cn

Abstract

Given two graphs G and H, let $f(G, H)$ denote the maximum number c for which there is a way to color the edges of G with c colors such that every subgraph H of G has at least two edges of the same color. Equivalently, any edge-coloring of G with at least $r b(G, H)=f(G, H)+1$ colors contains a rainbow copy of H, where a rainbow subgraph of an edge-colored graph is such that no two edges of it have the same color. The number $r b(G, H)$ is called the rainbow number of H with respect to G, and simply called the bipartite rainbow number of H if G is the complete bipartite graph $K_{m, n}$. Erdős, Simonovits and Sós showed that $r b\left(K_{n}, K_{3}\right)=n$. In 2004, Schiermeyer determined the rainbow numbers $r b\left(K_{n}, K_{k}\right)$ for all $n \geq k \geq 4$, and the rainbow numbers $r b\left(K_{n}, k K_{2}\right)$ for all $k \geq 2$ and $n \geq 3 k+3$. In this paper we will determine the rainbow numbers $r b\left(K_{m, n}, k K_{2}\right)$ for all $k \geq 1$.

Keywords: edge coloring, rainbow subgraph, rainbow number.
AMS Subject Classification 2000: 05C35, 05C70.

1 Introduction

In this paper we consider undirected, finite and simple graphs only, and use standard notations in graph theory (see [3]). Given two graphs G and H, if G is

[^0]edge-colored and a subgraph H of G contains no two edges of the same color, then H is called a totally multicolored (TMC) or rainbow subgraph of G and we say that G contains a TMC or rainbow H. Let $f(G, H)$ denote the maximum number of colors in an edge-coloring of the graph G with no TMC H. We now define $r b(G, H)$ as the minimum number of colors such that any edge-coloring of G with at least $r b(G, H)=f(G, H)+1$ colors contains a TMC or rainbow subgraph isomorphic to H. The number $r b(G, H)$ is called the rainbow number of H with respect to G. If G is the complete bipartite graph $K_{m, n}, r b(G, H)$ is simply called the bipartite rainbow number of H.

When $G=K_{n}, f(G, H)$ is called the anti-Ramsey number of H. Anti-Ramsey numbers were introduced by Erdős, Simonovits and Sós in the 1970s. Let P_{k} and C_{k} denote the path and the cycle with k vertices, respectively. Simonovits and Sós [8] determined $f\left(K_{n}, P_{k}\right)$ for large enough n. Erdős et al. [4] conjectured that for every fixed $k \geq 3, f\left(K_{n}, C_{k}\right)=n\left(\frac{k-2}{2}+\frac{1}{k-1}\right)+O(1)$, and proved it for $k=3$ by showing that $f\left(K_{n}, C_{3}\right)=n-1$. Alon [1] showed that $f\left(K_{n}, C_{4}\right)=\left\lfloor\frac{4 n}{3}\right\rfloor-1$, and the conjecture is thus proved for $k=4$. Recently, the conjecture is proved for all $k \geq 3$ by Montellano-Ballesteros and Neumann-Lara [5]. Axenovich, Jiang and Kündgen [2] determined $f\left(K_{m, n}, C_{2 k}\right)$ for all $k \geq 2$.

In 2004, Schiermeyer [7] determined the rainbow numbers $r b\left(K_{n}, K_{k}\right)$ for all $n \geq k \geq 4$, and the rainbow numbers $r b\left(K_{n}, k K_{2}\right)$ for all $k \geq 2$ and $n \geq 3 k+3$, where $H=k K_{2}$ is a matching M of size k. The main focus of this paper is to consider the analogous problem for matchings when the host graph G is a complete bipartite graph $K_{m, n}$ (say $m \geq n$). For all positive integers $m \geq n$ and $k \geq 1$, we determine the exact values of $r b\left(K_{m, n}, k K_{2}\right)$.

