SUBSUMS OF A ZERO-SUM FREE SUBSET OF AN ABELIAN GROUP

WEIDONG GAO, YUANLIN LI, JIANGTAO PENG, AND FANG SUN

Abstract

Let G be an additive finite abelian group and $S \subset G$ a subset. Let $\mathrm{f}(S)$ denote the number of nonzero group elements which can be expressed as a sum of a nonempty subset of S. It is proved that if $|S|=6$ and there are no subsets of S with sum zero, then $\mathrm{f}(S) \geq 19$. Obviously, this lower bound is best possible, and thus this result gives a positive answer to an open problem proposed by R.B. Eggleton and P. Erdős in 1972. As a consequence, we prove that any zero-sum free sequence S over a cyclic group G of length $|S| \geq \frac{6|G|+28}{19}$ contains some element with multiplicity at least $\frac{6|S|-|G|+1}{17}$.

1. Introduction and Main Results

Let G be an additive abelian group and $S \subset G$ a subset. We denote by $\mathrm{f}(G, S)=\mathrm{f}(S)$ the number of nonzero group elements which can be expressed as a sum of a nonempty subset of S. For a positive integer $k \in \mathbb{N}$ let $\mathrm{F}(k)$ denote the minimum of all $\mathrm{f}(A, T)$, where the minimum is taken over all finite abelian groups A and all zero-sum free subsets $T \subset A$ with $|T|=k$. This invariant $\mathrm{F}(k)$ was first studied by R.B. Eggleton and P. Erdős in 1972 (see [4]). For every $k \in \mathbb{N}$ they obtained a subset S in a cyclic group G with $|S|=k$ such that

$$
\begin{equation*}
\mathrm{F}(k) \leq \mathrm{f}(G, S)=\left\lfloor\frac{1}{2} k^{2}\right\rfloor+1 \tag{1.1}
\end{equation*}
$$

(a detailed proof may be found in [8, Section 5.3]), and J.E. Olson ([10]) proved that

$$
\mathrm{F}(k) \geq \frac{1}{9} k^{2} .
$$

Moreover, Eggleton and Erdős determined $\mathbf{F}(k)$ for all $k \leq 5$, and they stated the following conjecture (which holds true for $k \leq 5$):

[^0]Conjecture 1.1. For every $k \in \mathbb{N}$ there is a cyclic group G and a zero-sum free subset $S \subset G$ with $|S|=k$ such that $\mathrm{F}(k)=\mathrm{f}(G, S)$.

Eggleton and Erdős conjectured that $F(6)=19$, and it will be a main aim of the present paper to verify this equality. Recently G. Bhowmik et. al. gave an example showing that $F(7) \leq 24$ (see [1]).

Apart from being of interest in their own rights, the invariants $\mathrm{F}(k)$, $k \in \mathbb{N}$, are useful tools in the investigation of various other problems in combinatorial and additive number theory. At the end of Section 8 we outline the connection to Olson's constant $\mathrm{OI}(G)$. A further application deals with the study of the structure of long zero-sum free sequences. This is a topic going back to J.D. Bovey, P. Erdős and I. Niven ([2]) which found a lot of interest in recent years (see contributions by Gao, Geroldinger, Hamidoune, Savchev, Chen and others [5, 9, 11, 12], and [7, Section 7] for a recent survey). We will use the crucial new result, that $F(6)=19$, for further progress on this topic. For convenience we now state our main results (the necessary terminology will be fixed in Section 2).

Theorem 1.2. $F(6)=19$.

Theorem 1.3. Let G be a cyclic group of order $n \geq 3$. If S is a zero-sum free sequence over G of length

$$
|S| \geq \frac{6 n+28}{19}
$$

then S contains an element $g \in G$ with multiplicity

$$
\mathrm{v}_{g}(S) \geq \frac{6|S|-n+1}{17}
$$

In Section 2 we fix our notation and gather the tools needed in the sequel. In Section 3 we present the main idea for the proof of Theorem 1.2, formulate some auxiliary results (Theorem 3.2, Lemmas 3.3 and Lemma 3.4) and show that they easily imply Theorem 1.2 . The Sections 4 to 7 are devoted to the proofs of these auxiliary results. In Section 8 we prove Theorem 1.3

Throughout this paper, let G denote an additive finite abelian group.

2. Preliminaries

We denote by \mathbb{N} the set of positive integers, and we put $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a, b \in \mathbb{R}$ we set $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$, and we define $\sup \emptyset=\max \emptyset=\min \emptyset=0$.

We follow the conventions of [6] for the notation concerning sequences over an abelian group. Let $\mathcal{F}(G)$ denote the multiplicative, free abelian
monoid with basis G. The elements of $\mathcal{F}(G)$ are called sequences over G. An element $S \in \mathcal{F}(G)$ will be written in the form

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\vee_{g}(S)}
$$

where all $\mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ are uniquely determined and called the multiplicity of g in S. We say that S contains g if $\mathrm{v}_{g}(S)>0$. A sequence $T \in \mathcal{F}(G)$ is called a subsequence of S if $T \mid S$ in $\mathcal{F}(G)$ (equivalently, $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for all $g \in G)$. Given any group homomorphism $\varphi: G \rightarrow G^{\prime}$, we extend φ to a homomorphism of sequences, $\varphi: \mathcal{F}(G) \rightarrow \mathcal{F}\left(G^{\prime}\right)$, by letting $\varphi(S)=$ $\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{l}\right)$. For a sequence S as above we call

$$
|S|=l=\sum_{g \in G} \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \quad \text { the length of } S
$$

$\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in G\right\} \in[0,|S|] \quad$ the maximum of the multiplicities of S,

$$
\operatorname{supp}(S)=\left\{g \in G \mid \mathrm{v}_{g}(S)>0\right\} \subset G \quad \text { the support of } S
$$

$$
\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G \quad \text { the } \text { sum of } S
$$

$$
\Sigma(S)=\left\{\sum_{i \in I} g_{i} \mid \emptyset \neq I \subset[1, l]\right\} \quad \text { the set of subsums of } S
$$

and

$$
\mathrm{f}(G, S)=\mathrm{f}(S)=|\Sigma(S) \backslash\{0\}| \quad \text { the number of nonzero subsums of } S
$$

We say that S is

- zero-sum free if $0 \notin \Sigma(S)$,
- a zero-sum sequence if $\sigma(S)=0$,
- squarefree if $\mathrm{v}_{g}(S) \leq 1$ for all $g \in G$.

The unit element $1 \in \mathcal{F}(G)$ is called the trivial sequence, and every other sequence is called nontrivial. Clearly, S is trivial if and only if S has length $|S|=0$. In this paper we will deal with subsets of G and with sequences over G. For simplicity and consistency of notation, we will address sets as squarefree sequences throughout this manuscript. For $k \in \mathbb{N}$ we define

$$
\begin{aligned}
\mathrm{F}(G, k)=\min \{|\Sigma(S)| \mid & S \in \mathcal{F}(G) \text { is a zero-sum free and } \\
& \text { squarefree sequence of length }|S|=k\}
\end{aligned}
$$

and we denote by $\mathrm{F}(k)$ the minimum of all $\mathrm{F}(A, k)$ where A runs over all finite abelian groups A having a squarefree and zero-sum free sequence of length k. We gather some results on these invariants, which will be needed in the sequel.

Lemma 2.1. [8, Theorem 5.3.1] It $t \in \mathbb{N}$ and $S=S_{1} \cdot \ldots \cdot S_{t} \in \mathcal{F}(G)$ is zero-sum free, then

$$
\mathrm{f}(S) \geq \mathrm{f}\left(S_{1}\right)+\ldots+\mathrm{f}\left(S_{t}\right)
$$

Lemma 2.2.

1. $\mathrm{F}(1)=1, \mathrm{~F}(2)=3, \mathrm{~F}(3)=5$ and $\mathrm{F}(4)=8$.
2. If $S \in \mathcal{F}(G)$ is squarefree, zero-sum free of length $|S|=3$ and contains no elements of order 2 , then $\mathrm{f}(S) \geq 6$.
3. $\mathrm{F}(k) \geq \frac{1}{9} k^{2}$ for all $k \in \mathbb{N}$.

Proof. 1. See [8, Corollary 5.3.4.1].
2. See [8, Proposition 5.3.2.2].
3. See [10].

Lemma 2.3. Let $S=S_{1} S_{2} \in \mathcal{F}(G), H=\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle$ and let $\varphi: G \rightarrow G / H$ denote the canonical epimorphism. Then we have

$$
\mathrm{f}(S) \geq\left(1+\mathrm{f}\left(\varphi\left(S_{2}\right)\right)\right) \mathrm{f}\left(S_{1}\right)+\mathrm{f}\left(\varphi\left(S_{2}\right)\right) .
$$

Proof. W set $A=\sum\left(S_{1}\right) \cup\{0\}$ and $h=\left|\varphi\left(\Sigma\left(S_{2}\right) \cup\{0\}\right)\right|$. Then

$$
|A|=1+\mathrm{f}\left(S_{1}\right) \quad \text { and } \quad h=1+\mathrm{f}\left(\varphi\left(S_{2}\right)\right) .
$$

Suppose that

$$
\varphi\left(\{0\} \cup \sum\left(S_{2}\right)\right)=\left\{\varphi\left(a_{0}\right), \varphi\left(a_{1}\right), \ldots, \varphi\left(a_{h-1}\right)\right\},
$$

where $a_{0}=0$ and $a_{i} \in \sum\left(S_{2}\right)$ for all $i \in[1, h-1]$. Since $A \subset H=\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle$, it follows that

$$
A \backslash\{0\}, a_{1}+A, \ldots, a_{h-1}+A
$$

are pairwise disjoint subsets of $\sum(S)$, and therefore

$$
\begin{aligned}
\mathrm{f}(S) & \geq|A \backslash\{0\}|+\left|a_{1}+A\right|+\ldots+\left|a_{h-1}+A\right| \\
& =h\left(\mathrm{f}\left(S_{1}\right)+1\right)-1 .
\end{aligned}
$$

Lemma 2.4. Let $S \in \mathcal{F}(G)$ be zero-sum free.

1. If $T \in \mathcal{F}(\operatorname{supp}(S))$ and $U \in \mathcal{F}(G)$ such that $U \mid T$ and $T U^{-1} \mid S$, then $\sigma(U) \neq \sigma(T)$.
2. If $T_{1}, T_{2} \in \mathcal{F}(G)$ are squarefree with $\left|T_{1}\right|=\left|T_{2}\right|$ and $\left|\operatorname{gcd}\left(T_{1}, T_{2}\right)\right|=$ $\left|T_{1}\right|-1$, then $\sigma\left(T_{1}\right) \neq \sigma\left(T_{2}\right)$.
Proof. 1. Since S is zero-sum free and $T U^{-1} \mid S$, we have $\sigma\left(T U^{-1}\right) \neq 0$. Since $T=\left(T U^{-1}\right) U$, we get $\sigma(T)=\sigma\left(T U^{-1}\right)+\sigma(U)$ and hence $\sigma(U) \neq$ $\sigma(T)$.
3. Obvious.

3. Proof of Theorem 1.2

Let $S=x_{1} \cdot \ldots \cdot x_{k} \in \mathcal{F}(G)$ be a squarefree, zero-sum free sequence of length $|S|=k \in \mathbb{N}$, and let \mathcal{A} be the set of all nontrivial subsequences of S. We partition \mathcal{A} as

$$
\mathcal{A}=\mathcal{A}_{1} \uplus \ldots \uplus \mathcal{A}_{r}
$$

where two subsequences T, T^{\prime} of S are in the same class \mathcal{A}_{ν}, for some $\nu \in$ $[1, r]$, if $\sigma(T)=\sigma\left(T^{\prime}\right)$. Thus we have $r=\mathrm{f}(S)=|\Sigma(S)|$. For a subset $\mathcal{B} \subset \mathcal{A}$ we set

$$
\overline{\mathcal{B}}=\left\{S T^{-1} \mid T \in \mathcal{B}\right\}
$$

Then, for every $\nu \in[1, r]$, we clearly have $\overline{\mathcal{A}_{\nu}} \in\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}\right\}$, and $\overline{\mathcal{A}_{\nu}}$ will be called the dual class of \mathcal{A}_{ν}. For a nontrivial subsequence T of S we denote by $[T]$ the class of T. The following easy observation will be useful.

Lemma 3.1. Let all notations be as above, and let $i \in[1, r]$. Then the following statements hold:

1. For a subset $\mathcal{B} \subset \mathcal{A}$, we have $\mathcal{B} \in\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}\right\}$ if and only if $\overline{\mathcal{B}} \in$ $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}\right\}$, and $|\mathcal{B}|=|\overline{\mathcal{B}}|$.
2. \mathcal{A}_{i} is the dual class of itself if and only if $\sigma(T)=\sigma\left(S T^{-1}\right)$ for some $T \in \mathcal{A}_{i}$.
3. If \mathcal{A}_{i} contains subsequences T and T^{\prime} with $|T|=1$ and $\left|T^{\prime}\right|=k-1$, then $S=T T^{\prime}$ and $\mathcal{A}_{i}=\left\{T, T^{\prime}\right\}$.
4. If \mathcal{A}_{i} is the dual class of itself and \mathcal{A}_{i} contains a subsequence of length 1 , then $\left|\mathcal{A}_{i}\right|=2$.
5. If \mathcal{A}_{i} is the dual class of itself, then $\left|\mathcal{A}_{i}\right|$ is even.
6. $[S]=\{S\}$.

In order to prove Theorem 1.2, we need the following three results.
Theorem 3.2. Let $S \in \mathcal{F}(G)$ be a squarefree, zero-sum free sequence of length $|S|=k \in[4,7]$. If S contains some element of order 2 , then

$$
\mathrm{f}(S) \geq\left\lfloor\frac{k^{2}}{2}\right\rfloor+1
$$

Lemma 3.3. Let $S \in \mathcal{F}(G)$ be a squarefree, zero-sum free sequence of length $|S|=6$ which contains no elements of order 2 . Then $\left|\left[x_{k}\right]\right| \leq 4$ for all $k \in[1,6]$. Moreover, if $\left|\left[x_{i}\right]\right|=\left|\left[x_{j}\right]\right|=4$ for some $i, j \in[1,6]$ with $i<j$, then

$$
\mathrm{f}(S) \geq 19
$$

Lemma 3.4. Let $S \in \mathcal{F}(G)$ be a squarefree, zero-sum free sequence of length $|S|=6$ which contains no elements of order 2 , and let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}$ be defined as above. Then $\left|\mathcal{A}_{i}\right| \leq 5$ for all $i \in[1, r]$, and if $\left|\mathcal{A}_{i}\right|=5$ for some $i \in[1, r]$, then

$$
\mathrm{f}(S) \geq 19
$$

Proof of Theorem 1.2, based on 3.2, 3.3 and 3.4

By [8, Corollary 5.3.4.2] it follows that $\mathrm{F}(6) \leq 19$, and hence it suffices to verify the reverse inequality. Let $S=x_{1} \cdot \ldots \cdot x_{6} \in \mathcal{F}(G)$ be a squarefree zero-sum free sequence. We need to show

$$
\mathrm{f}(S) \geq 19
$$

If S contains an element of order 2 , then Theorem 3.2 implies that $\mathrm{f}(S) \geq 19$. So we may assume that S contains no elements of order 2. By Lemma 3.3 and Lemma 3.4, we may assume there exists at most one $i \in[1, r]$ such that $\left|\left[x_{i}\right]\right|=4$ and that $\left|\mathcal{A}_{j}\right| \leq 4$ for all $j \in[1, r]$.

We set

$$
L=\sum_{i=1}^{r}\left|\mathcal{A}_{i}\right|=2^{6}-1=63 .
$$

Assume that $S \in \mathcal{A}_{r}$. Then $\mathcal{A}_{r}=\{S\}$ and thus \mathcal{A}_{r} contributes 1 to the sum L. Next let t be the number of those $i \in[1,6]$ with $\left[x_{i}\right]=\overline{\left[x_{i}\right]}$, say x_{1}, \ldots, x_{t} have this property. If $i \in[1, t]$, then Lemma 3.1 implies that $\left[x_{i}\right]=\left\{x_{i}, x_{i}^{-1} S\right\}$ and hence $\left|\left[x_{i}\right]\right|=2$. Thus we get $\left|\left[x_{1}\right]\right|+\ldots+\left|\left[x_{t}\right]\right|=$ $2 t$. Since S is squarefree, $i, j \in[1,6]$ with $i \neq j$ implies that $\left[x_{i}\right] \neq\left[x_{j}\right]$. Excluding the above self-dual classes, the remaining $\left[x_{i}\right]$ and $\overline{\left[x_{i}\right]}$ contribute at most $4 \times 2+3 \times 2(6-t-1)=38-6 t$ to the sum L, that is

$$
\sum_{i=t+1}^{6}\left(\left|\left[x_{i}\right]\right|+\left|\overline{\left[x_{i}\right]}\right|\right) \leq 38-6 t
$$

Finally, by excluding \mathcal{A}_{r}, all $\left[x_{i}\right]$ and their dual class $\overline{\left[x_{i}\right]}$, we have $r-$ $1-t-2(6-t)$ classes left. These remaining classes contribute at most $4 \times(r-1-t-2(6-t))=4 r-52+4 t$ to L. Adding up these numbers, we obtain

$$
1+2 t+(38-6 t)+(4 r-52+4 t) \geq L=63
$$

This gives that $4 r \geq 76$ and therefore $\mathrm{f}(S)=r \geq 19$ as desired.
The proofs of Theorem 3.2 and of the Lemmas 3.3 and 3.4 will be given in Sections 4 to 7. Throughout these sections, let

$$
S=x_{1} \cdot \ldots \cdot x_{k} \in \mathcal{F}(G)
$$

be a squarefree, zero-sum free sequence of length $|S|=k \in \mathbb{N}$, and let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}$ be as introduced in the beginning of this section.

