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1. Introduction: Motivations for measure-valued flows

Given any Polish space E, let Bb(E) (resp. Cb(E)) be the set of all bounded measurable
(resp. bounded continuous) functions on it, and ‖ · ‖ the uniform norm on Bb(E). Let CE

(resp. DE) be the space of all continuous (resp. càdlàg) maps from [0,∞) to E equipped
with the locally uniform (resp. Skorohod) topology. Note M1(E) (resp. M(E)), the set
of all probabilities (resp. finite measures) on E endowed with the weak topology, can be a
Polish space under a suitable compatible metric. Denote by

〈µ, f〉 = µ(f) =
∫

E

f dµ

the integral of a measurable function f on E against a measure µ ∈ M(E) if it exists. Let

Ff,k(µ) =
〈
µk, f

〉
=
〈
µ⊗k, f

〉
:=
∫

Ek

f dµk, µ ∈ M1(E), f ∈ Bb

(
Ek
)
, k ≥ 1;

Bp(M1(E)) =
{
Ff,k

∣∣ ∀k ≥ 1, ∀f ∈ Bb

(
Ek
)}

,

Cp(M1(E)) =
{
Ff,k

∣∣ ∀k ≥ 1, ∀f ∈ Cb

(
Ek
)}

.

1The Project-sponsored by NCET-05-712; by Fok Ying Tung Education Foundation (No.101002); by
CNNSF (No.10571051); and by PCSIRT.
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Write C0(E) for the set of all continuous functions on E vanishing at infinity when E is
locally compact.

For any Euclidean space Rl, let C∞
b

(
Rl
)

be the set of all smooth functions on Rl with
derivatives of any orders are bounded, and C2

b

(
Rl
)

the set of all bounded continuous func-
tions on Rl with bounded continuous derivatives of orders one and two. Let N be the set of
all natural numbers.

Recall some notions for Markov processes. The semigroup {Vt}t≥0 on Bb(E) of an E-
valued càdlàg Markov process is weakly Fellerian if

Vtf ∈ Cb(E), ∀f ∈ Cb(E), ∀t ∈ R+ := [0,∞);

{Vt}t≥0 is said to be Fellerian on Cb(E) (resp. C0(E) when E is locally compact) if it is a
strongly continuous semigroup on Banach space (Cb(E), ‖ · ‖) (resp. (C0(E), ‖ · ‖)) .

For each k ∈ N, let Yk be an exchangeable càdlàg Markov process on Ek with the
semigroup

{
V k

t

}
t≥0

on Bb

(
Ek
)
. If any n-component of Yk evolves like Yn for any n, k

with n ≤ k, we say the family
{
Yk
}

k≥1
or
{{

V k
t

}
t≥0

}
k≥1

is consistent. For consistent

family
{
Yk
}

k≥1
, write

Yk =
((

Y 1
t (x1), · · · , Y k

t (xk)
)
t≥0

)
(x1,···,xk)∈Ek

,

where
(
Y 1

t (x1), · · · , Y k
t (xk)

)
is the position of Yk at time t starting from (x1, · · · , xk).

When E is locally compact, given a consistent exchangeable family
{
Yk
}

k≥1
in E (resp.

with the property that any two particles must stay together whenever they meet), assume
each

{
V k

t

}
t≥0

is Fellerian on C0

(
Ek
)
, by [25], there is a unique (in law) stochastic flow

(Kt)t≥0 of kernels (resp. stochastic flow (φt)t≥0 of measurable maps) associated to the
consistent exchangeable family, and this correspondence is one-to-one. For any µ ∈ M1(E),
its transportation under the flow is given by (µKt)t≥0 (resp. ((φt)∗µ)t≥0), where

(µKt)(dy) =
∫

E

Kt(x, dy) µ(dx) and (φt)∗µ(·) = µ ◦ φ−1
t (·).

Note in [25], the measure-valued process (µKt)t≥0 is constructed before constructing the
flow of kernels. The mentioned càdlàg M1(E)-valued Markov process is of the semigroup
{Tt}t≥0 satisfying

TtFf,k(µ) = FV k
t f,k(µ) =

〈
µk, V k

t f
〉
, ∀Ff,k ∈ Bp(M1(E)), ∀t ≥ 0. (1.1)

Now the following question arises from a theoretic view point: Given any Polish space
E and any consistent exchangeable càdlàg Markov process family

{
Yk
}

k≥1
on it. How do

probabilities are “transported” under the family? Namely, is there a unique càdlàg M1(E)-
valued Markov process X = (Xt)t≥0 with the semigroup {Tt}t≥0 determined by (1.1)? If
yes, then study its nice properties.

Motivations for studying the above processes are described as follows.
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In the deterministic situation, the flow of smooth (even measurable) maps and the (finite
or infinite) measure transported by this flow are extensively studied in ergodic theory ([8],
[1]). While for a stochastic flow (φt)t≥0 of measurable maps on E (not necessarily to be
locally compact), from

〈(φt)∗µ, f〉 = 〈µ, f ◦ φt〉, ∀f ∈ Bb(E), ∀t ≥ 0, ∀µ ∈ M1(E); (1.2)

(((φt)∗µ)t≥0)µ∈M1(E) is a dual of the flow and hence of its own interests (see [23] P135-147
for some interests of the process) and can be viewed as a measure-valued flow. Moreover,
there is a probabilistic notion, decay of correlations, expressing sensitivity of the dynamics,
is of importance in the characterization of complex systems ([36]); here sensitiveness means
orbits forget their initial state as time increases to ∞, which may be expressed by

Cµ
t (f, g) =

∫
E

f(z)(g ◦ φt)(z)µ(dz)−
∫

E

f dµ

∫
E

g dµ

should converges rapidly to zero as t →∞, for any f, g in some continuous function space F .
Where µ ∈ M1(E) (random or non-random) is a Sinai-Ruelle-Bowen (SRB) measure (note
even for stochastic dynamical systems, SRB-measure may be deterministic, see [2]). Assume
µf (dx) = f(x)µ(dx) ∈ M1(E). Then

Cµ
t (f, g) =

∫
E

g(z)(φt)∗µf (dz)−
∫

E

g dµ,

and the process ((φt)∗µf )t≥0 comes into picture.
On the other hand, if E is a Riemannian manifold with µ being the volume measure (not

necessarily to be a probability), the incompressibility of (φt)t≥0 is defined by

(φt)∗µ = µ, ∀t ≥ 0, a.s..

Note incompressibility is important for vorticity and turbulence from a view point of physics
([18], [28]) and for ergodic theory; and stochastic flows are usually viewed as turbulence mod-
els. So it is interesting how measures or probabilities evolve under a stochastic flow.

Note 1-point motion of a stochastic flow can be a Markov process usually, and not every
Markov process can correspond to a stochastic flow due to “singularities”; and representation
of Markov processes by a stochastic flow is an interesting research topic. Refer to [21]
Chapter I, [23], [32], [12], [16]. For some Markov process, there might be an interesting
consistent exchangeable family of all k-point motions (liking those of a flow) such that one-
point motion is the given Markov process, but there is no corresponding stochastic flow of
measurable maps (resp. kernels).

So in order to study how probabilities are transported under flows, motivated by Exam-
ples 2.3-2.8, we need to study the M1(E)-valued processes mentioned before. Notice (1.2).
The M1(E)-valued Markov process with the semigroup {Tt}t≥0 satisfying (1.1) is called a

measure-valued flow given consistent exchangeable family
{
Yk
}

k≥1

(
or
{{

V k
t

}
t≥0

}
k≥1

)
.

Our long aim is to establish a theory for MVFs. The present paper is at an initial stage: a
universal framework on MVFs is given by Theorem 2.1; and results on local time and Tanaka
formula for MVFs (and Fleming-Viot processes) are presented by Theorem 3.1 (and Theo-
rem 3.1′ respectively). Some interesting properties on MVFs will be studied by other papers.
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2. Main result I: Framework on measure-valued flows

Theorem 2.1. Given any Polish space E and any consistent exchangeable càdlàg Markov
process family

{
Yk
}

k≥1
on it. Denote by

{
V k

t

}
t≥0

the semigroup of each Yk. Then the
following results hold.

(1) There is a unique family of probabilities {Pν}ν∈M1(E) on DM1(E) such that

the coordinate process X = (Xt)t≥0 on DM1(E) becomes a Markov process

under {Pν}ν∈M1(E) whose semigroup {Tt}t≥0 satisfies (1.1); and X is

continuous under Pν for any ν ∈ M1(E) if so is each Yk.

(2) If each Yk is strongly Markovian, then so is
(
X, {Pν}ν∈M1(E)

)
.

(3)
(
X, {Pν}ν∈M1(E)

)
is weakly Fellerian and strongly Markovian provided each

Yk is weakly Fellerian.

Remark 2.2. One of the most interesting objects associated to a given consistent exchange-
able family is the stochastic flow of kernels (measurable maps)([25-26]). The present paper
limits to how probabilities evolve under the consistent exchangeable family.

The considered measure-valued process can be viewed as a measure-valued flow given a
consistent family of all k-point exchangeable processes. On one hand, measure-valued flow
is of interests for stochastic flows of measurable maps or kernels; on the other hand, an
interest in the measure-valued flows is that in some instances they may exist whereas the
general stochastic flows of measurable maps or kernels in [25-26] do not (see Examples in
section 2).

Note if E is Cosouslinian, then so are DE and CE ([10]). Theorem 2.1 holds for Cosouslin
space, which is left as an exercise to the interested readers.

[6] studied a class of stochastic flows connected to the coalescent processes (a class of
probability-valued Markov processes). In [6], an important auxiliary measure-valued process
viewed as a generalized Fleming-Viot process, is a measure-valued flow.

Example 2.3. There are consistent exchangeable families
{
Yk
}

k≥1
in Euclidean spaces

such that one can not determine generally whether each Yk is weakly Fellerian.

(i) Fix d ∈ N. For any k ∈ N, define an operator Ak as follows:

Akf(z1, · · · , zk) =
1
2

k∑
i=1

d∑
p,q=1

apq(zi)
∂2f

∂zp
i ∂zq

i

(z1, · · · , zk) +

1
2

∑
1≤i 6=j≤k

d∑
p,q=1

apq(zi, zj)
∂2f

∂zp
i ∂zq

j

(z1, · · · , zk) +

k∑
i=1

d∑
p=1

bp(zi)
∂f

∂zp
i

(z1, · · · , zk),

∀f ∈ C2
b

((
Rd
)k)

, (z1, · · · , zk) ∈
(
Rd
)k

, zi =
(
z1
i , · · · , zd

i

)
∈ Rd.
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Here for any 1 ≤ p, q ≤ d,

apq(·) ∈ Cb

(
Rd
)
, apq(·, ·) ∈ Cb

((
Rd
)2)

, bp(·) ∈ Bb

(
Rd
)
,

apq(z1) = aqp(z1), apq(z1, z2) = aqp(z2, z1), ∀(z1, z2) ∈
(
Rd
)2

;

and there is a constant η > 0 such that for any k ≥ 1 and any (z1, · · · , zk) ∈
(
Rd
)k

,

k∑
i=1

d∑
p,q=1

apq(zi)λ
p
i λ

q
i +

∑
1≤i 6=j≤k

d∑
p,q=1

apq(zi, zj)λ
p
i λ

q
j ≥ η

k∑
i=1

d∑
p=1

(λp
i )

2 ≥ 0,

∀
(
λ1

i , · · · , λd
i

)
∈ Rd, 1 ≤ i ≤ k.

For each k ≥ 1, use

Yk =
((

Y 1
t (z1), · · · , Y k

t (zk)
)
t≥0

)
(z1,···,zk)∈(Rd)k

to denote the unique Ak diffusion process, where
(
Y 1

t (z1), · · · , Y k
t (zk)

)
is the position of the

process at time t starting at (z1, · · · , zk). Note
{
Yk
}

k≥1
is a consistent exchangeable family.

When b ∈ Cb

(
Rd
)
, each Yk is weakly Fellerian. But for arbitrary b ∈ Bb

(
Rd
)
\ Cb

(
Rd
)
,

one can not determine generally whether each Yk is weakly Fellerian (For ‘bad’ coefficients,
one tends to believe Yk is not weakly Fellerian).

(ii) Assume 0 ≤ a(·) ∈ Bb

(
R1
)

and a(·)−1 is locally integrable, and let

Z(a) =
{

x ∈ R1
∣∣ a(x) = 0

}
.

Note

I(a) =
{

x ∈ R1

∣∣∣∣ ∫ ε

−ε

1
a(x + y)

dy = ∞, ∀ε > 0
}

= ∅ ⊆ Z(a).

Then for any initial point,
(

1
2a(x) ∂2

∂x2 , C2
b

(
R1
))

-martingale problem has a nonexploding
solution, and it has a unique nonexploding solution if and only if Z(a) = ∅. See [14] and
[7]. For all strong Markov processes (and Markov processes) generated by the operator
1
2a(x) ∂2

∂x2 , refer to [14].

Let Ω = {ω ∈ CR1 | ω0 = 0}; and µ0 be the Wiener measure, ω = (ωt)t≥0 the coordinate
process on Ω. Then ω is the standard 1-dimensional Brownian motion starting at 0. Let

T (s, x) = T (s, x)(ω) =
∫ s

0

1
a(x + ωu)

du,∀s ∈ [0,∞), x ∈ R1.

Then for any fixed x ∈ R1, due to a(·) is locally integrable against Lebesgue measure,

T (s, x) < ∞ is continuous in s ∈ [0,∞), µ0 − a.s.;

and due to

T (t, x)− T (r, x) ≥ t− r

‖a(·)‖
> 0, T (r, x) ≥ r

‖a(·)‖
, ∀0 ≤ r < t < ∞,
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T (s, x) strictly increases to ∞ as s ↑ ∞, a.s.. Put

R(t, x) = R(t, x)(ω) = inf{s ≥ 0 | T (s, x)(ω) > t}.

Then for fixed x ∈ R1, almost surely,

R(t, x) is continuous and strictly increasing in t and lim
t→∞

R(t, x) = ∞. (2.1)

For any x ∈ R1, let
Yt(x) = x + ωR(t,x)(ω), t ∈ [0,∞).

Then
Y =

(
(Yt(x))t≥0

)
x∈R1

is a 1
2a(x) ∂2

∂x2 -diffusion process. If Z(a) 6= ∅, define a different 1
2a(x) ∂2

∂x2 -diffusion process

Y =
((

Y t(x)
)
t≥0

)
x∈R1

as follows:

Y t(x) = Yt∧τ(x)(x) with τ(x) = inf {s ≥ 0 | Ys(x) ∈ Z(a)} , t ∈ [0,∞).

Any two independent Y particles must meet at a finite time due to (2.1) and the differ-
ence process for the two independent particles is a continuous martingale whose quadratic
variation process tends to +∞ as time goes to +∞. For any k ≥ 1, let Yk be the process ob-
tained from k-independent copies of the process Y by letting any two particles stay together
whenever they meet. Write

Yk =
((

Y 1
t (x1), · · · , Y k

t (xk)
)
t≥0

)
(x1,···,xk)∈Rk

.

Clearly,
{
Yk
}

k≥1
is a consistent exchangeable family. For arbitrary measurable a(·), one

can not determine generally whether each Yk is weakly Fellerian. For Y, if Z(a) is closed,
then

R1 \ Z(a) =
∞⋃

i=1

Ii, Ii = (ai, bi) 6= R1, Ii ∩ Ij = ∅, i 6= j, ai, bi ∈ R1 ∪ {−∞,∞}.

For some i 6= j with [ai, bi] ∩ [aj , bj ] = ∅, two independent Y particles starting at Ii and Ij

respectively can not meet; while with positive probability, any two independent Y particles
starting at the same Ii can meet at a finite time before they are absorbed at the boundary
of Ii. Similarly to Y, one also can get a nontrivial consistent exchangeable family for Y with
the property that any two particles must stay together whenever they meet. The mentioned
trick can be applied to other 1

2a(x) ∂2

∂x2 -diffusions.

