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Abstract

A 2nd order conditional k-coloring of a graph G is a proper k-
coloring of the vertices of G such that every vertex of degree at least
2 in G will be adjacent to vertices with at least 2 different colors.
The smallest number k for which a graph G can have a 2nd order
conditional k-coloring is the 2nd order conditional chromatic num-

ber, denoted by χd(G). In this paper, we investigate the 2nd order
conditional 3-colorings of claw-free graphs. First, we prove that it is
NP -complete to determine if a claw-free graph with maximum degree
3 is 2nd order conditionally 3-colorable. Second, by forbidding a kind
of subgraphs, we find a reasonable subclass of claw-free graphs with
maximum degree 3, for which the 2nd order conditionally 3-colorable
problem can be solved in linear time. Third, we give a linear time
algorithm to recognize this subclass of graphs, and a linear time algo-
rithm to determine whether it is 2nd order conditionally 3-colorable.
We also give a linear time algorithm to color the graphs in the subclass
by 3 colors.

Keywords: Claw-free graph; Vertex coloring; 2nd Order conditional
coloring; (2nd Order conditional) Chromatic number; NP -complete;
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1 Introduction

We follow the terminology and notations of [1] and, without loss of generality,
consider simple connected graphs only. δ(G) and ∆(G) denote, respectively,
the minimum and maximum degree of a graph G. For a vertex v ∈ V (G), the
neighborhood of v in G is NG(v) = {u ∈ V (G) : u is adjacent to v in G}, and
the degree of v is d(v) = |NG(v)|. Vertices in NG(v) are called neighbors of v.
Pn denotes the path on n vertices. A subset S of V is called an independent

set of G if no two vertices of S are adjacent in G. An independent set S

is maximum if G has no independent set S ′ with |S ′| > |S|. The number
of vertices in a maximum independent set of G is called the independence

number of G and is denoted by α(G).

For an integer k > 0. A proper k-coloring of a graph G is a surjective
mapping c : V (G) → {1, 2, . . . , k} such that if u, v are adjacent vertices in
G, then c(u) 6= c(v). The smallest k such that G has a proper k-coloring is
the chromatic number of G, denoted by χ(G).

The 2nd order conditional coloring of a graph G is defined as a proper
coloring of G such that any vertex of degree at least 2 in G is adjacent to more
than one color class. For an integer k > 0, a proper 2nd order conditional

k-coloring of a graph G is thus a surjective mapping c : V (G) → {1, 2, . . . , k}
such that both of the following two conditions hold:

(C1) if u, v ∈ V (G) are adjacent vertices in G, then c(u) 6= c(v); and

(C2) for any v ∈ V (G), |c(NG(v))| ≥ min{d(v), 2}, where and in what
follows, c(S) = {c(u)|u ∈ S for a set S ⊆ V (G)}.

We call the first condition, which characters proper coloring, the adja-

cency condition, and we call the second condition the double-adjacency con-

dition. The smallest integer k > 0 such that G has a proper 2nd order
conditional k-coloring is the 2nd order conditional chromatic number of G,
denoted by χd(G).

In order to show the results in this paper, we will give some new defini-
tions. Similar to the definition of the 2nd order conditional coloring, a 2nd

order conditional k-edge-coloring of a graph G is a proper k-edge-coloring of
G such that every edge with at least 2 adjacent edges in G will be adjacent
to edges with at least two different colors. The smallest number k for which

2



a graph G can have a 2nd order conditional k-edge-coloring is the 2nd order

conditional edge chromatic number, denoted by χd
′(G).

The 2nd order conditional chromatic number has very different behaviors
from the traditional chromatic number. For example, Lai et al got that for
many graphs G, χd(G− v) > χd(G) for at least one vertex v of G, and there
are graphs G for which χd(G) − χ(G) may be very large.