2 Main results

Let M be a matching in a given graph G, then the subgraph of G induced by M, denoted by $\langle M\rangle_{G}$ or $\langle M\rangle$, is the subgraph of G whose edge set is M and whose vertex set consists of the vertices incident with some edges in M. A vertex of G is said to be saturated by M if it is incident with an edge of M; otherwise, it is said to be unsaturated. If every vertex of a vertex subset U of G is saturated, then we say that U is saturated by M. A matching with maximum cardinality is called a maximum matching.

In a given graph $G, N_{G}(U)$ denotes the set of vertices of G adjacent to the
vertex set U. If $R, T \in V(G)$, we denote $E(R, T)$ or $E_{G}(R, T)$ as the set of all edges having a vertex from both R and T. Let $G(m, n)$ denote a bipartite graph with bipartition $A \cup B$, and $|A|=m$ and $|B|=n$, without loss of generality, in the following we always assume $m \geq n$.

Let $\operatorname{ext}(m, n, H)$ denote the maximum number of edges that a bipartite graph $G(m, n)$ can have with no subgraph isomorphic to H. The bipartite graphs attaining the maximum for given m and n are called extremal graphs.

We now determine the value $\operatorname{ext}(m, n, H)$ for $H=k K_{2}$. The first lemma is due to Ore and can be found in [6].

Lemma 2.1 Let $G(m, n)$ be a bipartite graph with bipartition $A \cup B$, and $M a$ maximum matching in G. Then the size of M is $m-d$, where

$$
d=\max \left\{|S|-\left|N_{G}(S)\right|: S \subseteq A\right\}
$$

Theorem 2.2

$$
\operatorname{ext}\left(m, n, k K_{2}\right)=m(k-1) \text { for all } 1 \leq k \leq n \text {, }
$$

that is, for any given bipartite graph $G(m, n)$, if $|E(G(m, n))|>m(k-1)$, then $k K_{2} \subset G$. Moreover, $K_{m,(k-1)}$ is the unique such extremal graph.

Proof. Suppose that G contains no $k K_{2}$. Let M be a maximum matching of G and the size of M is $k-i$, where $i \geq 1$. By Lemma 2.1, there exists a subset $S \subset A$ such that $|S|-\left|N_{G}(S)\right|=m-k+i$. Thus
$|E(G)| \leq|S|\left|N_{G}(S)\right|+n(m-|S|)=\left(\left|N_{G}(S)\right|+m-k+i\right)\left|N_{G}(S)\right|+n\left(k-i-\left|N_{G}(S)\right|\right)$.
Since $0 \leq\left|N_{G}(S)\right| \leq k-i \leq k-1$, we obtain

$$
|E(G)| \leq \max \{m(k-1), n(k-1)\} \leq m(k-1)
$$

where the equality is possible only if $i=1$ and $G \cong K_{m, k-1}$. So, $K_{m, k-1}$ is the unique such extremal graph.

For $k=1$, it is clear that $r b\left(K_{m, n}, K_{2}\right)=1$. Now we determine the value of $r b\left(K_{m, n}, 2 K_{2}\right)($ for $k=2)$.

Theorem 2.3

$$
r b\left(K_{2,2}, 2 K_{2}\right)=3
$$

and

$$
r b\left(K_{m, n}, 2 K_{2}\right)=2 \text { for all } m \geq 3 \text { and } n \geq 2
$$

Proof. It is obvious that $r b\left(K_{2,2}, 2 K_{2}\right) \leq 3$. Let $\left\{a_{1}, a_{2}\right\} \cup\left\{b_{1}, b_{2}\right\}$ be the two parts of $K_{2,2}$. If $K_{2,2}$ is edge-colored with 2 colors such that $c\left(a_{1} b_{1}\right)=c\left(a_{2} b_{2}\right)=1$ and $c\left(a_{1} b_{2}\right)=c\left(a_{2} b_{1}\right)=2$, then $K_{2,2}$ contains no TMC $2 K_{2}$. So, $r b\left(K_{2,2}, 2 K_{2}\right)=3$.

