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Abstract. In this paper we study canonical RNA pseudoknot structures. We prove central limit

theorems for the distributions of the arc-numbers of k-noncrossing RNA structures with given

minimum stack-size τ over n nucleotides. Furthermore we compare the space of all canonical

structures with canonical minimum free energy pseudoknot structures. Our results generalize

the analysis of Schuster et.al. obtained for RNA secondary structures [11] and [15, 14] to k-

noncrossing RNA structures. Here k ≥ 2 and τ are arbitrary natural numbers. We compare

canonical pseudoknot structures to arbitrary structures and show that canonical pseudoknot

structures exhibit significantly smaller exponential growth rates. We then compute the asymp-

totic distribution of their arc-numbers. Finally we analyze how the minimum stack-size and

crossing number factor into the distributions.
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1. Introduction

An RNA molecule is a sequence of the four nucleotides A, G, U and C together with the Watson-

Crick (A-U, G-C) and (U-G) base pairing rules. RNA molecules form “helical” structures by pair-

ing their nucleotides and thereby lowering their minimum free energy. The biochemistry of these

nucleotide-pairings favors parallel stacking of bonds due to entropy. The resulting 3-dimensional

configuration of the nucleotides is the RNA tertiary structure which, in many cases, determines

the functionality of the molecule. The prediction of RNA structures is a central question and of

crucial importance for finding and designing new RNA functionalities.

In this paper we study canonical RNA structures. Let us first explain what notion of coarse grained

structure we employ. We represent RNA structures as diagrams and focus on the intramolecular

nucleotide pair-interactions. Accordingly, we do not consider the particular embedding of the

nucleotides in 3-dimensional space. In the diagram representation we identify a Watson-Crick

(A-U, G-C) and (U-G) base pairing with an arc drawn in the upper halfplane and ignore the

bonds of the primary sequence. A diagram is a labeled graph over the vertex set [n] = {1, . . . , n}

in which each vertex has degree ≤ 1, represented by drawing its in a horizontal line and its arcs

(i, j), where i < j, in the upper half-plane. The vertices and arcs correspond to nucleotides

and Watson-Crick (A-U, G-C) and (U-G) base pairs, respectively. Diagrams have the two key

parameters k and τ . Here k − 1 is the maximum number of mutually crossing arcs, and τ the

minimum length of a stack. By a stack of length τ we mean a sequence of “parallel” arcs of the

form ((i, j), (i + 1, j − 1), . . . , (i + (τ − 1), j − (τ − 1))), see Figure 1. The length of an arc (i, j)

is given by j − i. We call a k-noncrossing diagram with arc-length ≥ 2 and stack-length ≥ τ a

k-noncrossing τ -canonical RNA structure. A 2-canonical structure is called a canonical structure.

In other words, canonical structures are those without isolated arcs. In Figure 1 we illustrate



STATISTICS OF CANONICAL RNA PSEUDOKNOT STRUCTURES 3

the properties k-noncrossing and canonicity. We denote the set (number) of k-noncrossing τ -

canonical RNA structures by Tk,τ (n) (Tk,τ (n)). k-noncrossing RNA structures for k ≥ 3 are called

pseudoknot RNA structures. In Figure 2 we give the diagram representation of the hammerhead

ribozyme [2].

Three decades ago Waterman et.al. pioneered the concept of RNA secondary structures [27, 29].

The latter are subject to the most strict combinatorial constraints: there exist no two arcs that

cross in the diagram representation of the structure. It is well-known, however, that there exist

crossing base pairs [20]. These configurations are called pseudoknots [30] and occur in functional

RNA (RNAseP [19]), ribosomal RNA [18] and are conserved in the catalytic core of group I

introns. Pseudoknots appear in plant viral RNAs pseudo-knots and in in vitro RNA evolution

[25] experiments have produced families of RNA structures with pseudoknot motifs, when binding

HIV-1 reverse transcriptase. Important mechanisms like ribosomal frame shifting [3] also involve

pseudoknot interactions. k-noncrossing RNA structures [16] allow to express pseudoknots and

generalize the concept of the RNA secondary structures in a natural way.

We are ultimately interested in designing new computer algorithms for the prediction of pseudoknot

RNA [21]. The prediction of RNA pseudoknots is at present time difficult. We are (a) in lack of

energy-parameters for specific pseudoknot motifs and (b) the combinatorial search-problem of

structural configurations is nontrivial. In contrast, for RNA secondary structures there exists a

dynamic programming routine which computes the minimum free energy structure for sequences

of length n = 100 within seconds. The complexity of this algorithm is O(n3) in time and O(n2) in

space [27] and in addition detailed energy parameters are available. Unfortunately, the dynamic

programming routine developed by Waterman [27, 28] does not work for pseudoknot RNA. Due

to the crossing of arcs no obvious recursive routine exists. Consequently, even if perfect data

on pseudoknot RNA energy parameters are available their prediction would still be hard–as a
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combinatorial problem in its own right. Let us next explain why k-noncrossing RNA structures

are conceptionally so different from RNA secondary structures. In Figure 3 we illustrate main steps

in the enumeration of k-noncrossing RNA structures [13]. A structure is translated into a sequence

of tableaux [4, 5] which corresponds to a Zk−1-walk that remains in the region {(x1, . . . , xk−1) ∈

Zk−1 | x1 ≥ x2 ≥ . . . xk−1 ≥ 0} which starts and ends at 0. The boundaries of the above region

are called walls. The enumeration is obtained employing the reflection principle. This method is

due to D. André in 1887 [1] and has subsequently been generalized by Gessel and Zeilberger [8].

In the reflection principle “bad” walks cancel themselves. I.e. one enumerates all walks and due to

cancellation only the ones survive that never touch the walls. This method does not trigger any

algorithmic intuition and is nonconstructive. The asymptotic analysis [14] showed in particular

that 3-noncrossing RNA structures grow at a rate of (5 +
√

21)/2. Accordingly, there exist more

3-noncrossing RNA structures than sequences over the natural alphabet! Of course this means that

not all 3-noncrossing RNA structures can possibly be realized as minimum free-energy structures

of natural sequences. This observation gives rise to the following question: can we identify the

structures which occur as minimum free energy structures? To answer this question we can get

some intuition from biophysics. Due to minimum free energy considerations isolated bonds do

(practically) not occur in pseudoknot RNA, leading to the notion of canonical structures. It

is therefore easy to identify a subset of pseudoknot structures containing minimum free energy

structures. The difficult part is their analysis which required the concept of core-structures [16].