From [4] we know that if ∆(G) ≤ 2, we can easily have a polynomial time
algorithm to give the graph G a 2nd order conditional χd-coloring. In [3],
Lai, Montgomery and Poon got an upper bound of χd(G) that if ∆(G) ≥ 3,
then χ2(G) ≤ ∆(G)+1. The proof is very long compared with the proof of a
similar result in the traditional coloring. In [4], Lai, Lin, Montgomery, Shui
and Fan got many new and interesting results on the 2nd order conditional
coloring. They also showed in [4] that the 2nd order conditional chromatic
number for claw-free graphs with maximum degree at most 3 is either 3 or
4, except when the input is a path or the 3-cycle. Recently, in [5] we proved
that it is NP -complete to determine if a triangle-free graph with maximum
degree 3 is 2nd order conditionally 3-colorable. This is a little interesting
because we know that for graphs G with ∆(G) = 3 the 3-colorable problem
of the traditional vertex coloring can be solved in polynomial time.

Let G be a graph with maximum degree 3. We define a family of sub-
graphs Ai of G, in which every Ai is a path with i vertices such that the i−2
internal vertices have degree 2 in G, and the two end-vertices have degree 3
in G. A pendant path of a graph G is such a path that the internal vertices
have degree 2 in G, one end-vertex has degree 1 and the other end-vertex has
degree 3. In the present paper, we concentrate on the 2nd order conditionally
3-colorable problem for claw-free graphs. First, we prove that for a claw-free
graph G with ∆(G) = 3 it is still NP -complete to decide if G is 2nd order
conditionally 3-colorable. This is also an interesting result which is different
from a result for the traditional colorings. Comparing with the result in [4]
that the 2nd order conditional chromatic number for claw-free graphs with
∆(G) ≤ 3 is either 3 or 4, except when the input is a path or the 3-cycle, we
then get that to determine whether the 2nd conditional chromatic number is
3 or 4 for claw-free graphs with ∆(G) ≤ 3, except when the input is a path or
the 3-cycle, is NP-complete. In order to find some kind of graphs for which
the 2nd order conditionally 3-colorable problem is polynomially solvable, we
consider the subclass of the claw-free graphs with maximum degree 3, in
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which every graph is Ai-free (i = 3j + 1, j ∈ Z
+). We find that this kind of

graphs can be recognized in O(n) time, and it can be done in O(n) time to
determine whether they are 2nd order conditionally 3-colorable, and we will
give an O(n) time algorithm to find a 2nd order conditional 3-coloring of the
graphs.

2 NP -complete results

In [4], the authors proved the following theorem:

Theorem 2.1 If G is claw-free, then χd(G) ≤ χ(G) + 2, and the equality

holds if and only if G is a cycle of length 5 or of even length not a multiple

of 3.

So, apart from some special cycles, the difference between the 2nd or-
der conditional chromatic number and the chromatic number for claw-free
graphs is at most 1. If we know χ(G) and there would be a polynomial time
algorithm to determine χ(G) = χd(G) or χ(G) = χd(G)+1 except the special
cycles described in Theorem 2.1, we can get some results on 2nd order con-
ditional colorings by those on the traditional colorings for claw-free graphs.
But unfortunately, we will show that even if we know the chromatic num-
ber of claw-free graphs, we cannot get the 2nd order conditional chromatic
number in polynomial time unless P = NP . By the relation between the
edge-coloring of a graph G and the vertex coloring of the line graph L(G) of
G, we will get the result immediately after we finish the proof of the following
Theorem 2.2.

First, we give a formal definition of the 2nd order conditionally 3-edge-

colorable problem, denoted by 2nd Con-3-Edge-Col, which is stated as
follows:

Input: A bipartite graph B = B(V, E) and ∆(B) = 3.

Question: Can one assign each edge a color, so that only 3 colors are
used and this is a 2nd order conditional edge-coloring ? i.e., is χd

′(B) ≤ 3 ?

In [2], the author proved that it is NP -complete to determine whether a
cubic graph is 3-edge-colorable. We will use the result to prove that the 2nd
Con-3-Edge-Col is NP -complete.
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Theorem 2.2 The 2nd Con-3-Edge-Col is NP -complete.

Proof. First, it is obvious that the problem is in NP .

Second, given a cubic graph C. For every edge in C, we will use a P5 to
replace the edge and construct a new graph B, i.e., we subdivide every edge
exact 3 times. The local transformation is shown in Figure 1.

Figure 1: The local transformation

It is easy to see that C is 3-edge-colorable if and only if B is 2nd order
conditionally 3-edge-colorable. And, by the structure of B, the length of
every cycle of B is a multiple of 4. So B does not have any odd cycles, and
thus is a bipartite graph. It is obvious that ∆(B) = 3. Since the 3-edge-
colorability for cubic graphs is NP -complete, the 2nd Con-3-Edge-Col must
be NP -complete.