For b(·) ∈ Bb

(
R1
)

such that b(·)2 ≤ c a(·) for some constant c > 0, use the Girsanov
argument, one can get 1

2a(x) ∂2

∂x2 + b(x) ∂
∂x diffusion Y1 =

(
(Y 1

t (x))t≥0

)
x∈R1 from Y and

Y and other 1
2a(x) ∂2

∂x2 -diffusions (when Z(a) 6= ∅). Apply the trick mentioned in previous
paragraph to 1

2a(x) ∂2

∂x2 +b(x) ∂
∂x diffusions to get nontrivial consistent exchangeable families

with the property that any two particles must stay together whenever they meet.
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Example 2.4. In the situation of Example 2.3(i), assume further (apq(x))1≤p,q≤d is the
identity matrix for any x ∈ Rd, that is, the A1-diffusion is a d-dimensional Brownian motion
with a drift. Write

Y 1
t (x) =

(
Y 1,1

t (x), · · · , Y 1,d
t (x)

)
∈ Rd, t ∈ [0,∞), x ∈ Rd.

Then for any x ∈ Rd and t ∈ (0,∞), by the Girsanov argument,

P
[
Y 1

t (x) = 0
]

= P
[
Y 1,1

t (x) = 0
]

= 0. (2.2)

For any x ∈ Rd, write x =
(
x1, · · · , xd

)
∈ Rd; and for each k ∈ N, let

Zi
t(xi) = Y i

t (xi)I[x1
i
6=0] + xiI[x1

i
=0], (x1, · · · , xk) ∈

(
Rd
)k

, t ∈ [0,∞), i ≤ k,

Zk =
((

Z1
t (x1), · · · , Zk

t (xk)
)
t≥0

)
(x1,···,xk)∈(Rd)k

.

Then by
{
Yk
}

k≥1
is a consistent exchangeable family and (2.2), we see

{
Zk
}

k≥1
is also

consistent and exchangeable, and each Zk is a continuous Markov process on
(
Rd
)k

. But
Z1 is not strongly Markovian and hence is not weakly Fellerian.

Indeed, otherwise, for any fixed x ∈ Rd with x1 6= 0, let

τ = inf
{

t > 0
∣∣∣ Z1,1

t (x) = 0
}

, where Z1
t (x) =

(
Z1,1

t (x), · · · , Z1,d
t (x)

)
;

by the strong Markov property of Z1,

E
[
Z1,1

1 (x) 6= 0, τ ≤ 1
]

= E
[
I[τ≤1]P1−τ

(
Z1

τ (x),
{

y ∈ Rd
∣∣ y1 6= 0

})]
= 0,

where Pt(z, dy) is the transition probability for Z1 which satisfies

Pt

(
z,
{

y ∈ Rd
∣∣ y1 6= 0

})
= 0 for z =

(
z1, · · · , zd

)
∈ Rd with z1 = 0.

While due to
(
Y 1

t (x)
)
t≥0

is the d-dimensional Brownian motion with a drift and note (2.2),

E
[
Z1,1

1 (x) 6= 0, τ ≤ 1
]

= E
[
Y 1,1

1 (x) 6= 0, τ ≤ 1
]

= E[τ ≤ 1] = E
[
∃t ≤ 1, Y 1,1

t (x) = 0
]

> 0.

This is a contradiction!

Example 2.5. Subordination. Let (µα
t )t>0 be the one-side stable convolution semigroup

of probabilities on (0,∞) with order α ∈ (0, 1], i.e.,

µα
s ∗ µα

t = µα
s+t for all s, t > 0, lim

r→0
µα

r = δ0 vaguely,∫
(0,∞)

exp{−yx} µα
t (dx) = exp {−tyα} , y > 0.

Where ∗ is the convolution. For any Polish space E and any E-valued càdlàg Markov process
of the semigroup {Vt}t≥0 on Bb(E), the following Markov semigroup is called subordinated
to {Vt}t≥0 by means of (µα

t )t>0 :

Ṽtf =
∫

(0,∞)

Vsf µα
t (ds), t > 0, Ṽ0f = f, f ∈ Bb(E).
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For any k ∈ N, define a Markov semigroup on Bb

(
Ek
)

as follows:

Ṽ k
t f =

∫
(0,∞)

V ⊗k
s f µα

t (ds), t > 0, Ṽ k
0 f = f, f ∈ Bb

(
Ek
)
.

Then
{{

Ṽ k
t

}
t≥0

}
k≥1

is a consistent exchangeable family, and each Markov process asso-

ciated to
{

Ṽ k
t

}
t≥0

is càdlàg. If the Markov process ξ = ((ξt(x))t≥0, x ∈ E) is strongly

Markovian, then so is each Markov process corresponding to
{

Ṽ k
t

}
t≥0

.

In fact, there is a unique (in law) R+-valued càdlàg process with stationary independent
increments such that

τ0 = 0, and τt is of the law µα
t for any t ∈ (0,∞).

Let (τt)t≥0 be independent of ξ. Then ((ξτt
(x))t≥0, x ∈ E) is càdlàg and of the semigroup{

Ṽ 1
t

}
t≥0

. If ξ is strongly Markovian, then by [34] P.31 Theorem 7.4.(v),

Vsf(ξr(x)) is right continuous in r ∈ R+, a.s. for any fixed s ≥ 0 and f ∈ Cb(E).

Then for any fixed t ≥ 0 and f ∈ Cb(E), since

Ṽ 1
t f(ξτr

(x)) =
∫

(0,∞)

Vsf(ξτr
(x)) µα

t (ds),

we see Ṽ 1
t f(ξτr

(x)) is right continuous in r ∈ [0,∞), a.s.; which together with [34] P.31
Theorem 7.4.(v) implies that the Markov process associated to

{
Ṽ 1

t

}
t≥0

is strongly Marko-

vian. Similarly, any Markov process associated to
{

Ṽ k
t

}
t≥0

is càdlàg, and further strongly

Markovian if so is ξ.

Note (µα
t )t>0 can be replaced by other convolution semigroups.

Example 2.6. Natural consistent exchangeable families for OU processes. It is
well-known that OU-process on path spaces is fundamental in Malliavin calculus ([29]). Let

W =
{

γ ∈ C
(
[0, 1], Rd

) ∣∣ γ(0) = 0
}

,

where C
(
[0, 1], Rd

)
is the space of all continuous maps from [0,1] into Rd. Equip W with

the uniform topology. Let ν be the Wiener measure on W and define

Vtϕ(w) =
∫
W

ϕ
(
e−t/2w +

√
1− e−t u

)
ν(du), ∀ϕ ∈ Bb (W) , ∀w ∈ W, ∀t ≥ 0.

Then {Vt}t≥0 is the semigroup of the OU-process on W. For any ρ ∈ (0, 1] and k ∈ N, define

Akf(z1, · · · , zk) =
1
2

∑
1≤i,j≤k

d∑
p=1

{δi,j + ρ(1− δi,j)}
∂2f

∂zp
i ∂zp

j

(z1, · · · , zk),

∀f ∈ C2
b

((
Rd
)k)

, (z1, · · · , zk) ∈
(
Rd
)k

, zi =
(
z1
i , · · · , zd

i

)
∈ Rd,

8



where δi,j is the Kronecker delta. Then all Ak-diffusions determine a unique consistent
family in Rd of exchangeable diffusions. Let

(
w1

t , · · · , wk
t

)
t≥0

be the Ak-diffusion and νk the

law of
((

w1
t

)
0≤t≤1

, · · · ,
(
wk

t

)
0≤t≤1

)
with

(
w1

0, · · · , wk
0

)
= (0, · · · , 0) ∈

(
Rd
)k

.

For any ϕ ∈ Bb

(
Wk
)
, any w1, · · · , wk ∈ W, and any t ≥ 0, define

V k
t ϕ
(
w1, · · · , wk

)
=
∫
Wk

ϕ
(
e−t/2w1 +

√
1− e−t u1, · · · , e−t/2wk +

√
1− e−t uk

)
νk(du1 · · · duk).

Then it is easy to check that
{
V k

t

}
t≥0

is an exchangeable semigroup (resp. weakly Fellerian
semigroup) on Bb

(
Wk
) (

resp. Cb

(
Wk
))

, which is left to the interested readers as an exer-

cise. Clearly, the family
{{

V k
t

}
t≥0

}
k≥1

is consistent; and
{{

V k
t

}
t≥0

}
k≥1

is of coalescence

for ρ = 1; and each
{
V k

t

}
t≥0

is symmetric with respect to νk for ρ ∈ (0, 1).

Notice time interval [0, 1] can be replaced by [0,∞) and any time interval [0, a] with
a ∈ (0,∞).

Example 2.7. Brownian snakes. To begin, let ((ξt)t≥0,Πx)x∈Rd be the d-dimensional
Brownian motion and Πx being the law of ξ = (ξt)t≥0 starting at x. For any interval I of
R+ = [0,∞) and any metric space E, write C (I, E) for the space of all continuous maps
from I into E equipped with the locally uniform topology. Set

W =
⋃
t≥0

C
(
[0, t], Rd

)
.

For any w ∈ W, write ζw = t if w ∈ C
(
[0, t], Rd

)
and ŵ = w(ζw), and call ζw the life time

and ŵ the terminal point of w. The space W is a Polish space when endowed with the metric

dist (w,w′) = |ζw − ζw′ |+ sup
t≥0

|w(t ∧ ζw)− w′(t ∧ ζw′)| , w, w′ ∈ W.

For convenience, view Rd as a subset of W by identifying a point x ∈ Rd with the trivial
path with initial point x and lifetime 0. Let

Wx = {w ∈ W | w(0) = x}, ∀x ∈ Rd.

Given w ∈ W and a ∈ [0, ζw], b ≥ a. Define the following probability measure Ra,b(w, dw′)
on W :

ζw′ = b, w′(t) = w(t), ∀t ∈ [0, a], Ra,b(w, dw′) − a.s.;
(w′(a + t))0≤t≤b−a under Ra,b(w, dw′) distributes as (ξt)0≤t≤b−a under Πw(a).

For any w0 ∈ W, set ζ0 = ζw0 . Let Pζ0 be the law of reflected standard Brownian motion
(the modulus of standard linear Brownian motion) starting at ζ0. Given f ∈ C(R+, R+)
with f(0) = ζ0, let Θf

w0
(dω) be the law on WR+ of the time-inhomogeneous Markov process

in W starting at w0 with transition kernel between times s and s′(> s) being

Rm(s,s′),f(s′)(w, dw′), where m(s, s′) = inf
s≤t≤s′

f(t).

9



Then Θf
w0

(dω) is a probability on C(R+,W), Pζ0 − a.s. f ([24] P.65 lines -5 and -4).
Consider the following probability on C(R+, R+)× C(R+,W) :

Pw0(dfdω) = Pζ0(df)Θf
w0

(dω).

The Brownian snake W = (Ws)s≥0 (W0 = w0) is defined under Pw0(dfdω) by

Ws(f, ω) = ω(s), ∀s ∈ [0,∞).

Note (Ws)s≥0 under Pw0 is a (time-homogeneous) diffusion process on W, and

ζs(f, ω) := ζWs = f(s), Pw0 − a.s.,

so that the lifetime is a reflected Brownian motion.

Let (φt)t≥0 (φ0 = the identity map) be an arbitrary stochastic flow of homeomorphisms
on R1 such that 1-point motion (φt(x))t≥0 is the 1-dimensional Brownian motion and each
k-point motion (φt(x1), · · · , φt(xk))t≥0 is a diffusion in Rk. For such flows, refer to [24].

Let P(x1,···,xk) be the distribution of
(
(|φt(x1)|)t≥0 , · · · , (|φt(xk)|)t≥0

)
on C(R+, R+)k for

any (x1, · · · , xk) ∈ Rk
+ and any k ∈ N. Define the following probability on C(R+, R+)k ×

C(R+,W)k :

P(w1
0,···,wk

0)
(
df1 · · · dfkdω1 · · · dωk

)
= P(

ζ
w1

0
,···,ζ

wk
0

) (df1 · · · dfk
) k∏

i=1

Θfi

wi
0

(
dωi
)
,

where wi
0 ∈ W, 1 ≤ i ≤ k. On C(R+, R+)k × C(R+,W)k, let

W i
s

(
f1, · · · , fk;ω1, · · · , ωk

)
= ωi(s), s ∈ [0,∞), 1 ≤ i ≤ k.

Then Wk =
(
W 1

s , · · · ,W k
s

)
s≥0

((
W 1

0 , · · · ,W k
0

)
=
(
w1

0, · · · , wk
0

))
under P(w1

0,···,wk
0) is a k-

point Markov coupling for the Brownian snake W. Similarly to [24] Chapter IV Section 4
Theorem 6, one can check Wk is strongly Markovian. Now we have obtained a consistent
exchangeable family

{
Wk

}
k≥1

in Polish space W.

Example 2.8. Let E be an arbitrary Polish space and Q(x, dy) an arbitrary probability
kernel on it. For any n ∈ N, consider a conservative càdlàg regular step process

Yn =
((

Y 1
t (x1), · · · , Y n

t (xn)
)
t≥0

)
(x1,···,xn)∈En

whose generator is

Anf(x1, · · · , xn) =
∫

En

[f(y1, · · · , yn)− f(x1, · · · , xn)]
n∏

i=1

Q(xi, dyi),

∀(x1, · · · , xn) ∈ En, ∀f ∈ Bb (En) .

Then {Yn}∞n=1 is a consistent exchangeable family. If Q(x, ·) ∈ M1(E) is not continuous in
x ∈ E, then Y1, further each Yn, is not weakly Fellerian.
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3. Main result II: Local time and Tanaka formula

Local time is one of major objects in Markov process theory and Tanaka formula gives a
semimartingale representation of local time. The local time and Tanaka formula for measure-
valued processes have been studied extensively by many authors such as E. B. Dynkin, R. J.
Adler, K. Fleischmann, I. Iscoe etc (see [30], [39] and references therein). In this section, we
derive local time for measure-valued flows and Fleming-Viot (FV) processes, and establish
the related Tanaka formula. To this end, for any k ≥ 1, consider the following operator in
Rk :

Akf(z1, · · · , zk) =
1
2

k∑
i=1

a(zi)
∂2f

∂zi∂zi
(z1, · · · , zk) +

1
2

∑
1≤i 6=j≤k

a(zi, zj)
∂2f

∂zi∂zj
(z1, · · · , zk)

+
k∑

i=1

b(zi)
∂f

∂zi
(z1, · · · , zk), ∀f ∈ C2

b

(
Rk
)
, (z1, · · · , zk) ∈ Rk;

and

a(·) ∈ Cb

(
R1
)
, a(·, ·) ∈ Bb

(
R2
)
, b(·) ∈ Bb

(
R1
)
,

a(z1, z2) = a(z2, z1), ∀(z1, z2) ∈ R2,

a(·)−1 is locally integrable against the Lebesgue measure,

b(·)2 ≤ c a(·) for some constant c > 0;

and for any k ≥ 1 and any (z1, · · · , zk) ∈ Rk,

k∑
i=1

a(zi)(λi)2 +
∑

1≤i 6=j≤k

a(zi, zj)λiλj ≥ 0, ∀ (λ1, · · · , λk) ∈ Rk.

Assume each Ak-diffusion process Yk =
((

Y 1
t (z1), · · · , Y k

t (zk)
)
t≥0

)
(z1,···,zk)∈Rk

exists,

and write {V k
t }t≥0 for its semigroup. Suppose

{
Yk
}

k≥1
is a consistent exchangeable family.

Then the measure-valued flow given the family
{
Yk
}

k≥1
, an M1

(
R1
)

valued diffusion
process X = (Xt)t≥0 with the semigroup {Tt}t≥0, is determined uniquely by (1.1). Recall
Pµ is the law of X starting at µ ∈ M1

(
R1
)
. If∫ t

0

Xs ds � dz (the Lebesgue measure), ∀t ∈ [0,∞), Pµ − a.s.,

then define the local time
(
(Lz

t (X))t≥0

)
z∈R1

of X as follows:

Lz
t (X) =

d
(∫ t

0
Xs ds

)
dz

, ∀t ∈ [0,∞), Pµ − a.s..

Note closed subset {a(·) = 0} is of zero Lebesgue measure due to a(·)−1 is locally Lebesgue
integrable. Then the following theorem is true.

