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Abstract

For a given graph H and a positive n, the rainbow number of H, denoted by
rb(n, H), is the minimum integer k so that in any edge-coloring of K,, with k colors
there is a copy of H whose edges have distinct colors. In 2004, Schiermeyer de-
termined rb(n, kKs) for all n > 3k + 3. The case for smaller values of n (namely,
n € [2k, 3k + 2] remained generally open. In this paper we extend Schiermeyer’s

result to all plausible n and hence determine the rainbow number of matchings.
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1 Introduction

In this paper we consider undirected, finite and simple graphs only, and use standard
notations in graph theory (see [3] and [8]). Let K, be an edge-colored complete graph
on n vertices. If a subgraph H of K, contains no two edges of the same color, then H
is called a totally multicolored (TMC) or rainbow subgraph of K, and we say that K,
contains a TMC or rainbow H. Let f(n, H) denote the maximum number of colors in an
edge-coloring of K, with no TMC H. We now define rb(n, H) as the minimum number
of colors such that any edge-coloring of K,, with at least rb(n, H) = f(n,H) + 1 colors
contains a TMC or rainbow subgraph isomorphic to H. The number rb(n, H) is called
the rainbow number of H.

f(n, H) is called the anti-Ramsey number of H, which was introduced by Erdds,
Simonovits and Sés in the 1970s. They showed that it is closely related to the Turan
number. Anti-Ramsey number has been studied in [1, 2, 5, 9, 11, 6, 7] and elsewhere.

There are very few graphs whose anti-Ramsey numbers have been determined exactly.
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To the best of our knowledge, f(n,H) is known exactly for large n only when H is a
complete graph, a path, a star, a cycle or a broom whose maximum degree exceeds its
diameter (a broom is obtained by identifying an end of a path with a vertex of a star)
(see [10, 9, 11, 6, 7]).

For a given graph H, let ext(n, H) denote the maximum number of edges that a
graph G of order n can have with no subgraph isomorphic to H. For H = kK5, the value
ext(n, kK2) has been determined by Erdds and Gallai [4], where H = kK> is a matching
M of size k.

Theorem 1.1 (Erdds and Gallai [4]) ext(n,kK3) = max{ (21@2—1)7 (kgl) +(k—-1)(n—
k+ 1)} for alln > 2k and k > 1, that is, for any given graph G of order n, if |E(G)| >

max{ (%2_1), (kgl) +(k—=1)(n—k+1)}, then G contains a kK, or a matching of size k.

In 2004, Schiermeyer [10] used some counting technique and determined the rainbow
numbers rb(K,, kK>) for all k > 2 and n > 3k + 3.

Theorem 1.2 (Schiermeyer [10]) rb(n,kK2) = ext(n, (k —1)K3)+ 2 for all k > 2 and
n > 3k + 3.

It is easy to see that n must be at least 2k. So, for 2k < n < 3k + 3, the rainbow
numbers remain not determined. In this paper, we will use a technique deferent from
Schiermeyer [10] to determine the exact values of rb(n, kKs) for all k > 2 and n > 2k.

Our technique is to use the Gallai-Edmonds structure theorem for matchings.
Theorem 1.3

4, n=4 and k = 2;
rb(n, kKa) =  ext(n, (k — 1)K3) +3, n=2k and k > T;
ext(n, (k — 1)K3) + 2, otherwise.

2 Preliminaries

Let M be a matching in a given graph G. Then the subgraph of G induced by M,
denoted by (M)g or (M), is the subgraph of G whose edge set is M and whose vertex
set consists of the vertices incident with some edges in M. A vertex of G is said to be
saturated by M if it is incident with an edge of M; otherwise, it is said to be unsaturated.
If every vertex of a vertex subset U of G is saturated, then we say that U is saturated
by M. A matching with maximum cardinality is called a mazimum matching.

In a given graph G, Ng(U) denotes the set of vertices of G adjacent to a vertex of U.
If R,T € V(G), we denote Eg(R,T) or E(R,T) as the set of all edges having a vertex
from both R and T. Let G(m,n) denote a bipartite graph with bipartition A U B, and



|A| = m and |B| = n. Without loss of generality, in the following we always assume that
m > n.

Let ext(m,n, H) denote the maximum number of edges that a bipartite graph G(m,n)
can have with no subgraph isomorphic to H. The following lemma is due to Ore and can
be found in [8].

Lemma 2.1 Let G(m,n) be a bipartite graph with bipartition AUB, and M a mazimum
matching in G. Then the size of M is m — d, where

d = max{|S| — [Ng(S)|: S C A}.
We now determine the value ext(m,n, H) for H = kK>.

Theorem 2.2
ext(m,n,kKs) =m(k — 1) for alln >k > 1,

that is, for any given bipartite graph G(m,n), if |E(G(m,n))| > m(k — 1), then kK, C
G(m,n).