The key observation about canonical k-noncrossing RNA structures is their small exponential

growth rates, see Table 2. In particular, there are significantly less k-noncrossing canonical RNA

pseudoknot structures than sequences over the natural alphabet. This gives some first clue on the

existence of neutral networks of RNA pseudoknot structures.

Let us put our results into context: Schuster et.al. [11] derived several asymptotic formulas for the

numbers of RNA secondary structures with given minimum stack- and arc-length. Furthermore it
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has been shown that the arc-numbers of all 3-noncrossing RNA structures satisfy a central limit

theorem [15]. In this paper we present a (k, τ)-matrix of central limit theorems, k − 1 being the

number of mutually crossing arcs and τ the minimum stack-length, see Figure 4 and Table 1. Our

results generalize those in [11] to arbitrary crossing number k. In comparison to [15] we present a

new sequence of arguments based on the D-finiteness of the generating functions. Our arguments

are much more “structural” and work for arbitrary crossing number k. For instance, we use

general structure theorems about asymptotic solutions of ODE in order to show the uniformity of

the error bounds in s and z. This uniformity is critical for the existence of central limit theorems.

Our results are derived from a new functional equation, proved in Lemma 3 which relates k-

noncrossing structures for arbitrary k and τ and a certain bivariate generating function of k-

noncrossing matchings. We give in Table 1 key information about our central limit theorems

listing means and variances for various k and τ . Table 1 shows that for secondary structures the

mean simply increases with increasing τ . This observation is intuitively clear: higher minimum

stack-size requirements result in more and more densely packed arc-configurations. In contrast,

pseudoknot structures for k > 2 exhibit a drop when passing from arbitrary to canonical structures.

Here the large stacks typical for canonical structures are antagonistic to complex crossing motifs.

We can paraphrase the situation by saying that canonical structures are more “ordered” and that

this order limits their numbers, see Figure 2 and Section 5

Let us finally discuss the relation between the statistics of all canonical pseudoknot structures and

those realized by some minimum free energy pseudoknot folding algorithm. Of course, in lack of

detailed energy parameters such a discussion is to some extend speculative. However, we believe

that statistically meaningful results can be produced. For a given sequence we search exhaustively

all canonical structures. This search is not trivial and utilizes the interpretation of RNA pseudo-

knot structures as tableaux-sequences [13], see Figure 3. In addition we are guaranteed to search

all possible canonical structures. As for energy parameters we use the standard energy assignments
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from Vienna RNAfold [10]. We then compute the arc-distributions induced by the top 5% pseu-

doknot structures. Here a “top”-structure is one that is optimal w.r.t. the energy parameters of

Vienna RNAfold [10]. Since the energy parameters for pseudoknot structures are not sufficiently

explored this averaging procedure is necessary in order to guarantee generic results. In Figure 5 we

present average arc-frequency distributions of canonical minimum free energy pseudoknot struc-

tures for 3000 uniform (uni) and random (rand) sequences, respectively. Here uniform means that

the ratios of the nucleotides within the sequence are equal. The data show that for k = 2 unimodal

curves with a mean of µuni = 11.8380 and µrand = 11.4125, respectively. For k = 3 we observe

µuni = 13.7807 and µrand = 13.2456. Theory predicts for k = 2, τ = 2, µ = 12.688 and for k = 3,

τ = 2, µ = 15.268, respectively.

2. Background

In this Section we discuss several basic facts instrumental for our arguments. For particular

background on crossings and nestings in diagrams and partitions we recommend the paper of

Chen et.al. [4, 5]. Analytic combinatorics and singularity analysis can be found in the book

of Flajolet [7]. In the following we will discuss the generating function of k-noncrossing RNA

structures [13], analytic continuation [14] and asymptotic analysis of k-noncrossing RNA structures

[14, 15]. We recall that Tk,τ (n) (Tk,τ (n)) denotes the set (number) of k-noncrossing RNA structures

with minimum stack length τ . Tk,τ (n) is identified with a set of diagrams. Such a diagram is

obtained by drawing its vertice 1, . . . , n in a horizontal line and its arcs (i, j), where i < j, in

the upper half plane. All arcs have a minimum length ≥ 2 and stack-length ≥ τ and k − 1 is

the maximum number of mutually crossing arcs. Furthermore let Tk,τ (n, h) denote the set of k-

noncrossing RNA structures stack-length ≥ τ having exactly h arcs and let Tk,τ (n, h) denote their

number. A k-noncrossing core-structure is a k-noncrossing RNA structures in which there exists
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no two arcs of the form (i, j), (i+ 1, j − 1). We denote the set (number) of core-structures having

h arcs by Ck(n, h) (Ck(n, h)) and Ck(n) (Ck(n)) denotes the set (number) of core-structures. We

will use core-structures in order to prove the central functional equation in Lemma 3. Let finally

fk(n, ℓ) be the number of k-noncrossing diagrams with arbitrary arc-length and ℓ isolated points.

