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Abstract

For a given graph H and a positive n, the rainbow number of H, denoted by

rb(n,H), is the minimum integer k so that in any edge-coloring of Kn with k colors

there is a copy of H whose edges have distinct colors. In 2004, Schiermeyer de-

termined rb(n, kK2) for all n ≥ 3k + 3. The case for smaller values of n (namely,

n ∈ [2k, 3k + 2] remained generally open. In this paper we extend Schiermeyer’s

result to all plausible n and hence determine the rainbow number of matchings.
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1 Introduction

In this paper we consider undirected, finite and simple graphs only, and use standard

notations in graph theory (see [3] and [8]). Let Kn be an edge-colored complete graph

on n vertices. If a subgraph H of Kn contains no two edges of the same color, then H

is called a totally multicolored (TMC) or rainbow subgraph of Kn and we say that Kn

contains a TMC or rainbow H. Let f(n,H) denote the maximum number of colors in an

edge-coloring of Kn with no TMC H. We now define rb(n,H) as the minimum number

of colors such that any edge-coloring of Kn with at least rb(n,H) = f(n,H) + 1 colors

contains a TMC or rainbow subgraph isomorphic to H. The number rb(n,H) is called

the rainbow number of H.

f(n,H) is called the anti-Ramsey number of H, which was introduced by Erdős,

Simonovits and Sós in the 1970s. They showed that it is closely related to the Turán

number. Anti-Ramsey number has been studied in [1, 2, 5, 9, 11, 6, 7] and elsewhere.

There are very few graphs whose anti-Ramsey numbers have been determined exactly.
∗Supported by NSFC, PCSIRT and the “973” program.
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To the best of our knowledge, f(n,H) is known exactly for large n only when H is a

complete graph, a path, a star, a cycle or a broom whose maximum degree exceeds its

diameter (a broom is obtained by identifying an end of a path with a vertex of a star)

(see [10, 9, 11, 6, 7]).

For a given graph H, let ext(n,H) denote the maximum number of edges that a

graph G of order n can have with no subgraph isomorphic to H. For H = kK2, the value

ext(n, kK2) has been determined by Erdős and Gallai [4], where H = kK2 is a matching

M of size k.

Theorem 1.1 (Erdős and Gallai [4]) ext(n, kK2) = max{(2k−1
2

)
,
(
k−1
2

)
+ (k − 1)(n −

k + 1)} for all n ≥ 2k and k ≥ 1, that is, for any given graph G of order n, if |E(G)| >
max{(2k−1

2

)
,
(
k−1
2

)
+(k− 1)(n−k +1)}, then G contains a kK2, or a matching of size k.

In 2004, Schiermeyer [10] used some counting technique and determined the rainbow

numbers rb(Kn, kK2) for all k ≥ 2 and n ≥ 3k + 3.

Theorem 1.2 (Schiermeyer [10]) rb(n, kK2) = ext(n, (k− 1)K2) + 2 for all k ≥ 2 and

n ≥ 3k + 3.

It is easy to see that n must be at least 2k. So, for 2k ≤ n < 3k + 3, the rainbow

numbers remain not determined. In this paper, we will use a technique deferent from

Schiermeyer [10] to determine the exact values of rb(n, kK2) for all k ≥ 2 and n ≥ 2k.

Our technique is to use the Gallai-Edmonds structure theorem for matchings.

Theorem 1.3

rb(n, kK2) =





4, n = 4 and k = 2;

ext(n, (k − 1)K2) + 3, n = 2k and k ≥ 7;

ext(n, (k − 1)K2) + 2, otherwise.

2 Preliminaries

Let M be a matching in a given graph G. Then the subgraph of G induced by M ,

denoted by 〈M〉G or 〈M〉, is the subgraph of G whose edge set is M and whose vertex

set consists of the vertices incident with some edges in M . A vertex of G is said to be

saturated by M if it is incident with an edge of M ; otherwise, it is said to be unsaturated.

If every vertex of a vertex subset U of G is saturated, then we say that U is saturated

by M . A matching with maximum cardinality is called a maximum matching.

In a given graph G, NG(U) denotes the set of vertices of G adjacent to a vertex of U .

If R, T ∈ V (G), we denote EG(R, T ) or E(R, T ) as the set of all edges having a vertex

from both R and T . Let G(m,n) denote a bipartite graph with bipartition A ∪ B, and
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|A| = m and |B| = n. Without loss of generality, in the following we always assume that

m ≥ n.

Let ext(m,n, H) denote the maximum number of edges that a bipartite graph G(m,n)

can have with no subgraph isomorphic to H. The following lemma is due to Ore and can

be found in [8].

Lemma 2.1 Let G(m,n) be a bipartite graph with bipartition A∪B, and M a maximum

matching in G. Then the size of M is m− d, where

d = max{|S| − |NG(S)| : S ⊆ A}.

We now determine the value ext(m,n, H) for H = kK2.

Theorem 2.2

ext(m,n, kK2) = m(k − 1) for all n ≥ k ≥ 1,

that is, for any given bipartite graph G(m,n), if |E(G(m,n))| > m(k − 1), then kK2 ⊂
G(m,n).

Proof. Suppose that G contains no kK2. Let M be a maximum matching of G and the

size of M is k − i, where i ≥ 1. By Lemma 2.1, there exists a subset S ⊂ A such that

|S| − |NG(S)| = m− k + i. Thus

|E(G)| ≤ |S||NG(S)|+ n(m− |S|) = (|NG(S)|+ m− k + i)|NG(S)|+ n(k− i− |NG(S)|).