Proof. Suppose that G contains no kK>. Let M be a maximum matching of G and the
size of M is k — i, where 7 > 1. By Lemma 2.1, there exists a subset S C A such that
|S| — [Ng(S)| = m — k +i. Thus

|E(G)| < |8|INa(S)| +n(m —|S]) = (INa(S)| +m — k +i)INa(S)| + n(k — i — [N (S)]).
Since 0 < [N (S)| < k —i < k — 1, we obtain

|E(G)| < max{m(k —1),n(k — 1)} = m(k — 1).
So, ext(m, n, k) = m(k — 1). |
Lemma 2.3

kA +(k—2)(k+2), 2<k<T;

ext(2k, (k —1)Ks) = ors
( ), k=2ork>T.

Proof. From Theorem 1.1, we have that ext(2k, (k — 1)K32) = max{ (Qk;?’), (kgz) + (k —
2)(k +2)}. Since (7)) — ((*7%) + (k — 2)(k +2)) = 2(k — 2)(k — 7), we have that
if 2 <k <7, ext(2k,(k— 1)K>) = (";%) + (k—2)(k+2), and if k = 2 or k > 7,
ext(2k, (k — 1) K2) = (*%). i

Let G be a graph. Denote by D(G) the set of all vertices in G which are not covered

by at least one maximum matching of G. Let A(G) be the set of vertices in V(G) — D(G)



adjacent to at least one vertex in D(G). Finally let C(G) = V(G) — A(G) — D(G). We
denote the D(G), A(G) and C(G) as the canonical decomposition of G.

A near-perfect matching in a graph G is a matching of G covering all but exactly one
vertex of G. A graph G is said to be factor-critical if G — v has a perfect matching for
every v € V(G).

Theorem 2.4 (The Gallai-Edmonds Structure Theorem [8]) For a graph G, let D(G),
A(G) and C(G) be defined as above. Then

(a) The components of the subgraph induced by D(G) are factor-critical.
(b) The subgraph induced by C(G) has a perfect matching.

(¢) The bipartite graph obtained from G by deleting the vertices of C(G) and the edges
spanned by A(G) and by contracting each component of D(G) to a single vertex has

positive surplus (as viewed from A(G)).

(d) Any mazimum matching M of G contains a near-perfect matching of each com-
ponent of D(G), a perfect matching of each component of C(G) and matches all

vertices of A(G) with vertices in distinct components of D(G).

(e) The size of a mazimum matching M is 1(|V(G)| — ¢(D(G)) + |A(G)|), where
c¢(D(G)) denotes the number of components of the graph spanned by D(G). |

3 Main results

For k = 1, it is clear that rb(n, K2)=1. Now we determine the value of rb(n,2K>)
(for k = 2).

Theorem 3.1
rb(4,2K35) =4,

and
rb(n,2K3) = 2 = ext(n, K2) + 2 for all n > 5.

Proof. 1t is obvious that rb(4,2Ks) < 4. Let V(K4) = {a1,a2,a3,a4}. If Ky is edge-
colored with 3 colors such that c(ajaz2) = c(asas) = 1, c(aras) = c(agas) = 2 and
c(arag) = c(azaz) = 3, then Ky contains no TMC 2Ks. So, rb(4,2Ks) = 4.

For n > 5, let the edges of G = K, be colored with at least 2 colors. Suppose that
K,, contains no TMC 2K5. Let e; = a;b; be an edge with c¢(e;) =1, T' = {a1,b;} and
R =V(K,)—T. Then c(e) = 1 for all edges e € E(G[R]). Moreover, c(e) = 1 for all
edges e € E(T, R), since |R| > 3. But then K, is monochromatic, a contradiction. So,
rb(n,2Ky) = 2 for all n > 5. |

The next proposition provides a lower and upper bound for rb(n, kK>).



Proposition 3.2 ext(n,(k — 1)K3) + 2 < rb(n,kK3) < ext(n,kKs) + 1.

Proof. The upper bound is obvious. For the lower bound, an extremal coloring of K,
can be obtained from an extremal graph S,, for ext(n, (k — 1)K3) by coloring the edges
of S, differently and the edges of S,, by one extra color. It is obvious that the coloring
does not contain a TMC kKs. |

We will show that the lower bound can be achieved for all n > 2k 4+ 1 and k& > 3,
and thus obtain the exact value of rb(n,kK>) for all n > 2k + 1 and k > 3.

