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Abstract L. Addario-Berry et al. [Discrete Appl. Math., 2008, 156: 1168–
1174] have shown that there exists a 16-edge-weighting such that the induced
vertex coloring is proper. In this note, we improve their result and prove that
there exists a 13-edge-weighting of a graph G, such that its induced vertex
coloring of G is proper. This result is one step close to the original conjecture
posed by M. Karoński et al. [J. Combin. Theory, Ser. B, 2004, 91: 151–157].
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1 Introduction

All graphs considered are simple. We use E(S, T ) to denote the set of edges
with one end in S and the other in T. If v is an end vertex of edge e, we write it
e ∼ v. A k-edge-weighting of a graph G is an assignment of an integer weight
w(e) ∈ {1, 2, . . . , k} to each edge e ∈ E(G). An edge weighting naturally
induces a vertex coloring w by defining

w(u) =
∑

e∼u

w(e)

for every u ∈ V (G). We refer this coloring as an induced coloring. A k-
edge-weighting is vertex coloring if the induced coloring w is proper, i.e.,
w(u) �= w(v) for any edge uv ∈ E(G). In Ref. [3], Karoński, Luczak and
Thomason initiated the study of vertex coloring edge weighting. Clearly, a
graph with a component isomorphic to K2 cannot have a vertex coloring edge
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weighting. They made the following conjecture.

Conjecture Every graph without an edge component admits a vertex
coloring 3-edge-weighting.

There are several partial results towards to this conjecture. Karoński et
al. [3] verified this conjecture for 3-colorable graphs. Chang et al.1) showed
that all the trees and the regular bipartite graphs have vertex coloring 2-
edge-weighting. For general graphs, Addario-Berry et al. [1] proved that
every graph without an edge component permits a vertex coloring 30-edge-
weighting. Recently, they improved the required edge-weighting to 16.

Theorem 1 [2] Every graph without an edge component permits a vertex
coloring 16-edge-weighting.

In this note, base on the technique developed in Ref. [2] but with some
refinements, we are able to reduces the required weighting to 13.

Theorem 2 Every graph without an edge component permits a vertex col-
oring 13-edge-weighting.

2 Preliminary results

Before proving the main theorem, we need some preliminary results. The
degree constrained subgraphs play crucial roles in the proof of the main
theorem, so let us start with a degree constrained lemma, which is proved by
Addario-Berry et al. in Ref. [2].

Lemma 1 Given a bipartite graph G with bipartition X and Y. For each
v ∈ X, let a−

v = �d(v)/2� and a+
v = a−

v + 1. For each v ∈ Y, choose arbitrary
integers a−

v , a+
v satisfying 0 � a−

v � d(v)/2 � a+
v and

a+
v � min

{d(v) + a−
v

2
+ 1, 2a−

v + 1
}
. (2.1)

Then there exists a spanning subgraph F of G, such that dF (v) ∈ {a−
v , a+

v }
for all v ∈ V.

Remark 1 There is a minor glitch in the proof of Lemma 1 in Ref. [2].
But, with a slight adjustment in the statement (i.e., a−

v � d(v)/2 � a+
v ), the

original proof of the main result in Ref. [2] can be carried out as it is.

The following lemma is implied in the proof of Theorem 1 in Ref. [3], we
use it several times in our proof.

Lemma 2 Given a connected non-bipartite graph G = (V, E), a set of target
colors cv for all v ∈ V, and a positive integer k, where k is odd or

∑
v∈V cv

is even, there exists a k-edge-weighting of G such that for all v ∈ V,
∑

e∼v

w(e) ≡ cv (mod k).

1) Chang G J, Lu C, Wu J, Yu Q. Vertex coloring 2-edge weighting of bipartite graphs
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3 Proof of main result

Proof of Theorem 2 Obviously, we only have to consider the connected
graph.

If G is bipartite, it has been proven in Ref. [3] that there exists a vertex
coloring 3-edge-weighting. So we may assume that G is non-bipartite.

Let G be a nonempty graph (i.e., has at least one edge) and an ordered
pair (V1, V

′
1) be a partition of the vertices of G, so that the number of edges

between V1 and V ′
1 is maximized over all the ordered partitions, moreover,

V1 is minimized with respect to the maximum. Such an ordered pair (V1, V
′
1)

is called a maximum 2-cut of G.
Firstly, we investigate the properties of maximum 2-cuts. Note that if G

is nonempty, then there must exist a maximum 2-cut (V1, V
′
1), and V1 is a

nonempty proper subset of V. Clearly, by the minimality of V1, all the isolated
vertices of G belong to V ′

1 . Let (V1, V
′
1) be a maximum 2-cut of G, and v be

a arbitrary vertex in V1 with degree d in G[V1]. Then there exists at least
d + 1 edges in E(v, V ′

1 ). We call these edges the forward edges of v, and the
d neighbors of v in V1 the backward neighbors of v.