Remark. In the proof, we can subdivide each edge 3j times for some j ∈ Z+,
instead of 3 times, and the proof can still hold. Different edge could use
different j. Therefore, we have the following stronger statement.

Theorem 2.3 It is NP -complete to determine whether a graph G is 2nd

order conditionally 3-edge-colorable, obtained from a cubic graph C by subdi-

viding each edge of C 3j times for some j ∈ Z+.

For traditional edge-colorings, if a graph G is bipartite, then χ′(G) =
∆(G) and there is a polynomial time algorithm to color it. So, Theorem 2.2
is different from the result for traditional edge-colorings.

Next, we give a formal definition of 2nd order conditionally 3-colorable

problem, denoted by 2nd Con-3-Col, which is stated as follows:
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Input: A graph G = G(V, E).

Question: Can one assign each vertex a color, so that only 3 colors are
used and this is a 2nd order conditional coloring ? i.e., is χd(G) ≤ 3 ?

By the structure of the bipartite graph B in the proof of Theorem 2.2,
we know that L(B) is a line graph with maximum degree 3. Notice that a
graph G is 2nd order conditionally k-edge-colorable if and only if the line
graph L(G) of G is 2nd order conditionally k-colorable. So, we have

Theorem 2.4 It is NP -complete to determine whether the line graph L(B)
with maximum degree 3 is 2nd order conditionally 3-colorable. As a result,

it is NP -complete to determine whether a line graph with maximum degree

3 is 2nd order conditionally 3-colorable.

Since line graphs are claw-free graphs, then we have

Theorem 2.5 For claw-free graphs G with ∆(G) = 3, the 2nd Con-3-Col is

NP -complete.

From [4], the 2nd order conditional chromatic number for claw-free graphs
with maximum degree at most 3 is either 3 or 4, except when the input is a
path or the 3-cycle, we therefore have

Theorem 2.6 To determine whether the 2nd conditional chromatic number

is 3 or 4 for claw-free graphs with ∆(G) ≤ 3, except when the input is a path

or the 3-cycle, is NP-complete.

For traditional colorings, it is polynomially solvable whether a graph G

is 3-colorable when ∆(G) ≤ 3. So we can see that the 2nd order conditional
coloring problem is very difficult to deal with even for claw-free graphs with
maximum degree 3. In next section we will find some reasonable kind of
graphs in which we can determine if a graph is 2nd order conditionally 3-
colorable in polynomial time. Theorems 2.3 and 2.4 could be omitted as
intermediate results. But, we prefer to list them in order to understand why
we choose to study this kind of graphs in next section.
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3 A polynomial time result

From Theorem 2.6, the 2nd Con-3-Col is NP -complete for claw-free graphs
with maximum degree 3, and because of Theorem 2.4, the problem is NP -
complete even for the line graph L(B), where B is built up from a cubic
graph by subdividing every edge exact 3 times. By reviewing the proof of
Theorem 2.2, we notice that there are many A4 in L(B). The question is:
can the 2nd Con-3-Col be solved in polynomial time for both claw-free and
A4-free graphs G with ∆(G) = 3 ? The answer is No, because in the local
transformation, we can use any Pi (i = 3j+2, j ∈ Z

+) to replace the edges of
the cubic graph C to get another graph B′, and C is 3-edge-colorable if and
only if B′ is 2nd order conditionally 3-edge-colorable. Although B′ may not
be bipartite, we can still get Theorem 2.4. So, another question is: can the
2nd Con-3-Col be solved in polynomial time for both claw-free and Ai-free
(for all i = 3j + 1, j ∈ Z

+) graphs G with ∆(G) = 3 ? The answer is Yes.
For convenience, we denote by C the set of graphs G with ∆(G) ≤ 3 which
are both claw-free and Ai-free (i = 3j + 1, j ∈ Z

+). Then we have

Theorem 3.1 The 2nd Con-3-Col is polynomially solvable for graphs in C .