For n = 2k, we suppose that H = Ky_3 is a subgraph of K,, and V(K,) —V(H) =
{a1,a9,a3}. If K, is edge-colored such that c(ajaz) =1, c(ajas) = c(agas) =2, c(e) =1
for all edges e € E(as, V(H)), c(e) = 2 for all edges e € E(a1,V(H))U E(a2, V(H)) and
the edges of H = K3 is colored differently by (2k2_ 3) extra colors. It is easy to check
that the coloring does not contain a TMC kK in K,. So, rb(2k,kK3) > (2k53) +3
for all k > 3. Hence, if k > 7, then ext(2k, (k — 1)K2) = (*,?) and rb(2k, kK>) >
ext(2k, (k—1)K2)+ 3. We will show that the lower bound can be achieved for all n > 2k
and k> 7.

Theorem 3.3 For all n > 2k and k > 3, we have

ext(n,(k—1)Ko)+3, n=2kandk >7;
rb(n, kKs) = (. ( )
ext(n, (k—1)Kq) +2, otherwise.

Proof. We shall prove the theorem by contradiction. If n = 2k and k£ > 7, let the edges
of K, be colored with ext(n,(k — 1)K3) + 3 colors; otherwise, let the edges of K, be
colored with ext(n, (k —1)K2) + 2 colors. Suppose that K,, contains no TMC kK. Now
let G C K, be a TMC spanning subgraph which contains all colors in K,, i.e., if n = 2k
and k > 7, |E(G)| = ext(n,(k — 1)K2) + 3; otherwise |E(G)| = ext(n, (k — 1)K3) + 2.
Since |E(G)| > ext(n, (k — 1)K2) + 2, there is a TMC (k — 1)K3 in G.

We first need to prove the following two lemmas.

Lemma 3.4 If two components of G consist of a Kop_3 and a K3, respectively, and the

other components are isolated vertices (see Figure 1), then K, contains a TMC kKs.

Proof. Denote SG1 as the special graph G and @ as the set of isolated vertices of
G. Without loss of generality, we suppose that c(ujuz) = 1,c(ugus) = 2,c(ujus) =
3, c(v1ve) = 4, c(vavs) = 5, c(viv3) = 6 (see Figure 1).

The proof of the lemma is given by distinguishing the following two cases:

Casel. k > 4.



Figure 1: The special graph SG.
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Figure 2: The special graph SG3. G’ and G” is a Ko_3 and a Ps, respectively, or G’

and G" is a K, and a K3, respectively.

We suppose that G contains no TMC kK. We will show c(ujvi) = 5. If c(ujvy) # 5,
then in G; = Koi_3 — uy the number of edges whose colors are not c(ujvy) is at least
(2k2_4) —1. Since k > 4, we have (2k2_4) —1 > ext(2k—4, (k—2)K,) = (%2_5). Thus we can
obtain a TMC H = (k —2) K> which contains no color ¢(ujv1) in Gy, and hence there is a
TMC kKy = HU{ujv1,vovs} in K. So, c(u1vy) must be 5. By the same token, c(ugvs)
and c(uszvs) must be 6 and 4, respectively. Now we can obtain a TMC H' = (k — 3) K>
in Go = Kop_3 — u1 — ug — ug, and hence there is a TMC kK = H' U {ujv1, ugve, ugvs}
in K,,.

Case II. k = 3.

We suppose that K, contains no TMC 3K;. Then c(ujvi) € {2,5},c(ugva) €
{3,6}, c(ugvs) € {1,4}. Now we can obtain a TMC 3Ky = ujv; U ugvy Uugvs in K,,. 1

Lemma 3.5 Ifn > 2k + 1 and two components of G are G' and G”, where G' and G"
is a Kop_3 and a P3, respectively, or G' and G" is a Ky, _, and a K3, respectively, and
the other components are isolated vertices (see Figure 2), then K, contains a TMC kKo,
where P3 is a path with three vertices and K, 4 is obtained from Kap_3 by deleting an

edge.
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Figure 3: We can obtain a TMC 3K = ujv4 U ugvs U ugvy in K.

Proof. Denote SG» as the special graph G and @ as the set of isolated vertices of G. With-
out loss of generality, we suppose that c(uju2) = 1, c(ugug) = 2, c(uiuz) = 3, c(viva) =
4,c(vavs) = b (see Figure 2). The proof of the lemma is given by distinguishing the
following two cases:

Casel. k > 4.

Since n > 2k + 1, we suppose that vy € Q. If c(ujvy) = j, without loss of generality,
we suppose that j # 4. The number of edges of G' — u; whose color is not j is at
least (2k54) — 2 and (2k54) —2 > ext(2k — 4,(k — 2)Ks) = (2k55). Then there is a
TMC H = (k — 2)K3 in G’ — u; which contains no color j. We can obtain a TMC
kKs = HUujvg Uvve in K.

Case II. k = 3.