For $m \geq 3$ and $n \geq 2$, let the edges of $G=K_{m, n}$ be colored with at least 2 colors. We suppose that the two parts of $K_{m, n}$ are A and B with $|A|=m$ and $|B|=n$. Suppose that $K_{m, n}$ contains no TMC $2 K_{2}$. Let $e_{1}=a_{1} b_{1}, a_{1} \in A, b_{1} \in B$, be an edge with $c\left(e_{1}\right)=1$, and $R=V\left(K_{m, n}\right)-\left\{a_{1}, b_{1}\right\}$. Then $c(e)=1$ for all edges $e \in E(G[R])$. Moreover, $c(e)=1$ for all edges $e \in E\left(b_{1}, R\right)$, since $m \geq 3$. Thus $c(e)=1$ for all edges $e \in E\left(a_{1}, R\right)$. But then $K_{m, n}$ is monochromatic, a contradiction. So, $r b\left(K_{m, n}, 2 K_{2}\right)=2$ for all $m \geq 3$ and $n \geq 2$.

The next proposition provides a lower and upper bound for $r b\left(K_{m, n}, k K_{2}\right)$, and the proof of which is the same as that of [7].

Proposition $2.4 \operatorname{ext}\left(m, n,(k-1) K_{2}\right)+2 \leq r b\left(K_{m, n}, k K_{2}\right) \leq \operatorname{ext}\left(m, n, k K_{2}\right)+1$.

Proof. The upper bound is obvious. For the lower bound, an extremal coloring of $K_{m, n}$ can be obtained from an extremal graph $K_{m, k-2}$ for $\operatorname{ext}\left(m, n,(k-1) K_{2}\right)$ by coloring the edges of $K_{m, k-2}$ differently and the edges of $\overline{K_{m, k-2}}$ by one extra color. So, the coloring does not contain a TMC $k K_{2}$.

In the sequel, for a set of vertices X of a graph G we use $G-X$ to denote the subgraph of G obtained by deleting from G all the vertices in X and all the edges incident with them; whereas for a set of edges F of G we use $G-F$ to denote the subgraph of G obtained by deleting from G only all the edges in F. If $F=\{f\}$ has a single edge, we simply use $G-f$ to denote $G-\{f\}$. We will now show that the lower bound can be achieved for all $m \geq n \geq k \geq 3$, and thus obtain the exact value of $r b\left(K_{m, n}, k K_{2}\right)$ for all $k \geq 3$.

Theorem $2.5 \operatorname{rb}\left(K_{m, n}, k K_{2}\right)=\operatorname{ext}\left(m, n,(k-1) K_{2}\right)+2=m(k-2)+2$ for all $m \geq n \geq k \geq 3$.

Proof. For $m \geq n \geq k \geq 3$, let the edges of $K_{m, n}$ be colored with $m(k-2)+2$ colors. Suppose that $K_{m, n}$ contains no TMC $k K_{2}$. Since $m(k-2)+2=\operatorname{ext}(m, n,(k-$ 1) $\left.K_{2}\right)+2$, there is a TMC $(k-1) K_{2}$ in the coloring of $K_{m, n}$. Now let $G \subset K_{m, n}$ be a TMC spanning subgraph of size $m(k-2)+2$ containing a $(k-1) K_{2}$, and so $|E(G)|=m(k-2)+2$. We suppose that the two parts of the bipartite graph G

Figure 1: The special case of graph G in Claim 1.
are A and B with $|A|=m$ and $|B|=n$. First, we prove the following two assertions.

Claim 1: If one component of G consists of a $K_{m, k-2}$ and two adjacent pendant edges and the other components are isolated vertices (see Figure 1), then $K_{m, n}$ contains a TMC $k K_{2}$.