Since 0 ≤ |NG(S)| ≤ k − i ≤ k − 1, we obtain

|E(G)| ≤ max{m(k − 1), n(k − 1)} = m(k − 1).

So, ext(m,n, kK2) = m(k − 1).

Lemma 2.3

ext(2k, (k − 1)K2) =





(
k−2
2

)
+ (k − 2)(k + 2), 2 ≤ k ≤ 7;

(
2k−3

2

)
, k = 2 or k ≥ 7.

Proof. From Theorem 1.1, we have that ext(2k, (k − 1)K2) = max{(2k−3
2

)
,
(
k−2
2

)
+ (k −

2)(k + 2)}. Since
(
2k−3

2

) − (
(
k−2
2

)
+ (k − 2)(k + 2)) = 1

2(k − 2)(k − 7), we have that

if 2 ≤ k ≤ 7, ext(2k, (k − 1)K2) =
(
k−2
2

)
+ (k − 2)(k + 2), and if k = 2 or k ≥ 7,

ext(2k, (k − 1)K2) =
(
2k−3

2

)
.

Let G be a graph. Denote by D(G) the set of all vertices in G which are not covered

by at least one maximum matching of G. Let A(G) be the set of vertices in V (G)−D(G)
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adjacent to at least one vertex in D(G). Finally let C(G) = V (G)− A(G)−D(G). We

denote the D(G), A(G) and C(G) as the canonical decomposition of G.

A near-perfect matching in a graph G is a matching of G covering all but exactly one

vertex of G. A graph G is said to be factor-critical if G − v has a perfect matching for

every v ∈ V (G).

Theorem 2.4 (The Gallai-Edmonds Structure Theorem [8]) For a graph G, let D(G),

A(G) and C(G) be defined as above. Then

(a) The components of the subgraph induced by D(G) are factor-critical.

(b) The subgraph induced by C(G) has a perfect matching.

(c) The bipartite graph obtained from G by deleting the vertices of C(G) and the edges

spanned by A(G) and by contracting each component of D(G) to a single vertex has

positive surplus (as viewed from A(G)).

(d) Any maximum matching M of G contains a near-perfect matching of each com-

ponent of D(G), a perfect matching of each component of C(G) and matches all

vertices of A(G) with vertices in distinct components of D(G).

(e) The size of a maximum matching M is 1
2(|V (G)| − c(D(G)) + |A(G)|), where

c(D(G)) denotes the number of components of the graph spanned by D(G).

3 Main results

For k = 1, it is clear that rb(n,K2)=1. Now we determine the value of rb(n, 2K2)

(for k = 2).

Theorem 3.1

rb(4, 2K2) = 4,

and

rb(n, 2K2) = 2 = ext(n,K2) + 2 for all n ≥ 5.

Proof. It is obvious that rb(4, 2K2) ≤ 4. Let V (K4) = {a1, a2, a3, a4}. If K4 is edge-

colored with 3 colors such that c(a1a2) = c(a3a4) = 1, c(a1a3) = c(a2a4) = 2 and

c(a1a4) = c(a2a3) = 3, then K4 contains no TMC 2K2. So, rb(4, 2K2) = 4.

For n ≥ 5, let the edges of G = Kn be colored with at least 2 colors. Suppose that

Kn contains no TMC 2K2. Let e1 = a1b1 be an edge with c(e1) = 1, T = {a1, b1} and

R = V (Kn) − T . Then c(e) = 1 for all edges e ∈ E(G[R]). Moreover, c(e) = 1 for all

edges e ∈ E(T, R), since |R| ≥ 3. But then Kn is monochromatic, a contradiction. So,

rb(n, 2K2) = 2 for all n ≥ 5.

The next proposition provides a lower and upper bound for rb(n, kK2).
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Proposition 3.2 ext(n, (k − 1)K2) + 2 ≤ rb(n, kK2) ≤ ext(n, kK2) + 1.

Proof. The upper bound is obvious. For the lower bound, an extremal coloring of Kn

can be obtained from an extremal graph Sn for ext(n, (k − 1)K2) by coloring the edges

of Sn differently and the edges of Sn by one extra color. It is obvious that the coloring

does not contain a TMC kK2.

We will show that the lower bound can be achieved for all n ≥ 2k + 1 and k ≥ 3,

and thus obtain the exact value of rb(n, kK2) for all n ≥ 2k + 1 and k ≥ 3.

For n = 2k, we suppose that H = K2k−3 is a subgraph of Kn and V (Kn)− V (H) =

{a1, a2, a3}. If Kn is edge-colored such that c(a1a2) = 1, c(a1a3) = c(a2a3) = 2, c(e) = 1

for all edges e ∈ E(a3, V (H)), c(e) = 2 for all edges e ∈ E(a1, V (H)) ∪E(a2, V (H)) and

the edges of H = K2k−3 is colored differently by
(
2k−3

2

)
extra colors. It is easy to check

that the coloring does not contain a TMC kK2 in Kn. So, rb(2k, kK2) ≥
(
2k−3

2

)
+ 3

for all k ≥ 3. Hence, if k ≥ 7, then ext(2k, (k − 1)K2) =
(
2k−3

2

)
and rb(2k, kK2) ≥

ext(2k, (k−1)K2)+3. We will show that the lower bound can be achieved for all n ≥ 2k

and k ≥ 7.

Theorem 3.3 For all n ≥ 2k and k ≥ 3, we have

rb(n, kK2) =





ext(n, (k − 1)K2) + 3, n = 2k and k ≥ 7;

ext(n, (k − 1)K2) + 2, otherwise.