Proof. Given a graph G in C . First, delete all the vertices in the pendant
paths of G except the end-vertices of degree 3, to get the first graph G1. It is
easy to see that G is 2nd order conditionally 3-colorable if and only if G1 is
2nd order conditionally 3-colorable. Then G1 has vertices of only degrees 2
and 3. Second, delete all the internal vertices in Ai (i = 3j+2, j ∈ Z

+) of G1,
and make the two end-vertices of each Ai (i = 3j+2, j ∈ Z

+) be adjacent, to
get the second graph G2. It is easy to see that G1 is 2nd order conditionally
3-colorable if and only if G2 is 2nd order conditionally 3-colorable. Third,
delete all the internal vertices in Ai (i = 3j + 3, j ∈ Z

+) of G2, and make
the two end-vertices of each Ai (i = 3j + 3, j ∈ Z

+) be adjacent, to get
the third graph G3. It is easy to see that G2 is 2nd order conditionally 3-
colorable if and only if G3 is 2nd order conditionally 3-colorable. Fourth,
consider the subgraphs A3 in G3, and there will be two kinds of A3 in G3:
one kind is denoted by A1

3, in which the two end-vertices of A3 is adjacent
(it means that the internal vertex is contained in a triangle), the other kind
is denoted by A2

3, in which the two end-vertices of A3 is nonadjacent (it
means that the internal vertex is not contained in a triangle). We delete all
the internal vertices in A2

3 of G3, and make the two end-vertices of each A2
3
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be adjacent, to get the fourth graph G4. It is easy to see that G3 is 2nd
order conditionally 3-colorable if and only if G4 is 2nd order conditionally
3-colorable. By noticing that in G4 every vertex is contained in a triangle,
we have that G4 is 2nd order conditionally 3-colorable if and only if G4 is
3-colorable. As a consequence, G is 2nd order conditionally 3-colorable if
and only if G4 is 3-colorable, and it is polynomially solvable whether G4 is
3-colorable since ∆(G4) = 3. Because we can get G4 from G in polynomial
time, the 2nd Con-3-Col is polynomially solvable when G is in C .

For traditional colorings, the only graph G with ∆(G) ≤ 3 which is not
3-colorable is K4 by Brook’s theorem. By the proof of Theorem 3.1 we can
easily get that there is only one class of graphs in C which are not 2nd order
conditionally 3-colorable. The graphs in the exceptional class, denoted by E ,
can be gotten by using a Pi (i = 3j or 3j − 1, j ∈ Z

+) to replace an edge of
K4.

For the graphs in C we can determine whether they are 2nd order con-
ditionally 3-colorable in polynomial time and we have also characterized the
exceptional graphs.

In next section, we will give a linear time algorithm to recognize the
graphs in C and another linear time algorithm to determine whether the
graphs in C are 2nd order conditionally 3-colorable. At last we will give a
linear time algorithm to color the graphs by 3 colors such that the adjacency
condition and the double-adjacency condition are both satisfied.

4 Linear time algorithms

First, we will give a linear time algorithm to recognize the graphs in C . The
input is a graph G = G(V, E) with |V | = n. The following are the main
steps of the recognition algorithm.

Algorithm 4.1 (Recognition Algorithm)

step 1. Check if the degree of every vertex in G is not more than 3. If not,
return the answer that G is not in C ; otherwise, go to step 2.

step 2. Check if the graph G is claw-free. If not, return the answer that G

is not in C ; otherwise, go to step 3.
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step 3. Check if the graph G is Ai-free (i = 3j + 1, j ∈ Z
+). If not, return

the answer that G is not in C . Otherwise, return the answer that G is
in C .

The following are the complexity analysis of the Recognition Algorithm:
It is obvious that step 1 can be done in O(n) time. If ∆(G) ≤ 3, we go to
step 2, otherwise G is not in C . Since ∆(G) ≤ 3, we only need to check the
vertices of degree 3. For every vertex of degree 3, if there is no claw in the
subgraph induced by the vertex and its neighbors, G is claw-free. So step 2
can be done in O(n) time. If G is claw-free, we go to step 3, otherwise G

is not in C . In step 3, we only need to check the edges whose two incident
vertices are of degree 2 in G. If the paths induced by the edges are not Pi

(i = 3j − 1, j ∈ Z+), then G is Ai-free (i = 3j + 1, j ∈ Z
+). If G is Ai-free

(i = 3j + 1, j ∈ Z
+), then G is in C , otherwise G is not in C . Since the

number of edges in G is no more than 3

2
n, step 3 can be done in O(n) time.

