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Abstract

Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr} be two
subsets of {0, 1, 2, . . . , p − 1} satisfying max lj < min ki. We will prove the following
results: If F = {F1, F2, . . . , Fm} is a family of subsets of [n] = {1, 2, . . . , n} such that
|Fi ∩ Fj | (mod p) ∈ L for every pair i 6= j and |Fi| (mod p) ∈ K for every 1 ≤ i ≤ m,
then

|F| ≤
(

n− 1
s

)
+

(
n− 1
s− 1

)
+ · · ·+

(
n− 1

s− 2r + 1

)
.
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If either K is a set of r consecutive integers or L = {1, 2, . . . , s}, then

|F| ≤
(

n− 1
s

)
+

(
n− 1
s− 1

)
+ · · ·+

(
n− 1
s− r

)
.

We will also prove similar results which involve two families of subsets of [n]. These
results improve the existing upper bounds substantially.

1 Introduction

Throughout the paper, we use X for the set [n] = {1, 2, . . . , n}. A family F of subsets of

X = [n] is called intersecting if every pair of distinct subsets E, F ∈ F have a nonempty

intersection. Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. A family F of subsets

of X = [n] is called L-intersecting if |E∩F | ∈ L for every pair of distinct subsets E, F ∈ F .

A family F is k-uniform if it is a collection of k-subsets of X. Thus, a k-uniform intersecting

family is L-intersecting for L = {1, 2, . . . , k − 1}.
In 1961, Erdös-Ko-Rado [4] proved the following classical result.

Theorem 1.1 Let n ≥ 2k and let F be a k-uniform intersecting family of subsets of [n].

Then |F| ≤ (
n−1
k−1

)
with equality only when F consists of all k-subsets containing a common

element.

The following is an intersection theorem of de Bruijin and Erdös [3], which drops the

condition for the subsets to be k-uniform, but requires that the intersections to have only

one element.

Theorem 1.2 If F is a family of subsets of X satisfying |E ∩ F | = 1 for every pair of

distinct subsets E, F ∈ F , then |F| ≤ n.

A year later, Bose [2] obtained the following more general intersection theorem which

requires the intersections to have exactly λ elements.
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Theorem 1.3 If F is a family of subsets of X satisfying |E ∩ F | = λ for every pair of

distinct subsets E, F ∈ F , then |F| ≤ n.

In 1975, Ray-Chaudhuri and Wilson [10] made a major progress by deriving the following

upper bound for a k-uniform L-intersecting family.

Theorem 1.4 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. If F is a k-uniform

L-intersecting family of subsets of X, then |F| ≤ (
n
s

)
.

In terms of the parameters n and s, this inequality is best possible, as shown by the set

of all s-subsets of an n-set with L = {0, 1, . . . , s − 1}. As to non-uniform L-intersecting

families, in 1981, Frankl and Wilson [6] obtain the following tight upper bound.

Theorem 1.5 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. If F is an L-

intersecting family of subsets of X, then

|F| ≤
(

n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
.

This result is best possible in terms of the parameters n and s, as shown by the set of all

subsets of size at most s of an n-set. J. Qian and Ray-Chaudhuri [9] have characterized the

extremal case of this theorem.

In 1991, Alon, Babai, and Suzuki [1] considered the problem of how large a set system

with specific intersection sizes and subset sizes can be, and they obtain the following theorem

which is a generalization of both Theorems 1.4 and 1.5.

Theorem 1.6 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers and K = {k1, k2, . . . ,

kr} be a set of integers satisfying ki > s − r for every i. Let F be an L-intersecting family

of subsets of X such that |F | ∈ K for every F ∈ F . Then

|F| ≤
(

n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

s− r + 1

)
.
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Clearly, Theorem 1.4 is a special case of Theorem 1.6 for r = 1 and Theorem 1.5 is a

special case of Theorem 1.6 for r = n and K = X = [n], under the convention that
(

i
j

)
= 0

if i ≥ 0 and j < 0. Moreover, this result is also best possible, as demonstrated by the set of

all subsets of an n-set X with cardinalities at least s− r + 1 and at most s.

Note that the set L in the above theorems may contain 0. Stronger bounds can be

obtained if we restrict L to be a set of positive integers. To this end, the following theorem

was conjectured by Frankl and Füredi in 1981 [5]. It was proved by Ramanan [11] in 1997.