4. Proof of Theorem 3.2

Without loss of generality we may assume that $\operatorname{ord}\left(x_{1}\right)=2$. We set $S=S_{1} S_{2}$, where $S_{1}=x_{1}$ and $S_{2}=x_{2} \cdot \ldots \cdot x_{k}$. Then $\mathrm{f}\left(S_{1}\right)=1$. Let $H=\left\langle x_{1}\right\rangle=\left\{0, x_{1}\right\}$ and $\varphi: G \rightarrow G / H$ the canonical epimorphism. Then $\varphi\left(S_{2}\right)=\varphi\left(x_{2}\right) \cdot \ldots \cdot \varphi\left(x_{k}\right)$.

First, we assert that $\varphi\left(S_{2}\right)$ is zero-sum free. Assume to the contrary that there is a nontrivial subsequence U of S_{2} such that $\sigma(\varphi(U))=\varphi(\sigma(U))=0$. Then $\sigma(U) \in H$. Since S is zero-sum free, $\sigma(U) \neq 0$, so $\sigma(U)=x_{1}$. Then $\sigma\left(S_{1} U\right)=\sigma\left(S_{1}\right)+\sigma(U)=x_{1}+x_{1}=0$, a contradiction. Thus $\varphi\left(S_{2}\right)$ is zero-sum free.

Next, we show that $\mathrm{h}\left(\varphi\left(S_{2}\right)\right) \leq 2$. Assume to the contrary that $\varphi\left(x_{i_{1}}\right)=$ $\varphi\left(x_{i_{2}}\right)=\varphi\left(x_{i_{3}}\right)$ for some pairwise distinct $i_{1}, i_{2}, i_{3} \in[1, k]$. Then $\varphi\left(x_{i_{1}}-\right.$ $\left.x_{i_{2}}\right)=\varphi\left(x_{i_{1}}-x_{i_{3}}\right)=0$, so $x_{i_{1}}-x_{i_{2}}, x_{i_{1}}-x_{i_{3}} \in H$. Since S is squarefree, it follows that $x_{i_{1}}-x_{i_{2}} \neq 0$ and $x_{i_{1}}-x_{i_{3}} \neq 0$. Thus $x_{i_{1}}-x_{i_{2}}=x_{i_{1}}-x_{i_{3}}=x_{1}$, and so $x_{i_{2}}=x_{i_{3}}$, a contradiction. This proves that $\mathrm{h}\left(\varphi\left(S_{2}\right)\right) \leq 2$.

We distinguish four cases as follows.
Case 1: $k=4$. Since $\mathrm{h}\left(\varphi\left(S_{2}\right)\right) \leq 2, \varphi\left(S_{2}\right)$ allows a product decomposition $\varphi\left(S_{2}\right)=U_{1} U_{2}$ into squarefree sequences $U_{1}, U_{2} \in \mathcal{F}(G / H)$ with $\left|U_{1}\right|=2$ and $\left|U_{2}\right|=1$. It follows from Lemma 2.2 and Lemma 2.1 that

$$
\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq \mathrm{f}\left(U_{1}\right)+\mathrm{f}\left(U_{2}\right) \geq 3+1=4
$$

By Lemma 2.3, we have

$$
\mathrm{f}(S) \geq\left(1+\mathrm{f}\left(\varphi\left(S_{2}\right)\right)\right) \mathrm{f}\left(S_{1}\right)+\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq(1+4) \times 1+4=9
$$

and we are done.
Case 2: $k=5$. Since $\mathrm{h}\left(\varphi\left(S_{2}\right)\right) \leq 2, \varphi\left(S_{2}\right)$ allows a product decomposition $\varphi\left(S_{2}\right)=U_{1} U_{2}$ into squarefree sequences $U_{1}, U_{2} \in \mathcal{F}(G / H)$ with $\left|U_{1}\right|=\left|U_{2}\right|=2$. By Lemma 2.2 and Lemma 2.1, we have

$$
\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq \mathrm{f}\left(U_{1}\right)+\mathrm{f}\left(U_{2}\right) \geq 3+3=6 .
$$

By Lemma 2.3, we have

$$
\mathrm{f}(S) \geq\left(1+\mathrm{f}\left(\varphi\left(S_{2}\right)\right)\right) \mathrm{f}\left(S_{1}\right)+\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq(1+6) \times 1+6=13,
$$

and we are done.
Case 3: $k=6$. By Lemma 2.3, we have $\mathfrak{f}(S) \geq\left(1+\mathfrak{f}\left(\varphi\left(S_{2}\right)\right)\right) \mathfrak{f}\left(S_{1}\right)+$ $\mathrm{f}\left(\varphi\left(S_{2}\right)\right)$. If we can show that $\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq 9$, then $\mathrm{f}(S) \geq 19$ as desired. Since $\mathrm{h}\left(\varphi\left(S_{2}\right)\right) \leq 2$, we have $\left|\operatorname{supp}\left(\varphi\left(S_{2}\right)\right)\right| \geq 3$.

If $\left|\operatorname{supp}\left(\varphi\left(S_{2}\right)\right)\right| \geq 4, \varphi\left(S_{2}\right)$ allows a product decomposition $\varphi\left(S_{2}\right)=U_{1} U_{2}$ into squarefree sequences $U_{1}, U_{2} \in \mathcal{F}(G / H)$ with $\left|U_{1}\right|=4$ and $\left|U_{2}\right|=1$. By Lemma 2.2 and Lemma 2.1,

$$
\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq \mathrm{f}\left(U_{1}\right)+\mathrm{f}\left(U_{2}\right) \geq 8+1=9
$$

and we are done.

Next, suppose $\left|\operatorname{supp}\left(\varphi\left(S_{2}\right)\right)\right|=3$ and $\varphi\left(S_{2}\right)=a^{2} b^{2} c$. Since $\varphi\left(S_{2}\right)$ is zerosum free, we must have $\operatorname{ord}(a) \neq 2$ and $\operatorname{ord}(b) \neq 2$. If $\operatorname{ord}(c) \neq 2$, then we set $U_{1}=a \cdot b \cdot c$ and $U_{2}=a \cdot b$. By Lemma 2.1 and Lemma 2.2,

$$
\mathfrak{f}\left(\varphi\left(S_{2}\right)\right) \geq \mathfrak{f}\left(U_{1}\right)+\mathfrak{f}\left(U_{2}\right) \geq 6+3=9
$$

and we are done. So we may assume that $\operatorname{ord}(c)=2$. Then

$$
a, a+b, 2 a+b, 2 a+2 b, c, a+c, a+b+c, 2 a+b+c, 2 a+2 b+c
$$

are pairwise distinct, whence $f\left(\varphi\left(S_{2}\right)\right) \geq 9$ and we are done.
Case 4: $k=7$. If $\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq 12$, then by Lemma 2.3, $\mathrm{f}(S) \geq(1+$ $\left.\mathrm{f}\left(\varphi\left(S_{2}\right)\right)\right) \mathrm{f}\left(S_{1}\right)+\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq(1+12) \times 1+12=25$ as desired. It suffices to show $\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq 12$. Since h $\left(\varphi\left(S_{2}\right)\right) \leq 2$, we have $\left|\operatorname{supp}\left(\varphi\left(S_{2}\right)\right)\right| \geq 3$.

If $\varphi\left(S_{2}\right)$ contains no elements of order $2, \varphi\left(S_{2}\right)$ allows a product decomposition $\varphi\left(S_{2}\right)=U_{1} U_{2}$ into squarefree sequences $U_{1}, U_{2} \in \mathcal{F}(G / H)$ with $\left|U_{1}\right|=\left|U_{2}\right|=3$. By Lemma 2.1 and Lemma 2.2,

$$
\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq \mathrm{f}\left(U_{1}\right)+\mathrm{f}\left(U_{2}\right) \geq 6+6=12
$$

and we are done.
If $\varphi\left(S_{2}\right)$ contains an element of order 2. Then $\left|\operatorname{supp}\left(\varphi\left(S_{2}\right)\right)\right| \geq 4$. Since $\mathrm{h}\left(\varphi\left(S_{2}\right)\right) \leq 2, \varphi\left(S_{2}\right)$ allows a product decomposition $\varphi\left(S_{2}\right)=U_{1} U_{2}$ into squarefree sequences $U_{1}, U_{2} \in \mathcal{F}(G / H)$ such that $\left|U_{1}\right|=4,\left|U_{2}\right|=2$, and U_{1} contains some element of order 2. It follows from Case 1 that $\mathrm{f}\left(U_{1}\right) \geq 9$. By Lemma 2.2 and Lemma 2.1,

$$
\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \geq \mathrm{f}\left(U_{1}\right)+\mathrm{f}\left(U_{2}\right) \geq 9+3=12
$$

and we are done.

5. On The Maximal Size of Classes

The following result provides an upper bound for $\left|\mathcal{A}_{1}\right|, \ldots,\left|\mathcal{A}_{r}\right|$, under the assumption that S contains no elements of order 2 .

Lemma 5.1. Suppose that S contains no elements of order 2. Then the following hold.

1. If $k \leq 4$, then $\left|\mathcal{A}_{i}\right| \leq 2$ for every $i \in[1, r]$.
2. If $k=5$, then $\left|\mathcal{A}_{i}\right| \leq 3$ for every $i \in[1, r]$.
3. If $k=6$, then $\left.\left|\left[x_{i}\right]\right|=\mid \overline{\left[x_{i}\right.}\right] \mid \leq 4$ for every $i \in[1,6]$, and $\left|\mathcal{A}_{i}\right| \leq 5$ for every $i \in[1, r]$.
Proof. Take an arbitrary $i \in[1, r]$, and let

$$
\mathcal{A}_{i}=\left\{S_{1}, \ldots, S_{l}\right\}
$$

where S_{1}, \ldots, S_{l} are subsequences of S and $1 \leq\left|S_{1}\right| \leq\left|S_{2}\right| \leq \cdots \leq\left|S_{l}\right|$. Then $\left|\mathcal{A}_{i}\right|=l$.

Case 1: $k \leq 4$. The result follows from Lemma 2.4.
Case 2: $k=5$.

If $\mathcal{A}_{i}=\left[x_{j}\right]$ for some $j \in[1,5]$, then we may assume that $S_{1}=x_{j}$. By Lemma 2.4, we have

$$
S_{\nu} \mid x_{j}^{-1} x_{1} \cdot \ldots \cdot x_{5} \quad \text { for every } \quad \nu \in[2, l]
$$

Let $\mathcal{B}=\left\{S_{2}, \ldots, S_{l}\right\}$. Then by Case 1 we have $|\mathcal{B}| \leq 2$ and thus $l \leq 3$. Therefore, $\left|\left[x_{j}\right]\right|=\left|\overline{\left[x_{j}\right]}\right| \leq 3$ for every $j \in[1,5]$.

Next we assume that \mathcal{A}_{i} contains neither a sequence of length 1 nor a sequence of length 4 . So $2 \leq\left|S_{1}\right| \leq \cdots \leq\left|S_{l}\right| \leq 3$. Assume to the contrary that $l \geq 4$. If $\left|S_{1}\right|=\left|S_{2}\right|=\left|S_{3}\right|=2$, then there exist $m, n \in[1,3]$ such that $\left|\operatorname{gcd}\left(S_{m}, S_{n}\right)\right|=1$, a contradiction. So $\left|S_{3}\right|=3$. If $\left|S_{l-2}\right|=\left|S_{l-1}\right|=\left|S_{l}\right|=3$, then there exist $m, n \in\{l-2, l-1, l\}$ such that $\left|\operatorname{gcd}\left(S_{m}, S_{n}\right)\right|=2$, a contradiction again. So $\left|S_{l-2}\right|=2$. This forces that $l=4$ and $\left|S_{1}\right|=\left|S_{2}\right|=$ $2,\left|S_{3}\right|=\left|S_{4}\right|=3$. Now, let $S_{1}=x_{1} \cdot x_{2}, S_{2}=x_{3} \cdot x_{4}$. By Lemma 2.4, $x_{5} \mid S_{3}$ and $x_{5} \mid S_{4}$. Without loss of generality, we may assume that $x_{1} \cdot x_{3} \mid S_{3}$, so $x_{2} \cdot x_{4} \mid S_{4}$. Thus $\mathcal{A}_{i}=\left\{x_{1} \cdot x_{2}, x_{3} \cdot x_{4}, x_{1} \cdot x_{3} \cdot x_{5}, x_{2} \cdot x_{4} \cdot x_{5}\right\}$, and then $\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)=\left(x_{1}+x_{3}+x_{5}\right)+\left(x_{2}+x_{4}+x_{5}\right)$. Therefore, $0=2 x_{5}$, a contradiction.

Case 3: $k=6$. Assume that $\mathcal{A}_{i}=\left[x_{j}\right]$ for some $j \in[1,6]$ and $S_{1}=x_{j}$. As before, we have

$$
S_{\nu} \mid x_{j}^{-1} x_{1} \cdot \ldots \cdot x_{6} \quad \text { for every } \quad \nu \in[2, l]
$$

Consider $\mathcal{B}=\left\{S_{2}, \ldots, S_{l}\right\}$. By Case 2 we have $|\mathcal{B}| \leq 3$ and thus $l \leq 4$. Therefore, $\left|\left[x_{j}\right]\right|=\left|\overline{\left[x_{j}\right]}\right| \leq 4$ for every $j \in[1,6]$.

Next assume that \mathcal{A}_{i} contains neither a sequence of length 1 nor of length 5 , so $2 \leq\left|S_{1}\right| \leq\left|S_{2}\right| \leq \cdots \leq\left|S_{l}\right| \leq 4$. We have to show that $l \leq 5$. Assume to the contrary that $l \geq 6$. Define $T=S_{1} \cdot \ldots \cdot S_{l}$.

For every $a \mid S$, we have that $\left|\left\{i|a| S_{i}\right\}\right|+\left|\left\{i \mid a \nmid S_{i}\right\}\right|=l \geq 6$. By Case $2,\left|\left\{i \mid a \nmid S_{i}\right\}\right| \leq 3$ and $\left|\left\{i|a| S_{i}\right\}\right| \leq 3$. These force that $\left|\left\{i|a| S_{i}\right\}\right|=\mid\{i \mid$ $\left.a \nmid S_{i}\right\} \mid=3$ and $l=6$. Thus,

$$
\mathrm{v}_{a}(T)=3
$$

for every $a \in S$. Hence, $|T|=18$.
Let $r_{t}=\left|\left\{i| | S_{i} \mid=t\right\}\right|$ for every $t \in[2,4]$. Then $2 r_{2}+3 r_{3}+4 r_{4}=|T|=18$. Therefore, r_{3} is even and hence $r_{3} \in\{0,2,4,6\}$. We distinguish two subcases according to whether $r_{3} \geq 4$ or not.

Subcase 3.1: $r_{3} \geq 4$. We may assume that $\left|S_{2}\right|=\left|S_{3}\right|=\left|S_{4}\right|=\left|S_{5}\right|=3$. From $|T|=18$ we infer that $\left|S_{1}\right|+\left|\underline{S_{6}}\right|=6$. If $\left|\operatorname{gcd}\left(S_{1}, S_{6}\right)\right|=0$, then $S_{1}=S S_{6}^{-1}$. By Lemma 3.1.2, $\mathcal{A}_{i}=\overline{\mathcal{A}_{i}}$. So, we may assume that $S_{2}=$ $S S_{5}^{-1}$. By Lemma 2.4.2, $\left|\operatorname{gcd}\left(S_{3}, S_{2}\right)\right| \leq 1$ and $\left|\operatorname{gcd}\left(S_{3}, S_{5}\right)\right| \leq 1$. Thus $\left|S_{3}\right|=\left|\operatorname{gcd}\left(S_{3}, S\right)\right|=\left|\operatorname{gcd}\left(S_{3}, S_{2}\right)\right|+\left|\operatorname{gcd}\left(S_{3}, S_{5}\right)\right| \leq 2$, a contradiction. Therefore, $\left|\operatorname{gcd}\left(S_{1}, S_{6}\right)\right|>0$. Let $a \mid \operatorname{gcd}\left(S_{1}, S_{6}\right)$. Since $\mathrm{v}_{a}(T)=3$ we may assume that $a \nmid S_{i}$ for every $i \in[2,4]$. Therefore, S_{2}, S_{3} and S_{4} divide $a^{-1} S$ and we must have $\left|\operatorname{gcd}\left(S_{n}, S_{m}\right)\right|=2$ for some distinct $m, n \in[2,4]$, a contradiction to Lemma 2.4.2.

Subcase 3.2: $r_{3}<4$. Then, $r_{3} \in\{0,2\}$. From $|T|=18$ we know that $r_{2} \geq 2$ and $r_{4} \geq 2$. We may assume that $\left|S_{1}\right|=\left|S_{2}\right|=2$ and $\left|S_{5}\right|=\left|S_{6}\right|=4$. Furthermore, we may assume that $S_{1}=x_{1} \cdot x_{2}, S_{2}=x_{3} \cdot x_{4}$. By Lemma 2.4 we infer that $x_{5} \cdot x_{6} \mid S_{5}$ and $x_{5} \cdot x_{6} \mid S_{6}$. So we may assume that $S_{5}=x_{1} \cdot x_{3} \cdot x_{5} \cdot x_{6}$ and $S_{6}=x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6}$. Again, by Lemma 2.4 we know that $\left|S_{3}\right| \neq 2$. It follows from $|T|=18$ that $\left|S_{3}\right|=\left|S_{4}\right|=3$. Since $\mathrm{v}_{a}(T)=3$ for every $a \mid S$, we have $S_{3} S_{4}=S$, implying $\sigma\left(S_{3}\right)=\sigma\left(S S_{3}^{-1}\right)$. By Lemma 3.1.2, $\mathcal{A}_{i}=\overline{\mathcal{A}_{i}}$. But $S S_{1}^{-1}=x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6} \notin \mathcal{A}_{i}$, a contradiction. This proves $l \leq 5$.

6. Proof of $\mathrm{F}(5)=13$

R.B. Eggleton and Erdős stated in [4] that they gave a proof of $F(5)=13$ in [3] as an appendix. Since we could not find this note, we include a proof of $F(5)=13$ here for completeness. Moreover, the ideas and methods in our proof will be used frequently in the sequel.