Second, we give a linear time algorithm to determine if a graph in C

is 2nd order conditionally 3-colorable. The input is a graph G = G(V, E)
in C with |V | = n. The following are the main steps of the determination

algorithm.

Algorithm 4.2 (Determination Algorithm)

step 1. Check if there is a vertex of degree 1. If so, return the answer that
G is 2nd order conditionally 3-colorable; otherwise, go to step 2.

step 2. Find the number of vertices whose degrees are 3. If the number is
not 4, return the answer that G is 2nd order conditionally 3-colorable;
otherwise, go to step 3.

step 3. Check if the graph G is in E . If so, return the answer that G is not
2nd order conditionally 3-colorable; otherwise, return the answer that
G is 2nd order conditionally 3-colorable.

The following are the complexity analysis of the Determination Algo-
rithm: It is easy to see that step 1 can be done in O(n) time. If there is a
vertex with degree 1, the graph G is 2nd order conditionally 3-colorable. If
there is no vertex with degree 1, we go to step 2. Step 2 can also be done
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in O(n) time. If the number of vertices of degree 3 is 4, we go to step 3.
In step 3, we only need to consider the edges whose two incident vertices
are of degree 2 in G. If there is no such edge, G is 2nd order conditionally
3-colorable if and only if G is not K4. If there are some such edges, we can
determine if G is 2nd order conditionally 3-colorable by the subgraph induced
by such edges. If there are more than one path in the subgraph, G is 2nd
order conditionally 3-colorable. Otherwise, G is in E , and is not 2nd order
conditionally 3-colorable. Since the number of edges in G is no more than
3

2
n, step 3 can be done in O(n) time.

Third, we will give an O(n) time algorithm to color the graphs in C by 3
colors such that the adjacency condition and the double-adjacency condition
are both satisfied. The input is a graph G = G(V, E) with |V | = n. Before
we give the algorithm, we will define a set of graphs, denoted by T , and give
some results about the graphs in T .

The graphs in T are constructed by the following two steps:

(1) Construct even number of vertex-disjoint triangles (3-cycles), and the
set of edges in the triangles is denoted by E1(G);

(2) For each triangle, let every vertex of the triangle be connected by an
edge to a vertex of another triangle, to construct a 3-regular graph.
And the set of added edges in this step (it means that the set of the
edges are not in any of the triangles) is denoted by E2(G).

Lemma 4.3 For any graph G in T , if there are n triangles in G, then

α(G) = n.

Proof. By the special structure of G that every vertex is contained in a
triangle, we can see that χ(G) = 3 and the three color classes have the same
cardinality n. So, α(G) ≥ n. If α(G) > n, there must be a triangle that
contains 2 vertices in the maximum independent set, which is impossible,
and so α(G) = n.

Lemma 4.4 Let G be in T and there are n triangles in G. For any maxi-

mum independent set S of G, we have that G \ S is bipartite.
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Proof. By Lemma 4.3, we know that |S| = n, and every triangle contains a
vertex in S. So, in G \ S the degrees of the vertices are 1 and 2. Then the
components of G \S are only vertex-disjoint paths and cycles. Furthermore,
no two edges in E1(G) are adjacent in G \ S. Also, no two edges in E2(G)
are adjacent in G \ S. So, the cycles in G \ S must be alternating and have
even number of edges, i.e., there are no odd cycles in G \ S, and thus G \ S

is bipartite.

Lemma 4.5 For any G in T , we can find a maximum independent set S of

G in linear time.