These diagrams are also called partial matchings. For ℓ = 0 we refer to them as matchings since

they have no isolated vertices. To provide some intuition we present in Figure 6 the various types

of diagrams involved. Let us begin by stating two identities for the generating function of k-

noncrossing diagrams without (matchings) and with isolated points (partial matchings), due to

Grabiner et.al. [9]

∑

n≥0

fk(n, 0) · x
n

n!
= det[Ii−j(2x) − Ii+j(2x)]|k−1

i,j=1(2.1)

∑

n≥0

{

n
∑

ℓ=0

fk(n, ℓ)

}

· x
n

n!
= ex det[Ii−j(2x) − Ii+j(2x)]|k−1

i,j=1(2.2)

where Ir(2x) =
∑

j≥0(x
2j+r)/(j!(r + j)!) denotes the hyperbolic Bessel function of the first kind

of order r. Eq. (2.1) and (2.2) allow to prove that
∑

n≥0 fk(n, 0)xn is D-finite since the hyperbolic

Bessel function is D-finite and D-finite functions form an algebra closed under taking Hadamard

products. A power series u(x) is D-finite if dimK(x){u, u′, . . . } < ∞ [22]. In addition, eq. (2.1)

and (2.2) allow “in principle” for explicit computation of the numbers fk(n, ℓ). In particular for

k = 2 and k = 3 we have the formulas

(2.3) f2(n, ℓ) =

(

n

ℓ

)

C(n−ℓ)/2 and f3(n, ℓ) =

(

n

ℓ

)

[

C(n−ℓ)/2+2C(n−ℓ)/2 − C2
(n−ℓ)/2+1

]

,

where Cm denotes the m-th Catalan number. The second formula results from a determinant

formula enumerating pairs of nonintersecting Dyck-paths. In view of

fk(n, ℓ) =

(

n

ℓ

)

fk(n− ℓ, 0)
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everything can be reduced to matchings, where we have the asymptotic formula [17]

(2.4) fk(n) ∼ ck n
−((k−1)2+(k−1)/2) (2(k − 1))2n, for some ck > 0 .

The number of k-noncrossing RNA structures with ((n − ℓ)/2) arcs, Tk,1(n, (n − ℓ)/2), and the

number of k-noncrossing RNA structures, Tk,1(n), are given by [13]

Tk,1(n, (n− ℓ)/2) =

⌊n/2⌋
∑

b=0

(−1)b

(

n− b

b

)

fk(n− 2b, ℓ)(2.5)

Tk,1(n) =

⌊n/2⌋
∑

b=0

(−1)b

(

n− b

b

)

{

n−2b
∑

ℓ=0

fk(n− 2b, ℓ)

}

,(2.6)

where {∑n−2b
ℓ=0 fk(n − 2b, ℓ)} is given via eq. (2.2). The following functional identity is due to

[14] and relates the bivariate generating function for Tk,1(n, h), the number of RNA pseudoknot

structures with h arcs to the generating function of k-noncrossing matchings.

Lemma 1. Let k ∈ N, k ≥ 2 and z, u be indeterminants over C. Then we have the following

identity of analytic functions

(2.7)
∑

n≥0

∑

h≤n/2

Tk,1(n, h) u
2hzn =

1

u2z2 − z + 1

∑

n≥0

fk(2n, 0)

(

uz

u2z2 − z + 1

)2n

.

It will be important to deduce relations between the coefficients from the equality of generating

functions. The class of theorems that deal with this deduction are called transfer-theorems [7].

One key ingredient in this framework is a specific domain in which the functions in question are

analytic, which is “slightly” bigger than their respective radius of convergence. It is tailored for

extracting the coefficients via Cauchy’s integral formula. Details on the method can be found in

[7] and its application to 3-noncrossing RNA in [14]. To be precise, given two numbers φ,R, where
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R > 1 and 0 < φ < π/2 and ρ ∈ R the open domain ∆ρ(φ,R) is defined as

(2.8) ∆ρ(φ,R) = {z | |z| < R, z 6= ρ, |Arg(z − ρ)| > φ}

A domain is a ∆ρ-domain if it is of the form ∆ρ(φ,R) for some R and φ. A function is ∆ρ-analytic

if it is analytic in some ∆ρ-domain. We use the notation

(2.9) (f(z) = O (g(z)) as z → ρ) ⇐⇒ (f(z)/g(z) is bounded as z → ρ)

and if we write f(z) = O(g(z)) it is implicitly assumed that z tends to a (unique) singularity.

[zn] f(z) denotes the coefficient of zn in the power series expansion of f(z) around 0. Theorem 1

allows us to obtain key information about the coefficients of a power series based on its behavior

locally at its dominant singularities.

Theorem 1. [7] Let f(z) be a ∆-analytic function and g(z) its singular expansion at a singularity

ρ. That is we have in the intersection of a neighborhood of ρ with the ∆-domain

(2.10) f(z) = O(g(z)) for z → ρ .

Then we have

(2.11) [zn]f(z) = A (1 −O(1/n)) [zn]g(z) for some A ∈ C .

Let S(ρ, n) denote the subexponential factor of [zn] g(z) of the singularity ρ. Note that in general

[zn] g(z) is a sum over all dominant singularities of the form [zn] g(z) ∼
∑

i S(ρi, n)ρn
i . The second

result is a consequence of Theorem 1 and the uniformity lemma of singularity analysis see [7],

Lemma XI.2, p. 635.
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Theorem 2. Using the notation of Theorem 1, let ψ(z, s) be an algebraic, analytic function in z

and s such that ψ(0, s) = 0 and for |s| < ǫ all ψ(z, s)-singularities have modulus strictly greater than

ρ. In addition suppose γ(s) is the unique dominant singularity of f(ψ(z, s)) and unique analytic

solution of ψ(γ(s), s) = ρ for |s| < ǫ. Then f(ψ(z, s)) has a singular expansion and

(2.12) [zn]f(ψ(z, s)) = A(s) (1 −O(1/n)) S(ρ, n)

(

1

γ(s)

)n

for some A(s) ∈ C ,

uniformly for s contained in a neighborhood of 0.

The key property of the singular expansion of Theorem 2 is the uniformity of eq. (2.12) in the

parameter s. The observation that f(ψ(z, s)) has a singular expansion is due to Stanley, [22]

proved in the context of closure properties of D-finite functions. Transfer theorems are accordingly

a translation of error terms from functions to coefficients and guaranteed when the functions

in question are analytic in some ∆ρ-domain. For our purposes the D-finiteness of the ordinary

generating function
∑

n≥0 fk(2n, 0)x2n implies its ∆ρk
-analyticity and the existence of a singular

expansion, see Lemma 5.

3. Functional equations

The first Lemma relates the number of canonical structures to core-structures [16]. Core-structures

here serve as an intermediate step via which we can relate the numbers Tk,τ (n) and Tk,1(n).

Lemma 3 rewrites this bivariate generating function as a composition of two “simple” functions.