A different proof was given by Sankar and Vishwanathan [12].

Theorem 1.7 Let L = {1, 2, . . . , s}. If F is an L-intersecting family of subsets of X, then

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

0

)
.

For a general set L = {l1, l2, . . . , ls} of s positive integers, a conjecture was made by

Snevily in 1994 [13], and proved by himself in 2003 [16], which is described as in the following

theorem.

Theorem 1.8 Let L = {l1, l2, . . . , ls} be a set of s positive integers. If F is an L-intersecting

family of subsets of X, then

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

0

)
.

In the same paper [16], Snevily made the following two conjectures.

Conjecture 1.9 Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr} be two

disjoint subsets of {0, 1, 2, . . . , p − 1}. Suppose F = {F1, F2, . . . , Fm} is a family of subsets

of X such that |Fi ∩ Fj| (mod p) ∈ L for every pair i 6= j and |Fi| (mod p) ∈ K for every

1 ≤ i ≤ m. Then

|F| ≤
(

n

s

)
=

(
n− 1

s

)
+

(
n− 1

s− 1

)
.
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Conjecture 1.10 Let L = {l1, l2, . . . , ls} be a set of s positive integers. Suppose that

A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets of X such

that |Ai ∩Bj| ∈ L for i 6= j and |Ai ∩Bi| = 0 for every i. Then

m ≤
(

n

s

)
=

(
n− 1

s

)
+

(
n− 1

s− 1

)
.

Here, we will prove the following results which either improve the existing upper bounds

substantially or confirm the above conjectures partially.

Theorem 1.11 Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr} be two

subsets of {0, 1, 2, . . . , p − 1} satisfying max lj < min ki. Suppose F = {F1, F2, . . . , Fm}
is a family of subsets of X such that |Fi ∩ Fj| (mod p) ∈ L for every pair i 6= j and

|Fi| (mod p) ∈ K for every 1 ≤ i ≤ m. Then

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− 2r + 1

)
.

As an immediate consequence to this theorem, by taking r = 1, we have the following

which shows that Conjecture 1.9 is true when F is a k-uniform family of subsets (i.e., a

family of k-subsets ) of X = [n].

Corollary 1.12. Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k} be two subsets

of {0, 1, 2, . . . , p − 1} satisfying max lj < k. Suppose F = {F1, F2, . . . , Fm} is a family of

k-subsets of X such that |Fi ∩ Fj| (mod p) ∈ L for every pair i 6= j. Then

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
.

Theorem 1.13. Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k, k+1, . . . , k+r−1}
be two subsets of {0, 1, 2, . . . , p − 1} satisfying max lj < k. Suppose F = {F1, F2, . . . , Fm}
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is a family of subsets of X such that |Fi ∩ Fj| (mod p) ∈ L for every pair i 6= j and

|Fi| (mod p) ∈ K for every 1 ≤ i ≤ m. Then

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− r

)
.

Theorem 1.14. Let p be a prime and let L = {1, 2, . . . , s} and K = {k1, k2, . . . , kr} be two

subsets of {0, 1, 2, . . . , p−1} satisfying s < min ki. Suppose F = {F1, F2, . . . , Fm} is a family

of subsets of X such that |Fi ∩ Fj| (mod p) ∈ L for every pair i 6= j and |Fi| (mod p) ∈ K

for every 1 ≤ i ≤ m. Then

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− r

)
.

Note that Theorem 1.14 gives an extension of the main theorem in [8] to its modular

version.

Theorem 1.15. Let p be a prime and L = {l1, l2, . . . , ls} ⊆ {1, 2, . . . , p − 1}. Suppose

that A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets of X

such that |Ai ∩ Bj|(mod p) ∈ L for i 6= j and |Ai ∩ Bi| = 0 for every i. If max lj <

min{|Ai|(mod p)|1 ≤ i ≤ m}, then

m ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− 2r + 1

)
,

where r is the number of different set sizes in A.

Clearly, by selecting a prime p greater than n, we obtain the following immediate corollary.

Corollary 1.16. Let L = {l1, l2, . . . , ls} be a set of s positive integers. Suppose that

A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets of X such

that |Ai∩Bj| ∈ L for i 6= j and |Ai∩Bi| = 0 for every i. If max lj < min{|Ai| : 1 ≤ i ≤ m},
then

m ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− 2r + 1

)
.
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where r is the number of different set sizes in A.