Without loss of generality, we suppose that G’ and G” is a K3 and a P3, respectively.
We suppose that K, contains no TMC 3K5. Then, c(ujvy) € {2,5}0{2,4}, i.e., c(urvg) =
2, c(ugvs) € {2,4} N {1,4}, i.e., c(uivg) = 4, c(ugvr) € {2,5} N {3,5}, i.e., c(urvg) = 5.
Now we obtain a TMC 3K3 = ujvq U ugvs U ugvi. See Figure 3.

|

Now we turn back to the proof of Theorem 3.3. Let D(G), A(G), C(G) as the
canonical decomposition of G and ¢(D(G)) = q, |A(G)| = s, |V(G)| = n. Since the size
of the maximum matchings of G is k — 1, by Theorem 2.4 (e), k — 1 = (n —q+s),i
¢ =n—2k+2+s. Let the components of D(G) be Dy, Ds, ..., Dy. By Theorem 2.4 (a),
the components of the subgraph induced by D(G) are factor-critical, hence we suppose
that |[V(D;)| = 2l; +1 for 1 < i < ¢, without loss of generality, {1 > lp > ... > [, > 0.
Let the components of C(G) be C1, Co, ..., Cy with [V(C;)| = 2t; for 1 <1 < ¢

Since s +g=s+n—2k+2+ s <n, then 0 <s <k— 1. Moreover,

q q
n=s+3 2i+1)+[CG) > s+ @2h+1)+> (2 +1)
=1 =2

> s+ Q2L+1)+(g—-1)

> s+ 2h+1)+(n—2k+2+s-1),



hence 211 + 1 < 2k — 2s — 1. We distinguish four cases to finish the proof of Theorem 3.3.

Case 1. s=k—1.

In this case, since s+q¢ = (k—1)+n—2k+2+4 (k—1) = n, then C(G) = () and
li =1y =... =1; =0. The components of the subgraph induced by D(G) are isolated
vertices. We distinguish two subcases to finish the proof of the case.

Subcase 1.1. There is at most one vertex u in D(G) such that dg(u) < k — 1.

We suppose v € D(G) and u # v. Let G(n — k — 1,k — 1) be the bipartite graph
obtained from G by deleting the vertices u, v and the edges spanned by A(G). It is obvious
that uv € E(K,) and uv ¢ E(G), without loss of generality, we suppose c¢(uv) = 1. Then
the number of edges in G(n—k—1, k—1) whose color is not 1 is at least (n—k—1)(k—1)—1.
Sincen—k—12>2,then (n—k—-1)(k—1)—1>extin —k—1,k—1,(k—1)K3) =
(n—k—1)(k—2). By Lemma 2.2, there exists a TMC H = (k—1)Ky in G(n—k—1,k—1)
which contains no color 1, thus we obtain a TMC kKs = H Uuv in K,.

Subcase 1.2. There exist at least two vertices u, v in D(G) such that dg(u) < k —1
and dg(v) < k — 1.

We suppose that ¢(uv) = 1. Let G'(n —k — 1,k — 1) be the bipartite graph obtained
from G by deleting the vertices u,v and the edges spanned by A(G) and the edge whose
color is 1. Thus there is no TMC (k — 1)K in G'(n — k — 1,k — 1). Hence, by Lemma
2.2,

[E(G)] < 1+€xt(n—kz—1’k_17(]{;_1)[(2)4_2(]{_2)_'_(kgl)
< LHk—%m—k—n+2w_m+<k;v

= (k;2>+(k—2)(n—k+2)+1

< ext(n,(k—1)K2) + 2,

which contradicts |E(G)| > ext(n, (k — 1)K2) + 2.

Case 2. 0<s<k—2and 21 +1 <2k —2s—3.
In this case, if 2k —2s—3 =1,then [y =lb =... =1; =0, s =k—2 and |C(G)| = 2,

hence
(5)+sm-9+(3)

— <k;2>+(/€—2)(n—k+2)+1
< ext(n,(k—1)K3) + 2,

|E(G)]

IA

which contradicts |E(G)| > ext(n, (k — 1)K3) + 2.



If 2k —2s—3>3,then 0 <s<k—3and

i(%—l—l)—I—Z(%i) = n—s— (2 +1)
] =1

> n—s—(2k—2s—3)=(q—1)+2.

2
( ) +8(n_8)+§; (2@;1) +§; (2;;)
( ) (251 +1437, 2li) . i (2@)
2 1\ 2
< E;i s+ Ezzl +1+37, 2z;+ (2311 2; — 2)) . @)
(5 (

n—s—(g_l)_2)+(§>
214:—;3—3> n <§> = fi(s).

+(k=2)n—k+2)—(n—Fk)+2

+(k—2)(n —k+2) <ext(n,(k—1)K3) + 2.