Denote $S G_{1}$ as the special case of graph G with the property in Claim 1, and Q as the set of isolated vertices of G. The proof of the claim is given by distinguishing the following two cases:

Case I. $m=n=k=3$.
Without loss of generality, we suppose that $A=\left\{p_{1}, p_{2}, p_{3}\right\}, B=\left\{q_{1}, q_{2}, q_{3}\right\}$, $c\left(p_{1} q_{1}\right)=1, c\left(p_{2} q_{1}\right)=2, c\left(p_{3} q_{1}\right)=3, c\left(p_{3} q_{2}\right)=4$ and $c\left(p_{3} q_{3}\right)=5$. Suppose $K_{m, n}$ contains no $3 K_{2}$. Hence $c\left(p_{2} q_{2}\right) \in\{1,5\}$ and $c\left(p_{1} q_{3}\right) \in\{2,4\} \cap\left\{3, c\left(p_{2} q_{2}\right)\right\}=\emptyset$, a contradiction.

Case II. $m \geq 4$.
Without loss of generality, we suppose that $c\left(a_{1} b_{1}\right)=1, c\left(a_{1} b_{2}\right)=2, c\left(a_{1} b_{3}\right)=3$ and $c\left(a_{2} b_{3}\right)=4$ (see Figure 1).

We will show that $c\left(a_{2} b_{2}\right)=1$. If $c\left(a_{2} b_{2}\right)=2,3$ or 4 , it is obvious that there is a TMC $k K_{2}$ in $K_{m, n}$. Otherwise, $c\left(a_{2} b_{2}\right)=q(5 \leq q \leq m(k-2)+2)$. In $G_{1}=G-\left\{Q \cup a_{1} \cup a_{2} \cup b_{1} \cup b_{2}\right\}$, the number of edges whose colors are not q is at least $(m-2)(k-2)-1$. Since $m \geq 4$, we have $(m-2)(k-2)-1 \geq$ $\operatorname{ext}\left(m-2, k-2,(k-2) K_{2}\right)+1=(m-2)(k-3)+1$. Thus we can obtain a TMC $H=(k-2) K_{2}$ in G_{1}, and hence there is a TMC $k K_{2}=H \cup\left\{a_{1} b_{1}, a_{2} b_{2}\right\}$ in $K_{m, n}$. So $c\left(a_{2} b_{2}\right)$ must be 1 .

We shall show that $c\left(a_{3} b_{1}\right) \in\{2,4\}$. If $c\left(a_{3} b_{1}\right)=1$ or 3 , we can obtain a TMC $H^{\prime}=(k-3) K_{2}$ in $G_{2}=G-\left\{Q \cup a_{1} \cup a_{2} \cup a_{3} \cup b_{1} \cup b_{2} \cup b_{3}\right\}$, and hence there is a TMC $k K_{2}=H^{\prime} \cup\left\{a_{1} b_{2}, a_{2} b_{3}, a_{3} b_{1}\right\}$ in $K_{m, n}$. Otherwise, $c\left(a_{3} b_{1}\right)=q(5 \leq q \leq m(k-2)+2)$. In $G_{3}=G-\left\{Q \cup a_{1} \cup a_{3} \cup b_{1} \cup b_{2}\right\}$, the number of edges whose colors are not q

Figure 2: T_{1} and R_{2} are saturated by M.
is at least $(m-2)(k-2)-1$. Similar to the above arguments, we can obtain a TMC $H^{\prime \prime}=(k-2) K_{2}$ in G_{3}, and hence there is a TMC $k K_{2}=H^{\prime \prime} \cup\left\{a_{1} b_{2}, a_{3} b_{1}\right\}$ in $K_{m, n}$. Thus, $c\left(a_{3} b_{1}\right) \in\{2,4\}$.

Now we can obtain a TMC $H^{\prime \prime \prime}=(k-3) K_{2}$ in $G_{2}=G-\left\{Q \cup a_{1} \cup a_{2} \cup a_{3} \cup\right.$ $\left.b_{1} \cup b_{2} \cup b_{3}\right\}$, and hence there is a TMC $k K_{2}=H^{\prime \prime \prime} \cup\left\{a_{1} b_{3}, a_{2} b_{2}, a_{3} b_{1}\right\}$ in $K_{m, n}$.