We denote by P_{n} the symmetric group on $[1, n]$. Note that it follows from [8 , Corollary 5.3.4.2] that $F(5) \leq 13$.

Lemma 6.1. Let $T=(-2 x) \cdot x \cdot(3 x) \cdot(4 x) \cdot(5 x) \in \mathcal{F}(G)$ be a squarefree, zero-sum free sequence. Then $\mathrm{f}(T) \geq 13$.

Proof. Obviously, $k x \in \Sigma(T)$ for all $k \in[1,13]$. Since T is zero-sum free, $k x \neq 0$ holds for every $k \in[1,13]$, and thus $i x \neq j x$ for any $i \neq j \in[1,13]$. Therefore, $\mathrm{f}(T) \geq 13$.

Lemma 6.2. Let $S=x_{1} \cdot \ldots \cdot x_{k} \in \mathcal{F}(G)$ be as fixed at the end of Section 3, and suppose that $k=5$. If $\left|\left[x_{i}\right]\right|=3$ for some $i \in[1,5]$, then $\left[x_{i}\right]$ is of one of the following forms:
(1) $\left\{x_{\tau(1)}, x_{\tau(2)} \cdot x_{\tau(3)}, x_{\tau(4)} \cdot x_{\tau(5)}\right\}$.
(2) $\left\{x_{\tau(1)}, x_{\tau(2)} \cdot x_{\tau(3)}, x_{\tau(2)} \cdot x_{\tau(4)} \cdot x_{\tau(5)}\right\}$
for some $\tau \in P_{5}$.
Proof. Without loss of generality, we may assume that $i=1$ and $\left[x_{i}\right]=$ $\left\{x_{1}, S_{2}, S_{3}\right\}$ with $2 \leq\left|S_{2}\right| \leq\left|S_{3}\right|$. By Lemma 3.1, we know that $\left|S_{3}\right| \leq 3$. Note that

$$
S_{2} \mid x_{2} \cdot \ldots \cdot x_{5} \quad \text { and } \quad S_{3} \mid x_{2} \cdot \ldots \cdot x_{5}
$$

By Lemma 2.4.2, we infer that $\left|S_{2}\right|=2$. So, we may assume that $S_{2}=x_{2} \cdot x_{3}$. If $\left|S_{3}\right|=2$, then $S_{3}=x_{4} \cdot x_{5}$. Therefore, $\left[x_{1}\right]$ is of form (1) and we are done. Otherwise, $\left|S_{3}\right|=3$, by Lemma 2.4, we know that $S_{3}=x_{2} \cdot x_{4} \cdot x_{5}$ or $S_{3}=x_{3} \cdot x_{4} \cdot x_{5}$. Therefore, $\left[x_{1}\right]$ is of form (2).

The following easy observation will also be useful.

Lemma 6.3. Let $S=x_{1} \cdot \ldots \cdot x_{k} \in \mathcal{F}(G)$ be as fixed at the end of Section 3, and suppose that $k \geq 3$. Let a, b, c be distinct in $[1, k]$ such that $x_{a}=x_{b}+x_{c}$. Suppose that S contains no element of order 2. Then, $x_{b}-x_{a} \notin \operatorname{supp}(S)$.

Proof. Assume to the contrary that $x_{b}-x_{a}=x_{d}$ for some $d \in[1, k]$. This together with $x_{a}=x_{b}+x_{c}$ gives that $x_{c}+x_{d}=0$, a contradiction.

Proof of $F(5)=13$.
Let $S=x_{1} \cdot \ldots \cdot x_{k} \in \mathcal{F}(G)$ be as fixed at the end of Section 3, and suppose that $k=5$. We have to show

$$
f(S) \geq 13
$$

Assume to the contrary that $\mathrm{f}(S)<13$ for some S. By Theorem 3.2, S contains no elements of order 2, and thus it follows from Lemma 5.1 that $\left|\mathcal{A}_{i}\right| \leq 3$ for all $i \in[1, r]$.

Recall that $\mathcal{A}_{r}=[S]=\{S\}$. We may assume that $\left|\mathcal{A}_{1}\right| \leq 2, \ldots,\left|\mathcal{A}_{t}\right| \leq 2$ and $\left|\mathcal{A}_{t+1}\right|=\ldots=\left|\mathcal{A}_{r-1}\right|=3$. If $t \geq 4$, since $2 t+3(r-1-t)+1 \geq 31$, then $r \geq(33+t) / 3 \geq 37 / 3$. Therefore $r \geq 13$, a contradiction. Therefore, $t \leq 3$.

Now $\left|\left[x_{i}\right]\right|=\left|\left[x_{j}\right]\right|=3$ for some $i, j \in[1,5]$ with $i \neq j$. Without loss of generality, we may assume that $i=1$. We distinguish two cases.

Case 1. $\left[x_{1}\right]$ is of form (1) in Lemma 6.2. We may assume that $\left[x_{1}\right]=$ $\left\{x_{1}, x_{2} \cdot x_{3}, x_{4} \cdot x_{5}\right\}$. Without loss of generality, we may assume that $j=2$. Let $\left[x_{2}\right]=\left\{x_{2}, S_{2}, S_{3}\right\}$ with $2 \leq\left|S_{2}\right| \leq\left|S_{3}\right|$. Since $x_{1}=x_{2}+x_{3}$, by Lemma 6.3 we know that $x_{2}-x_{1} \nmid S$. Thus $\left[x_{2}\right]$ is not of form (1). Therefore, by Lemma 6.2, $\left[x_{2}\right]$ is of form (2) and $\left|S_{2}\right|=2$. Again by Lemma 6.3 we know that $x_{1} \nmid S_{2}$. It follows from Lemma 2.4 that $x_{2} \nmid S_{2}$. Since $x_{1}=x_{4}+x_{5}$ we have $S_{2} \neq x_{4} \cdot x_{5}$. Therefore, $S_{2}=x_{3} \cdot x_{4}$ or $S_{2}=x_{3} \cdot x_{5}$. So, we may assume that $S_{2}=x_{3} \cdot x_{4}$. Now by Lemma 6.2 we obtain that $S_{3}=x_{3} \cdot x_{1} \cdot x_{5}$ or $S_{3}=x_{4} \cdot x_{1} \cdot x_{5}$. Therefore, $x_{3}+x_{4}=x_{3}+x_{1}+x_{5}$ or $x_{3}+x_{4}=x_{4}+x_{1}+x_{5}$. Thus $x_{4}-x_{1}=x_{5}$ or $x_{3}-x_{1}=x_{5}$. This together with $x_{1}=x_{2}+x_{3}=x_{4}+x_{5}$ gives a contradiction to Lemma 6.3.

Case 2. $\left[x_{1}\right]$ is of form (2) in Lemma 6.2. We may assume that $\left[x_{1}\right]=$ $\left\{x_{1}, x_{2} \cdot x_{3}, x_{2} \cdot x_{4} \cdot x_{5}\right\}$. Now we have $x_{3}=x_{4}+x_{5}$. If $\left[x_{j}\right]$ is of form (1), then this reduces to Case 1. So we may assume that $\left[x_{j}\right]$ is of form (2). Let $\left[x_{j}\right]=\left\{x_{j}, S_{2}, S_{3}\right\}$ with $\left|S_{2}\right|=2$ and $\left|S_{3}\right|=3$. We distinguish subcases.

Subcase $2.1 j=2 .\left[x_{2}\right]=\left\{x_{2}, S_{2}, S_{3}\right\}$. Note that $x_{3}=x_{4}+x_{5}$. By Lemma 6.3 and Lemma 2.4, we obtain that $S_{2}=x_{3} \cdot x_{4}$ or $S_{2}=x_{3} \cdot x_{5}$. Without loss of generality, we may assume that $S_{2}=x_{3} \cdot x_{4}$. Now by Lemma 6.2 , we get $S_{3}=x_{3} \cdot x_{1} \cdot x_{5}$ or $S_{3}=x_{4} \cdot x_{1} \cdot x_{5}$. If $S_{3}=x_{4} \cdot x_{1} \cdot x_{5}$, then $x_{3}+x_{4}=x_{4}+x_{1}+x_{5}$. Thus $x_{4}+x_{5}=x_{3}=x_{1}+x_{5}$, a contradiction. Therefore, $S_{3}=x_{3} \cdot x_{1} \cdot x_{5}$. Now we have $x_{1}=x_{2}+x_{3}=x_{2}+x_{4}+x_{5}$ and $x_{2}=x_{3}+x_{4}=x_{1}+x_{3}+x_{5}$. Thus $x_{1}=5 x_{3}, x_{2}=4 x_{3}, x_{4}=3 x_{3}, x_{5}=-2 x_{3}$. It follows from Lemma 6.1 that $\mathrm{f}(S) \geq 13$, a contradiction. Therefore, $\left|\left[x_{2}\right]\right| \leq 2$.

Subcase 2.2. $j=4$. Now $\left[x_{4}\right]=\left\{x_{4}, S_{2}, S_{3}\right\}$. Since $x_{3}=x_{4}+x_{5}$, by Lemma 6.3 we have $x_{3} \nmid S_{2}$. Therefore, $S_{2} \mid x_{1} \cdot x_{2} \cdot x_{5}$. Hence, $S_{2}=x_{1} \cdot x_{2}$ or $S_{2}=x_{2} \cdot x_{5}$ or $S_{2}=x_{1} \cdot x_{5}$. If $S_{2}=x_{1} \cdot x_{2}$, by Lemma 2.4 we obtain that $S_{3}=x_{1} \cdot x_{3} \cdot x_{5}$ or $S_{3}=x_{2} \cdot x_{3} \cdot x_{5}$. Since $x_{2}+x_{3}+x_{5}=x_{1}+x_{5} \neq x_{1}+x_{2}$ we get $S_{3}=x_{1} \cdot x_{3} \cdot x_{5}$. Now we have $x_{1}=4 x_{2}, x_{3}=3 x_{2}, x_{4}=5 x_{2}, x_{5}=-2 x_{2}$ and thus it follows from Lemma 6.1 that $\mathrm{f}(S) \geq 13$, a contradiction. Therefore, $S_{2} \neq x_{1} \cdot x_{2}$. If $S_{2}=x_{2} \cdot x_{5}$, then by Lemma 2.4, we obtain that $S_{3}=x_{2} \cdot x_{1} \cdot x_{3}$ or $S_{3}=x_{5} \cdot x_{1} \cdot x_{3}$. Thus $x_{2}+x_{5}=x_{2}+x_{1}+x_{3}$ or $x_{2}+x_{5}=x_{5}+x_{1}+x_{3}$. So, $x_{5}-x_{3}=x_{1}$ or $x_{2}-x_{1}=x_{3}$, contradicting $x_{3}=x_{4}+x_{5}$ or $x_{1}=x_{2}+x_{3}$ (in view of Lemma 6.3). Hence, $S_{2}=x_{1} \cdot x_{5}$. As above, we obtain that $S_{3}=x_{1} \cdot x_{2} \cdot x_{3}$ or $S_{3}=x_{5} \cdot x_{2} \cdot x_{3}$. Since $x_{1}+x_{5} \neq x_{1}+x_{2}+x_{3}=2 x_{1}$, we obtain that $S_{3}=x_{5} \cdot x_{2} \cdot x_{3}$. Therefore,
$\left[x_{4}\right]=\left\{x_{4}, x_{1} \cdot x_{5}, x_{5} \cdot x_{2} \cdot x_{3}\right\}$.
We assert that $\left|\left[x_{5}\right]\right| \leq 2$ in this subcase. Assume to the contrary that $\left|\left[x_{5}\right]\right|=3$. As above, we may assume that $\left[x_{5}\right]=\left\{x_{5}, x_{1} \cdot x_{4}, x_{4} \cdot x_{2} \cdot x_{3}\right\}$. Now we have $x_{5}=x_{1}+x_{4}$, a contradiction to $x_{4}=x_{1}+x_{5}$ (in view of Lemma 6.3). This proves the assertion.

Next, we show that $\left|\left[x_{3}\right]\right| \leq 2$ in this subcase. Assume to the contrary that $\left|\left[x_{3}\right]\right|=3$. Then $\left[x_{3}\right]=\left\{x_{3}, x_{4} \cdot x_{5}, T_{3}\right\}$ with $\left|T_{3}\right|=3$.

By Lemma 2.4, $T_{3}=x_{4} \cdot x_{1} \cdot x_{2}$ or $T_{3}=x_{5} \cdot x_{1} \cdot x_{2}$. Since $x_{5}+x_{1}+x_{2} \neq$ $x_{1}+2 x_{5}=x_{4}+x_{5}$, we have $T_{3} \neq x_{5} \cdot x_{1} \cdot x_{2}$. Therefore, $T_{3}=x_{4} \cdot x_{1} \cdot x_{2}$. Now we have $x_{3}=x_{4}+x_{5}=x_{4}+x_{1}+x_{2}$. In view of $\left[x_{1}\right]$ and $\left[x_{4}\right]$, we derive that $x_{1}=3 x_{5}, x_{2}=-2 x_{5}, x_{3}=5 x_{5}, x_{4}=4 x_{5}$ and thus $\mathrm{f}(S) \geq 13$ by Lemma 6.1, a contradiction. Therefore, we must have $\left|\left[x_{3}\right]\right| \leq 2$.

Since $x_{3}=x_{4}+x_{5}$, we have $\left[x_{3}\right] \neq \overline{\left[x_{3}\right]}$. Now $\left[x_{2}\right],\left[x_{3}\right], \overline{\left[x_{3}\right]}$ and $\left[x_{5}\right]$ are distinct and all have length not exceeding two, contradicting $t \leq 3$. Therefore, $j \neq 4$, or equivalently, $\left|\left[x_{4}\right]\right| \leq 2$.

Similarly, we conclude that $\left|\left[x_{5}\right]\right| \leq 2$.
Subcase 2.3. $j=3$. Since $x_{3}=x_{4}+x_{5}$, we have $\left[x_{3}\right]=\left\{x_{3}, x_{4} \cdot x_{5}, S_{3}\right\}$. By Lemma 2.4, $S_{3}=x_{4} \cdot x_{1} \cdot x_{2}$ or $S_{3}=x_{5} \cdot x_{1} \cdot x_{2}$. We may assume that $S_{3}=x_{4} \cdot x_{1} \cdot x_{2}$. Then $x_{4}+x_{5}=x_{4}+x_{1}+x_{2}$, and thus $x_{5}=x_{1}+x_{2}$. Therefore, $\left[x_{5}\right],\left[x_{5}\right],\left[x_{2}\right]$ and $\left[x_{4}\right]$ are distinct, contradicting $t \leq 3$.

This completes the proof.

7. On the number of maximal classes

Let $S=x_{1} \cdot \ldots \cdot x_{k} \in \mathcal{F}(G)$ be as fixed at the end of Section 3, and suppose that $k=6$. We shall prove Lemma 3.3 and Lemma 3.4 through a series of lemmas.

Lemma 7.1. If S is of one of the following forms:
(i) $S=(-7 x) \cdot(-6 x) \cdot(-5 x) \cdot(-2 x) \cdot x \cdot(3 x)$;
(ii) $S=(-2 x) \cdot x \cdot(3 x) \cdot(4 x) \cdot(5 x) \cdot(7 x)$;
(iii) $S=(-2 x) \cdot x \cdot(3 x) \cdot(4 x) \cdot(5 x) \cdot(6 x)$;
(iv) $S=(-6 x) \cdot(-5 x) \cdot(-4 x) \cdot(-3 x) \cdot(-2 x) \cdot x$;
(v) $S=x \cdot(2 x) \cdot(3 x) \cdot(4 x) \cdot(5 x) \cdot(6 x)$,
then $\mathrm{f}(S) \geq 19$.
Proof. We give only the proof for the case when S is of form (i). The proofs for other cases are similar and are omitted.

Suppose that $S=(-7 x) \cdot(-6 x) \cdot(-5 x) \cdot(-2 x) \cdot x \cdot(3 x)$. Clearly, $k x \in \Sigma(S)$ for any $k \in[-19,-1]$. Since S is zero-sum free, $k x \neq 0$ for any $k \in[-19,-1]$. Then $i x \neq j x$ for any $i, j \in[-19,-1]$, and therefore, $\mathrm{f}(S) \geq 19$ as desired.

7.1. Classes of size 4 containing sequences of length 1

This subsection deals with classes of size 4 having a sequence of length 1 , and it provides a proof for Lemma 3.3.