As an immediate consequence to Corollary 1.16, by taking r = 1, we have the following

which shows that Conjecture 1.10 is true when either A is k-uniform (or B is k-uniform by

symmetry).

Corollary 1.17. Let L = {l1, l2, . . . , ls} be a set of s positive integers and max lj < k.

Suppose that A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets

of X such that |Ai ∩Bj| ∈ L for i 6= j and |Ai ∩Bi| = 0 for every i. If either A is k-uniform

or B is k-uniform, then

m ≤
(

n

s

)
=

(
n− 1

s

)
+

(
n− 1

s− 1

)
.

Note that this bound is sharp as shown by taking all k-subsets of [n] for A and all

(n− k)-subsets for B.

When either the set sizes (mod p) in A is a set of r consecutive integers or the set sizes

(mod p) in B is a set of r consecutive integers, we have the following theorem which gives a

better bound than Theorem 1.15.

Theorem 1.18. Let p be a prime and L = {l1, l2, . . . , ls} ⊆ {1, 2, . . . , p − 1}. Suppose

that A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets of X

such that |Ai ∩ Bj|(mod p) ∈ L for i 6= j and |Ai ∩ Bi| = 0 for every i. If the set sizes

(mod p) in A (or in B) is a set of r consecutive integers in {1, 2, . . . , p − 1} and max lj <

min{|Ai|(mod p)|1 ≤ i ≤ m}, then

m ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− r

)
.
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2 Proof of Theorems 1.11, 1.13, and 1.14

We will use x = (x1, x2, . . . , xn) to denote a vector of n variables with each variable xj taking

values 0 or 1. A polynomial p(x) in variables xi, 1 ≤ i ≤ n, is called multilinear if the power

of each variable xi in each term is at most one. Clearly, if each variable xi takes only the

values 0 or 1, then any polynomial in variables xi, 1 ≤ i ≤ n, is multilinear since any positive

power of a variable xi may be replaced by one. For a subset F of X = [n], we define the

characteristic vector of F to be the vector u = (u1, u2, . . . , un) ∈ Rn with uj = 1 if j ∈ F

and uj = 0 otherwise. In what follows, we will use vi to denote the characteristic vector of

Fi ∈ F .

To prove our results, we need the following lemma which is Lemma 3.6 in [1]. We say a

set H = {h1, h2, . . . , ht} ⊆ [n] has a gap of size ≥ d (where the hi are arranged in increasing

order) if either h1 ≥ d− 1, or n−ht ≥ d− 1, or hi+1−hi ≥ d for some i (1 ≤ i ≤ t− 1). For

a subset I ⊆ [n], we denote xI =
∏

j∈I xj.

Lemma 2.1. Let p be a prime and H ⊆ {0, 1, . . . , p− 1} be a set of integers such that the

set (H + pZ) ∩ {0, 1, . . . , n} has a gap ≥ d + 1, where d ≥ 0. Let f denote the following

polynomial in n variables

f(x) =
∏

h∈H

(
n∑

j=1

xj − h

)
.

Then the set of polynomials {xIf ||I| ≤ d− 1} is linearly independent over Fp.

Proof of Theorem 1.11. Let p be a prime and let L = {l1, l2, . . . , ls} and K = {k1, k2, . . . , kr}
be two subsets of {0, 1, 2, . . . , p−1} satisfying max lj < min ki. Suppose F = {F1, F2, . . . , Fm}
is a family of subsets of X such that |Fi ∩ Fj| (mod p) ∈ L for every pair i 6= j and

|Fi| (mod p) ∈ K for every 1 ≤ i ≤ m.
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For 1 ≤ i ≤ m, define

fi(x) =
s∏

j=1

(vi · x− lj),

where x = (x1, x2, . . . , xn) with each xj taking values 0 or 1. Then each fi(x) is a multilinear

polynomial of degree at most s since any positive power of a variable may be replaced by

one. Moreover, since max lj < min ki, L ∩ K = ∅ and fi(vi) 6= 0(mod p) for every i ≤ m

and fi(vj) = 0(mod p) for every pair i 6= j since |Fi ∩ Fj|(mod p) ∈ L.

Let Q be the family of subsets of X = [n] with size at most s which contain n. Then

|Q| = ∑s−1
i=0

(
n−1

i

)
. For each L ∈ Q, define

qL(x) = (1− xn)
∏

j∈L,j 6=n

xj.