Claim 2: If one component of G consists of a $K_{m-1, m-1}$ and a pendant edge (say $p v$ with $d_{G}(v)=1$) and the other component is an isolated vertex (say u), then $K_{m, n}$ contains a TMC $m K_{2}$.

Denote $S G_{2}$ as the special case of graph G with the property in Claim 2. The proof of the claim is given as follows:

Now $|E(G)|=(m-1)^{2}+1=m(k-2)+2$, and $m=n=k$. Without loss of generality, we suppose $c(u v)=1$. Then in $G_{3}=G-u-v$, the number of edges whose colors are not 1 is at least $(m-1)(m-1)-1$. Since $m \geq 3$, we have $(m-1)(m-1)-1 \geq \operatorname{ext}\left(m-1, m-1,(m-1) K_{2}\right)+1=(m-1)(m-2)+1$. Thus we can obtain a TMC $H=(m-1) K_{2}$ in G_{3}, and hence there is a TMC $m K_{2}=H \cup u v$ in $K_{m, n}$.

From Lemma 2.1 we have that there exists a subset S of A such that $|S|-$ $\left|N_{G}(S)\right|=m-k+1$ and $0 \leq\left|N_{G}(S)\right| \leq k-1$. We define in $G R_{1}=S$ and $R_{2}=A-S, T_{1}=N_{G}(S)$ and $T_{2}=B-N_{G}(S)$. Let M be a maximum matching of G, then T_{1} and R_{2} are saturated by M. There exists an edge $e=z_{1} z_{2} \in E_{K_{m, n}}\left(R_{1}, T_{2}\right)$, $z_{1} \in R_{1}, z_{2} \in T_{2}, z_{1} \notin\langle M\rangle, z_{2} \notin\langle M\rangle$. Without loss of generality, we suppose $c(e)=1$, see Figure 2. So, there exists an edge $e_{1} \in M$ such that $c\left(e_{1}\right)=1$. Now we distinguish three cases to finish the proof of the theorem.

Case 1. $\left|N_{G}(S)\right|=k-1$.

In this case, $R_{1}=A$, there is no $(k-1) K_{2}$ in $G^{\prime}=G-\left(T_{2} \cup z_{1}\right)-e_{1}$. By Theorem 2.2, $\left|E\left(G^{\prime}\right)\right| \leq(m-1)(k-2)$. Thus,
$|E(G)|=1+\left|E\left(G^{\prime}\right)\right|+\left|E_{G}\left(z_{1}, T_{1}\right)\right| \leq 1+(m-1)(k-2)+(k-1) \leq m(k-2)+2$.
If $m>k$, since $|E(G)|=m(k-2)+2$, then $G^{\prime}=K_{m-1, k-2}$ and $\left|E_{G}\left(z_{1}, T_{1}\right)\right|=k-1$. It is easy to check that $\left(G-e_{1}+e\right) \cong S G_{1}$, and by the proof of Claim 1 we can obtain a TMC $k K_{2}$ in $K_{m, n}$. If $m=k$, again since $|E(G)|=m(k-2)+2$, it is easy to check that $\left(G-e_{1}+e\right) \cong S G_{1}$ or $G \cong S G_{2}$, and by Claim 1 and Claim 2 we can obtain a TMC $k K_{2}$ in $K_{m, n}$.

Case 2. $\left|N_{G}(S)\right|=0$.
In this case, $G^{\prime}=G-\left(R_{1} \cup z_{2}\right)-e_{1}$ and there is no $(k-1) K_{2}$ in G^{\prime}. Similarly, $|E(G)|=1+\left|E\left(G^{\prime}\right)\right|+\left|E_{G}\left(z_{2}, R_{2}\right)\right| \leq 1+(n-1)(k-2)+(k-1) \leq n(k-2)+2$. If $m>n$, this contradicts that G has $m(k-2)+2$ edges; if $m=n$, by Case 1 we can obtain a TMC $k K_{2}$ in $K_{m, n}$.