Lemma 7.2. If $\left|\left[x_{i}\right]\right|=4$ for some $i \in[1,6]$, then there exists $\tau \in P_{6}$ such that $\left[x_{i}\right]$ is of one of the following forms:
(b1) $\left\{x_{\tau(1)}, x_{\tau(2)} \cdot x_{\tau(3)} \cdot x_{\tau(4)} \cdot x_{\tau(5)}, x_{\tau(2)} \cdot x_{\tau(6)}, x_{\tau(3)} \cdot x_{\tau(4)} \cdot x_{\tau(6)}\right\}$;
(b2) $\left\{x_{\tau(1)}, x_{\tau(2)} \cdot x_{\tau(3)} \cdot x_{\tau(4)} \cdot x_{\tau(5)}, x_{\tau(2)} \cdot x_{\tau(3)} \cdot x_{\tau(6)}, x_{\tau(4)} \cdot x_{\tau(5)} \cdot x_{\tau(6)}\right\}$;
(b3) $\left\{x_{\tau(1)}, x_{\tau(2)} \cdot x_{\tau(3)}, x_{\tau(4)} \cdot x_{\tau(5)}, x_{\tau(2)} \cdot x_{\tau(4)} \cdot x_{\tau(6)}\right\}$;
(b4) $\left\{x_{\tau(1)}, x_{\tau(2)} \cdot x_{\tau(3)} \cdot x_{\tau(4)}, x_{\tau(2)} \cdot x_{\tau(5)} \cdot x_{\tau(6)}, x_{\tau(3)} \cdot x_{\tau(5)}\right\}$.
Proof. Let $\left[x_{i}\right]=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ where $S_{1}, S_{2}, S_{3}, S_{4}$ are subsequences of S and $\left|S_{1}\right| \leq\left|S_{2}\right| \leq\left|S_{3}\right| \leq\left|S_{4}\right|$. Without loss of generality, we may assume that $S_{1}=x_{1}$. By Lemma 2.4, we have

$$
S_{\nu} \mid x_{1}^{-1} S=x_{2} \cdot \ldots \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4]
$$

and $2 \leq\left|S_{2}\right| \leq\left|S_{3}\right| \leq\left|S_{4}\right| \leq 5$.
We first show that $3 \leq\left|S_{4}\right| \leq 4$. If $\left|S_{4}\right|=5$, then $S_{4}=x_{2} \cdot \ldots \cdot x_{6}$. But $S_{2} \mid x_{2} \cdot \ldots \cdot x_{6}=S_{4}$, a contradiction. If $\left|S_{4}\right|=2$, then $\left|S_{2}\right|=\left|S_{3}\right|=2$. By Lemma 2.4.2, S_{2}, S_{3} and S_{4} are pairwise disjoint. But

$$
S_{\nu} \mid x_{2} \cdot \ldots \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4]
$$

a contradiction. Therefore, $3 \leq\left|S_{4}\right| \leq 4$.
We distinguish two cases.
Case 1: $\left|S_{4}\right|=4$. Without loss of generality, we may assume that $S_{4}=x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5}$. Since

$$
S_{2} \mid x_{2} \cdot \ldots \cdot x_{6} \quad \text { and } \quad S_{3} \mid x_{2} \cdot \ldots \cdot x_{6}
$$

by Lemma 2.4, $x_{6} \mid S_{2}$ and $x_{6} \mid S_{3}$.
We claim that $\left|S_{3}\right|=3$. If $\left|S_{3}\right|=4$, since

$$
S_{3} \mid x_{2} \cdot \ldots \cdot x_{6} \quad \text { and } \quad S_{4} \mid x_{2} \cdot \ldots \cdot x_{6}
$$

then $\left|\operatorname{gcd}\left(S_{3}, S_{4}\right)\right| \geq 3$, a contradiction. If $\left|S_{3}\right|=2$, then $\left|S_{2}\right|=2$. Since $x_{6} \mid S_{3}$ and $x_{6} \mid S_{2}$, then $\left|\operatorname{gcd}\left(S_{2}, S_{3}\right)\right|=1$, a contradiction again. So $\left|S_{3}\right|=3$.

If $\left|S_{2}\right|=2$, without loss of generality, we may assume that $S_{2}=x_{2} \cdot x_{6}$. Since $x_{6} \mid S_{3}$, we have $x_{2} \nmid S_{3}$. So

$$
x_{6}\left|S_{3}\right| x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6}
$$

Without loss of generality, we may assume that $S_{3}=x_{3} \cdot x_{4} \cdot x_{6}$. Then \mathcal{A}_{i} is of form ($b 1$).

If $\left|S_{2}\right|=3$, without loss of generality, we may assume that $S_{2}=x_{2} \cdot x_{3} \cdot x_{6}$. Since $x_{6} \mid S_{3}$ and $\left|S_{3}\right|=3$, by Lemma 2.4.2 we have $x_{2}, x_{3} \nmid S_{3}$. Then $S_{3}=x_{4} \cdot x_{5} \cdot x_{6}$, and \mathcal{A}_{i} is of form (b2).

Case 2: $\left|S_{4}\right|=3$. Then $\left|S_{2}\right| \leq\left|S_{3}\right| \leq 3$.
If $\left|S_{2}\right|=3$, then $\left|S_{3}\right|=3$. Since

$$
S_{\nu} \mid x_{2} \cdot \ldots \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4]
$$

there exist $m, n \in[2,4]$ such that $\left|\operatorname{gcd}\left(S_{m}, S_{n}\right)\right| \geq 2$, a contradiction. So $\left|S_{2}\right|=2$.

If $\left|S_{3}\right|=2$, then $\left|S_{2}\right|=2$ and $\left|\operatorname{gcd}\left(S_{3}, S_{2}\right)\right|=0$. Without loss of generality, we may assume that $S_{2}=x_{2} \cdot x_{3}$ and $S_{3}=x_{4} \cdot x_{5}$. Since $S_{4} \mid x_{2} \cdot \ldots \cdot x_{6}$, by Lemma 2.4, we have $\left|\operatorname{gcd}\left(S_{4}, S_{2}\right)\right|=\left|\operatorname{gcd}\left(S_{4}, S_{3}\right)\right|=1$. So $x_{6} \mid S_{4}$. Without loss of generality, let $S_{4}=x_{2} \cdot x_{4} \cdot x_{6}$. Then \mathcal{A}_{i} is of form (b3).

If $\left|S_{3}\right|=3$, without loss of generality, let $S_{3}=x_{2} \cdot x_{3} \cdot x_{4}$. Since $S_{4} \mid x_{2}$. $\ldots \cdot x_{6}$ and $\left|S_{4}\right|=3$, we have $\left|\operatorname{gcd}\left(S_{4}, S_{3}\right)\right|=1$. Without loss of generality, let $S_{4}=x_{2} \cdot x_{5} \cdot x_{6}$. By Lemma 2.4, we have $x_{2} \nmid S_{2}$ and $\left|\operatorname{gcd}\left(S_{2}, S_{3}\right)\right|=$ $\left|\operatorname{gcd}\left(S_{2}, S_{4}\right)\right|=1$. Without loss of generality let $S_{2}=x_{3} \cdot x_{5}$. Then \mathcal{A}_{i} is of form (b4).

This completes the proof.
Lemma 7.3. If $x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{3}+x_{6}=x_{4}+x_{5}+x_{6}$, then $\mathrm{f}(S) \geq 19$.

Proof. Let

$$
\begin{aligned}
& a_{1}=x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{3}+x_{6}=x_{4}+x_{5}+x_{6} \\
& a_{2}=x_{2} \\
& a_{3}=x_{4} \\
& a_{4}=x_{6}=x_{2}+x_{3}=x_{4}+x_{5} \\
& a_{5}=x_{1}+x_{2}=x_{2}+x_{4}+x_{5}+x_{6} \\
& a_{6}=x_{1}+x_{4}=x_{2}+x_{3}+x_{4}+x_{6} \\
& a_{7}=x_{2}+x_{4} \\
& a_{8}=x_{2}+x_{6}=x_{2}+x_{4}+x_{5} \\
& a_{9}=x_{4}+x_{6}=x_{2}+x_{3}+x_{4}, \\
& a_{10}=x_{1}+x_{2}+x_{4}=x_{2}+x_{3}+x_{6}+x_{2}+x_{4} \\
& a_{11}=x_{1}+x_{2}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}=x_{2}+x_{6}+x_{4}+x_{5}+x_{6}, \\
& a_{12}=x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}=x_{2}+x_{3}+x_{6}+x_{4}+x_{6}, \\
& a_{13}=x_{2}+x_{4}+x_{6}, \\
& a_{14}=x_{1}+x_{2}+x_{4}+x_{6}, \\
& a_{15}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}+x_{6}=x_{1}+x_{4}+x_{5}+x_{6}= \\
& x_{2}+x_{3}+x_{6}+x_{4}+x_{5}+x_{6},
\end{aligned}
$$

$$
\begin{aligned}
a_{16} & =x_{1}+x_{2}+x_{3}+x_{4}+x_{6} \\
a_{17} & =x_{1}+x_{2}+x_{4}+x_{5}+x_{6} \\
a_{18} & =x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=x_{1}+x_{6}=x_{1}+x_{2}+x_{3}=x_{1}+x_{4}+x_{5} \\
a_{19} & =x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}
\end{aligned}
$$

A straightforward computation shows that

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}, a_{18}, a_{19}
$$

are pairwise distinct, and we are done.
Lemma 7.4. If $x_{1}=x_{2}+x_{3}=x_{4}+x_{5}=x_{2}+x_{4}+x_{6}$, then $\mathrm{f}(S) \geq 19$.
Proof. Let

$$
\begin{aligned}
& a_{1}=x_{1}=x_{2}+x_{3}=x_{4}+x_{5}=x_{2}+x_{4}+x_{6}, \\
& a_{2}=x_{2}, \\
& a_{3}=x_{3}=x_{4}+x_{6}, \\
& a_{4}=x_{4} \\
& a_{5}=x_{5}=x_{2}+x_{6}, \\
& a_{6}=x_{1}+x_{6}=x_{2}+x_{3}+x_{6}=x_{4}+x_{5}+x_{6}=x_{3}+x_{5}, \\
& a_{7}=x_{2}+x_{3}+x_{5}=x_{1}+x_{5}=x_{2}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{6}, \\
& a_{8}=x_{3}+x_{4}+x_{5}=x_{1}+x_{3}=x_{2}+x_{3}+x_{4}+x_{6}=x_{1}+x_{4}+x_{6}, \\
& a_{9}=x_{1}+x_{2}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}=x_{1}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}+x_{5}, \\
& a_{10}=x_{1}+x_{2}+x_{3}+x_{4}+x_{6}=x_{1}+x_{3}+x_{4}+x_{5}, \\
& a_{11}=x_{1}+x_{2}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{5}, \\
& a_{12}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=x_{1}+x_{3}+x_{5}=x_{1}+x_{2}+x_{3}+x_{6}= \\
& x_{1}+x_{4}+x_{5}+x_{6}, \\
& a_{13}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}, \\
& a_{14}=x_{1}+x_{2}=x_{2}+x_{4}+x_{5}=2 x_{2}+x_{3}, \\
& a_{15}=x_{1}+x_{4}=x_{2}+x_{3}+x_{4}=2 x_{4}+x_{5}, \\
& a_{16}=x_{2}+x_{4}, \\
& a_{17}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}, \\
& a_{18}=x_{1}+x_{2}+x_{4}, \\
& a_{19}=x_{1}+x_{2}+x_{3}+x_{4}, \\
& a_{20}=x_{1}+x_{2}+x_{4}+x_{5}, \\
& a_{21}=x_{1}+x_{3}+x_{4}+x_{5}+x_{6}, \\
& a_{22}=x_{3}+x_{4}, \\
& a_{23}=x_{1}+x_{3}+x_{4}+x_{6}, \\
& a_{24}=x_{1}+x_{2}+x_{3}+x_{5}+x_{6}, \\
& a_{25}=x_{1}+x_{2}+x_{5}+x_{6} .
\end{aligned}
$$

By Lemma 5.1, we have $a_{i} \notin\left\{a_{1}, a_{12}\right\}$ for every $i \in[1,25] \backslash\{1,12\}$. Since S contains no elements of order 2 , by Lemma 2.4 we infer that $a_{1}, a_{2}, \ldots, a_{17}$ are pairwise distinct. Let

$$
A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}\right\}
$$

By Lemma 2.4 and noting that S contains no elements of order 2, we obtain
$a_{18} \notin A \backslash\left\{a_{3}, a_{5}, a_{6}\right\}$,
$a_{19} \notin A \backslash\left\{a_{5}, a_{6}\right\}$,
$a_{20} \notin A \backslash\left\{a_{3}, a_{6}\right\}$,
$a_{21} \notin A \backslash\left\{a_{2}, a_{14}, a_{16}\right\}$,
$a_{22} \notin A \backslash\left\{a_{2}, a_{5}, a_{7}, a_{11}, a_{14}\right\}$,
and
$a_{23} \notin A \backslash\left\{a_{2}, a_{5}, a_{7}, a_{11}, a_{14}, a_{16}\right\}$.
We distinguish four cases.
Case 1: $a_{18}=a_{3}$. That is $x_{1}+x_{2}+x_{4}=x_{3}=x_{4}+x_{6}$. Then $x_{6}=x_{1}+x_{2}$. By Lemma 2.4, we infer that $a_{19} \notin A \backslash\left\{a_{5}\right\}$.

If $a_{19}=a_{5}$, that is $x_{1}+x_{2}+x_{3}+x_{4}=x_{5}=x_{2}+x_{6}=x_{2}+x_{1}+x_{2}$, then $x_{2}=x_{3}+x_{4}$. Thus $x_{1}=4 x_{2}, x_{3}=3 x_{2}, x_{4}=-2 x_{2}, x_{5}=6 x_{2}, x_{6}=5 x_{2}$. By Lemma 7.1, $\mathrm{f}(S) \geq 19$.

Next, we may assume that $a_{19} \notin A$. By Lemma 2.4 and in view of $x_{6}=$ $x_{1}+x_{2}$, we infer that $a_{21} \notin\left(A \backslash\left\{a_{2}\right\}\right) \cup\left\{a_{19}\right\}$. If $a_{21} \neq a_{2}$, then $A \cup\left\{a_{21}, a_{19}\right\}$ is a set of 19 distinct elements and we are done. So, we may assume that $a_{21}=a_{2}$, that is $x_{1}+x_{3}+x_{4}+x_{5}+x_{6}=x_{2}$. Now, by Lemma 2.4, we obtain that $a_{23} \notin A \cup\left\{a_{19}\right\}$. Hence, $A \cup\left\{a_{23}, a_{19}\right\}$ is a set of 19 distinct elements.

Case 2: $a_{18}=a_{5}$. Then $x_{6}=x_{1}+x_{4}$. By interchanging x_{2}, x_{3}, a_{21} and a_{23} with x_{4}, x_{5}, a_{24} and a_{25} respectively, we can reduce this case to Case 1.

Case 3: $a_{18}=a_{6}$. Then $x_{1}+x_{2}+x_{4}=x_{1}+x_{6}=x_{2}+x_{3}+x_{6}=$ $x_{4}+x_{5}+x_{6}=x_{3}+x_{5}$. Thus $x_{6}=x_{2}+x_{4}$. By Lemma 2.4 and noting that S contains no elements of order 2, we obtain that $A \cup\left\{a_{19}, a_{20}\right\}$ is a set of 19 distinct elements.

Case 4: $a_{18} \neq a_{3}, a_{5}, a_{6}$, that is $a_{18} \notin A$ and $x_{6} \neq x_{1}+x_{2}, x_{1}+x_{4}, x_{2}+x_{4}$. Let

$$
B=A \cup\left\{a_{18}\right\} .
$$

Since $x_{6} \neq x_{1}+x_{4}$ we infer that $a_{19} \neq a_{6}$. Note that $a_{19} \neq a_{18}$ we have $a_{19} \notin B \backslash\left\{a_{5}\right\}$. If $a_{19} \neq a_{5}$, then $B \cup\left\{a_{19}\right\}$ is a set of 19 distinct elements and we are done. Since $x_{6} \neq x_{1}+x_{2}$ we infer that, $a_{20} \neq a_{6}$ and $a_{20} \notin$ $B \backslash\left\{a_{3}\right\}$. If $a_{20} \neq a_{3}$, then $B \cup\left\{a_{20}\right\}$ is a set of 19 distinct elements and we are done. So, we may assume that $a_{19}=a_{5}$ and $a_{20}=a_{3}$. Then, $x_{6}=x_{1}+x_{3}+x_{4}=x_{1}+x_{2}+x_{5}$. Therefore, $x_{3}+x_{4} \neq x_{2}$, i.e. $a_{22} \neq a_{2}$. By Lemma 2.4, and noting that $x_{6}=x_{1}+x_{3}+x_{4}=x_{1}+x_{2}+x_{5}$, we obtain that $a_{22} \notin\left\{a_{5}, a_{7}, a_{11}, a_{14}, a_{18}\right\}$. Therefore, $B \cup\left\{a_{22}\right\}$ is a set of 19 distinct elements. This completes the proof.

Lemma 7.5. If $x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}$ and $x_{2}=x_{3}+x_{4}=x_{4}+x_{5}+x_{6}=x_{1}+x_{3}+x_{5}+x_{6}$, then $\mathrm{f}(S) \geq 19$.
Proof. Let

$$
\begin{aligned}
& a_{1}=x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}, \\
& a_{2}=x_{2}=x_{3}+x_{4}=x_{4}+x_{5}+x_{6}=x_{1}+x_{3}+x_{5}+x_{6}, \\
& a_{3}=x_{4}=x_{1}+x_{3}=x_{2}+x_{3}+x_{6}=x_{1}+x_{5}+x_{6}, \\
& a_{4}=x_{1}+x_{6}=x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6}, \\
& a_{5}=x_{2}+x_{4}=x_{1}+x_{2}+x_{3}=x_{1}+x_{2}+x_{5}+x_{6}=x_{1}+x_{3}+x_{4}+x_{5}+x_{6},
\end{aligned}
$$

```
    \(a_{6}=x_{1}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}=x_{2}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{5}+x_{6}\),
    \(a_{7}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\),
    \(a_{8}=x_{3}=x_{5}+x_{6}\),
    \(a_{9}=x_{5}\),
    \(a_{10}=x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}\),
    \(a_{11}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{1}+x_{4}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}+x_{6}\),
    \(a_{12}=x_{1}+x_{5}=x_{2}+x_{3}=x_{2}+x_{5}+x_{6}=x_{3}+x_{4}+x_{5}+x_{6}\),
    \(a_{13}=x_{4}+x_{6}=x_{1}+x_{3}+x_{6}=x_{2}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}+x_{5}\),
    \(a_{14}=x_{1}+x_{2}+x_{6}=x_{1}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\),
    \(a_{15}=x_{1}+x_{2}+x_{3}+x_{4}=x_{1}+x_{2}+x_{4}+x_{5}+x_{6}\),
    \(a_{16}=x_{4}+x_{5}=x_{1}+x_{3}+x_{5}=x_{2}+x_{3}+x_{5}+x_{6}\),
    \(a_{17}=x_{1}+x_{4}=x_{2}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{6}\),
    \(a_{18}=x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}+2 x_{6}\),
    \(a_{19}=x_{3}+x_{6}=x_{2}+x_{3}+x_{5}\).
```

By using Lemma 2.4, we can check that $a_{1}, a_{2}, \ldots, a_{16}$ are pairwise distinct. Also, we have

$$
\begin{aligned}
& a_{17} \neq a_{1}, \ldots, a_{8}, a_{10}, \ldots, a_{16} \\
& a_{18} \neq a_{1}, \ldots, a_{7}, a_{9}, \ldots, a_{17} \\
& a_{19} \neq a_{1}, \ldots, a_{14}, a_{16}, a_{17}, a_{18}
\end{aligned}
$$

If $a_{17}=a_{9}$, then $x_{5}=x_{1}+x_{4}=x_{1}+x_{1}+x_{5}+x_{6}$, so $0=2 x_{1}+x_{6}=$ $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$, a contradiction. Thus $x_{5} \neq x_{1}+x_{4}$. Therefore, $x_{5}+x_{6} \neq x_{1}+x_{4}+x_{6}$ and $x_{2}+x_{3}+x_{5} \neq x_{1}+x_{2}+x_{3}+x_{4}$. This implies that

$$
a_{17} \neq a_{9}, a_{18} \neq a_{8}, a_{19} \neq a_{15} .
$$

Therefore,

$$
a_{1}, a_{2}, \ldots, a_{19}
$$

are pairwise distinct, giving $\mathrm{f}(S) \geq 19$.