Let H = {ki − 1|ki ∈ K} ∪K. Then |H| ≤ 2r. Set

f(x) =
∏

h∈H

(
n−1∑
j=1

xj − h

)
.

Let W be the family of subsets of [n] with sizes at most s−2r which do not contain n, Then

|W | = ∑s−2r
i=0

(
n−1

i

)
. For each I ∈ W , define

AI(x) = f(x)
∏
j∈I

xj.

Then each AI(x) is a multilinear polynomial of degree at most s.

We now proceed to show that the polynomials in

{fi(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {AI(x)|I ∈ W}

are linearly independent over Fp. Suppose that we have a linear combination of these poly-

nomials that equals zero:

m∑
i=1

αifi(x) +
∑
L∈Q

βLqL(x) +
∑
I∈W

µIAI(x) = 0. (2.1)
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Claim 1. αi = 0 for each i with n ∈ Fi.

Suppose, to the contrary, that i0 is a subscript such that n ∈ Fi0 and αi0 6= 0. Since

n ∈ Fi0 , qL(vi0) = 0 for every L ∈ Q. Recall that fj(vi0) = 0 for j 6= i0 and f(vj) = 0 for every

1 ≤ j ≤ m. By evaluating equation (2.1) with x = vi0 , we obtain that αi0fi0(vi0) = 0(mod p).

Since fi0(vi0) 6= 0(mod p), we have αi0 = 0, a contradiction. Thus, Claim 1 holds.

Claim 2. αi = 0 for each i with n 6∈ Fi. Applying Claim 1, we get

∑

n6∈Fi

αifi(x) +
∑
L∈Q

βLqL(x) +
∑
I∈W

µIAI(x) = 0. (2.2)

Suppose, to the contrary, that i0 is a subscript such that n 6∈ Fi0 and αi0 6= 0. Let

v∗i0 = vi0 +(0, 0, . . . , 0, 0, 1) (namely, making xn = 1 in v∗i0). Then qL(v∗i0) = 0 for every L ∈ Q.

Note that fi(v
∗
i0
) = fi(vi0) for each i with n 6∈ Fi and AI(v

∗
i0
) = 0 for each I ∈ W as f(v∗i0) = 0.

By evaluating equation (2.2) with x = v∗i0 , we obtain αi0fi0(v
∗
i0
) = αi0fi0(vi0) = 0(mod p)

which implies αi0 = 0, a contradiction. Thus, the claim is verified.

Claim 3. βL = 0 for each L ∈ Q.

By Claims 1 and 2, we obtain

∑
L∈Q

βLqL(x) +
∑
I∈W

µIAI(x) = 0. (2.3)

Rewrite equation (2.3) as
[∑

L∈Q

βLq′L(x) +
∑
I∈W

µIAI(x)

]
−

(∑
L∈Q

βLq′L(x)

)
xn = 0, (2.4)

where q′L =
∏

j∈L,j 6=n xj. Note that xn does not appear in the first parentheses of equation

(2.4). Setting xn = 0 in equation (2.4) gives us

∑
L∈Q

βLq′L(x) +
∑
I∈W

µIAI(x) = 0

and (∑
L∈Q

βLq′L(x)

)
xn = 0.
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By setting xn = 1, we obtain ∑
L∈Q

βLq′L(x) = 0.

It is not difficult to see that the polynomials q′L(x), L ∈ Q, are linearly independent. There-

fore, we conclude that βL = 0 for each L ∈ Q.

By Claims 1-3, we now have ∑
I∈W

µIAI(x) = 0. (2.5)

Since H = {ki − 1|ki ∈ K} ∪K and s− 1 ≤ max lj < min ki, H ⊆ {0, 1, . . . , p− 1} and H

has a gap at least s. Recall that

f(x) =
∏

h∈H

(
n−1∑
j=1

xj − h

)
.

By applying Lemma 2.1 with d − 1 = s − 2r, we conclude that the set of polynomials

{AI(x) = xIf(x)|I ∈ W} is linearly independent over Fp, and so µI = 0 for each I ∈ W in

equation (2.5).

In summary, we have shown that the polynomials in

{fi(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {AI(x)|I ∈ W}

are linearly independent. Since the set of all monomials in variables xi, 1 ≤ i ≤ n, of degree

at most s forms a basis for the vector space of multilinear polynomials of degree at most s,

it follows that

m +
s−1∑
i=0

(
n− 1

i

)
+

s−2r∑
i=0

(
n− 1

i

)
≤

s∑
i=0

(
n

i

)

which implies that

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− 2r + 1

)
.