This is crucial for the subsequent singularity analysis insofar as we encounter a phenomenon known

as persistence of the singularity of the “outer” function, i.e. we have the supercritical case [6]. The

type of singularity coincides with that of the generating function of k-noncrossing matchings. In

Lemma 4 we use Lemma 3 in order to draw first conclusions about the singularities. Finally
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Lemma 5 asserts that we have an unique dominant singularity and that the subexponential factors

coincide with those from fk(2n, 0) and are independent of s.

Lemma 2. [16] Let k, τ ∈ N, k ≥ 2 and let u, x be indeterminants. Then we have the functional

relation

(3.1)
∑

n≥0

∑

h≤n
2

Tk,τ (n, h)uhxn =
∑

n≥0

∑

h≤n/2

Ck(n, h)

(

u · (ux2)τ−1

1 − ux2

)h

xn +
x

1 − x

and in particular, for u = 1

(3.2)
∑

n≥0

Tk,τ (n)xn =
∑

n≥0

∑

h≤n/2

Ck(n, h)

(

(x2)τ−1

1 − x2

)h

xn +
x

1 − x
.

The key idea is now to combine Lemma 2 and Lemma 1 as follows:

Lemma 3. Let k, τ ∈ N k ≥ 2 and suppose u, x are indeterminants. Then we have the functional

relation of formal power series

(3.3)
∑

n≥0

∑

h≤n/2

Tk,τ (n, h)uhxn =
1

u0x2 − x+ 1

∑

n≥0

fk(2n, 0)

( √
u0x

uox2 − x+ 1

)2n

where u0 = u0(x, u) is given by

(3.4) u0 =
u (ux2)τ−1

(ux2)τ − ux2 + 1
.

Considered as a relation between analytic functions, eq. (3.3) holds for u = es and |s| ≤ ǫ for ǫ

sufficiently small and |x| ≤ 1/2.

Proof. According to Lemma 2

(3.5)
∑

n≥0

∑

h≤n/2

Tk,τ (n, h)uhxn =
∑

n≥0

∑

h≤n/2

Ck(n, h)

(

u(ux2)τ−1

1 − ux2

)h

xn +
x

1 − x
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holds and in particular, for τ = 1

(3.6)
∑

n≥0

∑

h≤n/2

Tk,1(n, h)w
hxn =

∑

n≥0

∑

h≤n/2

Ck(n, h)

(

w

1 − wx2

)h

xn +
x

1 − x
.

According to Lemma 1 we have

(3.7)
∑

n≥0

∑

h≤n

Tk,1(n)w2hxn =
1

w2x2 − x+ 1

∑

n≥0

fk(2n, 0)

(

wx

w2x2 − x+ 1

)2n

Setting w2 = (u(ux2)τ−1)/(1 − ux2 + (ux2)τ ) we obtain

u (ux2)τ−1

1 − ux2
=

w2

1 − w2x2
.

We proceed by using the expression for w2 in order to relate eq. (3.5) and eq. (3.7). This “connec-

tion” is facilitated via eq. (3.6)

∑

n≥0

∑

n≤n/2

Tk,τ (n, h)uhxn =
∑

n≥0

∑

h≤n/2

Ck(n, h)

(

u(ux2)τ−1

1 − ux2

)h

xn +
x

1 − x

=
∑

n≥0

∑

h≤n/2

Tk,1(n, h)u
h
0x

n

=
1

u0x2 − x+ 1

∑

n≥0

fk(2n, 0)

( √
u0x

u0x2 − x+ 1

)2n

,

where u0 = (u(ux2)τ−1)/(1 − ux2 + (ux2)τ ). Eq. (3.3) can be considered as a relation between

analytic functions for x, u with the property 1 − ux2 + (ux2)τ 6= 0. The conditions u = es, |s| ≤ ǫ

for ǫ sufficiently small, |x| ≤ 1/2 and the continuity (in s) of the roots of the s parametrized family

of polynomials

ps(X) = (es X2)τ − esX2 + 1

guarantee that ps(x) 6= 0 for |x| ≤ 1/2, whence the Lemma. �
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Suppose ǫ > 0, k ∈ N, k ≥ 2 and u = es, where |s| < ǫ. We set

ϕn,k,τ (s) =
∑

h≤n/2

Tk,τ (n, h)ehs(3.8)

Uk(z, s) =
∑

n≥0

ϕn,k,τ (s)zn(3.9)

Via Lemma 3 the generating function
∑

n f(2n, 0)z2n becomes of interest. According to the theo-

rem of Pfringsheim [24] it has a dominant positive real singularity, which we denote by ρk.

Lemma 4. Suppose ǫ > 0, k ∈ N, k ≥ 2 and u = es, where |s| < ǫ. Then we have for |s| < ǫ,

z ∈ C the identity of formal power series:

(3.10) Uk(z, s) =
1

u0z2 − z + 1

∑

n≥0

fk(2n, 0)

( √
u0z

u0z2 − z + 1

)2n

where u0 = (es(esz2)τ−1)/(1 − esz2 + (esz2)τ ). Furthermore, any dominant singularity of Uk(z, s)

is a singularity of
∑

n≥0 fk(2n, 0)
(

(
√
u0z)/(u0z

2 − z + 1)
)2n

. Let γk,τ (s) be the solution of the

equation

(3.11)

√
u0z

u0z2 − z + 1
− ρk = 0 ,

such that γk,τ (0) is the minimal real positive solution of eq. (3.11). Then there exists an analytic

function γk,τ (s) such that γk,τ (s), is a dominant singularity of Uk(z, s).

Proof. The formal identity of eq. (3.10) follows from Lemma 3 setting u = es. We next prove the

existence of γk,τ (s). For this purpose we consider the equation

(3.12) F (z, s) =
(

(
√
u0z)/(u0z

2 − z + 1)
)

− ρk .

For s = 0 we easily derive that there exists a unique minimal real solution ω. For |s| < ǫ, we

observe F (ω, 0) = 0, Fz(ω, 0) 6= 0 and the partial derivatives Fz(z, s) and Fs(z, s) are continuous.
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According to the analytic implicit function theorem [7], there exists an unique analytic function

γk,τ (s) that satisfies

F (γk,τ (s), s) = 0 , and γk,τ (0) = ω

which proves that γk,τ (s) exists. Let us denoteWk(z, s) =
∑

n≥0 fk(2n, 0)
(

(
√
u0z)/(u0z

2 − z + 1)
)2n

.