Lemma 7.6. If $x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}$ and $x_{3}=x_{5}+x_{6}=x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}$, then $\mathrm{f}(S) \geq 19$.

Proof. Let
$a_{1}=x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}$,
$a_{2}=x_{1}+x_{6}=x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$,
$a_{3}=x_{3}=x_{5}+x_{6}=x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}$,
$a_{4}=x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{4}$,
$a_{5}=x_{1}+x_{2}+x_{6}=x_{1}+x_{3}+x_{4}+x_{6}=x_{3}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$,
$a_{6}=x_{3}+x_{6}=x_{2}+x_{3}+x_{5}=x_{1}+x_{2}+x_{3}+x_{4}=x_{1}+x_{2}+x_{4}+x_{5}+x_{6}$,
$a_{7}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{2}+x_{3}+x_{4}+x_{6}=x_{1}+x_{4}+x_{5}+x_{6}=x_{3}+x_{5}$,
$a_{8}=x_{1}+x_{5}=x_{2}+x_{3}=x_{2}+x_{5}+x_{6}=x_{1}+x_{2}+x_{4}+x_{6}=x_{3}+x_{4}+x_{5}+x_{6}$,
$a_{9}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$,
$a_{10}=x_{2}=x_{3}+x_{4}=x_{4}+x_{5}+x_{6}$,
$a_{11}=x_{5}=x_{1}+x_{4}=x_{2}+x_{4}+x_{6}$,

$$
\begin{aligned}
& \quad a_{12}=x_{1}+x_{3}=x_{2}+x_{3}+x_{6}=x_{1}+x_{5}+x_{6}=x_{1}+2 x_{2}+x_{4}+x_{5}+x_{6}= \\
& x_{1}+x_{3}+x_{4}+2 x_{5}, \\
& \quad a_{13}=x_{1}+x_{2}+x_{3}=x_{1}+x_{2}+x_{5}+x_{6}=x_{1}+x_{3}+x_{4}+x_{5}+x_{6}= \\
& 2 x_{1}+x_{2}+x_{4}+x_{6}=x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5}+x_{6} \\
& \quad a_{14}=x_{1}+x_{3}+x_{5}=x_{2}+x_{3}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{6}= \\
& x_{1}+2 x_{5}+x_{6}=2 x_{1}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+2 x_{4}+2 x_{5}+x_{6}, \\
& a_{15}=x_{1}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}=x_{2}+x_{4}+x_{5}+x_{6}, \\
& a_{16}=x_{2}+x_{4} \\
& a_{17}=x_{4}+x_{5} \\
& a_{18}=x_{4}+x_{6}=x_{2}+x_{4}+x_{5} \\
& \quad a_{19}=x_{1}+x_{3}+x_{6}=x_{1}+x_{2}+x_{3}+x_{5}=x_{1}+x_{3}+x_{4}+2 x_{5}+x_{6}= \\
& x_{1}+2 x_{2}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+2 x_{4}+x_{5}+2 x_{6} .
\end{aligned}
$$

By Lemma 5.1, we know that $\left|\mathcal{A}_{i}\right| \leq 5$ for all $i \in[1, r]$. Thus $a_{j} \neq a_{i}$ for every $i \in[1,9]$ and every $j \in[1,19] \backslash\{i\}$. Also, by Lemma 2.4, we have

$$
a_{10}, a_{11}, \ldots, a_{19}
$$

are pairwise distinct. Therefore, $a_{1}, a_{2}, \ldots, a_{19}$ are distinct, giving $f(S) \geq 19$.

Lemma 7.7. If $x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}$ and $x_{5}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{2}+x_{3}+x_{4}+x_{6}$, then $\mathrm{f}(S) \geq 19$.
Proof. Note that either $x_{4} \neq x_{1}+x_{5}+x_{6}$ or $x_{3} \neq x_{1}+x_{5}+x_{6}$. By the symmetry of x_{3} and x_{4} in $\left[x_{1}\right]$ and $\left[x_{5}\right]$, we may assume that $x_{4} \neq x_{1}+x_{5}+x_{6}$. Let

```
\(a_{1}=x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}\),
\(a_{2}=x_{1}+x_{6}=x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\),
\(a_{3}=x_{5}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{2}+x_{3}+x_{4}+x_{6}\),
\(a_{4}=x_{1}+x_{5}=x_{2}+x_{5}+x_{6}=x_{3}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{6}\),
\(a_{5}=x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}+x_{4}\),
\(a_{6}=x_{5}+x_{6}=x_{1}+x_{2}+x_{6}=x_{1}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\),
\(a_{7}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\),
\(a_{8}=x_{2}=x_{3}+x_{4}\),
\(a_{9}=x_{1}+x_{3}=x_{2}+x_{3}+x_{6}\),
\(a_{10}=x_{3}+x_{5}=x_{1}+x_{2}+x_{3}\),
\(a_{11}=x_{3}+x_{6}=x_{2}+x_{3}+x_{5}\),
\(a_{12}=x_{1}+x_{3}+x_{5}=x_{2}+x_{3}+x_{5}+x_{6}=x_{1}+x_{2}+2 x_{3}+x_{4}+x_{6}\),
\(a_{13}=x_{1}+x_{3}+x_{6}=x_{1}+x_{2}+x_{3}+x_{5}=x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6}\),
\(a_{14}=x_{3}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{6}=x_{1}+x_{2}+2 x_{3}+x_{4}+x_{5}\),
\(a_{15}=x_{1}+x_{3}+x_{5}+x_{6}=2 x_{1}+x_{2}+x_{3}+x_{6}=x_{1}+2 x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6}\),
\(a_{16}=x_{1}+x_{2}+x_{3}+x_{5}+x_{6}\),
\(a_{17}=x_{2}+x_{3}\),
\(a_{18}=x_{3}\)
\(a_{19}=x_{2}+x_{3}+x_{4}\),
```

As before, by Lemma 5.1 we know that $a_{j} \neq a_{i}$ for every $i \in[1,7]$ and every $j \in[1,19] \backslash\{i\}$.

Since $x_{4} \neq x_{1}+x_{5}+x_{6}$, using Lemma 2.4 we can verify that

$$
a_{8}, \ldots, a_{19}
$$

are pairwise distinct. Therefore $a_{1}, a_{2}, \ldots, a_{19}$ are pairwise distinct and we are done.

Lemma 7.8. If $x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}$ and $x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}$, then $\mathrm{f}(S) \geq 19$.

Proof. Let

```
\(a_{1}=x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6}\),
\(a_{2}=x_{4}\),
\(a_{3}=x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}\),
\(a_{4}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{2}+x_{3}+x_{4}+x_{6}=x_{4}+x_{5}\),
\(a_{5}=x_{1}+x_{4}=x_{2}+x_{4}+x_{6}\),
\(a_{6}=x_{1}+x_{5}=x_{2}+x_{5}+x_{6}=x_{3}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{6}\),
\(a_{7}=x_{1}+x_{6}=x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\),
\(a_{8}=x_{4}+x_{6}=x_{2}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}+x_{4}\),
\(a_{9}=x_{1}+x_{2}+x_{6}=x_{4}+x_{5}+x_{6}=x_{1}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\),
\(a_{10}=x_{1}+x_{4}+x_{5}=x_{2}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{6}\),
\(a_{11}=x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}\),
\(a_{12}=x_{1}+x_{2}+x_{4}+x_{6}\),
\(a_{13}=x_{1}+x_{2}+x_{5}+x_{6}=x_{1}+x_{3}+x_{4}+x_{5}+x_{6}\),
\(a_{14}=x_{1}+x_{4}+x_{5}+x_{6}\),
\(a_{15}=x_{1}+x_{2}+x_{4}+x_{5}+x_{6}\),
\(a_{16}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\),
\(a_{17}=x_{2}=x_{3}+x_{4}\),
\(a_{18}=x_{2}+x_{3}+x_{4}\),
\(a_{19}=x_{5}=x_{1}+x_{3}=x_{2}+x_{3}+x_{6}\).
```

Using Lemma 2.4, we can verify that

$$
a_{1}, a_{2}, \ldots, a_{16}
$$

are pairwise distinct, and we also have

$$
\begin{aligned}
& a_{17} \neq a_{1}, \ldots, a_{13}, a_{15}, a_{16} \\
& a_{18} \neq a_{1}, \ldots, a_{5}, a_{7}, \ldots, a_{10}, a_{16}, a_{17}
\end{aligned}
$$

If $a_{17}=a_{14}$, then $x_{3}+x_{4}=x_{1}+x_{4}+x_{5}+x_{6}=x_{1}+x_{4}+x_{1}+x_{3}+x_{6}$, so $0=x_{1}+x_{1}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$, a contradiction. Thus $a_{17} \neq a_{14}$.

Since

$$
\begin{aligned}
& x_{3}+x_{4}+x_{5}+x_{6}=x_{3}+x_{4}+x_{5}+x_{2}+x_{5} \neq x_{2}+x_{3}+x_{4} \\
& x_{1}+x_{2}+x_{4}+x_{5}=x_{1}+x_{2}+x_{4}+x_{1}+x_{3} \neq x_{2}+x_{3}+x_{4} \\
& x_{1}+x_{2}+x_{4}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{2}+x_{4}+x_{6} \neq x_{2}+x_{3}+x_{4} \\
& x_{1}+x_{2}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{2}+x_{1}+x_{3}+x_{6} \neq x_{2}+x_{3}+x_{4} \\
& x_{1}+x_{4}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{4}+x_{1}+x_{3}+x_{6} \neq x_{2}+x_{3}+x_{4}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}+x_{2}+x_{4}+x_{5}+x_{6}= \\
& \quad x_{2}+x_{3}+x_{4}+x_{5}+x_{2}+x_{4}+x_{1}+x_{3}+x_{6} \neq x_{2}+x_{3}+x_{4}
\end{aligned}
$$

we have $a_{18} \neq a_{6}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}$. Therefore

$$
a_{1}, a_{2}, \ldots, a_{18}
$$

are pairwise distinct.
By Lemma 2.4, we have $a_{19} \neq a_{1}, \ldots, a_{11}, a_{13}, \ldots, a_{18}$. If $a_{19} \neq a_{12}$, then $a_{1}, \ldots, a_{18}, a_{19}$ are distinct and we are done. So we may assume $a_{19}=a_{12}$. Thus $x_{5}=x_{1}+x_{3}=x_{2}+x_{3}+x_{6}=x_{1}+x_{2}+x_{4}+x_{6}$. This implies that

$$
x_{1}=-5 x_{2}, x_{3}=-2 x_{2}, x_{4}=3 x_{2}, x_{5}=-7 x_{2}, x_{6}=-6 x_{2} .
$$

By Lemma 7.1, we have $\mathrm{f}(S) \geq 19$.
We are now ready to provide a proof of Lemma 3.3.

Proof of Lemma 3.3.

For every $k \in[1,6],\left|\left[x_{k}\right]\right| \leq 4$ follows from Lemma 5.1.
If $\left[x_{i}\right]$ or $\left[x_{j}\right]$ has form (b2) or (b3) described in Lemma 7.2, then by Lemma 7.3 or Lemma $7.4, \mathrm{f}(S) \geq 19$. So we may assume that $\left[x_{i}\right]$ and $\left[x_{j}\right]$ have forms (b1) or (b4). Without loss of generality, we assume that $i=1$. Let $\left[x_{j}\right]=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ where $S_{1}, S_{2}, S_{3}, S_{4}$ are subsequences of S and $1=\left|S_{1}\right| \leq\left|S_{2}\right| \leq\left|S_{3}\right| \leq\left|S_{4}\right|$. We distinguish cases.

Case 1: both $\left[x_{1}\right]$ and $\left[x_{j}\right]$ are of form (b1). Then

$$
\left|S_{1}\right|=1,\left|S_{2}\right|=2,\left|S_{3}\right|=3,\left|S_{4}\right|=4
$$

and

$$
\left[x_{1}\right]=\left\{x_{1}, x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5}, x_{2} \cdot x_{6}, x_{3} \cdot x_{4} \cdot x_{6}\right\}
$$

Thus,

$$
\begin{aligned}
& x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6} \\
& x_{2}=x_{3}+x_{4} \\
& x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}
\end{aligned}
$$

Subcase 1.1: $j=2$. Then $S_{1}=x_{2}$ and $S_{2}=x_{3} \cdot x_{4}$. By Lemma 7.2, $S_{4}=x_{1} \cdot x_{3} \cdot x_{5} \cdot x_{6}$ or $S_{4}=x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6}$. Without loss of generality, let $S_{4}=x_{1} \cdot x_{3} \cdot x_{5} \cdot x_{6}$. Also, by Lemma $7.2, S_{3}=x_{1} \cdot x_{4} \cdot x_{5}$, or $S_{3}=x_{1} \cdot x_{4} \cdot x_{6}$, or $S_{3}=x_{4} \cdot x_{5} \cdot x_{6}$. If $S_{3}=x_{1} \cdot x_{4} \cdot x_{5}$, then $x_{2}=x_{1}+x_{4}+x_{5}=x_{2}+x_{4}+x_{5}+x_{6}$, a contradiction. If $S_{3}=x_{1} \cdot x_{4} \cdot x_{6}$, then $x_{2}=x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}$, a contradiction again. So, $S_{3}=x_{4} \cdot x_{5} \cdot x_{6}$. Then $x_{2}=x_{3}+x_{4}=x_{4}+x_{5}+x_{6}=$ $x_{1}+x_{3}+x_{5}+x_{6}$. Therefore, $\mathrm{f}(S) \geq 19$ by Lemma 7.5.

Subcase 1.2: $j=3$. By Lemma 7.2, we have

$$
S_{\nu} \mid x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4]
$$

Since $x_{1}+x_{2}+x_{5}+x_{6}=x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \neq x_{3}$, we have $S_{4} \neq x_{1} \cdot x_{2} \cdot x_{5} \cdot x_{6}$. Thus, $S_{4}=x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5}$ or $S_{4}=x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{6}$ or $S_{4}=x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6}$ or $S_{4}=x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6}$.
(i) $S_{4}=x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5}$. By Lemma $7.2, x_{6} \mid \operatorname{gcd}\left(S_{2}, S_{3}\right)$. Since

$$
\begin{aligned}
& x_{1}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \neq x_{3}, \\
& x_{2}+x_{6}=x_{1} \neq x_{3} \\
& x_{4}+x_{6}=x_{2}+x_{4}+x_{5} \neq x_{1}+x_{2}+x_{4}+x_{5}
\end{aligned}
$$

we have $S_{2} \neq x_{1} \cdot x_{6}, x_{2} \cdot x_{6}$ or $x_{4} \cdot x_{6}$. So $S_{2}=x_{5} \cdot x_{6}$. Note that $x_{1}+x_{2}+x_{4}+x_{5}=x_{1}+x_{4}+x_{6}$. We conclude that $S_{3}=x_{1} \cdot x_{4} \cdot x_{6}$. Therefore, $x_{3}=x_{5}+x_{6}=x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}$. Now, $\mathfrak{f}(S) \geq 19$ by Lemma 7.6.
(ii) $S_{4}=x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{6}$. Then $x_{5} \mid \operatorname{gcd}\left(S_{2}, S_{3}\right)$. Since

$$
\begin{aligned}
& x_{1}+x_{5}=x_{3}+x_{4}+x_{5}+x_{6} \neq x_{3}, \\
& x_{2}+x_{5}=x_{3}+x_{4}+x_{5} \neq x_{3},
\end{aligned}
$$

we have $S_{2} \neq x_{1} \cdot x_{5}$ or $S_{2} \neq x_{2} \cdot x_{5}$. If $S_{2}=x_{4} \cdot x_{5}$, then $x_{4}+x_{5}=$ $x_{1}+x_{2}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{2}+x_{5}$, so $0=x_{1}+x_{2}+x_{2}=x_{1}+x_{2}+x_{3}+x_{4}$, a contradiction. Thus $S_{2} \neq x_{4} \cdot x_{5}$, and then $S_{2}=x_{5} \cdot x_{6}$. By Lemma 7.2, $x_{6} \nmid S_{3}$ and

$$
x_{5}\left|S_{3}\right| x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5}
$$

Therefore, $S_{3}=x_{1} \cdot x_{2} \cdot x_{5}, x_{1} \cdot x_{4} \cdot x_{5}$ or $x_{2} \cdot x_{4} \cdot x_{5}$. But
$x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}+x_{5} \neq x_{3}$,
$x_{1}+x_{4}+x_{5}=x_{2}+x_{4}+x_{5}+x_{6} \neq x_{1}+x_{2}+x_{4}+x_{6}$,
and
$x_{2}+x_{4}+x_{5} \neq x_{2}+x_{3}+x_{4}+x_{5}+x_{2}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{6}$,
a contradiction. Therefore, $S_{4} \neq x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{6}$.
(iii) $S_{4}=x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6}$. Then $x_{2} \mid \operatorname{gcd}\left(S_{2}, S_{3}\right)$. Since S contains no elements of order 2 , we have $x_{3} \neq x_{2}+x_{4}$, so $S_{2} \neq x_{2} \cdot x_{4}$. Since

$$
\begin{aligned}
& x_{1}+x_{2}=x_{1}+x_{3}+x_{4} \neq x_{3}, \\
& x_{2}+x_{5}=x_{3}+x_{4}+x_{5} \neq x_{3}, \\
& x_{2}+x_{6}=x_{3}+x_{4}+x_{6} \neq x_{3},
\end{aligned}
$$

we have $S_{2} \neq x_{1} \cdot x_{2}$, or $S_{2} \neq x_{2} \cdot x_{5}$ or $S_{2} \neq x_{2} \cdot x_{6}$, a contradiction. Therefore $S_{4} \neq x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6}$.
(iv) $S_{4}=x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6}$. Then $x_{1} \mid \operatorname{gcd}\left(S_{2}, S_{3}\right)$. Since

$$
\begin{aligned}
& x_{1}+x_{2}=x_{1}+x_{3}+x_{4} \neq x_{3} \\
& x_{1}+x_{5}=x_{3}+x_{4}+x_{5}+x_{6} \neq x_{3} \\
& x_{1}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \neq x_{3}
\end{aligned}
$$

we have $S_{2} \neq x_{1} \cdot x_{2}$, or $S_{2} \neq x_{1} \cdot x_{5}$ or $S_{2} \neq x_{1} \cdot x_{6}$. Then $S_{2}=x_{1} \cdot x_{4}$, and thus $x_{4} \nmid S_{3}$. So

$$
x_{1}\left|S_{3}\right| x_{1} \cdot x_{2} \cdot x_{5} \cdot x_{6}
$$

Since

$$
\begin{aligned}
& x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}+x_{5} \neq x_{3} \\
& x_{1}+x_{2}+x_{6}=x_{1}+x_{3}+x_{4}+x_{6} \neq x_{3} \\
& x_{1}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{5}+x_{6} \neq x_{2}+x_{4}+x_{5}+x_{6}
\end{aligned}
$$

we have $S_{3} \neq x_{1} \cdot x_{2} \cdot x_{5}, S_{3} \neq x_{1} \cdot x_{2} \cdot x_{6}$ or $S_{3} \neq x_{1} \cdot x_{5} \cdot x_{6}$, a contradiction. Therefore, $S_{4} \neq x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6}$.