Since 0 < s < k — 3, |E(GQ)| < max{fi1(0), fi(k — 3)} < ext(n,(k — 1)K2) + 2, which
contradicts |E(G)| > ext(n, (k — 1)K2) + 2
If |C(G)| = 0, then 2l5 + 1 > 3 and

[E(G)] < (S>+s(n—5)+i<2li;1)+i§;<2§i)

< ny +121+1+E 2L+ 30 2t N 2l+1>
S EZiJF +EQ[ +1+3% 22[ +Z 2t>+(2l< 22)>+<3)
T e N
-2 2

<2> +5 )+ <2k’ 25 3) n (g) = fa(s).

9



Thus,

f2(0) =

N

=
|

w

f(1) =

+(k—=2)(n—k+2)+1<ext(n,(k—1)Ks) + 2.

(
(

folk—3) = (k_2>+(/<:—2)(n—k+2)—(n—k)+4
("2%)

If s =0 and |E(G)| = (2k2_3) + 3, then G = SG;. By Lemma 3.4, we can obtain
a TMC kK in K,,. If s = 0, n > 2k + 1 and |E(G)| = (*7%) + 2, then G = SG».
By Lemma 3.5, we can obtain a TMC kK> in K,. So, if n > 2k + 1, then |F(G)| <
(%2_3) + 1 < ext(n, (k — 1)K3) + 2, which contradicts |E(G)| = ext(n, (k — 1)K3) + 2. If
n =2k and k > 7, then |E(G)| < (2k;3) + 2 = ext(n, (k — 1)K3) + 2, which contradicts
|E(G)| = ext(n, (k — 1)K2) + 3. If n = 2k and 3 < k < 6, then |E(G)| < (*,?) +2 <
(*3%) +(k—2)(k+2) = ext(n, (k—1)K>), which contradicts | E(G)| = ext(n, (k—1)K2)+2.

If 1 <s<k—3,then k >4 and |E(G)| < max{f2(1), fa(k — 3)}. So, if fa(k —3) >
f2(1), then |E(G)| < fa(k—3) < ext(n, (k—1)K2)+2, a contradiction. If fo(1) > fo(k—3),
then

(2k2_3>+n—4k—|—11> <k;2>+(l~f—2)(n—’f+2)—(”—k>+4'

Hence 2k < n < 3(5k — 7), k > 7 and

B@)| < fll) = (2""2‘3) fn— 4411

2k -3 1
—(15 — 3k
< < 5 >+2(5 3k)

< ext(n,(k—1)Ks2) + 2,

a contradiction.

Case 3. 0<s<k—2,21+1=2k—2s—1andn >2k+1.

In this case, s+ (21 +1) + (¢ — 1) =n, hence C(G) =0, la =l3=... =1, =0 and
each D; for 2 < i < ¢ is an isolated vertex.

Let G(q,s) be the bipartite graph obtained from G by deleting the edges spanned
by A(G) and by contracting the component D; to a single vertex p. Thus by Theorem
2.4 (c) and (d), we can obtain a maximum matching M of size k — 1 such that M
contains a maximum matching M; of G(q, s) which does not match vertex p and a near-
perfect matching Ms of Dy. Since ¢ =n — 2k + 2+ s > s + 3, there exist two vertices
u,v € D(G) — Dy and u,v ¢ (M). It is obvious that uwv € E(K,) and uwv ¢ E(G). We

10
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Figure 4: If yz; € Eg(y, D1), we can obtain a TMC kKo = M| U M} Uuv in K.

suppose that c(uv) = 1, hence there exists an edge e = yz € M with ¢(e) = 1. Now we
distinguish two subcases to complete the proof of the case.

Subcase 3.1. e € M;.

In this subcase, s > 1 and yz € Eg(A(G),D(G)), without loss of generality, we
suppose that y € A(G). If there exists an edge yz1 € Eq(y, D1) with z; € Dy, then
we can obtain another maximum matching M of G(q, s) with M{ = M; Uyz; — yz and
a near-perfect matching M} of Dy which does not match z;. Thus we obtain a TMC
kKo = M{ UM, Uuv in K,,. See Figure 4.

Thus we suppose that Eg(y, D1) = (). There is no matching of size s in G'(¢—3, s) =
G(¢,8)—p—u—v—e. By Lemma 2.2, |Eg(G')| < (s—1)(¢—3) = (s—1)(n—2k+s—1).

Now
pel = (5)+(F 70T w1 imae)

+Ec(Dr, A(G)] + [Ec({u, v}, A(G))]

< (;)-l-<2k_js_1>+1—|—(s—1)(n—2k—|—8—1)
F(2k — 25— 1)(s — 1) + 25 := fa(s)
Hence,
I G RE
f3(2) = <2k23>+n—4k+11,
fa(k—2) = (k;2>+(k—2)(n—k+2)—(n—k)+4
< (k;2>+(k:—2)(n—k+2)<e:z:t(n,(k:—1)K2)+2.