Proof. We shall prove the theorem by contradiction. If n = 2k and k ≥ 7, let the edges

of Kn be colored with ext(n, (k − 1)K2) + 3 colors; otherwise, let the edges of Kn be

colored with ext(n, (k− 1)K2) + 2 colors. Suppose that Kn contains no TMC kK2. Now

let G ⊂ Kn be a TMC spanning subgraph which contains all colors in Kn, i.e., if n = 2k

and k ≥ 7, |E(G)| = ext(n, (k − 1)K2) + 3; otherwise |E(G)| = ext(n, (k − 1)K2) + 2.

Since |E(G)| ≥ ext(n, (k − 1)K2) + 2, there is a TMC (k − 1)K2 in G.

We first need to prove the following two lemmas.

Lemma 3.4 If two components of G consist of a K2k−3 and a K3, respectively, and the

other components are isolated vertices (see Figure 1), then Kn contains a TMC kK2.

Proof. Denote SG1 as the special graph G and Q as the set of isolated vertices of

G. Without loss of generality, we suppose that c(u1u2) = 1, c(u2u3) = 2, c(u1u3) =

3, c(v1v2) = 4, c(v2v3) = 5, c(v1v3) = 6 (see Figure 1).

The proof of the lemma is given by distinguishing the following two cases:

Case I. k ≥ 4.
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Figure 1: The special graph SG1.

Figure 2: The special graph SG2. G′ and G′′ is a K2k−3 and a P3, respectively, or G′

and G′′ is a K−
2k−3 and a K3, respectively.

We suppose that G contains no TMC kK2. We will show c(u1v1) = 5. If c(u1v1) 6= 5,

then in G1 = K2k−3 − u1 the number of edges whose colors are not c(u1v1) is at least(
2k−4

2

)−1. Since k ≥ 4, we have
(
2k−4

2

)−1 > ext(2k−4, (k−2)K2) =
(
2k−5

2

)
. Thus we can

obtain a TMC H = (k−2)K2 which contains no color c(u1v1) in G1, and hence there is a

TMC kK2 = H ∪{u1v1, v2v3} in Kn. So, c(u1v1) must be 5. By the same token, c(u2v2)

and c(u3v3) must be 6 and 4, respectively. Now we can obtain a TMC H ′ = (k − 3)K2

in G2 = K2k−3 − u1 − u2 − u3, and hence there is a TMC kK2 = H ′ ∪ {u1v1, u2v2, u3v3}
in Kn.

Case II. k = 3.

We suppose that Kn contains no TMC 3K2. Then c(u1v1) ∈ {2, 5}, c(u2v2) ∈
{3, 6}, c(u3v3) ∈ {1, 4}. Now we can obtain a TMC 3K2 = u1v1 ∪ u2v2 ∪ u3v3 in Kn.

Lemma 3.5 If n ≥ 2k + 1 and two components of G are G′ and G′′, where G′ and G′′

is a K2k−3 and a P3, respectively, or G′ and G′′ is a K−
2k−3 and a K3, respectively, and

the other components are isolated vertices (see Figure 2), then Kn contains a TMC kK2,

where P3 is a path with three vertices and K−
2k−3 is obtained from K2k−3 by deleting an

edge.
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Figure 3: We can obtain a TMC 3K2 = u1v4 ∪ u3v3 ∪ u2v1 in Kn.

Proof. Denote SG2 as the special graph G and Q as the set of isolated vertices of G. With-

out loss of generality, we suppose that c(u1u2) = 1, c(u2u3) = 2, c(u1u3) = 3, c(v1v2) =

4, c(v2v3) = 5 (see Figure 2). The proof of the lemma is given by distinguishing the

following two cases:

Case I. k ≥ 4.

Since n ≥ 2k + 1, we suppose that v4 ∈ Q. If c(u1v4) = j, without loss of generality,

we suppose that j 6= 4. The number of edges of G′ − u1 whose color is not j is at

least
(
2k−4

2

) − 2 and
(
2k−4

2

) − 2 > ext(2k − 4, (k − 2)K2) =
(
2k−5

2

)
. Then there is a

TMC H = (k − 2)K2 in G′ − u1 which contains no color j. We can obtain a TMC

kK2 = H ∪ u1v4 ∪ v1v2 in Kn.

Case II. k = 3.

Without loss of generality, we suppose that G′ and G′′ is a K3 and a P3, respectively.

We suppose that Kn contains no TMC 3K2. Then, c(u1v4) ∈ {2, 5}∩{2, 4}, i.e., c(u1v4) =

2, c(u3v3) ∈ {2, 4} ∩ {1, 4}, i.e., c(u1v4) = 4, c(u2v1) ∈ {2, 5} ∩ {3, 5}, i.e., c(u1v4) = 5.

Now we obtain a TMC 3K2 = u1v4 ∪ u3v3 ∪ u2v1. See Figure 3.

Now we turn back to the proof of Theorem 3.3. Let D(G), A(G), C(G) as the

canonical decomposition of G and c(D(G)) = q, |A(G)| = s, |V (G)| = n. Since the size

of the maximum matchings of G is k − 1, by Theorem 2.4 (e), k − 1 = 1
2(n− q + s), i.e.,

q = n−2k+2+s. Let the components of D(G) be D1, D2, . . ., Dq. By Theorem 2.4 (a),

the components of the subgraph induced by D(G) are factor-critical, hence we suppose

that |V (Di)| = 2li + 1 for 1 ≤ i ≤ q, without loss of generality, l1 ≥ l2 ≥ . . . ≥ lq ≥ 0.

Let the components of C(G) be C1, C2, . . ., Cq′ with |V (Ci)| = 2ti for 1 ≤ i ≤ q′.