Subcase 1.3: $j=4$. By the symmetry of x_{3} and x_{4} in $\left[x_{1}\right]$, This reduces to subcase 1.2.

Subcase 1.4: $j=5$. Then

$$
S_{\nu} \mid x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4]
$$

Since $x_{1}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \neq x_{5}$, we have $S_{4} \neq x_{1} \cdot x_{3} \cdot x_{4} \cdot x_{6}$. Thus, $S_{4}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$ or $S_{4}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{6}$ or $S_{4}=x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{6}$ or $S_{4}=x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{6}$.
(i) $S_{4}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$. Then $x_{6} \mid \operatorname{gcd}\left(S_{2}, S_{3}\right)$. Since

$$
\begin{aligned}
& x_{1}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \neq x_{5} \\
& x_{2}+x_{6}=x_{2}+x_{2}+x_{5} \neq x_{5} \\
& x_{3}+x_{6}=x_{2}+x_{3}+x_{5} \neq x_{5} \\
& x_{4}+x_{6}=x_{2}+x_{4}+x_{5} \neq x_{5}
\end{aligned}
$$

we have $S_{2} \neq x_{1} \cdot x_{6}$, or $S_{2} \neq x_{2} \cdot x_{6}$ or $S_{2} \neq x_{3} \cdot x_{6}, x_{4} \cdot x_{6}$, a contradiction. Therefore $S_{4} \neq x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6}$.
(ii) $S_{4}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{6}$. Then $x_{4} \mid \operatorname{gcd}\left(S_{2}, S_{3}\right)$. Since

$$
\begin{aligned}
& x_{3}+x_{4}=x_{2} \neq x_{5} \\
& x_{4}+x_{6}=x_{2}+x_{4}+x_{5} \neq x_{5}
\end{aligned}
$$

we have $S_{2} \neq x_{3} \cdot x_{4}$ or $S_{2} \neq x_{4} \cdot x_{6}$. Then $S_{2}=x_{1} \cdot x_{4}$ or $S_{2}=x_{2} \cdot x_{4}$.
If $S_{2}=x_{2} \cdot x_{4}$, then $x_{2} \nmid S_{3}$. So

$$
x_{4}\left|S_{4}\right| x_{1} \cdot x_{3} \cdot x_{4} \cdot x_{6}
$$

Since

$$
\begin{aligned}
& x_{1}+x_{3}+x_{4}=x_{1}+x_{2} \neq x_{2}+x_{4} \\
& x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5} \neq x_{2}+x_{4} \\
& x_{3}+x_{4}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5} \neq x_{2}+x_{4}
\end{aligned}
$$

we have $S_{3} \neq x_{1} \cdot x_{3} \cdot x_{4}, S_{3} \neq x_{1} \cdot x_{4} \cdot x_{6}$ or $S_{3} \neq x_{3} \cdot x_{4} \cdot x_{6}$, a contradiction. Therefore, $S_{2}=x_{1} \cdot x_{4}$. Note that $x_{1}+x_{4}=x_{2}+x_{4}+x_{6}$. We have $S_{3}=x_{2} \cdot x_{4} \cdot x_{6}$, so $x_{5}=x_{1}+x_{4}=x_{2}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{6}$. This implies that

$$
x_{1}=-5 x_{2}, x_{3}=3 x_{2}, x_{4}=-2 x_{2}, x_{5}=-7 x_{2}, x_{6}=-6 x_{2}
$$

By Lemma 7.1, we have $\mathrm{f}(S) \geq 19$.
(iii) $S_{4}=x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{6}$. By the symmetry of x_{3} and x_{4} in $\left[x_{1}\right]$, This reduces to the case when $S_{4}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{6}$.
(iv) $S_{4}=x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{6}$. Note that $x_{2}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}$, so $S_{2}=x_{1} \cdot x_{2}, S_{3}=x_{1} \cdot x_{3} \cdot x_{4}$. Then $x_{5}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=$ $x_{2}+x_{3}+x_{4}+x_{6}$. By Lemma 7.7, we have $\mathrm{f}(S) \geq 19$.

Subcase 1.5: $j=6$. Then $S_{1}=x_{6}, S_{2}=x_{2} \cdot x_{5}, S_{3}=x_{3} \cdot x_{4} \cdot{ }_{5}$. By Lemma 7.2, $S_{4}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$. Thus,

$$
x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}+x_{4}
$$

and

$$
x_{5}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{2}+x_{3}+x_{4}+x_{6} .
$$

By Lemma 7.7, we have $\mathrm{f}(S) \geq 19$.
Case 2: $\left[x_{1}\right]$ is of form $(b 1)$ and $\left[x_{j}\right]$ is of form (b4). Then

$$
\left|S_{1}\right|=1,\left|S_{2}\right|=2,\left|S_{3}\right|=3,\left|S_{4}\right|=3
$$

By Lemma 7.2, we have

$$
\begin{aligned}
\operatorname{supp}\left(S_{3} S_{4}\right) & =\operatorname{supp}\left(S S_{1}^{-1}\right) \\
\left|\operatorname{gcd}\left(S_{3}, S_{4}\right)\right| & =1 \\
\left|\operatorname{gcd}\left(S_{2}, S_{3}\right)\right| & \geq 1 \\
\left|\operatorname{gcd}\left(S_{2}, S_{4}\right)\right| & \geq 1 \\
\left|\operatorname{gcd}\left(S_{2}, S_{3}, S_{4}\right)\right| & =0
\end{aligned}
$$

Now

$$
\left[x_{1}\right]=\left\{x_{1}, x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5}, x_{2} \cdot x_{6}, x_{3} \cdot x_{4} \cdot x_{6}\right\}
$$

and

$$
\begin{aligned}
& x_{1}=x_{2}+x_{3}+x_{4}+x_{5}=x_{2}+x_{6}=x_{3}+x_{4}+x_{6} \\
& x_{2}=x_{3}+x_{4} \\
& x_{6}=x_{2}+x_{5}=x_{3}+x_{4}+x_{5}
\end{aligned}
$$

Subcase 2.1: $j=2$. Let $S_{1}=x_{2}$ and $S_{2}=x_{3} \cdot x_{4}$. Then

$$
S_{3} \mid x_{1} \cdot x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { and } \quad S_{4} \mid x_{1} \cdot x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6}
$$

Without loss of generality, let $x_{3} \mid S_{3}$. Then $x_{4} \nmid S_{3}$, and thus $x_{4} \mid S_{4}$ and $x_{3} \nmid S_{4}$. So, $S_{3}=x_{1} \cdot x_{3} \cdot x_{5}$ or $S_{3}=x_{1} \cdot x_{3} \cdot x_{6}$ or $S_{3}=x_{3} \cdot x_{5} \cdot x_{6}$.

Since

$$
\begin{aligned}
& x_{1}+x_{3}+x_{5}=x_{3}+x_{4}+x_{6}+x_{3}+x_{5} \neq x_{3}+x_{4} \\
& x_{1}+x_{3}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{3}+x_{6} \neq x_{3}+x_{4}
\end{aligned}
$$

we have $S_{3} \neq x_{1} \cdot x_{3} \cdot x_{5}$ or $S_{3} \neq x_{1} \cdot x_{3} \cdot x_{6}$. So $S_{3}=x_{3} \cdot x_{5} \cdot x_{6}$, and then $S_{4}=x_{1} \cdot x_{4} \cdot x_{5}$ or $S_{4}=x_{1} \cdot x_{4} \cdot x_{6}$. But

$$
\begin{aligned}
& x_{1}+x_{4}+x_{5}=x_{3}+x_{4}+x_{6}+x_{4}+x_{5} \neq x_{3}+x_{4} \\
& x_{1}+x_{4}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{4}+x_{6} \neq x_{3}+x_{4}
\end{aligned}
$$

a contradiction.
Subcase 2.2: $j=3$. Then

$$
S_{\nu} \mid x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4]
$$

Since $x_{2}=x_{3}+x_{4}$, we have $x_{3} \neq x_{1}+x_{2}, x_{2}+x_{4}, x_{2}+x_{5}, x_{2}+x_{6}$, so $x_{2} \nmid S_{2}$. Then $S_{2} \mid x_{1} \cdot x_{4} \cdot x_{5} \cdot x_{6}$. Since

$$
\begin{aligned}
& x_{1}+x_{5}=x_{3}+x_{4}+x_{5}+x_{6} \neq x_{3}, \\
& x_{1}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \neq x_{3},
\end{aligned}
$$

we have $S_{2} \neq x_{1} \cdot x_{5}$ or $S_{2} \neq x_{1} \cdot x_{6}$. Thus, $S_{2}=x_{1} \cdot x_{4}$ or $S_{2}=x_{4} \cdot x_{5}$ or $S_{2}=x_{4} \cdot x_{6}$ or $S_{2}=x_{5} \cdot x_{6}$.

Next, we show that if $x_{2} \mid S_{3}$ (resp. S_{4}), then $x_{4} \mid S_{3}$ (resp. S_{4}). Suppose on the contrary that $x_{2} \mid S_{3}$, but $x_{4} \nmid S_{3}$. Then $x_{3}=\sigma\left(S_{3}\right)=\sigma\left(x_{2}^{-1} x_{3} x_{4} S_{3}\right)$, a contradiction. So if $x_{2} \mid S_{3}$ (resp. S_{4}), then $x_{4} \mid S_{3}$ (resp. S_{4}).
(i) $S_{2}=x_{1} \cdot x_{4}$. Note that $x_{1}+x_{4}=x_{2}+x_{4}+x_{6}$. So we may assume $S_{3}=$ $x_{2} \cdot x_{4} \cdot x_{6}$. Then $x_{2} \nmid S_{4}$, otherwise $x_{2} \mid S_{4}$ and $x_{4} \mid S_{4}$, a contradiction. Since $\operatorname{supp}\left(S_{3} S_{4}\right)=\operatorname{supp}\left(S S_{1}^{-1}\right)$, then $x_{1} \mid S_{4}$ and $x_{4} \nmid S_{4}$. Then $S_{4}=x_{1} \cdot x_{5} \cdot x_{6}$. So $x_{3}=x_{1}+x_{4}=x_{2}+x_{4}+x_{6}=x_{1}+x_{5}+x_{6}$. Thus

$$
x_{1}=-7 x_{4}, x_{2}=-5 x_{4}, x_{3}=-6 x_{4}, x_{5}=3 x_{4}, x_{6}=-2 x_{4}
$$

Therefore, $\mathrm{f}(S) \geq 19$ by Lemma 7.1.
(ii) $S_{2}=x_{4} \cdot x_{5}$. Now, let $x_{4} \mid S_{3}$. Then $x_{5} \nmid S_{3}, x_{5} \mid S_{4}$ and $x_{4} \nmid S_{4}$. Thus $x_{2} \nmid S_{4}$, and therefore, $S_{4}=x_{1} \cdot x_{5} \cdot x_{6}$. But $x_{1}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}+$ $x_{5}+x_{5}+x_{6} \neq x_{4}+x_{5}$, a contradiction.
(iii) $S_{2}=x_{4} \cdot x_{6}$. Note that $x_{4}+x_{6}=x_{2}+x_{4}+x_{5}$, so we may assume that $S_{3}=x_{2} \cdot x_{4} \cdot x_{5}$. Then $x_{2} \nmid S_{4}, x_{4} \nmid S_{4}$, and thus $S_{4}=x_{1} \cdot x_{5} \cdot x_{6}$. But $x_{1}+x_{5}+x_{6}=x_{3}+x_{4}+x_{6}+x_{5}+x_{6} \neq x_{4}+x_{6}$, a contradiction.
(iv) $S_{2}=x_{5} \cdot x_{6}$. Let $x_{5} \mid S_{3}$. Then $x_{6} \nmid S_{3}, x_{6} \mid S_{4}$ and $x_{5} \nmid S_{4}$. Thus $S_{3}=x_{1} \cdot x_{4} \cdot x_{5}$ or $S_{3}=x_{2} \cdot x_{4} \cdot x_{5}$ or $S_{3}=x_{1} \cdot x_{2} \cdot x_{5}$. But

$$
\begin{aligned}
& x_{1}+x_{4}+x_{5}=x_{2}+x_{6}+x_{4}+x_{5} \neq x_{5}+x_{6} \\
& x_{2}+x_{4}+x_{5}=x_{4}+x_{6} \neq x_{5}+x_{6} \\
& x_{1}+x_{2}+x_{5}=2 x_{2}+x_{6}+x_{5} \neq x_{5}+x_{6}
\end{aligned}
$$

a contradiction.
Subcase 2.3: $j=4$. By the symmetry of x_{3} and x_{4} in $\left[x_{1}\right]$, this reduces to subcase 2.2.

Subcase 2.4: $j=5$. Then

$$
S_{\nu} \mid x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4] .
$$

Since $x_{6}=x_{2}+x_{5}$, we have $x_{5} \neq x_{1}+x_{6}, x_{2}+x_{6}, x_{3}+x_{6}, x_{4}+x_{6}$, so $x_{6} \nmid S_{2}$. Thus $S_{2} \mid x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$. Since $x_{3}+x_{4}=x_{2} \neq x_{5}$, we have $S_{2} \neq x_{3} \cdot x_{4}$. Then $S_{2}=x_{1} \cdot x_{2}$ or $S_{2}=x_{1} \cdot x_{3}$ or $S_{2}=x_{1} \cdot x_{4}$ or $S_{2}=x_{2} \cdot x_{3}$ or $S_{2}=x_{2} \cdot x_{4}$.
(i) $S_{2}=x_{1} \cdot x_{2}$. Note that $x_{1}+x_{2}=x_{2}+x_{3}+x_{4}+x_{6}$, a contradiction. So $S_{2} \neq x_{1} \cdot x_{2}$.
(ii) $S_{2}=x_{1} \cdot x_{3}$. Note that $x_{1}+x_{3}=x_{2}+x_{3}+x_{6}$. We may assume $S_{3}=x_{2} \cdot x_{3} \cdot x_{6}$. Since $\operatorname{supp}\left(S_{3} S_{4}\right)=\operatorname{supp}\left(S S_{1}^{-1}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\right\}$, we have $x_{1} \cdot x_{4} \mid S_{4}$. If $x_{3} \mid S_{4}$, then $S_{2} \mid S_{4}$, a contradiction. So $x_{3} \nmid S_{4}$. Since $x_{1}+x_{2}+x_{4}=x_{1}+x_{3}+x_{4}+x_{4} \neq x_{1}+x_{3}$, we have $S_{4} \neq x_{1} \cdot x_{2} \cdot x_{4}$. So
$S_{4}=x_{1} \cdot x_{4} \cdot x_{6}$. However, $x_{1}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}$, a contradiction. So $S_{2} \neq x_{1} \cdot x_{3}$.

By the symmetry of x_{3} and x_{4} in $\left[x_{1}\right]$, we may also assume that $S_{2} \neq x_{1} \cdot x_{4}$.
(iii) $S_{2}=x_{2} \cdot x_{3}$. Without loss of generality, let $x_{2} \mid S_{3}$. Then $x_{3} \nmid S_{3}$, $x_{3} \mid S_{4}$ and $x_{2} \nmid S_{4}$. Thus $S_{3}=x_{1} \cdot x_{2} \cdot x_{4}$ or $S_{3}=x_{1} \cdot x_{2} \cdot x_{6}$ or $S_{3}=x_{2} \cdot x_{4} \cdot x_{6}$. Since $x_{1}+x_{2}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{2}+x_{6} \neq x_{2}+x_{3}$, we have $S_{3} \neq x_{1} \cdot x_{2} \cdot x_{6}$.