Theorem 3.1. Under Pµ, Lz
t (X) is well-defined for any z and any t almost surely; and

the map (z, t) ∈ {a(·) 6= 0} × [0,∞) → Lz
t (X) is a.s. continuous; and almost surely, the
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map z ∈ {a(·) 6= 0} → a(z)Lz
t (X) is Hölder continuous of order α for any α ∈

(
0, 1

2

)
and

uniformly in t on every compact interval; and given any z ∈ {a(·) 6= 0}, Lz
t (X) is a.s.

increasing in t ∈ [0,∞).
In addition, for any µ ∈ M1

(
R1
)

with
∫
[0,∞)

x µ(dx) < ∞
(
resp.

∫
(−∞,0]

|x| µ(dx) < ∞
)

,

the following Tanaka formula holds:

Lz
t (X) =

2
a(z)

{∫
[z,∞)

(x− z) Xt(dx)−
∫

[z,∞)

(x− z) µ(dx)

−
∫ t

0

〈
Xs, I(z,∞)b(·)

〉
ds−Mz

t (X)
}

, ∀t ∈ [0,∞), ∀z ∈ {a(·) 6= 0}, Pµ − a.s.(
resp. Lz

t (X) =
2

a(z)

{∫
(−∞,z]

(z − x) Xt(dx)−
∫

(−∞,z]

(z − x) µ(dx)

+
∫ t

0

〈
Xs, I(−∞,z]b(·)

〉
ds + Mz

t (X)
}

, ∀t ∈ [0,∞), ∀z ∈ {a(·) 6= 0}, Pµ − a.s.

)
;

where (Mz
t (X))t≥0 is a continuous Lr-martingale for any r ∈ [1,∞) such that

(z, t) ∈ {a(·) 6= 0} × [0,∞) → Mz
t (X) is continuous a.s.,

and z ∈ {a(·) 6= 0} → Mz
t (X) is a.s. Hölder continuous of order α for any α ∈

(
0, 1

2

)
and

uniformly in t on every compact interval; and Lz
t (X) is in Lr (Pµ) for any t ∈ [0,∞) and

any r ∈ [1,∞).

Now we describe Fleming-Viot (FV) process, a model in population genetics the-
ory introduced by [17]. By [13], FV process is one of three fundamental types superprocesses:
Dawson-Watanabe (DW) superprocess, FV process, OU-superprocess. While by [22], there
is a deep connection between FV process and DW superprocess (also see [15], [31]). To
introduce FV process X, let Y be a càdlàg E-valued weak Feller process with the semi-
group {Vt}t≥0; and for any k ≥ 1,

{
V k

t

}
t≥0

be the semigroup of càdlàg Ek-valued k-particle
look-down process over Y determined uniquely by

V k
t f = exp

{
−k(k − 1)t

2

}
V ⊗k

t f +

∑
1≤i<j≤k

∫ t

0

exp
{
−k(k − 1)s

2

}
V ⊗k

s

(
ΘijV

k
t−sf

)
ds,

∀t ≥ 0, ∀f ∈ Bb

(
Ek
)
,

with
{
V ⊗k

t

}
t≥0

being the semigroup of k-independent copies of Y, and

Θijf(x1, · · · , xk) := f(x1, · · · , xi, · · · , xj−1, xi, xj+1, · · · , xk),
∀(x1, · · · , xk) ∈ Ek, ∀f ∈ Bb

(
Ek
)
, ∀1 ≤ i < j ≤ k.

Then FV process X over the mutation process Y is the unique M1(E)-valued diffusion pro-
cess with the semigroup {Tt}t≥0 on Bb(M1(E)) determined by (1.1) with each just mentioned{
V k

t

}
t≥0

(c.f. [9] and [11]).

Theorem 3.1′. For the FV-process X over A1-diffusion process in this section, if Pµ still
denotes the law of the process X starting at µ ∈ M1

(
R1
)
, then the results in Theorem 3.1
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hold true for the process X.

The method for proving Theorem 3.1 is of its own interests. In Theorem 3.1, on
{a(·) = 0} which is of zero Lebesgue measure, Lz

t (X) can not be defined explicitly; and
so we do not consider Tanaka formula for Lz

t (X) at z ∈ {a(·) = 0}. The condition b(·)2 ≤
c a(·) for some constant c > 0 ensures that there is a Girsanov transformation theorem
between

(
1
2a(x) ∂2

∂x2 , C2
b

(
R1
))

-martingale solutions and
(
A1, C

2
b

(
R1
))

-martingale solutions,

and the local time Lz
t for A1-process is continuous in (z, t) ∈ R1 × [0,∞) and further the

first part of Theorem 3.1 holds. Remove the condition, Theorems 3.1 and 3.1′ still hold
true with a few modifications (see Remark 3.1.1). For Theorem 3.1, examples are taken in
Remark 3.1.2. For further remarks on Theorem 3.1 etc, refer to Remark 3.1.3.

As a contrast, recall for FV-process X = (Xt)t≥0 over the 1-dimensional −(−∆)
α
2 pro-

cess (α ∈ (0, 2]), [22] proved that Xt has joint continuous density ft(x) with respect to the
Lebesgue measure satisfying a stochastic partial differential equation; and so automatically,
the local time for X exists and a Tanaka type formula holds for the local time. While our
Theorem 3.1′ is true for any 1-dimensional diffusion described before.

3.1. Remarks on Theorems 3.1 and 3.1′

Remark 3.1.1. Remove the condition b(·)2 ≤ c a(·) for some constant c > 0, and replace
a(·) ∈ Cb

(
R1
)

by a(·) ∈ Bb

(
R1
)
; if we let

Λ =

{
z ∈ R1

∣∣∣∣∣ lim
ε↓0

1
2ε

∫
(z−ε,z+ε)

a(y)−1 dy = λ(z) ∈ R1 exists

}
,

then R1 \ Λ is of zero Lebesgue measure and

λ(z) = a(z)−1, a.e. z ∈ Λ with respect to the lesbesgue measure,

and clearly, for z ∈ R1 such that a(z) 6= 0 and a(·) is continuous at z, λ(z) = a(z)−1. In this
setting, since the local time Lz

t for A1-process satisfying that (z, t) → Lz
t is continuous in t

and càdlàg in z almost surely ([33] Chapter VI), the first part of Theorem 3.1 (and Theorem
3.1′) should be rewritten as follows:

Under Pµ, Lz
t (X) is well − defined for any z and any t almost surely;

and (z, t) ∈ {y ∈ Λ; λ(y) 6= 0} × [0,∞) → λ(z)−1Lz
t (X) is a.s. continuous

in t and càdlàg in z; and given any z ∈ {y ∈ Λ; λ(y) 6= 0}, Lz
t (X) is a.s.

increasing in t ∈ [0,∞).

While the second part of Theorem 3.1 (and Theorem 3.1′) is modified as follows: for any
µ ∈ M1

(
R1
)

with
∫
[0,∞)

x µ(dx) < ∞,

Lz
t (X) = λ(z)

{
2
∫

[z,∞)

(x− z) Xt(dx)− 2
∫

[z,∞)

(x− z) µ(dx)

−
∫ t

0

〈
Xs, I(z,∞)b(·)

〉
ds−

∫ t

0

〈
Xs, I[z,∞)b(·)

〉
ds−Mz

t (X)
}

,
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∀t ∈ [0,∞), ∀z ∈ {y ∈ Λ; λ(y) 6= 0}, Pµ − a.s.;
where (Mz

t (X))t≥0 is a continuous Lr −martingale for any r ∈ [1,∞) such

that (z, t) ∈ {y ∈ Λ; λ(y) 6= 0} × [0,∞) → Mz
t (X) is continuous a.s., and

z ∈ {y ∈ Λ; λ(y) 6= 0} → Mz
t (X) is a.s. Hölder continuous of order α for

any α ∈
(

0,
1
2

)
and uniformly in t on every compact interval; and Lz

t (X)

is in Lr (Pµ) for any t ∈ [0,∞) and any r ∈ [1,∞).

For µ ∈ M1

(
R1
)

with
∫
(−∞,0]

|x| µ(dx) < ∞, the Tanaka formula needs slight modification,
which is left to the interested readers. Note R1 \ {y ∈ Λ; λ(y) 6= 0} is of zero Lebesgue
measure; and for z in this set, either Lz

t (X) can not be defined explicitly for z ∈ R1 \ Λ or
Lz
· (X) ≡ 0 for z ∈ Λ with λ(z) = 0. It is not interesting to establish Tanaka formula for

z ∈ R1 \ {y ∈ Λ; λ(y) 6= 0}.

Remark 3.1.2. (i) The existence for A1-process. Assume 0 ≤ a(·) ∈ Bb

(
R1
)

and
a(·)−1 is locally integrable. Recall from Example 2.3(ii),

Z(a) =
{

x ∈ R1
∣∣ a(x) = 0

}
,

and Y =
(
(Yt(x))t≥0

)
x∈R1

is a 1
2a(x) ∂2

∂x2 -diffusion; and Y =
((

Y t(x)
)
t≥0

)
x∈R1

is another
1
2a(x) ∂2

∂x2 -diffusion if Z(a) 6= ∅. For all diffusions (and Markov processes) generated by the
operator 1

2a(x) ∂2

∂x2 , see [14].

For b(·) ∈ Bb

(
R1
)

such that b(·)2 ≤ c a(·) for some constant c > 0, use the Girsanov
argument, one can get 1

2a(x) ∂2

∂x2 + b(x) ∂
∂x diffusion Y1 =

(
(Y 1

t (x))t≥0

)
x∈R1 from Y and Y

and other 1
2a(x) ∂2

∂x2 -diffusions (when Z(a) 6= ∅). Refer to proof of Lemma 5.1.

(ii) Consistent exchangeable families with coalescence. See Example 2.3(ii). In
addition, by [5] Theorem 1.3, one can construct consistent exchangeable families with coa-
lescence for b(·) therein being in Bb

(
R1
)
.

(iii) Consistent exchangeable families without coalescence. In the situation of The-
orem 3.1 with a(·, ·) ∈ Cb

(
R2
)
, if there is an η ∈ (0,∞) such that

k∑
i=1

a(zi)(λi)2 +
∑

1≤i 6=j≤k

a(zi, zj)λiλj ≥ η
k∑

i=1

(λi)2 ≥ 0, ∀ (λ1, · · · , λk) ∈ Rk,

for any k ≥ 1 and any (z1, · · · , zk) ∈ Rk, then each Ak-diffusion Yk exists and is unique.
Clearly,

{
Yk
}

k≥1
is a consistent exchangeable family without coalescence. For arbitrary

b ∈ Bb

(
R1
)
, one can not determine generally whether each Yk is weakly Fellerian. Next if

b ≡ 0, then any two particles of each Yk (k ≥ 2) must meet at a finite time because their
difference process is a continuous martingale whose quadratic variation process tends to +∞
as time goes to +∞. Furthermore, for arbitrary b ∈ Bb

(
R1
)
, by the Girsanov argument, any

two particles of each Yk (k ≥ 2) must also meet at a finite time. So if let Ŷk be obtained
from Yk by letting two particles stay together whenever they meet, then we get a nontrivial
consistent exchangeable family

{
Ŷk
}

k≥1
with coalescence.
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Remark 3.1.3. For Theorem 3.1, the examples that each Ak-diffusion is the k-point motion
of a common stochastic flow (φt)t≥0 of measurable maps (homeomorphisms) can be taken
under many well-known conditions, e.g.,

a(x) = a(x, x), ∀x ∈ R1; a(·, ·) ∈ C2
b

(
R2
)
, b(·) ∈ C2

b

(
R1
)
, inf

x∈R1
a(x) > 0.

For these examples, since 1-point motion (φt(x))t≥0 for any point x ∈ R1 can be given by
the flow simultaneously on the same probability space, and the 1-point motion has local
time and Tanaka formula, Theorem 3.1 on measure-valued flow ((φt)∗µ)t≥0 holds is natural.
It is interesting that Theorem 3.1 (resp. Theorem 3.1′) is true when (resp. since) there is no
stochastic flow of measurable maps corresponding to the (resp. look-down) family

{
Yk
}

k≥1
.

Recall 3 forms of Tanaka formulae on continuous semimartingales from [33] Chapter VI
Theorem 1.2, one can see that the condition on initial measure of Theorems 3.1 and 3.1′

is optimal. Certainly, for more general a(·), a(·, ·) and b(·), Theorem 3.1 still holds, this is
left to the interested readers as an exercise. The method for proving Theorem 3.1 suggests
us that when 1-point motion has local time and Tanaka formula, then the related measure-
valued flow, FV process will preserve this property under a suitable condition.

Remark 3.1.4. Recall from [11], there is an infinite-particle look-down process represen-
tation for FV processes, which is exchangeable if so is its initial distribution. Similarly to
Theorem 3.1, one can verify Theorem 3.1′.

Remark 3.1.5. Fractional diffusion. Let (F, ρ(·, ·)) be a complete metric space and µ a
Borel measure on it. (F, ρ(·, ·), µ) is called a fractional metric space (FMS) if (1) (F, ρ(·, ·))
has the midpoint property in the sense that

for each x, y ∈ F there is a z ∈ F satisfying ρ(x, z) = ρ(z, y) =
1
2
ρ(x, y);

and (2) there are df > 0, and constants c1, c2 such that

c1r
df ≤ µ((B(x, r)) ≤ c2r

df , ∀x ∈ F, 0 < r ≤ r0 := sup
x,y∈F

ρ(x, y).

Here B(x, r) = {y ∈ F | ρ(x, y) < r}. If G is the Sierpinski gasket, dG(·, ·) is the geodesic
metric on G, and µG is the natural fractional measure on it, then (G, dG(·, ·), µ) is a FMS
with df = log 3/ log 2 and r0 = 1. Any FMS (F, ρ(·, ·), µ) satisfies

F is locally compact, dimH(F ) = dimP (F ) = df ≥ 1.

Recall any p.c.f.s.s. set is a compact FMS ([3] Definition 5.13), where p.c.f.s.s. means post
critically finite self-similar. A Markov process Y = ((Yt)t≥0, P

x)x∈F is a fractional diffusion
(FD) on FMS (F, ρ(·, ·), µ) if Y is a µ-symmetric conservative Feller diffusion on F, and Y
has a symmetric transition density p(t, x, y) = p(t, y, x), t > 0, x, y ∈ F, which satisfies the
Chapman-Kolmogorov equation and each p(t, x, y) is continuous in (x, y) ∈ F 2, and there
are constants α, β, γ, c1, · · · , c4 satisfying that for any (x, y) ∈ F 2 and any 0 < t ≤ t0 := rβ

0 ,

c1t
−α exp

{
−c2ρ(x, y)βγt−γ

}
≤ p(t, x, y) ≤ c3t

−α exp
{
−c4ρ(x, y)βγt−γ

}
.

We say above FD is a FD′(df , α, β, γ). Particularly,

Y is a FD(df , β) if it is a FD′(df , df/β, β, 1/(β − 1)) with β > 1.
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For these notions, see [3]. From [4] and [3], the Brownian motion on the Sierpinski gasket is
a FD(log 3/ log 2, log 5/ log 2).

When df < dw := β, or equivalently ds := 2df

dw
< 2, by [3] Theorem 3.32, FD(df , β) Y

on F have jointly continuous local time (Lx
t , x ∈ F, t ≥ 0) which satisfying∫ t

0

f(Ys) ds =
∫

F

f(x) Lx
t µ(dx), ∀f ∈ Bb(F )

(see [4] Theorem 1.11 for local time of the

Brownian motion on the Sierpinski gasket).

For diffusions on p.c.f.s.s. sets, the just mentioned result is still true (c.f. [3] Theorem 7.21).

Note [9] Lemma 3.4.2.2 can be extended to fractional metric space (FDS) (F, ρ(·, ·), µ).
Similarly to Theorem 3.1, one can show

For the FV process X over the FD Y which is a FD(df , β) with 1 ≤ df < β on FMS
(F, ρ(·, ·), µ) or a diffusion on p.c.f.s.s. sets F, it has jointly measurable local time Lz

t (X) in
the sense that

Lz
t (X) = lim

ε↓0

1
µ(B(z, ε))

∫ t

0

Xs(B(z, ε)) ds, µ − a.e. z, ∀t ∈ [0,∞), a.s.;

where B(z, ε) is the open ball centered at z of radius ε; and for fixed z ∈ F, t → Lz
t (X) is

a.s. continuous, and Lz
t (X) is L1-integrable for any (z, t) ∈ F × [0,∞).