Since s + q = s + n− 2k + 2 + s ≤ n, then 0 ≤ s ≤ k − 1. Moreover,

n = s +
q∑

i=1

(2li + 1) + |C(G)| ≥ s + (2l1 + 1) +
q∑

i=2

(2li + 1)

≥ s + (2l1 + 1) + (q − 1)

≥ s + (2l1 + 1) + (n− 2k + 2 + s− 1),
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hence 2l1 +1 ≤ 2k− 2s− 1. We distinguish four cases to finish the proof of Theorem 3.3.

Case 1. s = k − 1.

In this case, since s + q = (k − 1) + n − 2k + 2 + (k − 1) = n, then C(G) = ∅ and

l1 = l2 = . . . = lq = 0. The components of the subgraph induced by D(G) are isolated

vertices. We distinguish two subcases to finish the proof of the case.

Subcase 1.1. There is at most one vertex u in D(G) such that dG(u) < k − 1.

We suppose v ∈ D(G) and u 6= v. Let G(n − k − 1, k − 1) be the bipartite graph

obtained from G by deleting the vertices u, v and the edges spanned by A(G). It is obvious

that uv ∈ E(Kn) and uv /∈ E(G), without loss of generality, we suppose c(uv) = 1. Then

the number of edges in G(n−k−1, k−1) whose color is not 1 is at least (n−k−1)(k−1)−1.

Since n − k − 1 ≥ 2, then (n − k − 1)(k − 1) − 1 > ext(n − k − 1, k − 1, (k − 1)K2) =

(n−k−1)(k−2). By Lemma 2.2, there exists a TMC H = (k−1)K2 in G(n−k−1, k−1)

which contains no color 1, thus we obtain a TMC kK2 = H ∪ uv in Kn.

Subcase 1.2. There exist at least two vertices u, v in D(G) such that dG(u) < k − 1

and dG(v) < k − 1.

We suppose that c(uv) = 1. Let G′(n− k− 1, k− 1) be the bipartite graph obtained

from G by deleting the vertices u, v and the edges spanned by A(G) and the edge whose

color is 1. Thus there is no TMC (k − 1)K2 in G′(n − k − 1, k − 1). Hence, by Lemma

2.2,

|E(G)| ≤ 1 + ext(n− k − 1, k − 1, (k − 1)K2) + 2(k − 2) +
(

k − 1
2

)

≤ 1 + (k − 2)(n− k − 1) + 2(k − 2) +
(

k − 1
2

)

=
(

k − 2
2

)
+ (k − 2)(n− k + 2) + 1

< ext(n, (k − 1)K2) + 2,

which contradicts |E(G)| ≥ ext(n, (k − 1)K2) + 2.

Case 2. 0 ≤ s ≤ k − 2 and 2l1 + 1 ≤ 2k − 2s− 3.

In this case, if 2k− 2s− 3 = 1, then l1 = l2 = . . . = lq = 0, s = k− 2 and |C(G)| = 2,

hence

|E(G)| ≤
(

s

2

)
+ s(n− s) +

(
2
2

)

=
(

k − 2
2

)
+ (k − 2)(n− k + 2) + 1

< ext(n, (k − 1)K2) + 2,

which contradicts |E(G)| ≥ ext(n, (k − 1)K2) + 2.
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If 2k − 2s− 3 ≥ 3, then 0 ≤ s ≤ k − 3 and

q∑

i=2

(2li + 1) +
q′∑

i=1

(2ti) = n− s− (2l1 + 1)

≥ n− s− (2k − 2s− 3) = (q − 1) + 2.

Thus, if |C(G)| ≥ 2, then

|E(G)| ≤
(

s

2

)
+ s(n− s) +

q∑

i=1

(
2li + 1

2

)
+

q′∑

i=1

(
2ti
2

)

≤
(

s

2

)
+ s(n− s) +

(
2l1 + 1 +

∑q
i=2 2li

2

)
+

q′∑

i=1

(
2ti
2

)

≤
(

s

2

)
+ s(n− s) +

(
2l1 + 1 +

∑q
i=2 2li + (

∑q′
i=1 2ti − 2)

2

)
+

(
2
2

)

=
(

s

2

)
+ s(n− s) +

(
n− s− (q − 1)− 2

2

)
+

(
2
2

)

=
(

s

2

)
+ s(n− s) +

(
2k − 2s− 3

2

)
+

(
2
2

)
:= f1(s).

Hence,

f1(0) =
(

2k − 3
2

)
+ 1 < ext(n, (k − 1)K2) + 2,

f1(k − 3) =
(

k − 2
2

)
+ (k − 2)(n− k + 2)− (n− k) + 2

<

(
k − 2

2

)
+ (k − 2)(n− k + 2) < ext(n, (k − 1)K2) + 2.

Since 0 ≤ s ≤ k − 3, |E(G)| ≤ max{f1(0), f1(k − 3)} < ext(n, (k − 1)K2) + 2, which

contradicts |E(G)| ≥ ext(n, (k − 1)K2) + 2.

If |C(G)| = 0, then 2l2 + 1 ≥ 3 and

|E(G)| ≤
(

s

2

)
+ s(n− s) +

q∑

i=1

(
2li + 1

2

)
+

q′∑

i=1

(
2ti
2

)

≤
(

s

2

)
+ s(n− s) +

(
2l1 + 1 +

∑q
i=3 2li +

∑q′
i=1 2ti

2

)
+

(
2l2 + 1

2

)

≤
(

s

2

)
+ s(n− s) +

(
2l1 + 1 +

∑q
i=3 2li +

∑q′
i=1 2ti + (2l2 − 2)

2

)
+

(
3
2

)

=
(

s

2

)
+ s(n− s) +

(
n− s− (q − 1)− 2

2

)
+

(
3
2

)

=
(

s

2

)
+ s(n− s) +

(
2k − 2s− 3

2

)
+

(
3
2

)
:= f2(s).