Claim. For |s| < ǫ, all dominant singularities of Uk(z, s) are singularities of Wk(z, s) and γk,τ (s)

is a dominant singularity.

Let ζ(s) be a dominant singularity of Uk(z, s). Eq. (3.10) shows that ζ(s) is either a dominant

singularity of

Wk(z, s) or 1/(u0z
2 − z + 1) .

If ζ(s) is a singularity of 1/(u0z
2 − z + 1), then ζ(s) is also a singularity of

(3.13) ψτ (z, s) = (
√
u0z)/(u0z

2 − z + 1)

and Wk(z, s) is non-finite at ζ(s). We set now s = 0. Since Wk(z, 0) has positive coefficients and

γk,τ (0) is real and positive, |ζ(0)| ≤ γk,τ (0) implies

|Wk(ζ(0), 0)| ≤W (γk,τ (0), 0) ,

which is impossible since

(3.14) W (γk,τ (0), 0) =
∑

n

fk(2n, 0)ρ2n
k

and ρk is an algebraic singularity of
∑

n fk(2n, 0)z2n. We can conclude from this that the singularity

ζ(0) has modulus strictly larger than γk,τ (0), i.e. |ζ(0)| > γk,τ (0). We proceed by applying an

continuity argument. For ǫ sufficiently small and |s| < ǫ the singularities of 1/(u0z
2 − z + 1) and

γk,τ (s) are continuous in s. Therefore we can conclude that for sufficiently small ǫ

(3.15) |ζ(s)| > |γk,τ (s)|



STATISTICS OF CANONICAL RNA PSEUDOKNOT STRUCTURES 15

holds and we have proved that for |s| < ǫ and ǫ sufficiently small all dominant singularities of

Uk(z, s) are singularities of W (z, s). By construction γk,τ (s) is a singularity of U(z, s) and γk,τ (0)

is a dominant singularity of U(z, 0). Since γk,τ (s) is continuous we can conclude from this that for

ǫ sufficiently small γk,τ (s) is dominant, whence the Claim and the Lemma follows. �

Lemma 5. Suppose ǫ > 0, k ∈ N, k ≥ 2 and u = es, where |s| < ǫ. Then γk,τ (s) is the unique

dominant singularity of Uk(z, s) and

(3.16) [zn]Uk(z, s) = A(s) (1 −O(1/n)) n−((k−1)2+(k−1)/2)

(

1

γk,τ (s)

)n

for some A(s) ∈ C ,

uniformly in s in a neighborhood of 0. In particular, the subexponential factors of the coefficients

of Uk(z, s) coincide with those of Fk(z) =
∑

n fk(2n, 0)z2n and are independent of s.

Proof. Claim. γk,τ is the unique.

In view of Lemma 4 we analyze the dominant singularities of Fk(z) =
∑

n fk(2n, 0)z2n. For this

purpose we observe that Fk(z) =
∑

n fk(2n, 0)z2n is D-finite. Accordingly there exists some e ∈ N

for which Fk(z) satisfies an ODE of the form

(3.17) q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + qe,k(z)Fk(z) = 0 ,

where qj,k(z) are polynomials. The key point is now that any dominant singularities of Fk(z)

is contained in the set of roots of q0,k(z), which we denote by Mk [22]. We then compute, see

eq. (3.22)-(3.26), that for k = 3, . . . , 7, γk,τ is the unique solution with minimal modulus of

(3.18) ψτ (z, s) = |ρk|

(see eq. (3.13)) and γk,τ is in fact a solution of ψτ (z, s) = ρk. This proves the Claim. Let

Qγk,τ (s)(z, s) denote the singular expansion of Uk(z, s) at γk,τ (s). According to eq. (2.4) we have

fk(n) ∼ ck n
−((k−1)2+(k−1)/2) (2(k − 1))2n for some ck > 0. In combination with Theorem 1 we
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can conclude

Fk(z) =















O((z − ρk)(k−1)2+(k−1)/2)−1 ln(z − ρk)) for k odd, z → ρk

O((z − ρk)(k−1)2+(k−1)/2)−1) for k even, z → ρk,

in accordance with basic structure theorems for singularities of solutions of eq. (3.17) [7], p. 499.

According to Lemma 4 we have

(3.19) Uk(z, s) =
1

(u0z2 − z + 1)
Fk(ψτ (z, s))

where ψτ (z, s) is given by eq. (3.13). We showed in Lemma 4 that ψτ (z, s) does not induce any

dominant singularities and is regular at ρk. Let Qρk
(z) denote the singular expansion of Fk(z) at

the dominant singularity ρk, i.e.

Fk(z) = O(Qρk
(z)) for z → ρk .

The singular expansion of Fk(ψτ (z, s)), Qγk,τ (s)(z, s), is derived by substituting the Taylor-expansion

of ψτ (z, s) into Qρk
(z) and we observe

(3.20) Qγk,τ (s)(z, s) = Qρk
(ψτ (ζk(s), s)) = O(Qγk,τ (s)(z)) .