Note by [4] Corollary 1.8 and [3] Theorem 2.28, the Brownian motion on the Sierpinski
gasket is not semimartingales and hence does not have Tanaka formulae. In addition, for
fractional diffusions on fractional metric spaces F, by [3] Lemma 3.25 and Theorem 3.41,
their paths fail to be Hölder continuous of order γ ∈

(
0, 1

2

)
; so if F is a subspace of an

Euclidean space, then fractional diffusions are not semimartingales and there is no Tanaka
formula for the diffusions. So we do not consider Tanaka formulae for the FV process X
over the FD Y.

4. Proof of Theorem 2.1

Proof of Theorem 2.1(1)

To begin the proof, we need the following preliminaries. For any Polish space S, there is a
homeomorphic map from S into a Gδ-subset of some compact metrizable space T . Without
loss of generality, suppose S is a Gδ-subset of T . Hence the closure S of S in T is compact.
Let

Crestrict(S) =
{
f |S

∣∣ f ∈ Cb

(
S
)}

,

where f |S is the restriction of f to S. Then Crestrict(S) is separable in the uniform norm
and weak convergence determining, and

σ (f, f ∈ Crestrict(S)) equals to the Borel σ − field on S.
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Write Csym (Sn) for the set of all continuous symmetric functions from Sn to R1 for any
n ∈ N.

Now we are in the position to give an extended de Finetti’s theorem.

Lemma 4.1. Let S be a Polish space.
(1) Assume P ∈ M1(M1(S)). Then there exists a probability Q on SN under which the

coordinate process Z = (Zn)n≥1 satisfies that {Zn}n≥1 is exchangeable and (Z1, · · · , Zn)
has distribution

P (n)(dx1, · · · , dxn) :=
∫

M1(S)

ν(dx1) · · · ν(dxn)P (dν), ∀n ≥ 1.

(2) Let {Zn}n≥1 be a sequence of S-valued exchangeable random variables on probability

space
(
SN, Q

)
and Wn(ω) = 1

n

n∑
i=1

δZi(ω). Then {Wn(ω)}n≥1 converges to some W (ω) ∈

M1(S) in the H-topology on M1(S), Q − a. s. ω. Where H ⊆ Bb(S) is separable in the
uniform norm, and σ(H) equals to the Borel σ-field on S; {νn}n≥1 ⊂ M1(S) converges to
ν ∈ M1(S) in H-topology if and only if

lim
n→∞

〈νn, f〉 = 〈ν, f〉, ∀f ∈ H.

Let Gn = σ {fn(Z1, · · · , Zn) | fn ∈ Csym(Sn)} , and

Yn = σ{Gn, Zn+1, Zn+2, · · ·}, Y∞ =
∞⋂

n=1

Yn.

Then W is Y∞-measurable, and {Zn}n is an i.i.d. random variable sequence with marginal
distribution W conditioned on Y∞.

Proof. (1) By Kolmogorov’s extension theorem, similarly to [9] Theorem 11.2.1 (a), Lemma
4.1(1) can be proven.

(2) Notice (Zi, Y ) and (Z1, Y ), 1 ≤ i ≤ n, have the identical law when Y is Yn-measurable.
So Z1, · · · , Zn are identically distributed given Yn. Thus for any ϕ ∈ Bb(S), following from
that 〈Wn, ϕ〉 is Yn-measurable, we have

Q (ϕ(Z1)| Yn) = Q

(
1
n

n∑
i=1

ϕ(Zi)

∣∣∣∣∣Yn

)
= 〈Wn, ϕ〉, Q − a. s.

However, Yn+1 ⊂ Yn and Q(ϕ(Z1)| Yn) is a reverse martingale, by the reverse martingale
convergence theorem, we get as n →∞,

〈Wn(ω), ϕ〉 =
1
n

n∑
i=1

ϕ(Zi(ω)) → Q (ϕ(Z1)| Y∞) (ω), Q − a. s. ω. (4.1)

Note SN is a Polish space. Let W (ω) be the regular conditional distribution of Z1 given
Y∞. Then as n →∞,

〈Wn(ω), ϕ〉 =
1
n

n∑
i=1

ϕ(Zi(ω)) → 〈W (ω), ϕ〉, Q − a. s. ω
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for any fixed ϕ ∈ Bb(S). Therefore from separability of H, we obtain that as n →∞,

〈Wn(ω), ϕ〉 → 〈W (ω), ϕ〉, ∀ϕ ∈ H, Q − a. s. ω,

which says {Wn(ω)}n≥1 converges to W (ω) in the H-topology, Q − a. s. ω.
The rest of this part can be proven similarly to [9] Theorem 11.2.1 (c). 2

Lemma 4.2. Given µ ∈ M1(E), let {zi}i≥1 be a sequence of independent random variables
with identical distribution µ. Write

Xk
t =

1
k

k∑
i=1

δY i
t (zi), Xk =

(
Xk

t

)
t≥0

, ∀k ≥ 1.

Let P k
µ be the distribution of Xk =

(
Xk

t

)
t≥0

on DM1(E). Then P k
µ converges weakly to a

probability Pµ ∈ M1

(
DM1(E)

)
in finite-dimensional distributions; and in addition, if all Yn

are continuous, then so is the coordinate process X on DM1(E) under Pµ.

Proof. Since DE is a Polish space under a suitable metric, there is a function family
H1 ⊂ Cb (DE) on DE which is separable with respect to the uniform norm and weak
convergence determining, and σ (H1) equals to the Borel σ-field on DE .

To prove P k
µ converges weakly to a probability Pµ ∈ M1

(
DM1(E)

)
in finite-dimensional

distributions, it suffices to check that for any 0 ≤ t1 < · · · < tn, n < ∞,

(Πt1,···,tn
)∗ P k

µ converges weakly to (Πt1,···,tn
)∗ Pµ on M1(E)k,

where Πt1,···,tn
: ω ∈ DM1(E) → (ωt1 , · · · , ωtn

) ∈ M1(E)n.

For any fixed 0 ≤ t1 < · · · < tn, define the following function family on DE :

H2(t1, · · · , tn) = {f(ωt1 , · · · , ωtn), ω = (ωt)t≥0 ∈ DE | f ∈ Cb (En)} .

Then H2(t1, · · · , tn) is separable in the uniform norm. Let

H = H(t1, · · · , tn) = H1 ∪H2(t1, · · · , tn).

Then (H, ‖ · ‖) is separable and σ (H) equals to the Borel σ-field on DE . Define

π : M1(DE) → DM1(E),

ω → π(ω) = ((πt)∗ω)t≥0,

where πt is the projection from DE to E at time t. Then π is measurable.
From Lemma 4.1, we have that

on some probability space supporting Yi =
(
Y i

t (zi)
)
t≥0

, i ≥ 1,
1
k

k∑
i=1

δYi converges

in H− topology to a random probability measure Z on DE as k →∞;

where
(
Y 1

t (z1), · · · , Y k
t (zk)

)
t≥0

distributes as Yk with initial distribution µk for k ≥ 1.

Particularly,

almost surely, (πti
)∗

1
k

k∑
j=1

δYj

 converges weakly to (πti
)∗Z, ∀1 ≤ i ≤ n.
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Let Qµ be the law of Z on M1(DE), and Pµ the image measure of Qµ under map π. Then∫
E

f(x)(πt)∗Z(dx) =
∫

DE
f(γ(t)) Z(dγ) is càdlàg in t ∈ R+ = [0,∞), for any f ∈ Cb(E);

and ((πt)∗Z)t≥0 is càdlàg in t ∈ R+ on M1(E). So the first part of the lemma holds.
The rest of the lemma follows from a similar deduction. 2

Lemma 4.3. There is a unique family of probabilities {Pν}ν∈M1(E) on DM1(E) such that
the coordinate process X = (Xt)t≥0 on DM1(E) becomes a Markov process of the semigroup
{Tt}t≥0 determined by (1.1) under {Pν}ν∈M1(E). Moreover, if all Yk are continuous, then
each Pν is in M1(CM1(E)).

Proof. Step 1. For any f ∈ Bb (En) with n ∈ N, there is a constant C(n, f) depending on
n and f such that uniformly in µ ∈ M1(E) and t ∈ [0,∞),∣∣∣E [〈(Xk

t

)⊗n
, f
〉]

−
〈
µ⊗n, V n

t f
〉∣∣∣ ≤ C(n, f)

k
, for large enough k.

Where Xk
t is specified in Lemma 4.2.

In fact, with the consistency property, for k ≥ n, we have

E
[〈(

Xk
t

)⊗n
, f
〉]

=
1
kn

k∑
j1,···,jn=1

E
[
f
(
Y j1

t (zj1), · · · , Y
jn

t (zjn
)
)]

=
1
kn

∑
(j1,···,jn)∈Ik

n

E
[
f
(
Y j1

t (zj1), · · · , Y
jn

t (zjn
)
)]

+

1
kn

∑
1≤j1 6=···6=jn≤k

〈
µ⊗n, V n

t f
〉
,

where Ik
n = {(j1, · · · , jn) | 1 ≤ j1, · · · , jn ≤ k, ji = jl for some i 6= l}. Note

1
kn

∑
1≤j1 6=···6=jn≤k

1 =
k(k − 1) · · · (k − n + 1)

kn
.

We obtain that uniformly in µ ∈ M1(E) and t ∈ [0,∞), for large enough k,∣∣∣∣∣∣
 1

kn

∑
1≤j1 6=···6=jn≤k

〈
µ⊗n, V n

t f
〉−

〈
µ⊗n, V n

t f
〉∣∣∣∣∣∣ ≤ C1(n, f)

k
,

∣∣∣∣∣∣ 1
kn

∑
(j1,···,jn)∈Ik

n

E
[
f
(
Y j1

t (zj1), · · · , Y
jn

t (zjn
)
)]∣∣∣∣∣∣

≤ 1
kn

∑
(j1,···,jn)∈Ik

n

‖f‖ ≤ C2(n, f)
k

.

Here C1(n, f) and C2(n, f) are two constants depending on n and f. The claim holds.

Step 2. For any F = Ff,n ∈ Bp(M1(E)) and any µ ∈ M1(E), let

TtFf,n(µ) = 〈µn, V n
t f〉 =

〈
µ⊗n, V n

t f
〉
, ∀t ≥ 0. (4.2)

19



Note (4.2) does not depend on the expression of F = Ff,n, {Tt}t≥0 is well defined,

Tt+sFf,n(µ) = 〈µn, V n
t+sf〉 = 〈µn, V n

t [V n
s f ]〉 = Tt[FV n

s f,n](µ)
= Tt[TsFf,n](µ) = TtTsFf,n(µ), ∀s, t ≥ 0.

Given any t ∈ [0,∞). By Lemma 4.2, P k
t (µ, dν), the law of Xk

t under P k
µ , converges weakly

to a probability kernel Pt(µ, dν), the law of Xt under Pµ, as k →∞. Therefore, by Step 1,

TtF (µ) =
∫

M1(E)

F (ν)Pt(µ, dν), ∀F ∈ Cp(M1(E)).

Since for any f ∈ Bb (En) with n ∈ N, there is a sequence {fm}∞m=1 ⊆ Cb (En) such that

sup
m≥1

‖fm‖ < ∞, lim
m→∞

fm(x) = f(x), ∀x ∈ En,

we have
TtF (µ) =

∫
M1(E)

F (ν)Pt(µ, dν), ∀F = Ff,n ∈ Bp(M1(E)).

Step 3. Extend TtF to any F ∈ Bb(M1(E)) by letting

TtF (µ) =
∫

M1(E)

F (ν)Pt(µ, dν), ∀F ∈ Bb(M1(E)).

Then {Tt}t≥0 is a Markov semigroup on Bb(M1(E)).

In fact, since Cp(M1(E)), further Bp(M1(E)), separates points in M1(M1(E)) and

Tt+sFf,n = TtTsFf,n, ∀Ff,n ∈ Bp(M1(E)),

we obtain ∫
M1(E)

∫
M1(E)

Ff,n(w)Pt(µ, dν)Ps(ν, dw) =
∫

M1(E)

Ff,n(w)Pt+s(µ, dw),∫
[ν∈M1(E)]

Pt(µ, dν)Ps(ν, dw) = Pt+s(µ, dw),

which shows {Tt}t≥0 is a Markov semigroup on Bb(M1(E)).

Step 4. Let ω = (ωt)t≥0 be the unique M1(E)-valued Markov process associated to the
semigroup {Tt}t≥0 on Bb(M1(E)). Then ω = (ωt)t≥0 has a càdlàg (resp. continuous) real-
ization on DM1(E)

(
resp. CM1(E) if all Yk are continuous

)
.

In fact, with Lemma 4.2 in mind, it suffices to show
(
Xk, P k

µ

)
converges weakly to

ω = (ωt)t≥0 in finite-dimensional distributions, that is to check

∀0 ≤ s1 < · · · < sr < ∞, and ∀fi ∈ Cb(Eni), 1 ≤ ni < ∞, 1 ≤ i ≤ r,

lim
k→∞

P k
µ

[
r∏

i=1

〈(
Xk

si

)ni
, fi

〉]
= E

[
r∏

i=1

〈(ωsi
)ni , fi〉

∣∣∣∣∣ ω0 = µ

]
.
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Note 〈(
Xk

si

)ni
, fi

〉
=

1
kni

∑
1≤j1,···,jni

≤k

fi

(
Y j1

si
(zj1) , · · · , Y jni

si

(
zjni

))
,

r∏
i=1

〈(
Xk

si

)ni
, fi

〉
=

1
kn

∑
1≤ju

1
,···,ju

nu
≤k

1≤u≤r

r∏
i=1

fi

(
Y

ji
1

si

(
zji

1

)
, · · · , Y

ji
ni

si

(
zji

ni

))

=
1
kn

[Σ1 + Σ2]
r∏

i=1

fi

(
Y

ji
1

si

(
zji

1

)
, · · · , Y

ji
ni

si

(
zji

ni

))
.

Where n = n1 + · · ·+ nr, and in Σ1, the sum is taken over all 1 ≤ ju
1 6= · · · 6= ju

nu
≤ k, 1 ≤

u ≤ r such that
{ju

1 , · · · , ju
nu
} ∩ {jv

1 , · · · , jv
nv
} = ∅, ∀1 ≤ u 6= v ≤ r;

and in Σ2, the sum is taken over other indexes. For large enough k, we have that∣∣∣∣∣ 1
kn

Σ2

r∏
i=1

fi

(
Y

ji
1

si

(
zji

1

)
, · · · , Y ji

n
si

(
zji

ni

))∣∣∣∣∣
≤ Cr

kn
Σ21 ≤

Cr

kn
(kn − Σ11) =

Cr[kn − k(k − 1) · · · (k − n + 1)]
kn

≤ CrC(n)
k

,

where C = max
1≤i≤r

‖fi‖ and C(n) is a constant depending on n. Thus, with the exchangeability

and consistency of
(
Y 1

t (z1), · · · , Y k
t (zk)

)
t≥0

, we obtain

lim
k→∞

E

[
1
kn

Σ1

r∏
i=1

fi

(
Y

ji
1

si

(
zji

1

)
, · · · , Y

ji
ni

si

(
zji

ni

))]

= lim
k→∞

1
kn

Σ1E

[
r∏

i=1

fi

(
Y

ji
1

si

(
zji

1

)
, · · · , Y

ji
ni

si

(
zji

ni

))]

= E

[
r∏

i=1

fi

(
Y mi−1+1

si
(zmi−1+1), · · · , Y mi

si
(zmi

)
)]

=
〈
µn1+···+nr , V n1+···+nr

s1

[
f1 ⊗ V n2+···+nr

s2−s1

[
f2 ⊗ V n3+···+nr

s3−s2[
· · ·
[
fr−1 ⊗ V nr

sr−sr−1
fr

]
· · ·
]]]〉

,

where m0 = 0, mi = n1 + · · ·+ ni, 1 ≤ i ≤ r; and the Markov property has been used, and
for any pair hi ∈ Bb

(
Eli
)
, 1 ≤ i ≤ 2, h1 ⊗ h2 is a function on El1+l2 such that

h1 ⊗ h2(x1, · · · , xl1+l2) = h1(x1, · · · , xl1)h2(xl1+1, · · · , xl1+l2).