If s = 1, then |E(G)| < (*%,%) +3. If |E(G)| = (**}?) +3, then (G — e +uv) = SGi.
By the proof of Lemma 3.4, we can obtain a TMC kK3 in K,,. If |E(G)| = (%2_3) +2, then

11



(G — e+ uv) = SGo. By the proof of Lemma 3.5 , we can obtain a TMC kK5 in K,,. If
|E(G)| < (2k2—3)+1 < ext(n, (k—1)K2)+1, this contradicts |E(G)| = ext(n, (k—1)K2)+2.

If2<s<k—2, then k >4 and |E(G)| < max{f3(2), fs(k —2)}. So, if f3(k —2) >
f3(2), then |E(G)| < f3(k—2) < ext(n, (k—1)K2)+2, a contradiction. If f3(1) > f3(k—3),
then

(2k2_3>+n—4k—|—11> <k;2>+(l~c—2)(n—k+2)—(”—’f)+4~

Hence, 2k <n < $(5k — 7), k > 7 and
2k —3
|E(G)] < f3(2)=< 5 >+n—4k+11

2k — 3 1
—(15 — 3k
< ( ; )+2< )

< ext(n,(k—1)K3) + 2,
a contradiction.
Subcase 3.2. e € Ms.
In this subcase, y € D; and z € D;. By Theorem 2.4 (a), D; is factor-critical,
there exists a near-perfect matching M which does not match y, So M/, does not contain

e = yz. Now we obtain a TMC kKy = Mj U M; Uuv in K.

Case 4. 0<s<k—2,2l1+1=2k—2s—1 and n = 2k.

In this case, ¢ = s + 2 and s+ (21 + 1) + (¢ — 1) = 2k, hence C(G) =0, ls = I3 =
... =1y =0 and each D; for 2 < ¢ < ¢ is an isolated vertex. Now we distinguish two
subcases to complete the proof of the case.

Subcase 4.1. 1 <s <k —2.

If E¢(D1, A(G)) = 0, then

1B(G)| < <2k T2 1) + (;) Fs(s 1) = fus).

2
Thus,
L) = <2k2—3>+2,
falk —2) = <k;2>+(k—2)(k+2)+3—3(k—2)

Since k > 3, then f4(1) > fa(k — 2) and |E(G)| < max{fs(1), fa(k — 2)} = fa(1) =
(%2_3) + 2. If £ > 7, this contradicts |E(G)| = ext(2k,(k — 1)K3) + 3 = (%2_3) +3. If
3 <k <6, then

E(@)] < <2k2_3>+2

<k‘ ; 2) + (k- 2)(k +2) = ext(2k, (k — 1)K>),

12



Figure 5: The special graph SG3 and |E(SG3)| = (2k2_3) + 3.

which contradicts |E(G)| = ext(2k, (k — 1)K2) + 2.

So we suppose that Eg(D1, A(G)) # 0. Let G(s+2, s) be the bipartite graph obtained
from G by deleting the edges spanned by A(G) and by contracting the component D; to
a single vertex p. Thus by Theorem 2.4 (d), we can obtain a maximum matching M of
size k — 1 such that M contains a near-perfect matching M7 of Dy which does not match
w with w € D; and a matching My of size s which matches all vertices of A(G) with
vertices in {w} U (D(G) — Dy). Since Eq(D1, A(G)) # 0, we can suppose that w € (Ma).
There exist exactly two vertices u,v € D(G) — Dy and u,v ¢ (M). It is obvious that
w € E(K,) and uv ¢ E(G). We suppose that ¢(uv) = 1, hence there exists an edge
e = yz € M with ¢(e) = 1. Now we distinguish two subcases to complete the proof of
the subcase 4.1.

Subcase 4.1.1. e = yz € M;.

If s = 1, then |D;| = 2k — 3 and we suppose A(G) = {z}. Thus the size of M; is
k — 2 and there is no H = (k — 2)K3 in D} = D1 — w — yz, for otherwise, we can obtain
a TMC kKo = HU zwUwv in Kop. If Eg(z,{y,2}) # 0, say zy € E(G), then we can
obtain a perfect matching M| of D; —y and a TMC kKy = M{ Uuv U zy in Ko. So,
Eq(z,{y,z}) =0 and

[E(G)| = 1+ |Ec(DY)|+|Ea(w, D1)| + |Eg(z, D1)| + |Ec(x, {u,v})|
< 14 ewt(2k — 4, (k — 2)Ky) + (2k — 4) + (2k — 5) + 2

2k —5
= Ak —
(%) s
2k -3
()

Denote SG3 be the special graph G shown in Figure 5, whence E(SG3) = E(K;,_4)U
zu U zvUyw Uyz. Without loss of generality, we suppose that c(wy) = 4. If |E(G)| =
(%2_3) + 3, it is easy to check that G = SGjs.