Indeed, eq. (3.20) follows immediately substituting ψτ (z, s) − ψτ (γk,τ (s), s) for z − ρk which does

not change the singular expansion. According to Theorem 2 we can conclude

(3.21) [zn]Uk(z, s) = A(s) (1 −O(1/n)) n−((k−1)2+(k−1)/2)

(

1

γk,τ (s)

)n

for some A(s) ∈ C ,

uniformly in s in a neighborhood of 0. Therefore the asymptotic expansion is uniform in s and

eq. (3.16) follows. The proof shows in addition that the subexponential factors of the coefficients

of Uk(z, s) coincide with those of Fk(z) and are independent of s. �



STATISTICS OF CANONICAL RNA PSEUDOKNOT STRUCTURES 17

In the following we give the polynomials q0,k(z) and their sets of roots for k = 3, . . . , 7. Note that

the following data confirm ρk = (2(k − 1))−1 as given in eq. (2.4)

q0,3(z) = (1/4 − 4z2) z2 M3 = {1/4,−1/4}

(3.22)

q0,4(z) = (144 z4 − 40 z2 + 1) z6 M4 = {1/2,−1/2, 1/6,−1/6}

(3.23)

q0,5(z) = (−80 z2 + 1024 z4 + 1) z8 M5 = {1/4,−1/4, 1/8,−1/8}

(3.24)

q0,6(z) = (−4144 z4 + 140 z2 + 14400 z6 + 1) z10 M6 = {1/2,−1/2, 1/6,−1/6, 1/10,−1/10}

(3.25)

q0,7(z) = (−1 − 12544 z4 + 224 z2 + 147456 z6) z12 M7 = {1/4,−1/4, 1/8,−1/8, 1/12,−1/12}

(3.26)

Analysis of ψτ (z, s) = |ρk| allows us to conclude that ρ3 = 1/4, ρ4 = 1/6, ρ5 = 1/8, ρ6 = 1/10 and

finally ρ7 = 1/12.

4. Central limit theorems

Before we state our main result we give a classic result on limit distributions which is instrumental

for its proof.

Theorem 3. (Lévy-Cramér) Let {ξn} be a sequence of random variables and let {ϕn(x)} and

{Fn(x)} be the corresponding sequences of characteristic and distribution functions. If there exists

a function ϕ(t), such that limn→∞ ϕn(t) = ϕ(t) uniformly over an arbitrary finite interval enclosing
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the origin, then there exists a random variable ξ with distribution function F (x) such that

Fn(x) =⇒ F (x)

uniformly over any finite or infinite interval of continuity of F (x).

We now consider the random variable Xn,k,τ having the distribution

P(Xn,k,τ = h) = Tk,τ (n, h)/Tk,τ (n)

where h = 0, 1, . . . ⌊n/2⌋. Remarkably, the particular distribution is determined by the shift of the

singularity parametrized by s. Lemma 4 and Lemma 5 provide the essential information about the

bivariate generating function Uk(z, s). The key point in Theorem 4 below consists in analyzing the

characteristic function and then to apply the Lévy-Cramér Theorem.

Theorem 4. Let k, τ ∈ N, k ≥ 2. Then for given k and τ there exist a pair (µk,τ , σk,τ ) such that

the normalized random variable

(4.1) Yn,k,τ =
Xn,k,τ − µk,τ n
√

nσk,τ
2

has asymptotically normal distribution with parameter (0, 1), i.e. we have

(4.2) lim
n→∞

P





Xn,k,τ − µk,τn
√

nσ2
k,τ

< x



 =
1√
2π

∫ x

−∞

e−1/2t2dt ,

where µk,τ and σ2
k,τ are given by

(4.3) µk,τ = −
γ′k,τ (0)

γk,τ (0)
, σ2

k,τ =

(

γ′k,τ (0)

γk,τ (0)

)2

−
γ′′k,τ (0)

γk,τ (0)
.
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Proof. Let us recall

ϕn,k,τ (s) =
∑

h≤n/2

Tk,τ (n, h)ehs Uk(z, s) =
∑

n≥0

ϕn,k,τ (s)zn .

Suppose we are given the random variable (r.v.) ξn with mean µn and variance σ2
n. We consider

the rescaled r.v. ηn = (ξn − µn)σ−1
n and the characteristic function of ηn:

(4.4) fηn
(t) = E[eitηn ] = E[eit ξn

σn ]e−i µn
σn

t .

Writing Xn instead of Xn,k,τ we derive for ξn = Xn, substituting the term E[eitηn ]

(4.5) fXn
(t) =

(

n
∑

h=0

Tk,τ (n, h)

Tk,τ (n)
eit h

σn

)

e−i µn
σn

t .

In view of

ϕn,k,τ (s) =
∑

h≤n/2

Tk,τ (n, h)ehs ,

we interpret
∑

h≤n/2 Tk,τ (n, h) and
∑

h≤n/2 Tk,τ (n, h)eh(it)/(σn), as ϕn,k,τ (0) and ϕn,k,τ ((it)/(σn)),

respectively. Writing ϕn instead of ϕn,k,τ , we accordingly obtain

(4.6) fXn
(t) =

1

ϕn(0)
ϕn(

it

σn
) e−i µn

σn
t .

Now we have arrived at the crucial point of the proof: we have to provide the interpretation of

ϕn(0) and ϕn((it)/(σn)). This is obtained via Lemma 5:

(4.7) [zn]Uk(z, s) = K(s) θk(n)
(

γk,τ (s)−1
)n

(1 −O(1/n)) for some K(s) ∈ C ,

uniformly in s and where θk(n) is some subexponential factor, independent of s (we showed that

the singular expansion remains invariant when substituting ψτ (z, s) for z). Therefore

(4.8) fXn
(t) ∼

K( it
σn

)

K(0)

[

γk,τ ( it
σn

)

γk,τ (0)

]−n

e−i µn
σn

t ,
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uniformly in t, where t is contained in an arbitrary, bounded interval. The rest of the proof is

analogous to [15]: taking the logarithm we obtain

(4.9) ln fXn
(t) ∼ ln

K( it
σn

)

K(0)
− n ln

γk,τ ( it
σn

)

γk,τ (0)
− i

µn

σn
t .

Expanding g(s) = ln(γk,τ (s))/(γk,τ (0)) in its Taylor series at s = 0, (note that g(0) = 0 holds)

yields

(4.10) ln
γk,τ ( it

σn
)

γk,τ (0)
=
γ′k,τ (0)

γk,τ (0)

it

σn
−
[

γ′′k,τ (0)

γk,τ (0)
−
(

γ′k,τ (0)

γk,τ (0)

)2
]

t2

2σ2
n

+O(

(

it

σn

)3

)

and therefore ln fXn
(t) becomes asymptotically

(4.11) ln
K( it

σn
)

K(0)
− n

{

γ′k,τ (0)

γk,τ (0)

it

σn
− 1

2

[

γ′′k,τ (0)

γk,τ (0)
−
(

γ′k,τ (0)

γk,τ (0)

)2
]

t2

σ2
n

+O(

(

it

σn

)3

)

}

− iµnt

σn
.