On the other hand, by the Markov property,

E

[
r∏

i=1

〈(ωsi
)ni , fi〉

∣∣∣∣∣ ω0 = µ

]

= E

[[
r−1∏
i=1

〈(ωsi)
ni , fi〉

]〈
(ωsr−1)

nr , V nr
sr−sr−1

fr

〉 ∣∣∣∣∣ ω0 = µ

]

21



= E

[[
r−2∏
i=1

〈(ωsi)
ni , fi〉

]〈
(ωsr−1)

nr−1+nr , fr−1 ⊗ V nr
sr−sr−1

fr

〉 ∣∣∣∣∣ ω0 = µ

]
= · · ·
=
〈
µn1+···+nr , V n1+···+nr

s1

[
f1 ⊗ V n2+···+nr

s2−s1

[
f2 ⊗ V n3+···+nr

s3−s2[
· · ·
[
fr−1 ⊗ V nr

sr−sr−1
fr

]
· · ·
]]]〉

.

We are done. 2

Proof of Theorem 2.1(2)

Note E is a Polish space, and there is a homeomorphic map ϕ from E into a Gδ-subset
(intersection of countable many open subsets) of some compact metrizable space S of metric
d(·, ·). Without loss of generality, suppose E is a Gδ-subset of S and ϕ the identity map on
E. Hence the closure E of E in (S, d(·, ·)) is compact. Note d(·, ·) is a compatible metric
on E and (E, d(·, ·)) is not necessarily a Polish space in general. Recall N is the set of all
natural numbers and define a metric dN(·, ·) on product space E

N
:

dN ({xi}∞i=1, {yi}∞i=1) =
∞∑

i=1

2−nd(xi, yi), ∀{xi}∞i=1, {yi}∞i=1 ∈ E
N

.

Since max
x,y∈S

d(x, y) < ∞, dN(·, ·) is a finite metric on E
N

. For each n ∈ N, introduce the

following metric dn(·, ·) on E
n

:

dn((x1, · · · , xn), (y1, · · · , yn)) =
n∑

i=1

d(xi, yi), ∀xi, yi ∈ E, ∀1 ≤ i ≤ n.

Lemma 4.4. Let Cu(En) be the family of all bounded uniformly continuous functions on
(En, dn(·, ·)) for any n ∈ N. View each f ∈ Cu(En) as a bounded uniformly continuous
function on

(
EN, dN(·, ·)

)
by letting

f({xi}∞i=1) = f(x1, · · · , xn), ∀{xi}∞i=1 ∈ EN.

Then
⋃

n≥1

Cu(En) is separable and dense in Cu

(
EN
)
, the set of all bounded uniformly con-

tinuous functions on
(
EN, dN(·, ·)

)
, with respect to the uniform norm.

Proof. Notice
(
E

N
, dN(·, ·)

)
is compact, and for each f ∈ Cu(En)

(
resp. Cu

(
EN
))

, there

is a unique continuous function f ∈ Cb

(
E

n
) (

resp. Cb

(
E

N
))

whose restriction to En(
resp. EN

)
is f and

f ∈ Cu(En)
(
resp. Cu

(
EN
))
→ f ∈ Cb

(
E

n
) (

resp. Cb

(
E

N
))

is one-to-one and onto. Then through an obvious way, we can view any f ∈ Cu(En) as
a continuous function on E

N
. With that

⋃
n≥1

Cu(En) is an algebra and separates points in
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E
N

, and the Stone-Weierstrass theorem, we obtain
⋃

n≥1

Cu(En) is dense in Cb

(
E

N
)

in the

uniform norm. Note
(
Cb

(
E

N
)

, ‖ · ‖
)

is separable, we get the lemma at once. 2

Note n-point motion process

Yn = (Yn(x1, · · · , xn))(x1,···,xn)∈En :=
((

Y 1
t (x1), · · · , Y n

t (xn)
)
t≥0

)
(x1,···,xn)∈En

is a càdlàg En-valued strong Markov process. Let Qx1,···,xn
be the law of Yn(x1, · · · , xn)

on DEn (resp. CEn when Yn is continuous) . For any {xi}∞i=1 ∈ EN, by Kolmogorov’s ex-
tension theorem, there is a unique probability Q{xi}∞i=1

on DEN (resp. CEN when each
Yn is continuous) under which the coordinate process

wN =
(
wN

t

)
t≥0

=
(
{wi

t}∞i=1

)
t≥0

on DEN (resp. CEN) starts at {xi}∞i=1 and

wn = (wn
t )t≥0 =

(
w1

t , · · · , wn
t

)
t≥0

distributes as Qx1,···,xn
for any n ∈ N.

Lemma 4.5. The family
(
Q{xi}∞i=1

)
{xi}∞i=1∈EN

is strongly Markovian on DEN (resp. CEN

when each Yn is continuous) .

Proof. By the Markov property of each Yn and Lemma 4.4, we see
(
Q{xi}∞i=1

)
{xi}∞i=1∈EN

is Markovian on DEN (resp. CEN when each Yn is continuous) . To prove Lemma 4.5, by
Lemma 4.4 and [34] P.31 Theorem 7.4.(v), it suffices to verify

V n
s f(Y 1

t (x1), · · · , Y n
t (xn)) is right continuous in t, a.s. −Qx1,···,xn

for any fixed s ≥ 0, n ∈ N, f ∈ Cu(En) ⊂ Cu

(
EN
)
.

However, by the strong Markov property of each Yn and [34] P.31 Theorem 7.4.(v) again,
this is true. 2

Note DE (resp. CE) can be a Polish space because so is E, and there is a countable
weak convergence determining function family H1 ⊂ Cb(DE) (resp. Cb(CE)) whose bounded
pointwise convergence limit closure is Bb(DE) (resp. Bb(CE)) . Let U be an arbitrary dense
countable subset of R+ = [0,∞). For any n ∈ N and any ti ∈ U , 1 ≤ i ≤ n with 0 ≤
t1 < · · · < tn, and any f ∈ Cu(En), define a function F f

t1,···,tn
∈ Bb(DE) (resp. Cb(CE)) by

letting
F f

t1,···,tn
(γ) = f(γt1 , · · · , γtn

), ∀γ ∈ DE (resp. CE).

Let

H2 =
⋃

n∈N

⋃
ti∈U,1≤i≤n

t1<···<tn

{
F f

t1,···,tn

∣∣∣ f ∈ Cu(En)
}
⊂ Bb(DE) (resp. Cb(DE)),

H = H1 ∪H2.
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Then H is separable in the uniform norm. Endow M1(DE) (resp. M1(CE)) with the H-
topology as follows:

A sequence {νn}∞n=1 ⊂ M1(DE) (resp. M1(CE)) converges to ν ∈ M1(DE)
(resp. M1(CE)) in H− topology if and only if

lim
n→∞

〈νn, f〉 = 〈ν, f〉, ∀f ∈ H.

Write Csym(Dn
E) (resp. Csym(Cn

E)) for the set of all symmetric bounded continuous functions
on DE × · · · × DE (resp. CE × · · · × CE) (n folds), for any n ∈ N. On DEN (resp. CEN)
define the following σ-algebras:

Yn = σ
{
f(w1, · · · , wn), f ∈ Csym(Dn

E); wn+1, wn+2, · · ·
}

, n ∈ N(
resp. Yn = σ

{
f(w1, · · · , wn), f ∈ Csym(Cn

E); wn+1, wn+2, · · ·
}

, n ∈ N
)
;

Y∞ =
∞⋂

n=1

Yn;

where wN =
(
wN

t

)
t≥0

=
({

wi
t

}∞
i=1

)
t≥0

is the coordinate process on DEN (resp. CEN), and

wi =
(
wi

t

)
t≥0

∈ DE (resp. CE), ∀i ∈ N.

Note
I : {wi}∞i=1 ∈ DN

E

(
resp. CN

E

)
→
(
{wi

t}∞i=1

)
t≥0

∈ DEN (resp. CEN)

is a topological isomorphism, identify DN
E

(
resp. CN

E

)
with DEN (resp. CEN) by the I.

Lemma 4.6. Note Q{xi}∞i=1
is measurable in {xi}∞i=1 ∈ EN. Given any µ ∈ M1(E), let QµN

be the probability on DEN (resp. CEN when each Yn is continuous) defined by

QµN =
∫

EN

Q{xi}∞i=1
µN(dx1dx2 · · ·).

For the coordinate process

wN =
(
wN

t

)
t≥0

=
(
{wi

t}∞i=1

)
t≥0

on DEN (resp. CEN) , write

wi = (wi
t)t≥0 ∈ DE (resp. CE), ∀i ∈ N.

Then QµN a.s., as n →∞, Z(n) := 1
n

n∑
i=1

δwi converges to some random probability Z on DE

(resp. CE when each Yk is continuous) inH-topology; Z is Y∞-measurable not depending on
the choice of H; and {wi}∞i=1 is an i.i.d random variable sequence with marginal distribution
Z conditioned on Y∞. Moreover, for any measurable function φ on DE (resp. CE when each
Yk is continuous) such that

QµN

[∣∣φ(w1)
∣∣r] < ∞ for some r ∈ [1,∞),

the following results hold:〈
Z(n), φ

〉
→
〈
Z
(
wN

)
(dγ), φ

〉
, a.s. wN and in Lr

(
QµN

)
as n →∞,

QµN

[〈
Z
(
wN

)
(dγ), |φ|r

〉]
= lim

n→∞
QµN

[〈
Z(n), |φ|r

〉]
= QµN

[∣∣φ(w1)
∣∣r] ,

QµN

[〈
Z
(
wN

)
(dγ), φ

〉]
= QµN

[
φ(w1)

]
, QµN

[〈
Z
(
wN

)
(dγ), |φ|

〉]
= QµN

[∣∣φ(w1)
∣∣] .
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Proof. The proof of the lemma is similar to Lemma 4.1(2). The readers may skip it. Note
(wi, Y ) and (w1, Y ), 1 ≤ i ≤ n, have the same law for Yn-measurable Y. So w1, · · · , wn

are identically distributed given Yn. Thus ∀ϕ ∈ H, following from that
∫

DE
ϕ(γ) Z(n)(dγ)(

resp.
∫

CE
ϕ(γ) Z(n)(dγ) if each Yk is continuous

)
is Yn-measurable,

QµN

[
ϕ(w1)

∣∣ Yn

]
= QµN

[
1
n

n∑
i=1

ϕ(wi)

∣∣∣∣∣Yn

]
=
〈
Z(n)(dγ), ϕ

〉
, QµN − a.s.. (4.3)

However, Yn+1 ⊂ Yn and QµN

[
ϕ(w1)

∣∣Yn

]
is a reverse martingale, by the reverse martingale

convergence theorem, we get that as n →∞,〈
Z(n)(dγ), ϕ

〉
=

1
n

n∑
i=1

ϕ(wi) → QµN

[
ϕ(w1)

∣∣Y∞] , a.s. wN and in L1
(
QµN

)
. (4.4)

Let Z
(
wN

)
be the regular conditional distribution of w1 given Y∞ under QµN . Then QµN −

a.s. wN, as n →∞,∫
DE

ϕ(γ) Z(n)
(
wN

)
(dγ) =

1
n

n∑
i=1

ϕ(wi) →
∫

DE

ϕ(γ) Z
(
wN

)
(dγ)(

resp.
∫

CE

ϕ(γ) Z(n)
(
wN

)
(dγ) =

1
n

n∑
i=1

ϕ(wi) →
∫

CE

ϕ(γ) Z
(
wN

)
(dγ)

)
,

for any fixed ϕ ∈ H. Thus from separability of (H, ‖ · ‖) , we get that as n →∞,〈
Z(n)

(
wN

)
(dγ), ϕ(·)

〉
→
〈
Z
(
wN

)
(dγ), ϕ(·)

〉
, ∀ϕ ∈ H, QµN − a.s. wN,

which says
{
Z(n)

(
wN

)}∞
n=1

converges to Z
(
wN

)
in the H-topology, QµN − a.s. wN.

Clearly, Z does not depend on the choice of H. Similarly to [9] Theorem 11.2.1(c), one
can prove that {wi}∞i=1 is an i.i.d random variable sequence with marginal distribution Z
conditioned on Y∞.

For any measurable function φ on DE (resp. CE) satisfying

QµN

[∣∣φ(w1)
∣∣r] < ∞ for some r ∈ [1,∞),

similarly to (4.3)-(4.4), we have that as n →∞,〈
Z(n), φ

〉
= QµN

[
φ(w1)

∣∣Yn

]
→
〈
Z
(
wN

)
, φ
〉

= QµN

[
φ(w1)

∣∣Y∞] , a.s. wN;

and note
{
QµN

[
φ(w1)

∣∣Yn

]}∞
n=1

is uniformly Lr-integrable due to QµN

[∣∣φ(w1)
∣∣r] < ∞, we

see that 〈
Z(n), φ

〉
→
〈
Z
(
wN

)
, φ
〉

in Lr
(
QµN

)
as n →∞,

QµN

[〈
Z
(
wN

)
(dγ), φ

〉]
= lim

n→∞
QµN

[〈
Z(n), φ

〉]
= QµN

[
φ(w1)

]
.
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So replace φ by |φ|r or |φ|, we obtain

QµN

[〈
Z
(
wN

)
(dγ), |φ|r

〉]
= lim

n→∞
QµN

[〈
Z(n), |φ|r

〉]
= QµN

[∣∣φ(w1)
∣∣r] ,

QµN

[〈
Z
(
wN

)
(dγ), |φ|

〉]
= QµN

[∣∣φ(w1)
∣∣] .

2

Lemma 4.7. Define the following map Ξ from DEN (resp. CEN) into M1(DE) (resp.
M1(CE)):

Ξ
((
{wi

t}∞i=1

)
t≥0

)
=


the limit of

{
1
n

n∑
i=1

δwi
·

}∞
n=1

in M1(DE) (resp. M1(CE))

if it exists,
Z0 ∈ M1(DE) (resp. M1(CE)), otherwise,

with Z0 ∈ M1(DE) (resp. M1(CE)) being fixed. Then Ξ is measurable.

In addition, define the following map Θ from EN into M1(E) :

Θ ({xi}∞i=1) =

 the limit of

{
1
n

n∑
i=1

δxi

}∞
n=1

in M1(E) if it exists,

µ0 ∈ M1(E), otherwise,

where µ0 ∈ M1(E) is fixed. Then Θ is measurable.

Proof. Note DE (resp. CE) can be a Polish space, and there is a homeomorphic map
φ from DE (resp. CE) into a Gδ-subset (intersection of countable many open subsets) of
some compact metrizable space T of metric r(·, ·). Without loss of generality, suppose DE

(resp. CE) is a Gδ-subset of T . Then T, the closure of DE (resp. CE) in T , is compact.
Let Cu(DE) (resp. Cu(CE)) be the set of all bounded uniformly continuous functions on
(DE , r(·, ·)) (resp. (CE , r(·, ·))) . Notice for each f ∈ Cu(DE) (resp. Cu(CE)), there is a
unique continuous function f ∈ Cb(T) whose restriction to DE (resp. CE) is f and

f ∈ Cu(DE) (resp. Cu(CE)) → f ∈ Cb(T)

is one-to-one and onto. Then (Cu(DE), ‖ · ‖) (resp. (Cu(CE), ‖ · ‖)) is separable. Write
{gn}∞n=1 for a dense subset of (Cu(DE), ‖ · ‖) (resp. (Cu(CE), ‖ · ‖)) . Define a map ΞM1(T)

from DEN (resp. CEN) into M1(T) as follows:

ΞM1(T)

((
{wi

t}∞i=1

)
t≥0

)
=

 the limit of

{
1
n

n∑
i=1

δwi
·

}∞
n=1

in M1(T) if it exists,

Z0, otherwise,

For convenience, write I = DEN (resp. CEN). Then

I(+) :=

{({
wi

t

}∞
i=1

)
t≥0

∈ I

∣∣∣∣∣ the limit of

{
1
k

k∑
i=1

δwi
·

}∞
k=1

in M1 (T) exists

}

=

{({
wi

t

}∞
i=1

)
t≥0

∈ I

∣∣∣∣∣ lim
k→∞

1
k

k∑
i=1

gm

(
wi
·
)

exists for any m ∈ N

}

=
⋂

m∈N

{({
wi

t

}∞
i=1

)
t≥0

∈ I

∣∣∣∣∣ lim sup
k→∞

1
k

k∑
i=1

gm

(
wi
·
)

= lim inf
k→∞

1
k

k∑
i=1

gm

(
wi
·
)}

,
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which implies I(+) is a measurable subset of I. Clearly, the map

({
wi

t

}∞
i=1

)
t≥0

∈ I(+) → lim
k→∞

1
k

k∑
i=1

g
(
wi
·
)

is measurable, for any g ∈ Cu (DE) (resp. Cu (CE)) , which shows ΞM1(T) is measurable.
Note M1 (I) is a measurable subset of M1 (T) . So Ξ is measurable.