Case 3. $1 \leq\left|N_{G}(S)\right| \leq k-2$.
Subcase 3.1. $e_{1} \in E_{G}\left(R_{2}, T_{2}\right)$.
In this case, there is no TMC $\left(k-1-\left|N_{G}(S)\right|\right) K_{2}$ in $G^{\prime}=G\left[R_{2} \cup T_{2}\right]-z_{2}-e_{1}$. Thus,

$$
\begin{aligned}
|E(G)|= & 1+\left|E\left(G^{\prime}\right)\right|+\left|E_{G}\left(z_{2}, R_{2}\right)\right|+\left|E_{G}\left(T_{1}, A\right)\right| \\
\leq & 1+\left(k-2-\left|N_{G}(S)\right|\right)\left(n-\left|N_{G}(S)\right|-1\right) \\
& +\left(k-1-\left|N_{G}(S)\right|\right)+m\left|N_{G}(S)\right| \\
\leq & \max \{3+n(k-2)+(m-n)-(k-2), m(k-2)+2\} \\
\leq & m(k-2)+2
\end{aligned}
$$

Since $|E(G)|=m(k-2)+2$, it is easy to check that G^{\prime} is an empty graph and $G \cong S G_{1}$, and hence there is a TMC $k K_{2}$ in $K_{m, n}$.

Subcase 3.2. $e_{1} \in E_{G}\left(R_{1}, T_{1}\right)$.
In this case, $G^{\prime}=G\left[R_{1} \cup T_{1}\right]-z_{1}-e_{1}$ and there is no TMC $\left|N_{G}(S)\right| K_{2}$ in G^{\prime}. Similarly,

$$
\begin{aligned}
|E(G)| & =1+\left|E\left(G^{\prime}\right)\right|+\left|E_{G}\left(z_{1}, T_{1}\right)\right|+\left|E_{G}\left(R_{2}, B\right)\right| \\
& \leq 1+\left(\left|N_{G}(S)\right|-1\right)\left(\left|N_{G}(S)\right|+m-k\right)+\left|N_{G}(S)\right|+n\left(k-1-\left|N_{G}(S)\right|\right) \\
& \leq \max \{3+m(k-2)+(n-m)-(k-2), n(k-2)+2\} \\
& \leq m(k-2)+2
\end{aligned}
$$

If $m>n$, then $|E(G)|<m(k-2)+2$, a contradiction. Otherwise, $|E(G)|=$ $m(k-2)+2$ only if $\left|N_{G}(S)\right|=1$ and G^{\prime} is an empty graph and $G \cong S G_{1}$, hence there is a TMC $k K_{2}$ in $K_{m, n}$. The proof is now complete.

Acknowledgement. The authors are very grateful to the referees for their valuable suggestions and comments which helped to improve the presentation.

References

[1] N. Alon, On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 7(1983), 91-94.
[2] M. Axenovich, T. Jiang, and A. Kündgen, Bipartite anti-Ramsey numbers of cycles, J. Graph Theory 47(2004), 9-28.
[3] J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications", Macmillan, London; Elsevier, New York, 1976.
[4] P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey theorems, in: A. Hajnal, R. Rado, V.T. Sós (Eds), Infinite and Finite Sets, Vol. II, Colloq. Math. Soc. János Bolyai 10(1975), 633-643.
[5] J.J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs and Combinatorics 21(2005), 343C354.
[6] L. Lovász and M.D. Plummer, Matching Theory, Ann. Discrete Math., No.29, North-Holland, 1986, 17-18.
[7] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286(2004), 157-162.
[8] M. Simonovits and V.T. Sós, On restricted colourings of K_{n}, Combinatorica 4(1984), 101-110.

[^0]: *Supported by NSFC, PCSIRT and the " 973 " program.