9



Thus,

f2(0) =
(

2k − 3
2

)
+ 3,

f2(1) =
(

2k − 3
2

)
+ n− 4k + 11,

f2(k − 3) =
(

k − 2
2

)
+ (k − 2)(n− k + 2)− (n− k) + 4

≤
(

k − 2
2

)
+ (k − 2)(n− k + 2) + 1 < ext(n, (k − 1)K2) + 2.

If s = 0 and |E(G)| =
(
2k−3

2

)
+ 3, then G ∼= SG1. By Lemma 3.4, we can obtain

a TMC kK2 in Kn. If s = 0, n ≥ 2k + 1 and |E(G)| =
(
2k−3

2

)
+ 2, then G ∼= SG2.

By Lemma 3.5, we can obtain a TMC kK2 in Kn. So, if n ≥ 2k + 1, then |E(G)| ≤(
2k−3

2

)
+ 1 < ext(n, (k − 1)K2) + 2, which contradicts |E(G)| = ext(n, (k − 1)K2) + 2. If

n = 2k and k ≥ 7, then |E(G)| ≤ (
2k−3

2

)
+ 2 = ext(n, (k − 1)K2) + 2, which contradicts

|E(G)| = ext(n, (k − 1)K2) + 3. If n = 2k and 3 ≤ k ≤ 6, then |E(G)| ≤ (
2k−3

2

)
+ 2 ≤(

k−2
2

)
+(k−2)(k+2) = ext(n, (k−1)K2), which contradicts |E(G)| = ext(n, (k−1)K2)+2.

If 1 ≤ s ≤ k − 3, then k ≥ 4 and |E(G)| ≤ max{f2(1), f2(k − 3)}. So, if f2(k − 3) ≥
f2(1), then |E(G)| ≤ f2(k−3) < ext(n, (k−1)K2)+2, a contradiction. If f2(1) > f2(k−3),

then
(

2k − 3
2

)
+ n− 4k + 11 >

(
k − 2

2

)
+ (k − 2)(n− k + 2)− (n− k) + 4.

Hence 2k ≤ n < 1
2(5k − 7), k > 7 and

|E(G)| ≤ f2(1) =
(

2k − 3
2

)
+ n− 4k + 11

<

(
2k − 3

2

)
+

1
2
(15− 3k)

< ext(n, (k − 1)K2) + 2,

a contradiction.

Case 3. 0 ≤ s ≤ k − 2, 2l1 + 1 = 2k − 2s− 1 and n ≥ 2k + 1.

In this case, s + (2l1 + 1) + (q − 1) = n, hence C(G) = ∅, l2 = l3 = . . . = lq = 0 and

each Di for 2 ≤ i ≤ q is an isolated vertex.

Let G(q, s) be the bipartite graph obtained from G by deleting the edges spanned

by A(G) and by contracting the component D1 to a single vertex p. Thus by Theorem

2.4 (c) and (d), we can obtain a maximum matching M of size k − 1 such that M

contains a maximum matching M1 of G(q, s) which does not match vertex p and a near-

perfect matching M2 of D1. Since q = n − 2k + 2 + s ≥ s + 3, there exist two vertices

u, v ∈ D(G) −D1 and u, v /∈ 〈M〉. It is obvious that uv ∈ E(Kn) and uv /∈ E(G). We

10



Figure 4: If yz1 ∈ EG(y, D1), we can obtain a TMC kK2 = M ′
1 ∪M ′

2 ∪ uv in Kn.

suppose that c(uv) = 1, hence there exists an edge e = yz ∈ M with c(e) = 1. Now we

distinguish two subcases to complete the proof of the case.

Subcase 3.1. e ∈ M1.

In this subcase, s ≥ 1 and yz ∈ EG(A(G), D(G)), without loss of generality, we

suppose that y ∈ A(G). If there exists an edge yz1 ∈ EG(y, D1) with z1 ∈ D1, then

we can obtain another maximum matching M ′
1 of G(q, s) with M ′

1 = M1 ∪ yz1 − yz and

a near-perfect matching M ′
2 of D1 which does not match z1. Thus we obtain a TMC

kK2 = M ′
1 ∪M ′

2 ∪ uv in Kn. See Figure 4.

Thus we suppose that EG(y, D1) = ∅. There is no matching of size s in G′(q−3, s) =

G(q, s)−p−u−v−e. By Lemma 2.2, |EG(G′)| ≤ (s−1)(q−3) = (s−1)(n−2k+s−1).

Now

|E(G)| ≤
(

s

2

)
+

(
2k − 2s− 1

2

)
+ 1 + |EG(G′)|

+|EG(D1, A(G))|+ |EG({u, v}, A(G))|
≤

(
s

2

)
+

(
2k − 2s− 1

2

)
+ 1 + (s− 1)(n− 2k + s− 1)

+(2k − 2s− 1)(s− 1) + 2s := f3(s)

Hence,

f3(1) =
(

2k − 3
2

)
+ 3,

f3(2) =
(

2k − 3
2

)
+ n− 4k + 11,

f3(k − 2) =
(

k − 2
2

)
+ (k − 2)(n− k + 2)− (n− k) + 4

≤
(

k − 2
2

)
+ (k − 2)(n− k + 2) < ext(n, (k − 1)K2) + 2.