The measurability of Θ can be proven similarly. 2

On DEN (resp. CEN when each Yn is continuous) , by Lemmas 4.6-4.7,

Z
(
wN

)
= Ξ

(
wN

)
, QµN − a.s..

Here and hereafter, we take

Z
(
wN

)
= Ξ

(
wN

)
, ∀wN ∈ DEN (resp. CEN when each Yn is continuous) .

For any t ∈ R+, let πt : γ ∈ DE (resp. CE) → γ(t) ∈ E be the canonical projection at
time t. Note πt is measurable (resp. continuous). For any t ∈ R+, define

Xt := Xt

(
wN

)
= (πt)∗Z

(
wN

)
, the image measure of Z

(
wN

)
under πt.

Then
∫

E
f(x)Xt

(
wN

)
(dx) =

∫
f(γ(t))Z

(
wN

)
(dγ) is càdlàg (resp. continuous) in t ∈ R+,

for any f ∈ Cb(E). So X = (Xt)t≥0 is càdlàg (resp. continuous) on M1(E); and under QµN ,
X = (X)t≥0 distributes as Pµ.

Lemma 4.8. Let ω = (ωt)t≥0 be the coordinate process on DM1(E)

(
resp. CM1(E)

)
and

Ft =
⋂
s>t

σ(ωu, u ≤ s), ∀t ≥ 0; F = σ(Ft, t ≥ 0).

Given arbitrary bounded (Ft)-stopping time τ := τ(ω) on DM1(E)

(
resp. CM1(E)

)
. Then on

(DEN , QµN)
(
resp.

(
CEN , QµN

)
when each Yn is continuous

)
, as n →∞,

Xn
τ(X(wN))

(
wN

)
converges weakly to Xτ(X(wN))

(
wN

)
, QµN − a.s. wN;

and conditioned on Y∞,
{

wk
τ(X(wN))

}∞
k=1

is an i.i.d random variable sequence distributed

as Xτ(X(wN))

(
wN

)
.

Proof. Note if conditioned on Y∞,
{

wk
τ(X(wN))

}∞
k=1

is an i.i.d random variable sequence

distributed as Xτ(X(wN))

(
wN

)
; then by the law of large numbers, conditioned on Y∞,

Xn
τ(X(wN))

(
wN

)
converges weakly to Xτ(X(wN))

(
wN

)
, which implies

Xn
τ(X(wN))

(
wN

)
converges weakly to Xτ(X(wN))

(
wN

)
, QµN − a.s. wN.

So it suffices to prove that for any n ∈ N, and any fk ∈ Cb(E), 1 ≤ k ≤ n,

QµN

[
n∏

k=1

fk

(
wk

τ(X(wN))

) ∣∣∣∣∣ Y∞
]

=
∫

En

n∏
k=1

fk(xk)
(
Xτ(X(wN))

(
wN

))n
(dx1 · · · dxn).

(4.5)
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In fact, since X
(
wN

)
and τ

(
X
(
wN

))
are Y∞-measurable,∫

En

n∏
k=1

fk(xk)
(
Xτ(X(wN))

(
wN

))n
(dx1 · · · dxn)

is Y∞-measurable. For any l ∈ N, define

τl

(
wN

)
=

i

2l
, if τ

(
X
(
wN

))
∈
[

i− 1
2l

,
i

2l

)
for some i ∈ N.

By Lemma 4.6, QµN − a.s. wN,

Xt

(
wN

)
= lim

n→∞

1
n

n∑
i=1

δwi
t

(in the weak topology) = Θ
({

wi
t

}∞
i=1

)
, ∀t ∈ U .

Note U is a dense countable subset of R+ and X = (Xt)t≥0 is càdlàg in t ∈ R+. Then each
τl

(
wN

)
is a bounded stopping time of the process wN =

(
{wi

t}∞i=1

)
t≥0

. For any i ∈ N,
write

Gl,i =
{

τ
(
X
(
wN

))
∈
[

i− 1
2l

,
i

2l

)}
, ∀l, i ∈ N.

Given any F ∈ Y∞, note Gl,i

⋂
F ∈ Y∞. By Lemma 4.6,

QµN

[(∫
En

n∏
k=1

fk(xk)
(
Xτl(wN)

(
wN

))n
(dx1 · · · dxn)

)
IGl,i

⋂
F

]

= QµN

[(∫
Dn

E

n∏
k=1

fk ◦ π i

2l
(w̃k)

(
Z
(
wN

))n
(dw̃1 · · · dw̃n)

)
IGl,i

⋂
F

]

= QµN

[(
QµN

[
n∏

k=1

fk ◦ π i

2l
(wk)

∣∣∣∣∣ Y∞
])

IGl,i

⋂
F

]

= QµN

[(
n∏

k=1

fk ◦ πτl(wN)(w
k)

)
IGl,i

⋂
F

]
.

Therefore,

QµN

[(∫
En

n∏
k=1

fk(xk)
(
Xτl(wN)

(
wN

))n
(dx1 · · · dxn)

)
IF

]

= QµN

[(
n∏

k=1

fk ◦ πτl(wN)(w
k)

)
IF

]
.

Let l ↑ ∞, then τl

(
wN

)
↓ τ
(
X
(
wN

))
, QµN − a.s. wN. Note process X is right continuous

and each fk ∈ Cb(E), by the bounded convergence theorem,

QµN

[(∫
En

n∏
k=1

fk(xk)
(
Xτ(X(wN))

(
wN

))n
(dx1 · · · dxn)

)
IF

]

= QµN

[(
n∏

k=1

fk ◦ πτ(X(wN))(w
k)

)
IF

]
= QµN

[(
n∏

k=1

fk

(
wk

τ(X(wN))

))
IF

]
,
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which implies (4.5). 2

Lemma 4.9. Given any dense countable subset U of R+, and any τ specified in Lemma
4.8, and any k, l ∈ N and any constants

0 < s1 < s2 < · · · < sk < ∞ and 0 < ui < ∞, 1 ≤ i ≤ l;
(need not to assume each si ∈ U)

then for any fj ∈ Cb(M1(E)), 1 ≤ j ≤ k, and any gi ∈ Cb(M1(E)), 1 ≤ i ≤ l,

Pµ

 k∏
j=1

fj

(
ωτ(ω)∧sj

) l∏
i=1

gi

(
ωτ(ω)+ui

)
= Pµ

 k∏
j=1

fj

(
ωτ(ω)∧sj

)Pωτ(ω)

[
l∏

i=1

gi(ωui
)

] ,

where ω = (ωt)t≥0 is specified in Lemma 4.8, which implies Theorem 2.1(2).

Proof. By Lemmas 4.6-4.8, we have

Θ
(
wN

t

)
= Xt

(
wN

)
, ∀t ∈ U , QνN − a.s.;

Θ
(
wN

τ(X(wN))+ui

)
= Xτ(X(wN))+ui

(
wN

)
, 1 ≤ i ≤ l, QνN − a.s.;

Θ
(
wN

τ(X(wN))∧sj

)
= Xτ(X(wN))∧sj

(
wN

)
, 1 ≤ j ≤ k, QνN − a.s.;

for arbitrary ν ∈ M1(E). Therefore,

Pµ

 k∏
j=1

fj

(
ωτ(ω)∧sj

) l∏
i=1

gi

(
ωτ(ω)+ui

)
= QµN

 k∏
j=1

fj

(
Xτ(X)∧sj

) l∏
i=1

gi

(
Xτ(X)+ui

)
= QµN

 k∏
j=1

fj

(
Θ
(
wN

τ(X(wN))∧sj

)) l∏
i=1

gi

(
Θ
(
wN

τ(X(wN))+ui

))
= QµN

 k∏
j=1

fj

(
Θ
(
wN

τ(X(wN))∧sj

))Q{
wi

τ(X(wN))

}∞
i=1

[
l∏

i=1

gi

(
Θ
(
wN

ui

))]
(
note τ

(
X
(
wN

))
is a stopping time for process wN =

(
wN

t

)
t≥0

=
(
{wi

t}∞i=1

)
t≥0

and
{

Q{xi}∞i=1

}
{xi}∞i=1∈EN

is a strong Markov family

)

= QµN

 k∏
j=1

fj

(
Θ
(
wN

τ(X(wN))∧sj

))QµN

Q{
wi

τ(X(wN))

}∞
i=1

[
l∏

i=1

gi

(
Θ
(
wN

ui

))] ∣∣∣∣∣∣ Y∞


(
since any Θ

(
wN

τ(X(wN))∧sj

)
, Xτ(X(wN))∧sj

(
wN

)
are Y∞ −measurable

)
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= QµN

 k∏
j=1

fj

(
Θ
(
wN

τ(X(wN))∧sj

))Q(Xτ(X))N

[
l∏

i=1

gi

(
Θ
(
wN

ui

))]
(
conditioned on Y∞,

{
wk

τ(X(wN))

}∞
k=1

is an i.i.d random

variable sequence distributed as Xτ(X)

)
= QµN

 k∏
j=1

fj

(
Xτ(X)∧sj

)Q(Xτ(X))N

[
l∏

i=1

gi (Xui)

]
= Pµ

 k∏
j=1

fj

(
ωτ(ω)∧sj

)Pωτ(ω)

[
l∏

i=1

gi(ωui
)

]
(
∀ν ∈ M1(E), Pν [ϕ(ω)] = QνN

[
ϕ
(
X
(
wN

))]
, ∀ϕ ∈ Bb

(
DM1(E)

))
.

By a standard argument, Theorem 2.1(2) holds. 2

Proof of Theorem 2.1(3). See [27]. 2

5. Proof of Theorem 3.1

Note Ak-diffusion process is denoted by

Yk =
((

Y 1
t (x1), · · · , Y k

t (xk)
)
t≥0

)
(x1,···,xk)∈Rk

and Qx1,···,xk
is the law of Yk on CRk starting at (x1, · · · , xk) ∈ Rk; and Q{xi}∞i=1

is the
unique probability on CRN under which the coordinate process

wN =
(
wN

t

)
t≥0

=
({

wi
t

}∞
i=1

)
t≥0

on CRN starts at {xi}∞i=1 and

wk =
(
wk

t

)
t≥0

=
(
w1

t , · · · , wk
t

)
t≥0

is of the law Qx1,···,xk
for any k ∈ N. For any µ ∈ M1

(
R1
)
, let

Qµk =
∫

Rk

Qx1,···,xk
µk(dx1 · · · dxk), k ∈ N; QµN =

∫
RN

Q{xi}∞i=1
µN(dx1dx2 · · ·).

Then under QµN , wN is infinite exchangeable and of initial distribution µN, and each wk

distributes as Qµk .

Recall from Section 4, Xt

(
wN

)
= (πt)∗Z

(
wN

)
, t ∈ [0,∞); and

Z
(
wN

)
= Ξ

(
wN

)
, X =

(
Xt

(
wN

))
t≥0

=
(
(πt)∗Ξ

(
wN

))
t≥0

, QµN − a.s. wN;

and under QµN , diffusion process X is just the measure-valued flow given
{
Yk
}

k≥1
starting

at µ.
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Notation. For any stochastic process ξ = (ξt)t≥0 defined on
(
CRN , QµN

)
, (Ft(ξ))t≥0 is the

natural filtration associated to ξ :

Ft(ξ) =
⋂
s>t

σ(ξu, u ≤ s), ∀t ∈ [0,∞).

Lemma 5.1. For A1-diffusion Y1 = (Y 1
t )t≥0, its local time Lz

t (Y
1) satisfies that almost

surely, z ∈ R1 → Lz
t (Y

1) is Hölder continuous of order α for any α ∈
(
0, 1

2

)
and uniformly

in t on every compact interval, and (z, t) ∈ R1 × [0,∞) → Lz
t (Y

1) is continuous.

Proof. Since b2(·) ≤ c a(·), for any
(
A1, C

2
b

(
R1
))

-martingale solution Qµ ∈ M1 (CR1) with
any initial distribution µ ∈ M1

(
R1
)
, if let

mt(γ) = exp
{
−
∫ t

0

a(γs)−1b(γs) dγ̃s −
1
2

∫ t

0

b(γs)2a(γs)−1 ds

}
, t ∈ [0,∞), under Qµ,

where γ = (γt)t≥0 is the coordinate process on CR1 , γ̃t = γt − γ0 −
∫ t

0
b(γs) ds, and

a(x)−1b(x) = 0 provided a(x) = 0; then (mt(γ))t≥0 is a martingale by the Novikov cri-
terion; and there is a unique Q̃µ ∈ M1 (CR1) such that for any t ∈ [0,∞), when restricted
to Ft(γ) =

⋂
s>t

σ(γu, u ≤ s),

Q̃µ

∣∣∣
Ft(γ)

= mt(γ) Qµ|Ft(γ) ,

and Q̃µ is a
(

1
2a(x) ∂2

∂x2 , C2
b

(
R1
))

-martingale solution of initial distribution µ. Here Qµ|Ft(γ)

and Q̃µ

∣∣∣
Ft(γ)

are the restrictions of Qµ and Q̃µ to Ft(γ) respectively.

Conversely, for any
(

1
2a(x) ∂2

∂x2 , C2
b

(
R1
))

-martingale solution Q̃µ ∈ M1 (CR1) with any

initial distribution µ ∈ M1

(
R1
)
, let

m̃t(γ) = exp
{∫ t

0

a(γs)−1b(γs) dγs −
1
2

∫ t

0

b(γs)2a(γs)−1 ds

}
, t ∈ [0,∞), under Q̃µ,

where γt = γt − γ0, then (m̃t(γ))t≥0 is a martingale; and there is a unique Qµ ∈ M1 (CR1)
such that for any t ∈ [0,∞), when restricted to Ft(γ),

Qµ|Ft(γ) = m̃t(γ) Q̃µ

∣∣∣
Ft(γ)

,

and Qµ is an
(
A1, C

2
b

(
R1
))

-martingale solution of initial distribution µ.
Recall for a continuous semimartingale X = (Xt)t≥0, by [19] Chapter 19 Corollary 19.6,

outside a fixed null-probability set,

local time Lx
t (X) = lim

ε↓0

1
ε

∫ t

0

I[x,x+ε) (Xs) d〈X〉s, ∀t ≥ 0, ∀x ∈ R1.

However, for any 1
2a(x) ∂2

∂x2 -diffusion process Ỹ1, almost surely, z → Lz
t

(
Ỹ1
)

is Hölder

continuous of order α for every α ∈
(
0, 1

2

)
and uniformly in t on every compact interval ([33]

Chapter VI Corollary 1.8) and (z, t) → Lz
t

(
Ỹ1
)

is continuous in (z, t) ∈ R1 × [0,∞) ([33]
Chapter VI Theorem 1.7).
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Note d
〈
Ỹ 1
·

〉
s

= a
(
Ỹ 1

s

)
ds and d〈Y 1

· 〉s = a(Y 1
s ) ds, and the Girsanov argument for the

two processes. We see the lemma holds. 2

Lemma 5.2. Given any µ ∈ M1

(
R1
)
. For any t ∈ [0,∞),

sup
z∈R1

{∫
CR1

(
Lz

t (w
1)
)r

Qµ(dw1)

}
< ∞, ∀r ∈ (0,∞); (5.1)

and for any T ∈ (0,∞) and any r ∈ [2,∞),

Qµ

[
sup
t≤T

∣∣Lz1
t (w1)− Lz2

t (w1)
∣∣r] ≤ c(T, r)

{
|z1 − z2|r + |z1 − z2|

r
2
}

, ∀(z1, z2) ∈ R2, (5.2)

with c(T, r) being a constant depending on T and r.