Let (V1, V
′
1) be a maximum 2-cut of G, and L be a collection of the

bipartite components of G[V ′
1 ]. Let R = G − V1 − L. If R is a nonempty

graph, then we have a maximum 2-cut (V2, V
′
2) of R. If G[V ′

2 ] is a nonempty
graph, then we can find a maximum 2-cut (V3, V

′
3) of G[V ′

2 ], and so on, to
generate V4, and let V5 = V ′

4 .
Assume that V5 exists, in other words, R, G[V ′

2 ] and G[V ′
3 ] are all nonempty

graph. If, in a certain step, the graph become empty before reaching V5, then
we stop, and use the similar argument present below to obtain a vertex col-
oring 12-edge-weighting of G (in this case, we have a stronger result). So we
may assume that V5 �= ∅.

Let
Y = {u ∈ V5 | u is not isolated in V5}.

From the construction, every vertex u in Y has at least 8dG[V5](u) � 8 edges
joining to V1. We choose a subset Eu with 8dG[V5](u) such edges. Let B be the
bipartite graph induced by ∪u∈Y Eu. If v ∈ V1 is adjacent to an even (resp.
odd) number of edges in B, then place v into the set V e

1 (resp. V o
1 ). Also,

partition the vertex-set of L into two sets La and Lb based on a 2-coloring
of L.

Next, define a vertex coloring cv on V :

cv =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, v ∈ V e
1 ,

2, v ∈ V o
1 ,

1, v ∈ La,

3, v ∈ Lb,

We assign cv for other vertices v in R such that
∑

v∈V cv is even (see
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Table 1). By Lemma 2, there exists a 4-edge-weighting w of G such that
∑

e∼v

w(e) ≡ cv (mod 4).

Then we discard the weights of edges with one end in R, that is, we only
need the weights of edges in G[V1 ∪ L].

Table 1 Value of cv

V e
1 V o

1 La Lb

0 2 1 3

Process the vertices of V1 in arbitrary order. For any vertex v ∈ V1, if all
the edges incident with v are weighted, i.e.,

NG(v) ∩ V ′
1 ⊆ L,

then we may add 4 to one edge ev in E(v, L) to adjust the induced coloring
of v, such that its coloring is 0 (mod 8). (Clearly, v ∈ V e

1 . Note that

0 �= |E(v, L)| � 1
2

dG(v),

so such an edge must exist.) Otherwise, we assign weight 3 to each unweighted
forward edge of v. Now, if the induced coloring of v is not as specified in Table
2, then we can add a weight between 1 and 7 to an edge ev ∈ E(v, R) to adjust
the induced coloring of v so that it is as specified in Table 2. Denote the new
induced coloring of v by w′

v. If v has d backward neighbors in V1, then it has at
least d+1 forward edges. For any edge in E(v, V ′

1 )\{ev}, we can add 8 to its
edge weight. Therefore, we have d+1 values in Wv = {w′

v, w
′
v+8, . . . , w′

v+8d}
as specified in Table 2. If u is a processed backward neighbor of v with
current coloring wu, we say that u blocks the range [wu − 2, wu + 2]. Since
each processed backward neighbor blocks a range of size 4, so it can block
at most one value in Wv. Thus we have at least one value, say wv, in Wv

that is not blocked by any processed backward neighbors of v. Hence we can
always add 8 to some edges in E(v, V ′

1 ) \ {ev} so that the induced coloring of
v equals to wv which is not blocked by any processed backward neighbors.

Table 2 Induced coloring of v under mod 8

V e
1 V o

1 La Lb

0 2 1 or 5 3 or 7

After processing the vertices in V1, all edges with one end in V1 ∪L have
weights between 1 and 12. Moreover, the edges with one end in V1 and the
other in R have weights between 3 and 11. For any vertices in R, let c′v be
the sum of weights on the weighted edges that are incident with v; if all
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incident edges of v are unweighted, let c′v = 0. Put nonnegative integer c′′v
for every vertex in R so that c′v + c′′v is as specified in Table 3. Note that
every component of R is non-bipartite and every component has at least one
vertex in V2. Since every vertex in V2 can only have

c′v + c′′v ≡ 1 or 2 (mod 4),

so we can choose c′′v so that the sum of c′′v for every component of R is even.
By Lemma 2, we have a 4-edge-weighting w′′ of R such that

∑

E(R)�e∼v

w′′(e) ≡ c′′v (mod 4)

for each vertex v ∈ V (R). Before this step, all the edges of R are unweighted.
Now, all the edges are weighted. Clearly, the induced colorings of vertices in
R are as specified in Table 3. Next, process the vertices in the order V2, V3, V4.
If the induced coloring of v is not as specified in Table 4, then we can add
weight 4 to one forward edge ev of v, so that its coloring is as specified in
Table 4. In our construction, all isolated vertices are put into the second
vertex set of the maximum 2-cut, thus such a forward edge must exist. After
processing the vertices in V2, V3, V4, the induced coloring for every vertex in
R is as specified in Table 4. As in V1, we can add 8 to some forward edges
so that the induced coloring of v is different from the coloring of backward
neighbors. Now, denote the induced coloring of a vertex v in G by wv.