Uk(z, s) is analytic in s where s is contained in a disc of radius ǫ around 0 and therefore in particular

continuous in s for |s| < ǫ. In view of eq. (4.11) we introduce

µ = −
γ′k,τ (0)

γk,τ (0)
, σ2 =

{

(

γ′k,τ (0)

γk,τ (0)

)2

−
γ′′k,τ (0)

γk,τ (0)

}

Setting µn = nµ and σ2
n = nσ2 we can conclude from eq. (4.7) for fixed t ∈] −∞,∞[

(4.12) lim
n→∞

(lnK((it)/(σn)) − lnK(0)) = 0

and eq. (4.11) becomes

(4.13) ln fXn
(t) ∼ − t2/2 +O(((it)/σn)3)

uniform for t from any bounded interval. This is equivalent to limn→∞ fXn
(t) = exp(−t2/2),

uniformly in t. The Lévy-Cramér Theorem (Theorem 3) implies now eq. (4.2) and the proof of

Theorem 4 is complete. �
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5. Discussion

Let us begin with the case k = 2, i.e. RNA secondary structures. Sequence to structure mappings

into secondary structures have been analyzed by Schuster et.al. [11] where detailed asymptotics

has been derived. To our knowledge our central limit theorems are new results even for canonical

secondary structures. They have been observed [23] in data produced by the folding algorithm

Vienna RNAfold [10].

Canonical RNA pseudoknot structures exhibit significantly smaller growth rates than pseudoknot

structures with isolated bonds as shown in Table 2 and discussed in the Introduction. They have

been studied in [16] where their asymptotic numbers are derived. In Table 2 we provide a complete

overview of all relevant growth rates indexed by k and τ , i.e. the maximal number of crossing

arcs, k − 1 and the minimum stack-size, τ . For instance, for T3,2(n) and T4,2(n), the numbers of

canonical 3- and 4-noncrossing pseudoknot structures we have

(5.1) T3,2(n) ∼ 311.2470 · 4!

n(n− 1) · · · (n− 4)
2.5881n and T4,2(n) ∼ 1.217 · 107n− 21

2 3.0382n .

In other words: there are less canonical 3-noncrossing structures (2.5881) than arbitrary sec-

ondary structures (2.6180). Furthermore it is remarkable that 6-noncrossing canonical pseudoknot

structures still grow at a growth rate of less than 4: this structure class allows for very complex

pseudoknot configurations.

One important implication of the central limit theorems is that the numbers of arcs of canonical

secondary structures are concentrated at 0.3172n and for 3-(4-)noncrossing, canonical pseudo-

knot structures at 0.3817n(0.4035n), respectively. This concentration result proves two nontrivial

points: (a) the existence of neutral networks of any folding map into the latter structure classes
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and (b) nontrivial sequence to structure maps. Indeed, first they immediately imply that neutral

networks are exponentially small compared to sequence space over the natural alphabet: there are

only 6 choices for base pairs in Watson-Crick and G-U pairs as opposed to 42 = 16 choices for two

unpaired positions. Our results show that a certain fraction of positions in a pseudoknot structure

is paired and hence restrict the size of the set of sequences which fold into it. Secondly, since only

exponentially small subsets of sequence space can fold into a particular canonical structure, the

number of canonical structures of a typical sequence to structure map grows exponentially.

We shall proceed by discussing a structural difference between the parameters τ and k w.r.t. the

central limit theorems. Lemma 4 and Lemma 5 show that the minimum stack-size τ only appears

as a parameter of the inner function ψτ (z, s):

ψτ (z, s) =

√

es(esz2)τ−1

1−esz2+(esz2)τ z

es(esz2)τ−1

1−esz2+(esz2)τ z2 − z + 1
.

Therefore, varying the minimum stack-size, τ , does only result in a shift of the singularity but does

not change its type. In contrast the crossing number k, does affect both: type and location of the

singularity, since for different k we have different singular expansions and singularities ρk. Most

remarkably, for odd k there exists a logarithmic term in the singular expansion of the generating

function which controls the distribution (Lemma 5):

Fk(z) =















O((z − ρk)(k−1)2+(k−1)/2)−1 ln(z − ρk)) for k odd, z → ρk

O((z − ρk)(k−1)2+(k−1)/2)−1) for k even, z → ρk.

This shows how the concept of k-noncrossing, τ -stable RNA structures generalizes that of secondary

structures. The crossing number k alone controls the class of structures. A minimum stack-size

larger than 2 then leads to structure classes with moderate growth rates. Our results imply

furthermore explicit formulas for all singularities for arbitrary k and τ .
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Table 1 shows another intriguing feature: for k > 2 there is a unique minimum for the mean

number of arcs for τ = 2. Only for k = 2 we observe a monotone increase of µ as a function of τ .

This results from the fact that canonicity enforces stacking which is “by nature” antagonistic to the

complex crossing motifs, responsible for the high number of unrestricted pseudoknot structures.

This is intuitively clear: unrestricted structures can “pack” arcs more densely because for stacks

restrictive sequence symmetries are needed. We remark that canonical structures represent an

exponentially small subset of all unrestricted structures. I.e. we sample a set of practically “zero”

measure and increasing τ the sets becomes smaller and smaller. µ then increases with τ since

one considers smaller and smaller subsets that are by definition more and more densely packed.

µ = 0.5 would correspond to a perfect matching, i.e. a structure in which all bases are paired. In

view of this we observe a key difference between pseudoknot and secondary structures: the former

have significantly less unpaired bases. Of course this has to be considered in context with energy

parameters, see Figure 5, where we show that this finding remains valid for minimum free energy

pseudoknot structures.