Proof. Step 1. Prove (5.1). Note

w1
t = w1

0 +
∫ t

0

b(w1
s) ds + Mt(w1), t ≥ 0, Qµ − a.s. w1 ∈ CR1 ;

where (Mt(w1))t≥0 is a continuous martingale with

〈M·(w1)〉t =
∫ t

0

a(w1
s) ds, t ≥ 0.

By the Tanaka formula for continuous semimartingales,

Lz
t (w

1) = 2
[
(w1

t − z)+ − (w1
0 − z)+ −

∫ t

0

I(z,∞)(w1
s) dMs(w1)−∫ t

0

I(z,∞)(w1
s)b(w1

s) ds

]
, ∀t ∈ [0,∞), Qµ − a.s. w1. (5.3)

Moreover, recall from [33] Chapter VI, the following occupation time formula holds:∫ t

0

φ
(
w1

s

)
a
(
w1

s

)
ds =

∫ ∞

−∞
φ(z)Lz

t

(
w1
)

dz,

∀t ∈ [0,∞), ∀0 < φ ∈ Bb

(
R1
)
, Qµ − a.s.;

by the monotone convergence theorem,∫ t

0

φ
(
w1

s

)
a
(
w1

s

)
ds =

∫ ∞

−∞
φ(z)Lz

t

(
w1
)

dz,

∀t ∈ [0,∞), ∀0 ≤ φ ∈ Bb

(
R1
)
, Qµ − a.s..

By the Burkholder-Davis-Gundy inequality, for some constant cr depending on r,

Qµ

[∣∣Mt(w1)
∣∣r] ≤ Qµ

[
sup
s≤t

∣∣Ms(w1)
∣∣r] ≤ crQµ

[
〈M·(w1)〉

r
2
t

]
= crQµ

[(∫ t

0

a(w1
s) ds

) r
2
]
≤ cr‖a(·)‖ r

2 t
r
2 ,
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Qµ

[∣∣∣∣∫ t

0

I(z,∞)(w1
s) dMs(w1)

∣∣∣∣r
]
≤ Qµ

[
sup
s≤t

∣∣∣∣∫ s

0

I(z,∞)(w1
u) dMu(w1)

∣∣∣∣r]

≤ crQµ

[(∫ t

0

I(z,∞)(w1
s) a(w1

s) ds

) r
2
]
≤ cr‖a(·)‖ r

2 t
r
2 .

Combining with (5.3) and∣∣(w1
t − z)+ − (w1

0 − z)+
∣∣ ≤ ∣∣w1

t − w1
0

∣∣ ≤ ‖b(·)‖t +
∣∣Mt(w1)

∣∣ ,∣∣∣∣∫ t

0

I(z,∞)(w1
s)b(w1

s) ds

∣∣∣∣ ≤ ‖b(·)‖t;

we see (5.1) is true.

Step 2. The case b(·) ≡ 0. In the case, use Q̃µ to denote Qµ, we have

Q̃µ

[
sup
t≤T

∣∣Lz1
t (w1)− Lz2

t (w1)
∣∣r] ≤ c1(T, r)

{
|z1 − z2|r + |z1 − z2|

r
2
}

, ∀(z1, z2) ∈ R2,

for some constant c1(T, r) depending on T and r ∈ [2,∞).

Note for any t ∈ [0,∞),∣∣(w1
t − z1)+ − (w1

0 − z1)+ − (w1
t − z2)+ + (w1

0 − z2)+
∣∣

≤
∣∣(w1

t − z1)+ − (w1
t − z2)+

∣∣+ ∣∣(w1
0 − z1)+ − (w1

0 − z2)+
∣∣

≤ 2|z1 − z2|, ∀(z1, z2) ∈ R2.

By (5.3), it suffices to check that for some constant c2(T, r) depending on T and r,

Q̃µ

[
sup
t≤T

∣∣∣∣∫ t

0

(
I(z1,∞)(w1

s)− I(z2,∞)(w1
s)
)

dMs(w1)
∣∣∣∣r
]

≤ c2(T, r)|z1 − z2|
r
2 , ∀(z1, z2) ∈ R2.

In fact, by the Burkholder-Davis-Gundy inequality and the occupation time formula,

Q̃µ

[
sup
t≤T

∣∣∣∣∫ t

0

(
I(z1,∞)(w1

s)− I(z2,∞)(w1
s)
)

dMs(w1)
∣∣∣∣r
]

≤ crQ̃µ

(∫ T

0

I(z1∧z2,z1∨z2](w
1
s)a(w1

s) ds

) r
2
 = crQ̃µ

[(∫ z1∨z2

z1∧z2

Lz
T (w1) dz

) r
2
]

= cr|z1 − z2|
r
2 Q̃µ

[(
1

|z1 − z2|

∫ z1∨z2

z1∧z2

Lz
T (w1) dz

) r
2
]

≤ cr|z1 − z2|
r
2 Q̃µ

[
1

|z1 − z2|

∫ z1∨z2

z1∧z2

(
Lz

T (w1)
) r

2 dz

]
≤ cr|z1 − z2|

r
2 sup

z∈R1

{
Q̃µ

[(
Lz

T (w1)
) r

2
]}

, ∀z1 6= z2, we are done.
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Step 3. Prove (5.2). Note the proof of Lemma 5.1,

Q̃µ

[(
m̃T (w1)

) 1+ε
ε

]
= Q̃µ

[
exp

{
1 + ε

ε

∫ T

0

a(w1
s)−1b(w1

s) dw1
s −

1
2

(
1 + ε

ε

)2 ∫ T

0

b(w1
s)2a(w1

s)−1 ds+

1 + ε

2ε2

∫ T

0

b(w1
s)2a(w1

s)−1 ds

}]

≤ exp
{

(1 + ε)cT
2ε2

}
Q̃µ

[
exp

{
1 + ε

ε

∫ T

0

a(w1
s)−1b(w1

s) dw1
s −

1
2

(
1 + ε

ε

)2 ∫ T

0

b(w1
s)2a(w1

s)−1 ds

}]

= exp
{

(1 + ε)cT
2ε2

}
, for any ε ∈ (0,∞).

Then by Step 2,

Qµ

[
sup
t≤T

∣∣Lz1
t (w1)− Lz2

t (w1)
∣∣r] = Q̃µ

[
m̃T (w1) sup

t≤T

∣∣Lz1
t (w1)− Lz2

t (w1)
∣∣r]

≤
{

Q̃µ

[(
m̃T (w1)

) 1+ε
ε

]} ε
1+ε
{

Q̃µ

[
sup
t≤T

∣∣Lz1
t (w1)− Lz2

t (w1)
∣∣r(1+ε)

]} 1
1+ε

≤ exp
{

cT

2ε

}
{c1(T, (1 + ε)r)}

1
1+ε

{
|z1 − z2|r(1+ε) + |z1 − z2|

r(1+ε)
2

} 1
1+ε

≤ exp
{

cT

2ε

}
{c1(T, (1 + ε)r)}

1
1+ε
{
|z1 − z2|r + |z1 − z2|

r
2
}

,

take ε = 1 to complete the proof. 2

Lemma 5.3. For any µ ∈ M1

(
R1
)

with
∫
[0,∞)

x µ(dx) < ∞,

QµN

[
sup
s≤t

∫
R1

(y − z)+ Xs(dy)
]
≤ QµN

[∫
CR1

sup
s≤t

(γs − z)+ Z
(
wN

)
(dγ)

]
< ∞,

for any t ∈ [0,∞) and any z ∈ R1;

and for any z ∈ R1,∫
R1

(y − z)+ Xt(dy) is continuous in t, QµN − a.s.;

and

sup
s≤t

∣∣∣∣∫
R1

(y − z1)+ Xs(dy)−
∫

R1
(y − z2)+ Xs(dy)

∣∣∣∣
≤ |z1 − z2|, ∀t ∈ [0,∞), ∀(z1, z2) ∈ R2, QµN − a.s..

So
∫

R1(y − z)+ Xt(dy) is continuous in (z, t) ∈ R1 × [0,∞), QµN − a.s..
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Proof. Note

QµN

[
sup
s≤t

(
w1

s − z
)+]

≤ QµN

[
sup
s≤t

(
w1

s − w1
0 −

∫ s

0

b
(
w1

r

)
dr

)
+ ‖b‖t + w1

0I{w1
0≥z} + z

]

≤ c1QµN

√∫ t

0

a (w1
s) ds

+ ‖b‖t +
∫

[z,∞)

x µ(dx) + z < ∞

(where we have used Burkholder −Davis−Gundy inequality),

for some constant c1 > 0. By the second part of Lemma 4.6,

QµN

[∫
CR1

sup
s≤t

(γs − z)+ Z
(
wN

)
(dγ)

]
= QµN

[
sup
s≤t

(
w1

s − z
)+]

< ∞.

Thus,

QµN

[
sup
s≤t

∫
R1

(y − z)+ Xs(dy)
]

= QµN

[
sup
s≤t

∫
CR1

(γs − z)+ Z
(
wN

)
(dγ)

]

≤ QµN

[∫
CR1

sup
s≤t

(γs − z)+ Z
(
wN

)
(dγ)

]
< ∞.

Note ∫
R1

(y − z)+ Xt(dy) =
∫

CR1

(γt − z)+ Z
(
wN

)
(dγ), ∀t ∈ [0,∞),

we see that for any z ∈ R1,∫
R1

(y − z)+ Xt(dy) is continuous in t, QµN − a.s..

While,

sup
s≤t

∣∣∣∣∫
R1

(y − z1)+ Xs(dy)−
∫

R1
(y − z2)+ Xs(dy)

∣∣∣∣
≤ sup

s≤t

∫
R1

∣∣(y − z1)+ − (y − z2)+
∣∣ Xs(dy)

≤ |z1 − z2|, ∀t ∈ [0,∞), ∀(z1, z2) ∈ R2, QµN − a.s..

Now the lemma holds. 2

Lemma 5.4. Under QµN , almost surely,∫ t

0

Xs ds � dz (the Lebesgue measure), ∀t ∈ [0,∞),

Lz
t (X) :=

d
(∫ t

0
Xs ds

)
dz

is well − defined for any z ∈ R1 and any t ∈ [0,∞);
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and ∀z ∈ {a(·) 6= 0}, Lz
t (X) ∈ Lr

(
QµN

)
, ∀t ∈ [0,∞), ∀r ∈ [1,∞). Moreover, under QµN ,(

(Lz
t (X))t≥0

)
z∈{a(·) 6=0}

has a modified version
((

L̃z
t (X)

)
t≥0

)
z∈{a(·) 6=0}

such that

(i) the map (z, t) ∈ {a(·) 6= 0} × [0,∞) → L̃z
t (X) is a.s. continuous;

(ii) almost surely, the map z ∈ {a(·) 6= 0} → a(z)Lz
t (X) is Hölder continuous of

order α for any α ∈
(

0,
1
2

)
and uniformly in t on every compact interval;

(iii) for any fixed z ∈ {a(·) 6= 0}, L̃z
t (X) is a.s. increasing in t ∈ [0,∞), and

L̃z
t (X) =

∫
CR1

Lz
t (γ)a(z)−1 Z

(
wN

)
(dγ), ∀t ∈ [0,∞), a.s.;

(iv) given any z ∈ {a(·) 6= 0}, L̃z
t (X) is Ft(X)−measurable for any t ∈ [0,∞).

Proof. Step 1. Representation of
∫ t

0
Xs((z − ε, z + ε)) ds for ε > 0 and z ∈ R1.

Write B(z, ε) = (z − ε, z + ε). Since under QµN , each wi =
(
wi

s

)
s≥0

is the A1-diffusion
process with the initial distribution µ, wi is a continuous semimartingale with

d
〈
wi
·
〉

s
= a

(
wi

s

)
ds and variation part

∫ ·

0

b
(
wi

s

)
ds;

then by the occupation time formula,∫ t

0

Φ
(
wi

s

)
a
(
wi

s

)
ds =

∫ ∞

−∞
Φ(z)Lz

t

(
wi
)

dz,

∀t ∈ [0,∞), ∀0 < Φ ∈ Bb

(
R1
)
, QµN − a.s.,

with Lz
t (·) being the local time functional in z up to time t for the A1-diffusion process. By

the monotone convergence theorem,∫ t

0

Φ
(
wi

s

)
a
(
wi

s

)
ds =

∫ ∞

−∞
Φ(z)Lz

t

(
wi
)

dz,

∀t ∈ [0,∞), ∀0 ≤ Φ ∈ Bb

(
R1
)
, QµN − a.s.,

which implies∫ t

0

Φ
(
wi

s

)
a
(
wi

s

)
ds =

∫ ∞

−∞
Φ(z)Lz

t

(
wi
)

dz, ∀t ∈ [0,∞),

for any nonnegative measurable function Φ on R1, QµN − a.s.;∫ t

0

IB(z,ε)

(
wi

s

)
ds =

∫ ∞

−∞
IB(z,ε)(y)a(y)−1Ly

t

(
wi
)

dy,

∀t ∈ [0,∞), ∀z ∈ R1, ∀ε > 0, QµN − a.s..

Therefore,

1
k

k∑
i=1

∫ t

0

IB(z,ε)

(
wi

s

)
ds =

1
k

k∑
i=1

∫
B(z,ε)

Ly
t

(
wi
)
a(y)−1 dy,

∀t ∈ [0,∞), ∀z ∈ R1, ∀ε > 0, QµN − a.s.;
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and by the second part of Lemma 4.6, we have that QµN − a.s., as k →∞,

1
k

k∑
i=1

∫
B(z,ε)

Ly
t

(
wi
)
a(y)−1 dy →

∫
CR1

∫
B(z,ε)

Ly
t (γ)a(y)−1 dyZ

(
wN

)
(dγ)

=
∫

B(z,ε)

∫
CR1

Ly
t (γ)a(y)−1 Z

(
wN

)
(dγ)dy,

QµN

[∫
B(z,ε)

∫
CR1

Ly
t (γ)a(y)−1 Z

(
wN

)
(dγ)dy

]

= lim
k→∞

QµN

[
1
k

k∑
i=1

∫ t

0

IB(z,ε)

(
wi

s

)
ds

]

= lim
k→∞

QµN

[
1
k

k∑
i=1

∫ ∞

−∞
IB(z,ε)(y)a(y)−1Ly

t

(
wi
)

dy

]

=
∫ t

0

〈
µ, V 1

s IB(z,ε)

〉
ds =

∫
B(z,ε)

a(y)−1Qµ

[
Ly

t

(
w1
)]

dy;

1
k

k∑
i=1

∫ t

0

IB(z,ε)

(
wi

s

)
ds →

∫
CR1

∫ t

0

IB(z,ε)(γs) dsZ
(
wN

)
(dγ)

=
∫ t

0

∫
CR1

IB(z,ε)(γs) Z
(
wN

)
(dγ) ds =

∫ t

0

Xs(B(z, ε)) ds.

Hence, ∫ t

0

Xs(B(z, ε)) ds =
∫

B(z,ε)

∫
CR1

Ly
t (γ)a(y)−1Z

(
wN

)
(dγ)dy, QµN − a.s..

Step 2. For any t ∈ [0,∞) and any r ∈ [1,∞),

sup
z∈R1

QµN

[(∫
CR1

Lz
t (γ) Z

(
wN

)
(dγ)

)r]

≤ sup
z∈R1

QµN

[∫
CR1

(Lz
t (γ))r

Z
(
wN

)
(dγ)

]
< ∞.