Table 3 Induced coloring of a vertex v in R under mod 4

V2 V3 V4 V5

1 or 2 1 2 3

Table 4 Final induced coloring of a vertex v ∈ V under mod 8

V1 La Lb V2 V3 V4 V5

0 or 4 1 or 5 3 or 7 1 or 2 5 6 3 or 7

The remaining work to do includes: adjusting weights in B, finding the
desired subgraph F in Lemma 1 and verifying validity of (2.1). The argu-
ments for this are very similar to those in Ref. [2], but for completeness, we
include the details here for the readers.

Now, we need to adjust the weights of the edges in B to distinguish
colorings of adjacent vertices in V5 and ensure that the induced colorings of
all vertices in V1 are either 0 or 4 (mod 8), while preventing any new conflict
in V1. In this process, the degree constrained subgraphs in Lemma 1 play
crucial roles. Let F be a bipartite subgraph determined by (X, Y ), where

X = V1 ∩ V (B), Y = V5 ∩ V (B).
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For each edge e ∈ E(F ), we add 2 to its weight, and for each e ∈ E(B − F ),
we subtract 2.

Our goal is to find the required subgraph F. Choose {a−
v , a+

v } for each
vertex in X as follows: for each v ∈ X, let a−

v = �dB(v)/2� and a+
v = a−

v + 1.
Choose {a−

v , a+
v } for each vertex in Y as follows: process the vertices of Y in

arbitrary order, for each v ∈ Y in turn, we choose a−
v ∈ [dB(v)/4, dB(v)/2]

(recall that 8 divides dB(v), so this range has integer endpoints), and set

a+
v = a−

v +
dB(v)

4
+ 1.

In this process, we make our choice of {a−
v , a+

v } to ensure that for any previ-
ously processed neighbor u ∈ Y, any av ∈ {a−

v , a+
v } and any au ∈ {a−

u , a+
u },

wv + 2av − 2(dB(v) − av) �= wu + 2au − 2(dB(u) − au)

holds. Define
fv(x) = wv + 2x − 2(dB(v) − x)

for each vertex v ∈ Y. For distinct integers x, y ∈ [dB(v)/4, dB(v)/2], the
pairs

{
fv(x), fv

(
x +

dB(v)
4

+ 1
)}

,
{

fv(y), fv

(
y +

dB(v)
4

+ 1
)}

are disjoint. Then for any processed neighbor u, the pair {fu(a−
u ), fu(a+

u )}
can intersect at most two pairs of choices for {a−

v , a+
v }, but there are precisely

2dG[V5](v) + 1 choices for {a−
v , a+

v }, so the choice for {a−
v , a+

v } that we need
must exist.

Finally, to verify that the chosen {a−
v , a+

v } satisfies the conditions of
Lemma 1. For v ∈ X, the degree choice is exactly the same. For v ∈ Y,
we have

a−
v � dB(v)

2
� a+

v .

To see (2.1) holds: for v ∈ Y, since

a−
v � dB(v)

2
,

we have
a+

v = a−
v +

dB(v)
4

+ 1

=
dB(v)

4
+

a−
v

2
+

a−
v

2
+ 1

� dB(v)
2

+
a−

v

2
+ 1;

from

a−
v � dB(v)

4
,
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we have

a+
v = a−

v +
dB(v)

4
+ 1 � 2a−

v + 1,

that is, (2.1) holds for any v ∈ Y. Thus, by Lemma 1, there exists a subgraph
F in B such that after performing the additions/subtractions described as
above, all adjacent vertices in V5 have different colorings. Furthermore, the
induced coloring of all vertices in V5 are either 3 or 7 (mod 8).

The induced colorings of vertices in V e
1 either stay the same or increase

by 4, and thus are now either 0 or 4 (mod 8). Moreover, no conflicts are
created within V e

1 , because colorings of adjacent vertices were initially at
least 8 apart before performing the additions/subtractions in B. Similarly,
the induced colorings of vertices in V o

1 are now either 0 or 4 (mod 8), and
there are no conflicts created within V o

1 . Let uv ∈ E(G) with u ∈ V e
1 and

v ∈ V o
1 . If u and v have the same coloring, then by a simple counting,

|wu − wv| = 2,

a contradiction to the fact that u and v are at least 3 apart by the blocking
property. So no conflicts are created within V1.

Thus, we have achieved the target arises from Table 4. It is easy to see
that every edge end up with a weight in the range [1, 13], and the induced
colorings on the vertices of V form a proper coloring of G. �
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