If s = 1, then |E(G)| ≤ (
2k−3

2

)
+3. If |E(G)| = (

2k−3
2

)
+3, then (G− e+uv) ∼= SG1.

By the proof of Lemma 3.4, we can obtain a TMC kK2 in Kn. If |E(G)| = (
2k−3

2

)
+2, then

11



(G− e + uv) ∼= SG2. By the proof of Lemma 3.5 , we can obtain a TMC kK2 in Kn. If

|E(G)| ≤ (
2k−3

2

)
+1 ≤ ext(n, (k−1)K2)+1, this contradicts |E(G)| = ext(n, (k−1)K2)+2.

If 2 ≤ s ≤ k − 2, then k ≥ 4 and |E(G)| ≤ max{f3(2), f3(k − 2)}. So, if f3(k − 2) ≥
f3(2), then |E(G)| ≤ f3(k−2) < ext(n, (k−1)K2)+2, a contradiction. If f3(1) > f3(k−3),

then (
2k − 3

2

)
+ n− 4k + 11 >

(
k − 2

2

)
+ (k − 2)(n− k + 2)− (n− k) + 4.

Hence, 2k ≤ n < 1
2(5k − 7), k > 7 and

|E(G)| ≤ f3(2) =
(

2k − 3
2

)
+ n− 4k + 11

<

(
2k − 3

2

)
+

1
2
(15− 3k)

< ext(n, (k − 1)K2) + 2,

a contradiction.

Subcase 3.2. e ∈ M2.

In this subcase, y ∈ D1 and z ∈ D1. By Theorem 2.4 (a), D1 is factor-critical,

there exists a near-perfect matching M ′
2 which does not match y, So M ′

2 does not contain

e = yz. Now we obtain a TMC kK2 = M ′
2 ∪M1 ∪ uv in Kn.

Case 4. 0 ≤ s ≤ k − 2, 2l1 + 1 = 2k − 2s− 1 and n = 2k.

In this case, q = s + 2 and s + (2l1 + 1) + (q − 1) = 2k, hence C(G) = ∅, l2 = l3 =

. . . = lq = 0 and each Di for 2 ≤ i ≤ q is an isolated vertex. Now we distinguish two

subcases to complete the proof of the case.

Subcase 4.1. 1 ≤ s ≤ k − 2.

If EG(D1, A(G)) = ∅, then

|E(G)| ≤
(

2k − 2s− 1
2

)
+

(
s

2

)
+ s(s + 1) := f4(s).

Thus,

f4(1) =
(

2k − 3
2

)
+ 2,

f4(k − 2) =
(

k − 2
2

)
+ (k − 2)(k + 2) + 3− 3(k − 2)

Since k ≥ 3, then f4(1) ≥ f4(k − 2) and |E(G)| ≤ max{f4(1), f4(k − 2)} = f4(1) =(
2k−3

2

)
+ 2. If k ≥ 7, this contradicts |E(G)| = ext(2k, (k − 1)K2) + 3 =

(
2k−3

2

)
+ 3. If

3 ≤ k ≤ 6, then

|E(G)| ≤
(

2k − 3
2

)
+ 2

≤
(

k − 2
2

)
+ (k − 2)(k + 2) = ext(2k, (k − 1)K2),

12



Figure 5: The special graph SG3 and |E(SG3)| =
(
2k−3

2

)
+ 3.

which contradicts |E(G)| = ext(2k, (k − 1)K2) + 2.

So we suppose that EG(D1, A(G)) 6= ∅. Let G(s+2, s) be the bipartite graph obtained

from G by deleting the edges spanned by A(G) and by contracting the component D1 to

a single vertex p. Thus by Theorem 2.4 (d), we can obtain a maximum matching M of

size k− 1 such that M contains a near-perfect matching M1 of D1 which does not match

w with w ∈ D1 and a matching M2 of size s which matches all vertices of A(G) with

vertices in {w}∪ (D(G)−D1). Since EG(D1, A(G)) 6= ∅, we can suppose that w ∈ 〈M2〉.
There exist exactly two vertices u, v ∈ D(G) − D1 and u, v /∈ 〈M〉. It is obvious that

uv ∈ E(Kn) and uv /∈ E(G). We suppose that c(uv) = 1, hence there exists an edge

e = yz ∈ M with c(e) = 1. Now we distinguish two subcases to complete the proof of

the subcase 4.1.

Subcase 4.1.1. e = yz ∈ M1.

If s = 1, then |D1| = 2k − 3 and we suppose A(G) = {x}. Thus the size of M1 is

k − 2 and there is no H = (k − 2)K2 in D′
1 = D1 −w − yz, for otherwise, we can obtain

a TMC kK2 = H ∪ xw ∪ uv in K2k. If EG(x, {y, z}) 6= ∅, say xy ∈ E(G), then we can

obtain a perfect matching M ′
1 of D1 − y and a TMC kK2 = M ′

1 ∪ uv ∪ xy in K2k. So,

EG(x, {y, z}) = ∅ and

|E(G)| = 1 + |EG(D′
1)|+ |EG(w, D′

1)|+ |EG(x,D1)|+ |EG(x, {u, v})|
≤ 1 + ext(2k − 4, (k − 2)K2) + (2k − 4) + (2k − 5) + 2

=
(

2k − 5
2

)
+ 4k − 6

=
(

2k − 3
2

)
+ 3.

Denote SG3 be the special graph G shown in Figure 5, whence E(SG3) = E(K−
2k−3)∪

xu ∪ xv ∪ yw ∪ yz. Without loss of generality, we suppose that c(wy) = 4. If |E(G)| =(
2k−3

2

)
+ 3, it is easy to check that G ∼= SG3.