A generic feature of folding algorithms into pseudoknot RNA structures [21] is that they cannot

control the number of mutually crossing arcs: a consequence of employing dynamic programming

paradigms. One look at Table 2 shows that these algorithms necessarily generate structure classes

which grow at rates much larger than 4. As a result only small subsets of structures can be real-

ized by folding maps as there are simply not enough sequences. Our analysis suggests to consider

designing folding maps into k-noncrossing, canonical structures. It offers the prospect of deriving

such algorithms in the near future as the absolute growth rates are small. In this context the

number of bonds in canonical pseudoknot RNA is of interest since the number of bonds entails

central information about the minimum free energy. Indeed, for canonical structures bonds can

only occur in stacks where main energy contributions originate. Therefore our findings quantify

how much lower free energies canonical pseudoknot RNA achieve. In addition our analysis shows
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that increasing the crossing number, k, does not linearly increase the mean number of bonds, see

Table 1. This suggests that 3-noncrossing canonical structures (exhibiting an exponential growth

rate of 2.5881) are a class of structures which could serve as a paradigm for RNA pseudoknot struc-

tures. We remark that already 3-noncrossing canonical structures contain “motifs” that cannot be

assigned an energy-value.
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Figure Captions

Figure 1

k-noncrossing and canonical: top diagram: the red/blue/green arcs mutually cross and the arcs

(1, 5) and (2, 6) are isolated. Accordingly, this is a 4-noncrossing, τ = 1 diagram without isolated

vertex. Bottom diagram: 3-noncrossing (no red/green cross), τ = 2 (canonical) diagram with

isolated vertex 6.

Figure 2

Diagram representation of the hammerhead ribozyme [2]. Two tertiary interactions are shown in

green arcs. The gap after C25 indicates that some nucleotides are omitted, which are involved in

an unrelated structural motif.

Figure 3

Counting RNA pseudoknot structures: from diagrams to tableaux-sequences and then to walks.

The enumeration is non-constructive and based on the reflection-principle. Here we choose (1, 0)

as start and endpoint of the walk. The resulting walk does not touch the walls x = y and x = −1.

Figure 4

Central limit theorems versus exact enumeration data for sequences of length n = 200 for canon-

ical 2-, 3-, and 4-noncrossing RNA pseudoknot structures. We display the asymptotic arc-length

distributions (solid curves: red/blue/green) and actual frequencies (dots) computed for n = 200.
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Table 1

Central limit theorems for Tk,τ (n, h) any k and τ . We list mean (µ) and variance (σ2). The

mean drops for pseudoknot RNA from τ = 1 to τ = 2 for k > 2. This indicates that canonical

pseudoknot structures have less arcs.

Figure 5

Distribution of arc-numbers of canonical minimum free energy pseudoknot structures. We display

the arc-frequency distributions for k = 2, 3 and n = 40, for uniform sequences (lhs) i.e. sequences

in which the ratios of all nucleotides are equal and random sequences (rhs). The shift in distri-

butions indicates that pseudoknot structures achieve lower minimum free energies than secondary

structures.

Figure 6

Basic diagram types: (a) a matching (f3(8, 0)), (b) partial matching with 1-arc (5, 6) and isolated

points 2, 7 (f3(8, 2)), (c) structure (i.e. minimum arc-length ≥ 2) with minimum stack-length 2

and no isolated point (T3,2(8)) and (d) structure with minimum stack-length 3 and isolated points

1, 5 (T2,3(8)).

Table 2

The exponential growth rates for some important classes of pseudoknot RNA [16]: τ = 1 corre-

sponds to structures with isolated arcs, τ = 2 are canonical structures. Increasing τ means to have

larger and larger minimum stack-sizes.
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k = 2 k = 3 k = 4

µ σ2 µ σ2 µ σ2

τ = 1 0.276393 0.0447214 0.390891 0.0415653 0.425464 0.0314706

τ = 2 0.317240 0.0643144 0.381701 0.0559928 0.403574 0.0470546

τ = 3 0.336417 0.0791378 0.383555 0.0670987 0.400288 0.0559818

τ = 4 0.348222 0.0916871 0.386408 0.0767872 0.400412 0.0667094

τ = 5 0.356484 0.1028563 0.389134 0.0855937 0.401402 0.0748305

τ = 6 0.362717 0.1130777 0.391573 0.0937749 0.402640 0.0823440

τ = 7 0.367658 0.1225974 0.393733 0.1014803 0.403908 0.0894075

k = 5 k = 6 k = 7

µ σ2 µ σ2 µ σ2

τ = 1 0.443020 0.0251601 0.453775 0.0209395 0.461750 0.0179291

τ = 2 0.416068 0.0413361 0.424531 0.0373179 0.430788 0.0342976

τ = 3 0.410087 0.0517052 0.416860 0.0474929 0.421957 0.0443150

τ = 4 0.408701 0.0603242 0.414487 0.0558238 0.418872 0.0524231

τ = 5 0.408741 0.0680229 0.413886 0.0632201 0.417800 0.0595864

τ = 6 0.409306 0.0751211 0.413996 0.0700206 0.417575 0.0661575

τ = 7 0.410071 0.0817830 0.414421 0.0763943 0.417747 0.0723092

Table 1.
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k 2 3 4 5 6 7 8 9 10

τ = 1 2.6180 4.7913 6.8541 8.8875 10.9083 12.9226 14.9330 16.9410 18.9472

τ = 2 1.9680 2.5881 3.0382 3.4138 3.7438 4.0420 4.3162 4.5715 4.8115

τ = 3 1.7160 2.0477 2.2704 2.4466 2.5955 2.7259 2.8427 2.9490 3.0469

τ = 4 1.5782 1.7984 1.9410 2.0511 2.1423 2.2209 2.2904 2.3529 2.4100

τ = 5 1.4899 1.6528 1.7561 1.8347 1.8991 1.9540 2.0022 2.0454 2.0845

τ = 6 1.4278 1.5563 1.6368 1.6973 1.7466 1.7883 1.8248 1.8573 1.8866

τ = 7 1.3815 1.4872 1.5528 1.6019 1.6415 1.6750 1.7041 1.7300 1.7533

τ = 8 1.3454 1.4351 1.4903 1.5314 1.5645 1.5923 1.6165 1.6378 1.6571

τ = 9 1.3164 1.3941 1.4417 1.4770 1.5054 1.5291 1.5497 1.5679 1.5842

τ = 10 1.2925 1.3610 1.4028 1.4337 1.4585 1.4792 1.4971 1.5129 1.5270

Table 2.