This completes the proof of the theorem. ¤
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Note that if K = {k, k + 1, . . . , k + r − 1} is a set of r consecutive integers, then the set

H = {ki − 1|ki ∈ K} ∪K has size |H| = r + 1. Thus, with a little bit modification in the

proof of Theorem 1.11, we obtain a proof for Theorem 1.13.

Proof of Theorem 1.13. The proof is almost identical to the proof of Theorem 1.11 by

selecting W to be the set of all subsets of [n] with sizes at most s − r − 1 which do not

contain n. ¤

Next, we prove Theorem 1.14.

Proof of Theorem 1.14. Let p be a prime and let L = {1, 2, . . . , s} and K = {k1, k2, . . . , kr}
be two subsets of {0, 1, 2, . . . , p−1} satisfying max lj < min ki. Suppose F = {F1, F2, . . . , Fm}
is a family of subsets of X such that |Fi ∩ Fj| (mod p) ∈ L for every pair i 6= j and

|Fi| (mod p) ∈ K for every 1 ≤ i ≤ m.

For 1 ≤ i ≤ m, define

fi(x) =
s∏

j=1

(vi · x− lj),

where x = (x1, x2, . . . , xn) with each xj taking values 0 or 1. Then fi(vi) 6= 0(mod p) for

every i ≤ m and fi(vj) = 0(mod p) for every pair i 6= j.

Let Q be the family of subsets of X = [n] with size at most s which contain n. Then

|Q| = ∑s−1
i=0

(
n−1

i

)
. For each L ∈ Q, define

qL(x) =
∏
j∈L

xj.

Set

f(x) =
∏

k∈K

(
n∑

j=1

xj − k

)
.

Let W be the family of subsets of [n] with sizes at most s − r which do contain n, Then

12



|W | = ∑s−r−1
i=0

(
n−1

i

)
. For each I ∈ W , define

AI(x) = (xn − 1)f(x)
∏

j∈I,j 6=n

xj.

Then each AI(x) is a multilinear polynomial of degree at most s.

We now proceed to show that the polynomials in

{fi(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {AI(x)|I ∈ W}

are linearly independent over Fp. Suppose that we have a linear combination of these poly-

nomials that equals zero:

m∑
i=1

αifi(x) +
∑
L∈Q

βLqL(x) +
∑
I∈W

µIAI(x) = 0. (2.6)

Claim 1. αi = 0 for each i with n 6∈ Fi.

Suppose, to the contrary, that i0 is a subscript such that n 6∈ Fi0 and αi0 6= 0. Since

n 6∈ Fi0 , qL(vi0) = 0 for every L ∈ Q. Recall that fj(vi0) = 0 for j 6= i0 and f(vj) = 0 for every

1 ≤ j ≤ m. By evaluating equation (2.6) with x = vi0 , we obtain that αi0fi0(vi0) = 0(mod p).

Since fi0(vi0) 6= 0(mod p), we have αi0 = 0, a contradiction. Thus, Claim 1 holds.

Claim 2. βL = 0 for each L ∈ Q. By Claim 1, we obtain

∑
n∈Fi

αifi(x) +
∑
L∈Q

βLqL(x) +
∑
I∈W

µIAI(x) = 0. (2.7)

Suppose, to the contrary, that L is a minimal subset in Q such that βL 6= 0. Let vL be the

characteristic vector for L. Then qL′(vL) = 0 for each L′ ∈ Q which is not a subset of L.

Since n ∈ L, AI(vL) = 0 for each I ∈ W . For each Fj with n ∈ Fj, since |L ∩ Fj| ∈ L,

we have fj(vL) = 0. Thus, by evaluating equation (2.7) with x = vL, we obtain βL = 0, a

contradiction. Therefore, βL = 0 for each L ∈ Q.

Claim 3. αi = 0 for each i with n ∈ Fi. Applying Claims 1 and 2, we get

∑
n∈Fi

αifi(x) +
∑
I∈W

µIAI(x) = 0. (2.8)
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Suppose, to the contrary, that i0 is a subscript such that n ∈ Fi0 and αi0 6= 0. Note that

f(vi0) = 0 and so AI(vi0) = 0 for each I ∈ W . By evaluating equation (2.8) with x = vi0 ,

we obtain αi0fi0(vi0) = 0(mod p) which implies αi0 = 0, a contradiction. Thus, the claim is

verified.