If k ≥ 7, then by the beginning hypothesis |E(G)| = ext(2k, (k − 1)K2) + 3 =(
2k−3

2

)
+ 3, whence G ∼= SG3. Now

(
2k−4

2

)− 1 > ext(2k − 4, (k − 2)K2), we can obtain a

TMC H = (k − 2)K2 in K−
2k−3 − w, whence a TMC kK2 = H ∪ yw ∪ uv in K2k.
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Figure 6: There is no (k − s − 1)K2 in D′
1 = D1 − w − yz. If x′y ∈ E(G), there is no

(s− 1)K2 in bipartite graph G′(s− 1, s− 1) = G− {D1 ∪ u ∪ v ∪ x′}.

If 3 ≤ k ≤ 6, then
(

2k − 3
2

)
+ 3 ≤

(
k − 2

2

)
+ (k − 2)(k + 2) + 1 = ext(2k, (k − 1)K2) + 1,

which contradicts |E(G)| = ext(2k, (k − 1)K2) + 2. If 2 ≤ s ≤ k − 2, then k ≥ 4. We

suppose that x ∈ A(G) and xw ∈ M2. By the the same token, EG(x, {y, z}) = ∅ and

there is no (k − s− 1)K2 in D′
1 = D1 − w − yz.

If EG(A(G) − x, {y, z}) 6= ∅, say x′y ∈ E(G), then there is no H = (s − 1)K2 in

bipartite graph G′(s− 1, s− 1) = G− {D1 ∪ u ∪ v ∪ x′}, for otherwise, we can obtain a

perfect matching M ′
1 in D1 − y and a TMC kK2 = M ′

1 ∪H ∪ uv ∪ x′y. See Figure 6.

Thus,

|EG(A(G), D(G))| = |EG(A(G), D1 − y − z)|+ |E(A(G), {y, z})|
+|EG(A(G), {u, v})|+ |EG(G′(s− 1, s− 1))|
+|EG(x′, D(G)−D1 − u− v)|

≤ (2k − 2s− 3)s + 2(s− 1) + 2s

+ext(s− 1, s− 1, (s− 1)K2) + (s− 1)

= (2k − 2s− 3)s + 2s + (s− 1)(s + 1).

If EG(A(G)− x, {y, z}) = ∅, then

|EG(A(G), D(G))| = |EG(A(G), D1 − y − z)|+ |EG(A(G), D(G)−D1)|
≤ (2k − 2s− 3)s + s(s + 1).

So,

|EG(A(G), D(G))|
≤ max{(2k − 2s− 3)s + 2s + (s− 1)(s + 1), (2k − 2s− 3)s + s(s + 1)}
= (2k − 2s− 3)s + 2s + (s− 1)(s + 1).
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Now, we have

|E(G)| =
(

s

2

)
+ 1 + |EG(D′

1)|+ |EG(w, D′
1)|+ |EG(A(G), D(G))|

≤
(

s

2

)
+ 1 +

(
2k − 2s− 3

2

)
+ (2k − 2s− 2) +

(2k − 2s− 3)s + 2s + (s− 1)(s + 1) := f5(s).

Thus,

f5(2) =
(

2k − 3
2

)
− 2k + 11,

f5(k − 2) =
(

k − 2
2

)
+ (k − 2)(k + 2)− k + 4

< ext(2k, (k − 1)K2) + 2.

If 4 ≤ k ≤ 6, then f5(k−2) ≥ f5(2) and |E(G)| ≤ max{f5(2), f5(k−2)} = f5(k−2) <

ext(2k, (k − 1)K2) + 2, which contradicts |E(G)| = ext(2k, (k − 1)K2) + 2.

If k ≥ 7, then f5(2) ≥ f5(k − 2) and |E(G)| ≤ max{f5(2), f5(k − 2)} = f5(2) =(
2k−3

2

)− 2k + 11 <
(
2k−3

2

)
= ext(2k, (k− 1)K2), which contradicts |E(G)| = ext(2k, (k−

1)K2) + 3.

Subcase 4.1.2. e = yz ∈ M2.

Without loss of generality, we suppose that y ∈ A(G).

If s = 1, then A(G) = {y}, yz = yw and c(yw) = c(uv) = 1. Then EG(y, D1−w) = ∅,
for otherwise, say yw′ ∈ EG(y, D1 − w) with w′ ∈ (D1 − w), we can obtain a TMC

H = (k − 2)K2 in D1 − w′ and a TMC kK2 = H ∪ yw′ ∪ uv in K2k. So,

|E(G)| = |EG(D1)|+ |EG(y, {w, u, v})| ≤
(

2k − 3
2

)
+ 3.

If 3 ≤ k ≤ 6, then
(

2k − 3
2

)
+ 3 ≤

(
k − 2

2

)
+ (k − 2)(k + 2) + 1 = ext(2k, (k − 1)K2) + 1,

which contradicts |E(G)| = ext(2k, (k − 1)K2) + 2.

If k ≥ 7, since |E(G)| = (
2k−3

2

)
+ 3, it is easy to check that (G− e + uv) ∼= SG1. By

the proof of Lemma 3.4, we can obtain a TMC kK2 in K2k.

If 2 ≤ s ≤ k − 2, first we look at the bipartite graph G(s + 2, s). We suppose that

M ′
2 is any maximum matching of size s in G(s + 2, s) with p ∈ 〈M ′

2〉 and u1, v1 /∈ 〈M ′
2〉.