If $S_{3}=x_{1} \cdot x_{2} \cdot x_{4}$, then $x_{3} \cdot x_{6} \mid S_{4}$. Thus $S_{4}=x_{1} \cdot x_{3} \cdot x_{6}$ or $S_{4}=x_{3} \cdot x_{4} \cdot x_{6}$. But

$$
\begin{aligned}
& x_{1}+x_{3}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{3}+x_{6} \neq x_{2}+x_{3}, \\
& x_{3}+x_{4}+x_{6}=x_{1} \neq x_{5}
\end{aligned}
$$

a contradiction. So $S_{3} \neq x_{1} \cdot x_{2} \cdot x_{4}$.
If $S_{3}=x_{2} \cdot x_{4} \cdot x_{6}$, then $x_{1} \cdot x_{3} \mid S_{4}$. Thus $S_{4}=x_{1} \cdot x_{3} \cdot x_{4}$ or $S_{4}=x_{1} \cdot x_{3} \cdot x_{6}$.
But

$$
\begin{aligned}
& x_{1}+x_{3}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{3}+x_{6} \neq x_{2}+x_{3}, \\
& x_{1}+x_{3}+x_{4}=x_{1}+x_{2} \neq x_{2}+x_{3},
\end{aligned}
$$

a contradiction, so $S_{3} \neq x_{2} \cdot x_{4} \cdot x_{6}$. Thus $S_{2} \neq x_{2} \cdot x_{3}$. By the symmetry of x_{3} and x_{4} in $\left[x_{1}\right]$, we also conclude that $S_{2} \neq x_{2} \cdot x_{4}$, a contradiction again.

Subcase 2.5: $j=6$. Let $S_{1}=x_{6}, S_{2}=x_{2} \cdot x_{5}$ and $S_{3}=x_{3} \cdot x_{4} \cdot x_{5}$. By Lemma 7.2, $S_{4}=x_{1} \cdot x_{2} \cdot x_{3}$ or $S_{4}=x_{1} \cdot x_{2} \cdot x_{4}$. By the symmetry of x_{3} and x_{4} in $\left[x_{1}\right]$, we may assume $S_{4}=x_{1} \cdot x_{2} \cdot x_{3}$. Thus $x_{6}=x_{2}+x_{5}=$ $x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}$. By Lemma 7.8, we have $\mathrm{f}(S) \geq 19$.

Case 3: both $\left[x_{1}\right]$ and $\left[x_{j}\right]$ are of form (b4). Then

$$
\left|S_{1}\right|=1,\left|S_{2}\right|=2,\left|S_{3}\right|=3,\left|S_{4}\right|=3 .
$$

As in Case 3, we have

$$
\begin{aligned}
\operatorname{supp}\left(S_{3} S_{4}\right) & =\operatorname{supp}\left(S S_{1}^{-1}\right), \\
\left|\operatorname{gcd}\left(S_{3}, S_{4}\right)\right| & =1, \\
\left|\operatorname{gcd}\left(S_{2}, S_{3}\right)\right| & \geq 1, \\
\left|\operatorname{gcd}\left(S_{2}, S_{4}\right)\right| & \geq 1, \\
\left|\operatorname{gcd}\left(S_{2}, S_{3}, S_{4}\right)\right| & =0 .
\end{aligned}
$$

Now,

$$
\left[x_{1}\right]=\left\{x_{1}, x_{2} \cdot x_{3} \cdot x_{4}, x_{2} \cdot x_{5} \cdot x_{6}, x_{3} \cdot x_{5}\right\}
$$

and

$$
\begin{aligned}
& x_{1}=x_{2}+x_{3}+x_{4}=x_{2}+x_{5}+x_{6}=x_{3}+x_{5} ; \\
& x_{3}=x_{2}+x_{6} ; \\
& x_{5}=x_{2}+x_{4} .
\end{aligned}
$$

Subcase 3.1: $j=2$. Then

$$
S_{\nu} \mid x_{1} \cdot x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4] .
$$

Since $x_{3}=x_{2}+x_{6}, x_{5}=x_{2}+x_{4}$, we have $x_{2} \neq x_{1}+x_{3}, x_{3}+x_{4}, x_{3}+x_{5}, x_{3}+$ $x_{6}, x_{1}+x_{5}, x_{4}+x_{5}$, or $x_{5}+x_{6}$, so $x_{3}, x_{5} \nmid S_{2}$. Thus $S_{2}=x_{1} \cdot x_{4}$ or $S_{2}=x_{1} \cdot x_{6}$ or $S_{2}=x_{4} \cdot x_{6}$. But

$$
\begin{aligned}
& x_{1}+x_{4}=x_{2}+x_{5}+x_{6}+x_{4} \neq x_{2} \\
& x_{1}+x_{6}=x_{2}+x_{3}+x_{4}+x_{6} \neq x_{2}
\end{aligned}
$$

so $S_{2}=x_{4} \cdot x_{6}$.
Without loss of generality, let $x_{4} \mid S_{3}$. Then $x_{6} \nmid S_{3}$. So $S_{3}=x_{1} \cdot x_{3} \cdot x_{4}$ or $S_{3}=x_{1} \cdot x_{4} \cdot x_{5}$ or $S_{3}=x_{3} \cdot x_{4} \cdot x_{5}$. But

$$
\begin{aligned}
& x_{1}+x_{3}+x_{4}=x_{2}+x_{5}+x_{6}+x_{3}+x_{4} \neq x_{2} \\
& x_{3}+x_{4}+x_{5}=x_{2}+x_{6}+x_{4}+x_{5} \neq x_{2}
\end{aligned}
$$

so $S_{3}=x_{1} \cdot x_{4} \cdot x_{5}$. Since $\operatorname{supp}\left(S_{3} S_{4}\right)=\operatorname{supp}\left(S S_{1}^{-1}\right)$ and $\left|\operatorname{gcd}\left(S_{3}, S_{4}\right)\right|=1$, we have $S_{4}=x_{1} \cdot x_{3} \cdot x_{6}$ or $S_{4}=x_{3} \cdot x_{5} \cdot x_{6}$. But $x_{3}+x_{5}+x_{6}=x_{3}+x_{2}+x_{4}+x_{6} \neq x_{2}$, so $S_{4}=x_{1} \cdot x_{3} \cdot x_{6}$. That gives $x_{2}=x_{4}+x_{6}=x_{1}+x_{4}+x_{5}=x_{1}+x_{3}+x_{6}$. Therefore,

$$
x_{5}=x_{2}+x_{4}=x_{2}+x_{1}+x_{3}=x_{4}+x_{6}+x_{1}+x_{3}
$$

This reduces to Case 2 .
Subcase 3.2: $j=3$. Let $S_{1}=x_{3}$ and $S_{2}=x_{2} \cdot x_{6}$. Then

$$
S_{3} \mid x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { and } \quad S_{4} \mid x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6}
$$

If $x_{5} \nmid S_{3}$ then $\left|x_{5} S_{3}\right|=4$ and $\sigma\left(x_{5} S_{3}\right)=x_{3}+x_{5}=x_{1}$, a contradiction. Therefore $x_{5} \mid S_{3}$. Similarly, $x_{5} \in S_{4}$. Let $S_{3}^{\prime}=x_{5}^{-1} S_{3}$ and $S_{4}^{\prime}=x_{5}^{-1} S_{4}$. Then, $S_{3}^{\prime} S_{4}^{\prime}=x_{1} \cdot x_{2} \cdot x_{4} \cdot x_{6}$ and $\operatorname{gcd}\left(S_{3}^{\prime}, S_{4}^{\prime}\right)=1$. Since $S_{2}=x_{2} \cdot x_{6}$, we may assume that $x_{2} \mid S_{3}^{\prime}$ and $x_{6} \mid S_{4}^{\prime}$. Therefore, $S_{3}^{\prime}=x_{1} \cdot x_{2}$ and $S_{4}^{\prime}=x_{4} \cdot x_{6}$, or $S_{3}^{\prime}=x_{2} \cdot x_{4}$ and $S_{4}^{\prime}=x_{1} \cdot x_{6}$. Hence, $S_{3}=x_{1} \cdot x_{2} \cdot x_{5}$ and $S_{4}=x_{4} \cdot x_{5} \cdot x_{6}$, or $S_{3}=x_{2} \cdot x_{4} \cdot x_{5}$ and $S_{4}=x_{1} \cdot x_{5} \cdot x_{6}$. Thus, $x_{2}+x_{6}=x_{4}+x_{5}+x_{6}$ or $x_{2}+x_{6}=x_{1}+x_{5}+x_{6}$. But $x_{1}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \neq x_{2}+x_{6}$ and $x_{4}+x_{5}+x_{6}=2 x_{4}+x_{2}+x_{6} \neq x_{2}+x_{6}$, a contradiction.

Subcase 3.3: $j=4$. Then

$$
S_{\nu} \mid x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{5} \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4]
$$

Since $x_{5}=x_{2}+x_{4}$ and $x_{3}=x_{2}+x_{6}$, we have $x_{4} \neq x_{1}+x_{5}, x_{2}+x_{5}, x_{3}+$ $x_{5}, x_{5}+x_{6}$ or $x_{2}+x_{6}$. So $S_{2}=x_{1} \cdot x_{2}$ or $x_{1} \cdot x_{3}$ or $x_{1} \cdot x_{6}$ or $x_{2} \cdot x_{3}$ or $x_{3} \cdot x_{6}$. Since $\left|S_{3}\right|=\left|S_{4}\right|=3$ and

$$
\begin{aligned}
& x_{1}+x_{3}=x_{2}+x_{5}+x_{6}+x_{3}, \\
& x_{1}+x_{6}=x_{2}+x_{3}+x_{4}+x_{6}
\end{aligned}
$$

$S_{2} \neq x_{1} \cdot x_{3}$ or $S_{2} \neq x_{1} \cdot x_{6}$.
(i) $S_{2}=x_{1} \cdot x_{2}$. Note that $x_{1}+x_{2}=x_{3}+x_{5}+x_{2}$, so we may assume that $S_{3}=x_{2} \cdot x_{3} \cdot x_{5}$. Since $\operatorname{gcd}\left(S_{2}, S_{3}, S_{4}\right)=1$ and $\operatorname{supp}\left(S_{3} S_{4}\right)=\operatorname{supp}\left(S S_{1}^{-1}\right)=$ $\left\{x_{1}, x_{2}, x_{3}, x_{5}, x_{6}\right\}$ and $\left|\operatorname{gcd}\left(S_{3}, S_{4}\right)\right|=1$, we have $S_{4}=x_{1} \cdot x_{3} \cdot x_{6}$ or $S_{4}=$ $x_{1} \cdot x_{5} \cdot x_{6}$. But

$$
x_{1}+x_{3}+x_{6}=x_{1}+x_{2}+x_{6}+x_{6} \neq x_{1}+x_{2}
$$

$$
x_{1}+x_{5}+x_{6}=x_{1}+x_{2}+x_{4}+x_{6} \neq x_{4},
$$

a contradiction. So $S_{2} \neq x_{1} \cdot x_{2}$.
(ii) $S_{2}=x_{2} \cdot x_{3}$. Without loss of generality, let $x_{2} \mid S_{3}$. Then $x_{3} \nmid S_{3}$. So $S_{3}=x_{1} \cdot x_{2} \cdot x_{5}$ or $S_{3}=x_{1} \cdot x_{2} \cdot x_{6}$ or $S_{3}=x_{2} \cdot x_{5} \cdot x_{6}$. But

$$
\begin{aligned}
& x_{1}+x_{2}+x_{6}=x_{1}+x_{3} \neq x_{2}+x_{3} \\
& x_{2}+x_{5}+x_{6}=x_{1} \neq x_{4}
\end{aligned}
$$

so $S_{3}=x_{1} \cdot x_{2} \cdot x_{5}$. Since $x_{2} \nmid S_{4}$ and $x_{3} \mid S_{4}$, we have $S_{4}=x_{1} \cdot x_{3} \cdot x_{5}$ or $S_{4}=x_{1} \cdot x_{3} \cdot x_{6}$ or $S_{4}=x_{3} \cdot x_{5} \cdot x_{6}$. But

$$
\begin{aligned}
& x_{1}+x_{3}+x_{5}=x_{1}+x_{3}+x_{2}+x_{4} \neq x_{2}+x_{3} \\
& x_{3}+x_{5}+x_{6}=x_{3}+x_{2}+x_{4}+x_{6} \neq x_{4}
\end{aligned}
$$

so $S_{4}=x_{1} \cdot x_{3} \cdot x_{6}$. This gives that $x_{4}=x_{2}+x_{3}=x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{6}$. Then

$$
x_{3}=x_{1}+x_{5}=x_{1}+x_{2}+x_{4}=x_{3}+x_{5}+x_{2}+x_{4} .
$$

This reduces to Case 2.
(iii) $S_{2}=x_{3} \cdot x_{6}$. Without loss of generality, let $x_{3} \mid S_{3}$, then $x_{6} \mid S_{4}$ and $x_{3} \nmid S_{4}$. So $S_{4}=x_{1} \cdot x_{2} \cdot x_{6}$ or $S_{4}=x_{1} \cdot x_{5} \cdot x_{6}$ or $S_{4}=x_{2} \cdot x_{5} \cdot x_{6}$. But

$$
\begin{aligned}
& x_{1}+x_{2}+x_{6}=x_{3}+x_{5}+x_{2}+x_{6} \neq x_{3}+x_{6} \\
& x_{1}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \neq x_{4} \\
& x_{2}+x_{5}+x_{6}=x_{1} \neq x_{4}
\end{aligned}
$$

a contradiction.
Subcase 3.4: $j=5$. By the symmetry of x_{3}, x_{6} and x_{5}, x_{4} in $\left[x_{1}\right]$, this reduces to subcase 3.2

Subcase 3.5: $j=6$. By the symmetry of x_{3}, x_{6} and x_{5}, x_{4} in $\left[x_{1}\right]$, this reduces to subcase 3.3 .

This completes the proof.

7.2. Classes of size 5

This subsection deals with classes of size 5 , and it provides a proof of Lemma 3.4.

Lemma 7.9. If $\left|\mathcal{A}_{i}\right|=5$, then there exists $\tau \in P_{6}$ such that \mathcal{A}_{i} or the dual class of \mathcal{A}_{i} is of one of the following forms:
(c1). $\left\{x_{\tau(1)} \cdot x_{\tau(2)}, x_{\tau(3)} \cdot x_{\tau(4)}, x_{\tau(5)} \cdot x_{\tau(6)} \cdot x_{\tau(1)} \cdot x_{\tau(3)}, x_{\tau(5)} \cdot x_{\tau(6)} \cdot x_{\tau(2)}\right.$.
$\left.x_{\tau(4)}, x_{\tau(5)} \cdot x_{\tau(1)} \cdot x_{\tau(4)}\right\}$;
(c2). $\left\{x_{\tau(1)} \cdot x_{\tau(2)}, x_{\tau(3)} \cdot x_{\tau(4)}, x_{\tau(5)} \cdot x_{\tau(6)} \cdot x_{\tau(1)} \cdot x_{\tau(3)}, x_{\tau(5)} \cdot x_{\tau(6)} \cdot x_{\tau(2)}, x_{\tau(5)}\right.$.
$\left.x_{\tau(1)} \cdot x_{\tau(4)}\right\} ;$
(c3). $\left\{x_{\tau(1)} \cdot x_{\tau(2)}, x_{\tau(3)} \cdot x_{\tau(4)}, x_{\tau(5)} \cdot x_{\tau(6)} \cdot x_{\tau(1)} \cdot x_{\tau(3)}, x_{\tau(5)} \cdot x_{\tau(1)} \cdot x_{\tau(4)}, x_{\tau(6)}\right.$.
$\left.x_{\tau(2)} \cdot x_{\tau(4)}\right\} ;$
(c4). $\left\{x_{\tau(1)} \cdot x_{\tau(2)}, x_{\tau(3)} \cdot x_{\tau(4)}, x_{\tau(5)} \cdot x_{\tau(6)} \cdot x_{\tau(1)}, x_{\tau(5)} \cdot x_{\tau(2)} \cdot x_{\tau(3)}, x_{\tau(6)}\right.$.
$\left.x_{\tau(2)} \cdot x_{\tau(4)}\right\} ;$
(c5)
$\left\{x_{\tau(1)} \cdot x_{\tau(2)}, x_{\tau(1)} \cdot x_{\tau(3)} \cdot x_{\tau(6)} \cdot x_{\tau(5)}, x_{\tau(1)} \cdot x_{\tau(4)} \cdot x_{\tau(3)}, x_{\tau(2)} \cdot x_{\tau(6)}\right.$. $\left.x_{\tau(3)}, x_{\tau(5)} \cdot x_{\tau(4)} \cdot x_{\tau(6)}\right\}$;
(c6). $\left\{x_{\tau(1)} \cdot x_{\tau(2)}, x_{\tau(1)} \cdot x_{\tau(3)} \cdot x_{\tau(6)} \cdot x_{\tau(5)}, x_{\tau(1)} \cdot x_{\tau(4)} \cdot x_{\tau(3)}, x_{\tau(2)} \cdot x_{\tau(6)}\right.$. $\left.x_{\tau(3)}, x_{\tau(5)} \cdot x_{\tau(2)} \cdot x_{\tau(4)}\right\}$;
(c7). $\left\{x_{\tau(1)} \cdot x_{\tau(2)}, x_{\tau(1)} \cdot x_{\tau(3)} \cdot x_{\tau(4)}, x_{\tau(1)} \cdot x_{\tau(5)} \cdot x_{\tau(6)}, x_{\tau(2)} \cdot x_{\tau(3)} \cdot x_{\tau(5)}, x_{\tau(2)}\right.$. $\left.x_{\tau(4)} \cdot x_{\tau(6)}\right\}$.
Proof. Let

$$
\mathcal{A}_{i}=\left\{S_{1}, \ldots, S_{5}\right\}
$$

where S_{1}, \ldots, S_{5} are subsequences of S and $1 \leq\left|S_{1}\right| \leq \ldots \leq\left|S_{5}\right|$.
Let $T=S_{1} S_{2} S_{3} S_{4} S_{5}$. As in the proof of Lemma 5.1, we have $\operatorname{supp}(T)=S$ and $2 \leq \mathrm{v}_{a}(T) \leq 3$ for every $a \in S$.