If £ > 7, then by the beginning hypothesis |E(G)| = ext(2k,(k — 1)K3) + 3 =
(QkQS) + 3, whence G = SG3. Now (2k54) — 1> ext(2k — 4, (k — 2)K3), we can obtain a
TMC H = (k —2)K3 in K}, 5 —w, whence a TMC kK> = H Uyw Uuv in K.

13



my ) g=s5+2

Figure 6: There is no (k— s — 1)Ky in D} = D1 —w — yz. If 2’y € E(G), there is no
(s — 1)Ky in bipartite graph G'(s = 1,s — 1) = G — {D; UuUv U z'}.

If 3 <k <6, then

<2k2_3> +3< <k§2> + (k= 2)(k +2) + 1= ext(2k, (k — 1)Kz) +1,

which contradicts |E(G)| = ext(2k, (k — 1)K2) + 2. If 2 < s < k — 2, then k > 4. We
suppose that z € A(G) and zw € Ms. By the the same token, Eg(z,{y,z}) = 0 and
there is no (k —s — 1)Ky in D} = D; — w — yz.

If Eq(AG) — z,{y,z}) # 0, say 2’y € E(G), then there is no H = (s — 1)K in
bipartite graph G'(s —1,s — 1) = G — {D; Uu U v U a'}, for otherwise, we can obtain a
perfect matching M/ in D1 —y and a TMC kKy = M| U H Uuv U 2'y. See Figure 6.

Thus,

[Ec(A(G), D(G))| = |Ea(A(G), D1 —y —2)| + |E(A(G),{y, 2})|
HEG(A(G), {u,v})| + |Ea(G'(s — 1,5 — 1))|
+Eg (2, D(G) — D1 — u—v)|

(2k =25 —=3)s +2(s — 1)+ 2s
+ext(s—1,s—1,(s —1)K3) + (s — 1)

= (2k—25—-3)s+2s+(s—1)(s+1).

IN

If Eq(A(G) — z,{y, z}) = 0, then

[Ec(A(G), D(G))| = |Ec(A(G), D1 —y = 2)| + [Ec(A(G), D(G) — D)
< (2k—2s—3)s+s(s+1).

So,

[Ec(A(G), D(G))]
max{(2k —2s —3)s+2s+ (s —1)(s+1),(2k —25s —3)s + s(s + 1)}
= (2k—25—-3)s+2s+(s—1)(s+1).

IN

14



Now, we have

B = (5)+1+1BelD)] + 1Eetw. DI + |Ea(AG). D(G)
< <;> F14 <2k_§‘9_3> +(2k—25—2)+

(2k—25s—3)s+2s+ (s —1)(s+ 1) := f5(s).

Thus,

f5(2) = <2k2_3)—2k+11,

fs(k=2) = <k;2>+(k‘—2)(k+2)—k+4

< ext(2k,(k —1)Ks) + 2.

If4 < k <6, then f5(k—2) > f5(2) and |E(G)| < max{f5(2), fs(k—2)} = f5(k—2) <
ext(2k, (k — 1)K3) + 2, which contradicts |E(G)| = ext(2k, (k — 1)K3) + 2.

Itk > 7, then f5(2) > f(k —2) and |E(G)| < max{fs(2), fs(k — 2)} = f5(2) =
(%2_3) —2k+11 < (%2_3) = ext(2k, (k — 1)K3), which contradicts |E(G)| = ext(2k, (k —
1K) + 3.

Subcase 4.1.2. e = yz € Ma.

Without loss of generality, we suppose that y € A(G).

If s =1, then A(G) = {y}, yz = yw and ¢(yw) = ¢(uv) = 1. Then Eg(y, D1—w) = 0,
for otherwise, say yw' € Eg(y, D1 — w) with v’ € (D; — w), we can obtain a TMC
H=(k—2)Kyin D; —w" and a TMC kK = H Uyw Uuv in Ky. So,

B = 1Ea(D)]+ 1Ea: to.uo)) < (5 ) 45

If 3 <k <6, then

(5 )+ (U5 %) + -2+ 21 = caron (- DR 41

which contradicts |E(G)| = ext(2k, (k — 1)K2) + 2.

If £ > 7, since |E(G)| = (%2_3) + 3, it is easy to check that (G — e + uv) = SG;. By
the proof of Lemma 3.4, we can obtain a TMC kKj in Kop.