By Subcase 4.1.1, we can suppose that there exists an edge e1 ∈ M ′
2 such that c(e1) =

c(u1v1). If dG(s+2,s)(p) = s and there is at most one vertex u2 in D(G) −D1 such that

dG(s+2,s)(u) ≤ s − 1, we suppose v2 ∈ D(G) − D1 and u2 6= v2. Let G(s, s) be the

bipartite graph obtained from G(s + 2, s) by deleting the vertices u2, v2. It is obvious

that u2v2 ∈ E(Kn) and u2v2 /∈ E(G). Then the number of edges in G(s, s) whose color
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is not c(u2v2) is at least s2 − 1. Since s ≥ 2, then s2 − 1 ≥ ext(s, s, sK2) = s(s− 1) + 1.

By Lemma 2.2, there exists a TMC H = sK2 in G(s, s) which contains no color c(u2v2),

thus we obtain a TMC (s + 1)K2 = H ∪ u2v2. By Theorem 2.4, we can obtain a TMC

kK2 in K2k.

So, if dG(s+2,s)(p) = s, then we suppose there exist at least two vertices u3, v3 in

D(G) − D1 such that dG(s+2,s)(u3) ≤ s − 1 and dG(s+2,s)(v3) ≤ s − 1. Let G′(s, s) be

the bipartite graph obtained from G(s + 2, s) by deleting the vertices u3, v3 and the

edge whose color is c(u3v3). Thus there is no TMC sK2 in G′(s, s). By Lemma 2.2,

E(G(s + 2, s)) ≤ 1 + 2(s− 1) + s(s− 1) and

|EG(A(G), D(G))| ≤ 1+2(s−1)+s((2k−2s−1)+(s−2)) = 1+2(s−1)+s(2k−s−3).

Now we suppose that dG(s+2,s)(p) ≤ s− 1. Since E(A(G), D1) 6= ∅, if there exists an

edge w′′x′ ∈ E(A(G), D1) with x′ ∈ A(G), w′′ ∈ D1 and w′′x′ 6= wx. Thus there is no

TMC H = (s− 1)K2 in G(s + 2, s)− {p ∪ u ∪ v ∪ x′} − yz, for otherwise, we can obtain

a TMC (s + 1)K2 = H ∪ uv ∪ w′′x′, a TMC (k − s− 1)K2 in D1 − w′′ and a TMC kK2

in K2k. We have

|EG(A(G), D(G))| ≤ |EG(A(G), D1)|+ (s− 1)(s− 2) + 1

+|EG(x′, D(G)−D1 − u− v)|+ |EG(A(G), {u, v})|
≤ (2k − 2s− 1)(s− 1) + (s− 1)(s− 2) + 1 + (s− 1) + 2s

= (2k − 2s− 1)(s− 1) + s2 + 2.

If E(A(G), D1) = {xw}, then

|EG(A(G), D(G))| ≤ 1 + s(s + 1).

Thus,

|EG(A(G), D(G))|
≤ max{1 + 2(s− 1) + s(2k − s− 3), (2k − 2s− 1)(s− 1) + s2 + 2, 1 + s(s + 1)}
= 1 + 2(s− 1) + s(2k − s− 3).

So,

|E(G)| ≤
(

s

2

)
+

(
2k − 2s− 1

2

)
+ 1 + 2(s− 1) + s(2k − s− 3) := f6(s).

We have

f6(2) =
(

2k − 3
2

)
+ 3,

f6(3) =
(

2k − 3
2

)
− 2k + 12,

f6(k − 2) =
(

k − 2
2

)
+ (k − 2)(k + 2)− k + 4

< ext(2k, (k − 1)K2) + 2.
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Figure 7: G is isomorphic to one of the above three graphs.

If s = 2 and |E(G)| = f6(2) =
(
2k−3

2

)
+ 3, then it is easy to check that G has a

structure shown in Figure 7. By the proof Lemma 3.4, we can obtain a TMC kK2 in

K2k.

If 3 ≤ s ≤ k − 2, then k ≥ 5. If 5 ≤ k ≤ 6, then f6(k − 2) = f6(3) and |E(G)| ≤
f6(k − 2) < ext(2k, (k − 1)K2) + 2, which contradicts |E(G)| = ext(2k, (k − 1)K2) + 2.

If k ≥ 7, then f6(3) > f6(k − 2) and |E(G)| ≤ f6(3) =
(
2k−3

2

) − 2k + 12 <
(
2k−3

2

)
=

ext(2k, (k − 1)K2), which contradicts |E(G)| = ext(2k, (k − 1)K2) + 3.

Subcase 4.2. s = 0.

In this subcase, |V (D1)| = 2k − 1 and q = 2. We suppose that z1 ∈ D1 and

D2 = {z2}. Let M be a perfect matching of D1 − z1. Then there exists an edge

e ∈ M such that c(e) = c(z1z2). So, there is no TMC (k − 1)K2 in D1 − z1 − e.

Let D′
1 be D1 − z1 − e and D(D′

1), A(D′
1) and C(D′

1) as the canonical decomposition

of D′
1. We look at the graph G1 = G − e + z1z2. Let A′(G1) = A(D′

1) ∪ z1 and

D′(G1) = D(D′
1) ∪ z2 and C ′(G1) = C(D′

1). Let |A′(G1)| = s′, q′ = c(D′(G1)) =

c(D(D′
1)) + 1 = (2k − 2) − 2(k − 2) + s − 1 + 1 = s + 2. Obviously, 1 ≤ s′ ≤ k − 1.

Employing similar technique as in the proofs of Cases 1, 2 and Subcase 4.1, we can obtain

contradictions. The details are omitted. Up to now, the proof is complete.
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