By Claims 1-3, we now have ∑
I∈W

µIAI(x) = 0. (2.9)

Since s − 1 ≤ max lj < min ki, K ⊆ {0, 1, . . . , p − 1} and K has a gap at least s. Recall

that

f(x) =
∏

k∈K

(
n∑

j=1

xj − k

)
.

Setting xn = 0 and applying Lemma 2.1 with d− 1 = s− r − 1, we conclude that the set of

polynomials {AI(x) = xI′(xn − 1)f(x)|I ∈ W, I ′ = I −{n}} is linearly independent over Fp,

and so µI = 0 for each I ∈ W in equation (2.9).

In summary, we have shown that the polynomials in

{fi(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {AI(x)|I ∈ W}

are linearly independent. Since the set of all monomials in variables xi, 1 ≤ i ≤ n, of degree

at most s forms a basis for the vector space of multilinear polynomials of degree at most s,

it follows that

m +
s−1∑
i=0

(
n− 1

i

)
+

s−r−1∑
i=0

(
n− 1

i

)
≤

s∑
i=0

(
n

i

)

which implies that

|F| ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− r

)
.

This completes the proof of the theorem. ¤
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3 Proof of Theorems 1.15 and 1.18

We first give a proof for Theorem 1.15 which is alone the same line as the proof of Theorem

1.11 but with some differences.

Proof of Theorem 1.15. Let p be a prime and L = {l1, l2, . . . , ls} ⊆ {1, 2, . . . , p − 1}.
Suppose that A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets

of X such that |Ai ∩Bj|(mod p) ∈ L for i 6= j and |Ai ∩Bi| = 0 for every i. Without loss of

generality, let r be the number of different set sizes in A which is no bigger than the number

of different set sizes in B. In what follows, we will use vI to denote the characteristic vector

of I for each subset I ⊆ [n].

For each Bi ∈ B, define

fBi
(x) =

s∏
j=1

(vBi
· x− lj).

Then each fBi
(x) is a multilinear polynomial of degree at most s. Since |Ai∩Bi| = 0(mod p)

for each i and |Ai ∩ Bj|(mod p) ∈ L for i 6= j, fBi
(vAi

) =
∏s

j=1(−lj) 6= 0(mod p) for every

i ≤ m and fBi
(vAj

) = 0(mod p) for every pair i 6= j.

Let Q be the family of subsets of X = [n] with size at most s which contain n. Then

|Q| = ∑s−1
i=0

(
n−1

i

)
. For each L ∈ Q, define

qL(x) = (
∏
j∈L

xj).

Let H = {|Ai| − 1(mod p)|Ai ∈ A} ∪ {|Ai|(mod p)|Ai ∈ A}. Then |H| ≤ 2r. Set

f(x) =
∏

h∈H

(
n−1∑
j=1

xj − h

)
.

Let W be the family of subsets of [n] with sizes at most s−2r which do not contain n, Then

|W | = ∑s−2r
i=0

(
n−1

i

)
. For each I ∈ W , define

KI(x) =

(∏
j∈I

xj

)
f(x).
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Then each KI(x) is a multilinear polynomial of degree at most s.

We now proceed to show that the polynomials in

{fBi
(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {KI(x)|I ∈ W}

are linearly independent over Fp. Suppose that we have a linear combination of these poly-

nomials that equals zero:

m∑
i=1

αifBi
(x) +

∑
L∈Q

βLqL(x) +
∑
I∈W

µIKI(x) = 0. (3.1)

Claim 1. αi = 0 for each i with n 6∈ Ai.

Suppose, to the contrary, that i′ is a subscript such that n 6∈ Ai′ and αi′ 6= 0. Since

n 6∈ Ai′ , qL(vAi′ ) = 0 for every L ∈ Q. Recall that fBj
(vAi′ ) = 0 for j 6= i′ and f(vAi′ ) = 0.

By evaluating equation (3.1) with x = vAi′ , we obtain that αi′fBi′ (vAi′ ) = 0(mod p). Since

fBi′ (vAi′ ) 6= 0(mod p), we have αi′ = 0, a contradiction. Thus, Claim 1 holds.