With Lemma 5.2 in mind, from the second part of Lemma 4.6, we obtain

1
k

k∑
i=1

(
Lz

t (w
i)
)r → ∫

CR1

(Lz
t (γ))r

Z
(
wN

)
(dγ), QµN − a.s.,

QµN

[∫
CR1

(Lz
t (γ))r

Z
(
wN

)
(dγ)

]
= lim

k→∞
QµN

[
1
k

k∑
i=1

(
Lz

t (w
i)
)r]

= Qµ

[(
Lz

t (w
1)
)r]

;

sup
z∈R1

QµN

[∫
CR1

(Lz
t (γ))r

Z
(
wN

)
(dγ)

]
= sup

z∈R1
Qµ

[(
Lz

t (w
1)
)r]

< ∞.
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Step 3. Note Lz
t (·) is increasing in t ∈ [0,∞). By Lemma 5.1 and Step 2, for fixed z ∈ R1,∫

CR1

Lz
t (γ) Z(wN)(dγ) is continuous in t ∈ [0,∞), QµN − a.s..

Step 4. Under QµN , almost surely, the map z ∈ R1 →
∫

CR1
Lz

t (γ) Z(wN)(dγ) is Hölder con-

tinuous of order α for any α ∈
(
0, 1

2

)
and uniformly in t on every compact interval, which to-

gether with Step 3 imply almost surely the map (z, t) ∈ R1×[0,∞) →
∫

CR1
Lz

t (γ) Z(wN)(dγ)
is continuous.

Indeed, for any T ∈ (0,∞) and r ∈ [2,∞), by (5.2) and the second part of Lemma 4.6,

QµN

[∫
CR1

sup
t≤T

|Lz1
t (γ)− Lz2

t (γ)|r Z
(
wN

)
(dγ)

]

= lim
k→∞

QµN

[
1
k

k∑
i=1

sup
t≤T

∣∣Lz1
t (wi)− Lz2

t (wi)
∣∣r] = Qµ

[
sup
t≤T

∣∣Lz1
t (w1)− Lz2

t (w1)
∣∣r]

≤ c(T, r)
(
|z1 − z2|r + |z1 − z2|

r
2
)
, ∀(z1, z2) ∈ R2.

Therefore,

QµN

[
sup
t≤T

∣∣∣∣∣
∫

CR1

Lz1
t (γ)Z

(
wN

)
(dγ)−

∫
CR1

Lz2
t (γ)Z

(
wN

)
(dγ)

∣∣∣∣∣
r]

≤ QµN

[∫
CR1

sup
t≤T

|Lz1
t (γ)− Lz2

t (γ)|r Z
(
wN

)
(dγ)

]
≤ c(T, r)

(
|z1 − z2|r + |z1 − z2|

r
2
)
, ∀(z1, z2) ∈ R2.

Note Step 3. By the Kolmogorov’s continuity criterion on Banach spaces, the result of Step
4 holds.

Step 5. Given any sequence {εn}n≥1 ⊂ (0,∞) converging decreasingly to 0. For any
z ∈ {a(·) 6= 0}, note

∫ t

0
Xs(B(z, εn)) ds is continuous in t and Ly

t (γ) is continuous and
increasing in t, with Steps 1, 3 and 4,∫

B(z,εn)

∫
CR1

Ly
t (γ)a(y)−1Z

(
wN

)
(dγ)dy < ∞, ∀t ∈ [0,∞), QµN − a.s.,∫

B(z,εn)

∫
CR1

Ly
t (γ)a(y)−1Z

(
wN

)
(dγ)dy is continuous in t, QµN − a.s.;∫ t

0

Xs(B(z, εn)) ds =
∫

B(z,εn)

∫
CR1

Ly
t (γ)a(y)−1Z

(
wN

)
(dγ)dy,

∀t ∈ [0,∞), ∀n ∈ N, QµN − a.s.;

lim
n→∞

1
2εn

∫ t

0

Xs(B(z, εn)) ds = lim
n→∞

1
2εn

∫
B(z,εn)

∫
CR1

Ly
t (γ)a(y)−1Z

(
wN

)
(dγ) dy

=
∫

CR1

Lz
t (γ)a(z)−1Z

(
wN

)
(dγ), ∀t ≥ 0, QµN − a.s.. (5.4)
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From the proof of Step 2,

QµN

[∫
CR1

Lz
t (γ)a(z)−1Z

(
wN

)
(dγ)

]
= a(z)−1Qµ

[
Lz

t

(
w1
)]

, z ∈ {a(·) 6= 0}.

Recall {a(·) = 0} is of zero Lebesgue measure. Then for any φ ∈ Cb

(
R1
)
,

QµN

[∫ t

0

〈Xs, φ〉 ds

]
=
∫ t

0

〈
µ, V 1

s φ
〉

ds = Qµ

[∫ t

0

φ
(
w1

s

)
ds

]
= Qµ

[∫ ∞

−∞
φ(y)Ly

t

(
w1
)
a(y)−1 dy

]
=
∫ ∞

−∞
φ(y)a(y)−1Qµ

[
Ly

t

(
w1
)]

dy

=
∫ ∞

−∞
φ(y)QµN

[∫
CR1

Ly
t (γ)a(y)−1Z

(
wN

)
(dγ)

]
dy.

So by [9] Lemma 3.4.2.2, QµN − a.s.,
∫ t

0
Xs ds is absolutely continuous with respect to

the Lebesgue measure dz. Combining with
∫ t

0
Xs ds is increasing in t ∈ [0,∞), we have that

QµN almost surely,∫ t

0

Xs ds � dz, ∀t ∈ [0,∞);

Lz
t (X) =

d
(∫ t

0
Xs ds

)
dz

is well − defined for any z ∈ R1 and t ∈ [0,∞).

Define
((

L̃z
t (X)

)
t≥0

)
z∈R1

as follows:

L̃z
t (X) =

{
lim

n→∞
1

2εn

∫ t

0
Xs((z − εn, z + εn)) ds if the limit exists,

0, otherwise.

Note
∫ t

0
Xs ds � dz, ∀t ∈ [0,∞), QµN − a.s.. We see that QµN − a.s.,

L̃z
t (X) = Lz

t (X), dz − a.e. z ∈ R1, ∀t ∈ [0,∞),

lim
n→∞

1
2εn

∫ t

0

Xs((z − εn, z + εn)) ds exists, dz − a.e. z ∈ R1, ∀t ∈ [0,∞).

By (5.4), for any z ∈ {a(·) 6= 0},

L̃z
t (X) =

∫
CR1

Lz
t (γ)a(z)−1Z

(
wN

)
(dγ), ∀t ≥ 0, QµN − a.s., (5.5)

which implies that L̃z
t (X) is a.s. increasing in t ∈ [0,∞).

Clearly, for any z ∈ R1, L̃z
t (X) is Ft(X)-measurable for any t ∈ [0,∞). So far, combin-

ing with Step 4 and (5.5), we have obtained that
((

L̃z
t (X)

)
t≥0

)
z∈{a(·) 6=0}

is a version of(
(Lz

t (X))t≥0

)
z∈{a(·) 6=0}

under QµN specified in Lemma 5.4. The lemma holds. 2
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Proof of Theorem 3.1. Step 1. Recall from the proof of Lemma 5.2,

γt = γ0 +
∫ t

0

b(γs) ds + Mt(γ), t ≥ 0, Qµ − a.s. γ ∈ CR1 ,

where (Mt(γ))t≥0 is a continuous martingale of quadratic variation process
(∫ t

0
a(γs) ds

)
t≥0

;

and

Lz
t (γ) = 2

[
(γt − z)+ − (γ0 − z)+ −

∫ t

0

I(z,∞)(γs) dMs(γ)−∫ t

0

I(z,∞)(γs)b(γs) ds

]
, ∀t ∈ [0,∞), Qµ − a.s. γ.

While by [20] Chapter 3 Lemma 7.5,

(z, t) ∈ R1 × [0,∞) →
∫ t

0

I(z,∞)(γs) dMs(γ) is continuous, Qµ − a.s. γ ∈ CR1 .

Hence, by Lemma 5.1, Qµ − a.s., each term in above Tanaka formula is continuous in
(z, t) ∈ R1 × [0,∞); and further

Lz
t (γ) = 2

[
(γt − z)+ − (γ0 − z)+ −

∫ t

0

I(z,∞)(γs) dMs(γ)−∫ t

0

I(z,∞)(γs)b(γs) ds

]
, ∀t ∈ [0,∞), ∀z ∈ R1, Qµ − a.s. γ.

Now without loss of generality, assume for every γ ∈ CR1 ,

Lz
t (γ) = 2

[
(γt − z)+ − (γ0 − z)+ −

∫ t

0

I(z,∞)(γs) dMs(γ)−∫ t

0

I(z,∞)(γs)b(γs) ds

]
, ∀t ∈ [0,∞), ∀z ∈ R1,

and

∫ t

0

I(z,∞)(γs) dMs(γ) is continuous in (z, t) ∈ R1 × [0,∞).

By (5.5) and Lemma 5.3, for any z ∈ {a(·) 6= 0} and µ ∈ M1

(
R1
)

with
∫
[0,∞)

x µ(dx) < ∞,

L̃z
t (X) =

2
a(z)

∫
CR1

(γt − z)+ Z
(
wN

)
(dγ)− 2

a(z)

∫
CR1

(γ0 − z)+ Z
(
wN

)
(dγ)−

2
a(z)

∫ t

0

∫
CR1

I(z,∞)(γs)b(γs) Z
(
wN

)
(dγ)ds−

2
a(z)

∫
CR1

∫ t

0

I(z,∞)(γs)dMs(γ)Z
(
wN

)
(dγ)

=
2

a(z)

{∫
[z,∞)

(x− z) Xt(dx)−
∫

[z,∞)

(x− z) µ(dx)−
∫ t

0

〈
Xs, I(z,∞)b(·)

〉
ds

−
∫

CR1

∫ t

0

I(z,∞)(γs)dMs(γ)Z
(
wN

)
(dγ)

}
, ∀t ∈ [0,∞), QµN − a.s..
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Step 2. For any z ∈ {a(·) 6= 0}, let

Mz
t (X) =

∫
[z,∞)

(x− z) Xt(dx)−
∫

[z,∞)

(x− z) µ(dx)−∫ t

0

〈
Xs, I(z,∞)b(·)

〉
ds− 1

2
a(z)L̃z

t (X), ∀t ∈ [0,∞).

Then (Mz
t (X))t≥0 is a (Ft(X))t-adapted Lr-martingale for any r ∈ [1,∞); and almost

surely, (z, t) ∈ {a(·) 6= 0} × [0,∞) → Mz
t (X) is continuous, and z ∈ {a(·) 6= 0} → Mz

t (X) is
Hölder continuous of order α for any α ∈

(
0, 1

2

)
and uniformly in t on every compact interval.

Let (
M

z

t (X)
)

t≥0
:=

(∫
CR1

∫ t

0

I(z,∞)(γs)dMs(γ)Z
(
wN

)
(dγ)

)
t≥0

, ∀z ∈ R1.

For any z ∈ R1, by the second part of Lemma 4.6, we have that for any t ≥ 0, as k →∞,

Mz
t (k) :=

1
k

k∑
i=1

∫ t

0

I(z,∞)

(
wi

s

)
dMs

(
wi
)
→ M

z

t (X) in L1
(
QµN

)
and almost surely.

Since (Mz
t (k))t≥0 is a

(
Ft

(
wk
))

t
-martingale, for any 0 ≤ s < t < ∞, n ∈ N, and bounded

Fs (wn)-measurable function h on CRN , we have

QµN

[
M

z

t (X)h
]

= lim
n≤k→∞

QµN [Mz
t (k)h] = lim

n≤k→∞
QµN [Mz

s (k)h] = QµN

[
M

z

s(X)h
]
,

which implies that
(
M

z

t (X)
)

t≥0
is a

(
F t

)
t
-adapted martingale, where F t is the completion

of σ

( ⋃
k≥1

Ft

(
wk
))

with respect to QµN .

By the Burkholder-Davis-Gundy inequality,

sup
z∈R1

Qµ

[
sup
s≤t

∣∣∣∣∫ s

0

I(z,∞)(γu) dMu(γ)
∣∣∣∣r] < ∞, ∀t ∈ [0,∞), ∀r ∈ [1,∞);

and further similarly to Step 2 of the proof of Lemma 5.4, we have

sup
z∈R1

QµN

[∫
CR1

sup
s≤t

∣∣∣∣∫ s

0

I(z,∞)(γu)dMu(γ)
∣∣∣∣r Z(wN)(dγ)

]
< ∞,

which implies
(
M

z

t (X)
)

t≥0
is an Lr-martingale, and is a.s. continuous in t (note by as-

sumption,
∫ t

0
I(z,∞)(γu)dMu(γ) is continuous in t ∈ [0,∞)).

It is easy to prove (c.f. Step 2 for the proof of Lemma 5.2) that for any r ∈ [2,∞),

Qµ

[
sup
s≤t

∣∣∣∣∫ s

0

(
I(z1,∞)(γu)− I(z2,∞)(γu)

)
dMu(γ)

∣∣∣∣r] ≤ ct,r|z1 − z2|
r
2 , ∀(z1, z2) ∈ R2;
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where ct,r is a constant depending on t and r. Then similarly to Step 4 of the proof of Lemma
5.4, one can show that almost surely, (z, t) → M

z

t (X) is continuous, and z ∈ R1 → M
z

t (X) is
Hölder continuous of order α for any α ∈

(
0, 1

2

)
and uniformly in t on every compact interval.

By Step 1 of proving Theorem 5.1, for any z ∈ {a(·) 6= 0},

Mz
t (X) = M

z

t (X), ∀t ∈ [0,∞), QµN − a.s.. (5.6)

Notice that L̃z
t (X),

∫
[z,∞)

(x − z) Xt(dx) −
∫
[z,∞)

(x − z) µ(dx) and
∫ t

0

〈
Xs, I(z,∞)b(·)

〉
ds

are Ft(X)-measurable. So for any z ∈ {a(·) 6= 0}, Mz
t (X) is Ft(X)-measurable. Recall from

Section 4, the H-topology is stronger than the weak topology on M1 (CR1) , and

as n →∞,
1
n

n∑
i=1

δwi → Z
(
wN

)
in H− topology, QµN − a.s. wN;

and Xt

(
wN

)
= (πt)∗Z

(
wN

)
, t ∈ [0,∞); and

Ξ
(
wN

)
=

 the limit of

{
1
n

n∑
i=1

δwi

}∞
n=1

in M1(CR1) if it exists,

Z0 ∈ M1(CR1), otherwise,

Z
(
wN

)
= Ξ

(
wN

)
, X =

(
Xt

(
wN

))
t≥0

=
(
(πt)∗Ξ

(
wN

))
t≥0

.

Combining with πt : γ ∈ CR1 → γt ∈ R1 is continuous for any t, we see that as n →∞,

1
n

n∑
i=1

δwi
t
→ Xt

(
wN

)
(in the weak topology), ∀t ∈ [0,∞), QµN − a.s. wN. (5.7)

Thus Ft(X) ⊆ F t, t ∈ [0,∞). Use (5.6) to finish the proof of this step.

Step 3. For any µ ∈ M1

(
R1
)

with
∫
[0,∞)

x µ(dx) < ∞, by the definition of(
(Mz

t (X))t≥0

)
z∈{a(·) 6=0}

,

for any wN ∈ CRN ,

L̃z
t (X) =

2
a(z)

{∫
[z,∞)

(x− z) Xt(dx)−
∫

[z,∞)

(x− z) µ(dx)−∫ t

0

〈
Xs, I(z,∞)b(·)

〉
ds−Mz

t (X)
}

,

∀t ∈ [0,∞), ∀z ∈ {a(·) 6= 0}.

Since each term in the above equality is Ft(X)-measurable for any t ∈ [0,∞), combining
with that random variable X defined on

(
CRN , QµN

)
is of the law Pµ, and Lemma 5.4, we

have finished proving Theorem 3.1 with the Tanaka formula for initial measure µ ∈ M1

(
R1
)

satisfying
∫
[0,∞)

x µ(dx) < ∞. Similarly, one can prove the Tanaka formula in Theorem 3.1
for µ ∈ M1

(
R1
)

with
∫
(−∞,0]

|x| µ(dx) < ∞. 2
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