Proof. The algorithm is given as follows:

(a) We contract every triangle in G into a vertex, and if there are two edges
which are incident to the same two end-vertices, we can delete any one
of the two edges, to get a simple graph G′;

(b) By Depth-First or Breadth-First algorithm, we can find a spanning tree
of a graph in O(|V |+|E|) time. In our case, it is a linear time algorithm
to find the spanning tree T ′ of G′;

(c) Find a vertex vr which is adjacent to a leaf vl in T ′ as the root of the
tree. If d(vr) = 3, we delete vl to ensure d(vr) = 2 in the new tree
Tc = T ′ \ {vl} we will consider later. If d(vr) = 2, then Tc=T ′;

(d) For every edge ec in Tc, there are two vertices vs and vf incident to it,
and vs is the child of vf . By step (a), we know that there is an eo in G

corresponding to ec in Tc, and there is a vertex vo in the triangle cor-
responding to vs which is incident to eo. So, we can define an injection
f from Ec, the set of edges in Tc, to V (G) such that f(ec) = vo. Then
we can find a vertex set f(Ec) ⊂ V (G), and it is easy to see that f(Ec)
is an independent set;

(e) Consider the three vertices in the triangle in G corresponding to vr,
there is just one vertex vo

r of the three which can be added into f(Ec)
such that {vo

r} ∪ f(Ec) is an independent set. If d(vr) = 2 in T ′,
then let S = {vo

r} ∪ f(Ec), which is a maximum independent set of
G. If d(vr) = 3, there is still a triangle in G corresponding to vl in T ′
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that needs us to consider. Notice that except the vertex in the triangle
which is adjacent to vo

r , any one of the other two vertices in the triangle
(assume the vertex we choose is vo

l ) can be added into {vo
r}∪f(Ec) such

that S = {vo
r , v

o
l } ∪ f(Ec) is a maximum independent set of G.

One can easily see that the algorithm described above can be done in
linear time. So we have proved the lemma.

Now, it is time to give the 2nd order conditional 3-coloring algorithm for
a given graph G = G(V, E) ∈ C with |V | = n. The following are the main
steps of the algorithm.

Algorithm 4.6 (2nd Order Conditional 3-Coloring Algorithm)

step 1. Delete all the pendant paths except the vertices with degree 3, to
construct a graph G1, if there are some pendant paths in G;

step 2. If there are some Ai (i > 3) and A3 whose two end-vertices are
nonadjacent in G1, we delete all the internal vertices and make the two
end-vertices of each Ai be adjacent, then we get a graph G2;

step 3. If there is a vertex in G2 having degree 2, then it must be contained
in a triangle. We let the two vertices which are adjacent to the triangle
be adjacent, and delete the triangle to construct a new graph G′

2; And
we will do the operation again if there is still a vertex of degree 2 in
G′

2; Similarly, we will do the operation at most n times to construct a
graph G3. Then G3 is 3-regular;

step 4. If there is a subgraph K−

4 in G3, we do a transformation shown in
Figure 2 to get a graph G′

3. And we will do the transformation again if
there is a subgraph K−

4 in G′

3. Similarly, we will do the transformation
at most n times to get a graph G4 which does not contain the subgraph
K−

4 ;

step 5. Now G4 is in T . By Lemma 4.5, we can find a maximum indepen-
dent set S in G4 in linear time;

step 6. By Lemma 4.4, we know that G4 \ S is bipartite, so we can color
G4 \ S by 2 colors in linear time. We give the vertices in S the third
color, then we have colored G4 by 3 colors;
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step 7. Color the vertices deleted before to get a 2nd order conditional 3-
coloring of G.

vv uu

Figure 2: It is the transformation in step 4 of the algorithm 4.6. The left
graph in the rectangle is the subgraph K−

4 .

More detailed complexity analysis about the algorithm 4.6: It is obvious
that step 1 through step 6 can be done in linear time. In step 7, we first color
the vertices in V (G3) \ V (G4); second, color the vertices in V (G2) \ V (G3);
third, color the vertices in V (G1)\V (G2); forth, color the vertices in V (G1)\
V (G2); at last, we color the vertices in V (G) \ V (G1). In each sub-step of
step 7, we can easily find a linear time algorithm to color the vertices such
that the adjacency condition and the double-adjacency condition are both
satisfied in every Gi (i = 1, . . . , 4) and G. So, the algorithm 4.6 is an O(n)
time 2nd order conditional 3-coloring algorithm for graphs in C .

At last, because the 2nd order conditional 3-coloring is also a 3-coloring,
the 2nd order conditional 3-coloring algorithm is also a 3-coloring algorithm
for the graphs in C . Furthermore, it can also become a 3-coloring algorithm
for the claw-free graphs with maximum degree 3 if we modify the algorithm
a little bit.
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