Claim 2. αi = 0 for each i with n ∈ Ai. Applying Claim 1, we get

∑
n∈Ai

αifBi
(x) +

∑
L∈Q

βLqL(x) +
∑
I∈W

µIKI(x) = 0. (3.2)

Suppose, to the contrary, that i′ is a subscript such that n ∈ Ai′ and αi′ 6= 0. Since

|Ai ∩ Bi| = 0 for every i, n 6∈ Bi whenever n ∈ Ai. Let v′Ai′
= vAi′ − (0, 0, . . . , 0, 0, 1)

(namely, making xn = 0 in v′Ai′
). Note that fBj

(v′Ai′
) = fBj

(vAi′ ) for each Bj with n 6∈ Bj,

and KI(v
′
Ai′

) = 0 for each I ∈ W . By evaluating equation (3.2) with x = v′Ai′
, we obtain

αi′fBi′ (v
′
Ai′

) = αi′fBi′ (vAi′ ) = 0(mod p) which implies αi′ = 0, a contradiction. Thus, the

claim is verified.

Claim 3. βL = 0 for each L ∈ Q.

By Claims 1 and 2, we obtain

∑
L∈Q

βLqL(x) +
∑
I∈W

µIKI(x) = 0. (3.3)
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Note that the first sum has a factor xn while xn does not appear in the second sum in

equation (3.3). Setting xn = 0 in equation (3.3) gives us

∑
I∈W

µIKI(x) = 0

and so ∑
L∈Q

βLqL(x) = 0.

It is not difficult to see that the polynomials qL(x), L ∈ Q, are linearly independent. There-

fore, we conclude that βL = 0 for each L ∈ Q.

By Claims 1-3, we now have ∑
I∈W

µIKI(x) = 0. (3.4)

Since H = {|Ai| − 1(mod p)|Ai ∈ A} ∪ {|Ai|(mod p)|Ai ∈ A} and s ≤ max lj < min{|Ai| :
1 ≤ i ≤ m}, H ⊆ {0, 1, . . . , p− 1} and H has a gap at least s. Recall that

f(x) =
∏

h∈H

(
n−1∑
j=1

xj − h

)
.

By applying Lemma 2.1 with d − 1 = s − 2r, we conclude that the set of polynomials

{KI(x) = xIf(x)|I ∈ W} is linearly independent over Fp, and so µI = 0 for each I ∈ W in

equation (3.4).

In summary, we have shown that the polynomials in

{fBi
(x)|1 ≤ i ≤ m} ∪ {qL(x)|L ∈ Q} ∪ {KI(x)|I ∈ W}

are linearly independent. Since the set of all monomials in variables xi, 1 ≤ i ≤ n, of degree

at most s forms a basis for the vector space of multilinear polynomials of degree at most s,

it follows that

m +
s−1∑
i=0

(
n− 1

i

)
+

s−2r∑
i=0

(
n− 1

i

)
≤

s∑
i=0

(
n

i

)
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which implies that

m ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− 2r + 1

)
.

This completes the proof of the theorem. ¤
We remark that with exactly the same proof as above, we can obtain the following

stronger result than Theorem 1.15.

Theorem 3.1. Let p be a prime and L = {l1, l2, . . . , ls} ⊆ {1, 2, . . . , p − 1}. Suppose that

A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} are two collections of subsets of X such

that |Ai ∩ Bj|(mod p) ∈ L for i 6= j, |Ai ∩ Bi|(mod p) 6∈ L and n 6∈ Ai ∩ Bi for every i. If

max lj < min{|Ai|(mod p)|1 ≤ i ≤ m}, then

m ≤
(

n− 1

s

)
+

(
n− 1

s− 1

)
+ · · ·+

(
n− 1

s− 2r + 1

)
,

where r is the number of different set sizes in A.

Note that if the set sizes (mod p) in A (or in B) is a set of r consecutive integers in

{1, 2, . . . , p − 1}, then H = {|Ai| − 1(mod p)|Ai ∈ A} ∪ {|Ai|(mod p)|Ai ∈ A} has size

|H| = r + 1. Thus, with a little bit modification in the proof of Theorem 1.15, we obtain a

proof for Theorem 1.18.

Proof of Theorem 1.18. The proof is almost identical to the proof of Theorem 1.15 by

selecting W to be the set of all subsets of [n] with sizes at most s − r − 1 which do not

contain n. ¤
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