If 2 < s < k— 2, first we look at the bipartite graph G(s + 2,s). We suppose that
M/ is any maximum matching of size s in G(s + 2, s) with p € (M) and uy,v; ¢ (MJ).
By Subcase 4.1.1, we can suppose that there exists an edge e; € M) such that c(e;) =
c(urvr). If dg(s42,5)(p) = s and there is at most one vertex ug in D(G) — Dy such that
da(s42,5)(u) < s — 1, we suppose vg € D(G) — Dy and uz # ve. Let G(s,s) be the
bipartite graph obtained from G(s + 2,s) by deleting the vertices ug, vy. It is obvious
that ugvy € E(K,) and ugve ¢ E(G). Then the number of edges in G(s, s) whose color
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is not c(ugvs) is at least s2 — 1. Since s > 2, then s2 — 1 > ext(s,s,sK3) = s(s — 1) + 1.
By Lemma 2.2, there exists a TMC H = sKj5 in G(s, s) which contains no color c¢(ugvs),
thus we obtain a TMC (s + 1)Ko = H U ugvy. By Theorem 2.4, we can obtain a TMC
kKQ in ng.

So, if dg(s42,6)(P) = s, then we suppose there exist at least two vertices ug, v in
D(G) — Dy such that dg(sq2.)(u3) < s —1 and dg(sqo,6)(v3) < s — 1. Let G'(s,s) be
the bipartite graph obtained from G(s + 2,s) by deleting the vertices us,vs3 and the
edge whose color is ¢(ugvz). Thus there is no TMC sK5 in G'(s,s). By Lemma 2.2,
EG(s+2,s) <1+2(s—1)+s(s—1) and
|Eq(A(G),D(Q)] <1+2(s—1)+5((2k—2s—1)+ (s —2)) = 14+2(s— 1)+ s(2k —s — 3).

Now we suppose that dg(st2,5)(p) < s — 1. Since E(A(G), D1) # 0, if there exists an
edge w2z’ € E(A(G), Dy) with 2’ € A(G), w” € D; and w"z’ # wz. Thus there is no
TMC H = (s — 1)Kz in G(s +2,s) — {pUuUv Uz} — yz, for otherwise, we can obtain
a TMC (s+ 1)Ky = HUuv Uw"2’, a TMC (k—s— 1)K in D1 —w” and a TMC kK,
in Kor. We have

EG(AG), D) < |Ea(AG), D)+ (s — (s —2) +1

+|Eq(2', D(G) — Dy —u — )| + |Ec(A(G), {u,v})|
< (2k=2s—1)(s—=1)+(s=1)(s—=2)+1+(s—1)+2s
= (2k—2s—1)(s—1)+s>+2.
If E(A(G),Dy) = {zw}, then
[Ec(A(G), D(G))| < 1+s(s+1).
Thus,
|Ec(A(G), D(G))|

< max{1+2(s—1)+ 52k —5—3),(2k =25 — 1)(s — 1) + s* + 2,1 + s(s + 1)}

= 14+2(s—1)+s(2k—s—3).

So,
|B(G)| < @ + <2k _ZS - 1) P14 2(s— 1)+ 5(2k — s — 3) = fo(s).
We have
re = (%574
fe(3) = <2k_3>—2k+12
fo(k=2) = ( 22 +(k=2)(k+2) —k+4

< ext(2k, (k—1)K2) + 2.
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Figure 7: G is isomorphic to one of the above three graphs.

If s =2and |E(G)| = f6(2) = (%2_3) + 3, then it is easy to check that G has a
structure shown in Figure 7. By the proof Lemma 3.4, we can obtain a TMC kK> in
Kop..

If3<s<k—2 then k>5 If5 <k <6, then fog(k —2) = f5(3) and |E(G)| <
fo(k —2) < ext(2k, (k — 1)K2) + 2, which contradicts |E(G)| = ext(2k, (k — 1)K3) + 2.
If k > 7, then fs(3) > fo(k —2) and |[E(G)| < fos(3) = (*,%) — 2k + 12 < (*}®) =
ext(2k, (k — 1)K3), which contradicts |E(G)| = ext(2k, (k — 1)K3) + 3.

Subcase 4.2. s =0.

In this subcase, |V(D1)] = 2k — 1 and ¢ = 2. We suppose that z; € D; and
Dy = {z2}. Let M be a perfect matching of D; — z;. Then there exists an edge
e € M such that c(e) = c(z122). So, there is no TMC (k — 1)K3 in D; — 21 — e.
Let D] be Dy — z1 — e and D(D}), A(D}) and C(D}) as the canonical decomposition
of Dj. We look at the graph G; = G — e + z129. Let A'(G1) = A(D]) U 2z and
DI(Gh) = D(D}) Uz and C'(Gy) = C(DY). Let [4(G)] = &, ¢ = e(D'(Gy)) =
c(DD})+1=2k—2)—2(k—2)+s—14+1=s+2. Obviously, 1 < < k—1.
Employing similar technique as in the proofs of Cases 1, 2 and Subcase 4.1, we can obtain

contradictions. The details are omitted. Up to now, the proof is complete. |
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