By Lemma 5.1 we have

$$
2 \leq\left|S_{1}\right| \leq \cdots \leq\left|S_{5}\right| \leq 4
$$

By Lemma 2.4, we infer that \mathcal{A}_{i} contains at most three sequences of length 2 , and three sequences of length 4 .

Next, we distinguish cases.
Case 1: \mathcal{A}_{i} contains three sequences of lengths 2. Then $\left|S_{1}\right|=\left|S_{2}\right|=$ $\left|S_{3}\right|=2$. Let $S_{1}=x_{1} \cdot x_{2}, S_{2}=x_{3} \cdot x_{4}$ and $S_{3}=x_{5} \cdot x_{6}$. Then by Lemma 2.4, we have $\left|S_{4}\right|=\left|S_{5}\right|=3$. Since $\mathrm{v}_{a}(T) \geq 2$ for every $a \mid S$, we have $S_{4} S_{5}=S$. Thus $\sigma\left(S_{4}\right)=\sigma\left(S_{5}\right)=\sigma\left(S_{4}^{-1} S\right)$. Then \mathcal{A}_{i} is the dual class of itself, but $\left|\mathcal{A}_{i}\right|=5$, a contradiction.

Case 2: \mathcal{A}_{i} contains two sequences of length 2. Than $\left|S_{1}\right|=\left|S_{2}\right|=2$. Without loss of generality, let

$$
S_{1}=x_{1} \cdot x_{2}, S_{2}=x_{3} \cdot x_{4}
$$

If $\left|S_{j}\right| \geq 3$ for some $j \in[3,5]$, then $\operatorname{gcd}\left(S_{j}, x_{5} \cdot x_{6}\right) \neq 1$. Furthermore, if $\left|S_{j}\right|=4$, then $x_{5} \cdot x_{6} \mid S_{j}$ and $\left|\operatorname{gcd}\left(S_{1}, S_{j}\right)\right|=\left|\operatorname{gcd}\left(S_{2}, S_{j}\right)\right|=1$. Also, we may assume that \mathcal{A}_{i} contains at most two sequences of length 4 . Otherwise, we may consider $\overline{\mathcal{A}_{i}}$ instead and it contains three sequences of length 2 . This reduces to Case 1, and we are done.

Subcase 2.1: \mathcal{A}_{i} contains two sequences of lengths 4. Then $\left|S_{3}\right|=3$ and $\left|S_{4}\right|=\left|S_{5}\right|=4$. Since $x_{5} \cdot x_{6} \mid S_{4}$ and $\left|\operatorname{gcd}\left(S_{1}, S_{4}\right)\right|=\left|\operatorname{gcd}\left(S_{2}, S_{4}\right)\right|=1$, we may assume $S_{4}=x_{5} \cdot x_{6} \cdot x_{1} \cdot x_{3}$. Since $x_{5} \cdot x_{6} \mid S_{5}$ and $\left|\operatorname{gcd}\left(S_{5}, S_{4}\right)\right| \leq 2$, we have $S_{5}=x_{5} \cdot x_{6} \cdot x_{2} \cdot x_{4}$.

Without loss of generality, let $x_{5} \mid S_{3}$. Then $x_{6} \nmid S_{3}$. If $x_{1}, x_{2} \nmid S_{3}$, then $S_{3}=x_{3} \cdot x_{4} \cdot x_{5}$ and $S_{2} \mid S_{3}$, a contradiction. If $x_{1} \mid S_{3}$, then $x_{2}, x_{3} \nmid S_{3}$. Therefore, $S_{3}=x_{5} \cdot x_{1} \cdot x_{4}$ and \mathcal{A}_{i} is of form $(c 1)$. If $x_{2} \mid S_{3}$, then similarly we have $S_{3}=x_{5} \cdot x_{2} \cdot x_{3}$, and thus \mathcal{A}_{i} is of form ($c 1$) again.

Subcase 2.2: \mathcal{A}_{i} contains one sequence of length 4 . Then $\left|S_{5}\right|=4$ and $\left|S_{3}\right|=\left|S_{4}\right|=3$. Since $x_{5} \cdot x_{6} \mid S_{5}$ and $\left|\operatorname{gcd}\left(S_{1}, S_{5}\right)\right|=\left|\operatorname{gcd}\left(S_{2}, S_{5}\right)\right|=1$, we may assume $S_{5}=x_{5} \cdot x_{6} \cdot x_{1} \cdot x_{3}$. Note that $\operatorname{gcd}\left(S_{3}, x_{5} \cdot x_{6}\right) \neq 1$ and $\operatorname{gcd}\left(S_{4}, x_{5} \cdot x_{6}\right) \neq 1$. We may assume that $\left|\operatorname{gcd}\left(S_{3}, x_{5} \cdot x_{6}\right)\right| \geq\left|\operatorname{gcd}\left(S_{4}, x_{5} \cdot x_{6}\right)\right|$.

If $x_{5} \cdot x_{6} \mid S_{3}$, then $x_{1}, x_{3} \nmid S_{3}$. Without loss of generality, let $x_{2} \mid S_{3}$. Then $S_{3}=x_{5} \cdot x_{6} \cdot x_{2}$. Next, we may assume $x_{5} \mid S_{4}$. Then $x_{2}, x_{6} \nmid S_{4}$. If $x_{1} \nmid S_{4}$,
then $S_{4}=x_{5} \cdot x_{3} \cdot x_{4}$ and $S_{2} \mid S_{4}$, a contradiction. So $x_{1} \mid S_{4}$. By Lemma 2.4, $\left|\operatorname{gcd}\left(S_{4}, S_{5}\right)\right| \leq 2$, so $x_{3} \nmid S_{4}$. Therefore $S_{4}=x_{5} \cdot x_{1} \cdot x_{4}$. Then \mathcal{A}_{i} is of form (c2).
Now, suppose $\operatorname{gcd}\left(S_{3}, x_{5} \cdot x_{6}\right)=x_{5}$, and then $\left|\operatorname{gcd}\left(S_{4}, x_{5} \cdot x_{6}\right)\right|=1$. Since $\mathrm{v}_{x_{6}}(T) \geq 2$, then $x_{6} \mid S_{4}$ and thus $x_{5} \nmid S_{4}$. Hence, $S_{4} \mid x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{6}$. If $x_{1} \mid S_{3}$, then $x_{2}, x_{3} \nmid S_{3}$, so $S_{3}=x_{5} \cdot x_{1} \cdot x_{4}$. Since $\mathrm{v}_{x_{1}}(T) \leq 3, x_{1} \nmid S_{4}$. and thus $S_{4} \mid x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{6}$. Note that $\left|\operatorname{gcd}\left(x_{3} \cdot x_{4}, S_{4}\right)\right| \leq 1$. We have $S_{4}=x_{6} \cdot x_{2} \cdot x_{3}$ or $S_{4}=x_{6} \cdot x_{2} \cdot x_{4}$. If $S_{4}=x_{6} \cdot x_{2} \cdot x_{3}$, then $S_{4}=S S_{3}^{-1}$, so \mathcal{A}_{i} is the dual class of itself. Since $\left|\mathcal{A}_{i}\right|=5, \mathcal{A}_{i}$ is not self-dual, a contradiction. Thus $S_{4}=x_{6} \cdot x_{2} \cdot x_{4}$ and then \mathcal{A}_{i} is of form ($c 3$).

Next, assume that $x_{1} \nmid S_{3}$. By the symmetry of x_{1} and x_{3} in $\left\{S_{1}, S_{2}, S_{5}\right\}$, we may also assume that $x_{3} \nmid S_{3}$. By the symmetry of S_{3} and S_{4}, we also have $x_{1}, x_{3} \nmid S_{4}$. Then,

$$
S_{3} \mid x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { and } \quad S_{4} \mid x_{2} \cdot x_{4} \cdot x_{5} \cdot x_{6},
$$

so $\left|\operatorname{gcd}\left(S_{3}, S_{4}\right)\right| \geq 2$, a contradiction.
Subcase 2.3: \mathcal{A}_{i} contains no sequence of length 4 . Then $\left|S_{3}\right|=\left|S_{4}\right|=$ $\left|S_{5}\right|=3$. Since $\operatorname{gcd}\left(S_{j}, x_{5} \cdot x_{6}\right) \neq 1$ for every $j=3,4,5$, we may assume $x_{5} \mid \operatorname{gcd}\left(S_{3}, S_{4}\right)$. If $x_{5} \mid S_{5}$, then

$$
x_{5}^{-1} S_{\nu} \mid x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{6} \quad \text { for every } \quad \nu \in[3,5] .
$$

Since $\left|x_{5}^{-1} S_{3}\right|=\left|x_{5}^{-1} S_{4}\right|=\left|x_{5}^{-1} S_{5}\right|=2$, there exist $m, n \in[3,5]$ such that $\left|\operatorname{gcd}\left(x_{5}^{-1} S_{m}, x_{5}^{-1} S_{n}\right)\right| \geq 1$, so $\left|\operatorname{gcd}\left(S_{m}, S_{n}\right)\right| \geq 2$, a contradiction. Thus $x_{5} \nmid S_{5}$, and therefore $x_{6} \mid S_{5}$. By the symmetry of S_{3}, S_{4}, we may assume $x_{6} \mid S_{3}$ and $x_{6} \nmid S_{4}$. This gives that $x_{5} \cdot x_{6} \mid S_{3}$. By the symmetry of x_{1}, x_{2}, x_{3} and x_{4} in $\left\{S_{1}, S_{2}\right\}$, we may assume $S_{3}=x_{5} \cdot x_{6} \cdot x_{1}$. Since $x_{5} \mid S_{4}$, we have $x_{6}, x_{1} \nmid S_{4}$. so $S_{4}=x_{5} \cdot x_{2} \cdot x_{3}$ or $S_{4}=x_{5} \cdot x_{2} \cdot x_{4}$ or $S_{4}=x_{5} \cdot x_{3} \cdot x_{4}$. But $S_{2} \nmid S_{4}$, so $S_{4} \neq x_{5} \cdot x_{3} \cdot x_{4}$. By the symmetry of x_{3} and x_{4} in $\left\{S_{1}, S_{2}, S_{3}\right\}$, we may assume that $S_{4}=x_{5} \cdot x_{2} \cdot x_{3}$. Since $x_{6} \mid S_{5}$, we have $x_{1} \nmid S_{5}$, so $S_{5}=x_{6} \cdot x_{2} \cdot x_{3}$ or $S_{5}=x_{6} \cdot x_{2} \cdot x_{4}$ or $S_{5}=x_{6} \cdot x_{3} \cdot x_{4}$. Note that $x_{6}+x_{2}+x_{3} \neq x_{5}+x_{2}+x_{3}, x_{6}+x_{3}+x_{4} \neq x_{3}+x_{4}$, we must have $S_{5}=x_{6} \cdot x_{2} \cdot x_{4}$. Hence, \mathcal{A}_{i} is of form (c4).

Case 3: \mathcal{A}_{i} contains exactly one sequence of length 2 . We may also assume \mathcal{A}_{i} contains at most one sequence of length 4 (otherwise, we may consider $\overline{\mathcal{A}}_{i}$ instead and we are back to one of the above cases). Let $S_{1}=$ $x_{1} \cdot x_{2}$.

Subcase 3.1: \mathcal{A}_{i} contains exactly one sequence of length 4 . Then $\left|S_{5}\right|=$ 4. If $\operatorname{gcd}\left(S_{5}, S_{1}\right)=1$, then \mathcal{A}_{i} is the dual class of itself, giving a contradiction. So $\operatorname{gcd}\left(S_{5}, S_{1}\right) \neq 1$. Without loss of generality, we may assume that $S_{5}=$ $x_{1} \cdot x_{3} \cdot x_{5} \cdot x_{6}$.

If $x_{1} \nmid S_{2} S_{3} S_{4}$, then we have

$$
S_{\nu} \mid x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { for every } \quad \nu \in[2,4] .
$$

Since $\left|S_{2}\right|=\left|S_{3}\right|=\left|S_{4}\right|=3$, there exist $m, n \in[2,4]$ such that $\left|\operatorname{gcd}\left(S_{m}, S_{n}\right)\right| \geq$ 2 , a contradiction. So $x_{1} \mid S_{2} S_{3} S_{4}$. But $\mathrm{v}_{a}(T) \leq 3$ for every $a \mid S$, so we have
$\mathrm{v}_{x_{1}}\left(S_{2} S_{3} S_{4}\right)=1$. Without loss of generality, let $x_{1} \mid S_{2}$. Then $x_{2} \nmid S_{2}$ and $x_{1} \nmid S_{3} S_{4}$. If $x_{4} \nmid S_{2}$, then $S_{2} \mid x_{1} \cdot x_{3} \cdot x_{6} \cdot x_{5}=S_{5}$, a contradiction. So $x_{4} \mid S_{2}$. By the symmetry of x_{3}, x_{6} and x_{5} in $\left\{S_{1}, S_{5}\right\}$, we may assume $x_{3} \mid S_{2}$, so $S_{2}=x_{1} \cdot x_{4} \cdot x_{3}$.

Note that $x_{1} \nmid S_{3} S_{4}$, and thus we have

$$
S_{3} \mid x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6} \quad \text { and } \quad S_{4} \mid x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6}
$$

Since $v_{x_{2}}(T) \geq 2$, we have $\mathrm{v}_{x_{2}}\left(S_{3} S_{4}\right) \geq 1$. Let $x_{2} \mid S_{3}$. If $x_{6}, x_{5} \nmid S_{3}$, then $S_{3}=x_{2} \cdot x_{3} \cdot x_{4}$, and thus $\left|\operatorname{gcd}\left(S_{2}, S_{3}\right)\right|=2$, a contradiction. So $x_{6} \mid S_{3}$ or $x_{5} \mid S_{3}$. Without loss of generality, let $x_{6} \mid S_{3}$. If $x_{5} \mid S_{3}$, then $S_{3}=x_{2} \cdot x_{6} \cdot x_{5}=S S_{2}^{-1}$, so \mathcal{A}_{i} is the dual class of itself, a contradiction. Then $x_{5} \nmid S_{3}$. Therefore, $S_{3}=x_{2} \cdot x_{6} \cdot x_{3}$ or $S_{3}=x_{2} \cdot x_{4} \cdot x_{6}$.

First assume that $S_{3}=x_{2} \cdot x_{6} \cdot x_{3}$. If $x_{2} \nmid S_{4}$, we have $S_{4} \mid x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6}$. So $S_{4}=x_{3} \cdot x_{6} \cdot x_{5}$ or $S_{4}=x_{3} \cdot x_{4} \cdot x_{6}$ or $S_{4}=x_{3} \cdot x_{5} \cdot x_{4}$ or $S_{4}=x_{4} \cdot x_{5} \cdot x_{6}$. But

$$
\begin{aligned}
& x_{3}+x_{6}+x_{5} \neq x_{1}+x_{3}+x_{6}+x_{5} \\
& x_{3}+x_{4}+x_{6} \neq x_{1}+x_{4}+x_{3} \\
& x_{3}+x_{5}+x_{4} \neq x_{1}+x_{4}+x_{3}
\end{aligned}
$$

so $S_{4}=x_{4} \cdot x_{5} \cdot x_{6}$. Then \mathcal{A}_{i} is of form ($c 5$). If $x_{2} \mid S_{4}$, then $x_{3}, x_{6} \nmid S_{4}$, so $S_{4}=x_{2} \cdot x_{5} \cdot x_{4}$. Again, \mathcal{A}_{i} is of form (c6).

Next, assume that $S_{3}=x_{2} \cdot x_{4} \cdot x_{6}$. If $x_{2} \nmid S_{4}$, we have $S_{4} \mid x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6}$. So $S_{4}=x_{3} \cdot x_{6} \cdot x_{5}$ or $x_{3} \cdot x_{4} \cdot x_{6}$ or $x_{3} \cdot x_{5} \cdot x_{4}$ or $S_{4}=x_{4} \cdot x_{5} \cdot x_{6}$. Since

$$
\begin{aligned}
& x_{3}+x_{6}+x_{5} \neq x_{1}+x_{3}+x_{6}+x_{5} ; \\
& x_{3}+x_{4}+x_{6} \neq x_{1}+x_{4}+x_{3} \\
& x_{3}+x_{5}+x_{4} \neq x_{1}+x_{4}+x_{3} \\
& x_{4}+x_{5}+x_{6} \neq x_{2}+x_{4}+x_{6}
\end{aligned}
$$

none of the above cases are possible. So $x_{2} \mid S_{4}$. Then $x_{4}, x_{6} \nmid S_{4}$ and thus $S_{4}=x_{2} \cdot x_{5} \cdot x_{3}$. By the symmetry of x_{6} and x_{5} in $\left\{S_{1}, S_{2}, S_{5}\right\}$, we have \mathcal{A}_{i} is of form ($c 6$).

Subcase 3.2: \mathcal{A}_{i} contains no sequence of length 4. Then $\left|S_{2}\right|=\left|S_{3}\right|=$ $\left|S_{4}\right|=\left|S_{5}\right|=3$.

Recall that $S_{1}=x_{1} \cdot x_{2}$. Since $\mathrm{v}_{a}(T) \geq 2$ for every $a \mid S$, we have $\operatorname{supp}\left(S_{2} S_{3} S_{4} S_{5}\right)=\operatorname{supp}(S)$.

We assert that $\mathrm{v}_{a}\left(S_{2} S_{3} S_{4} S_{5}\right)=2$ for every $a \in S$.
If there exists $a \mid S$ such that $\mathrm{v}_{a}\left(S_{2} S_{3} S_{4} S_{5}\right)=3$, we may assume $a \mid \operatorname{gcd}\left(S_{2}, S_{3}, S_{4}\right)$. Since

$$
a^{-1} S_{\nu} \mid a^{-1} S \quad \text { for every } \quad \nu \in[2,4],
$$

there exist $m, n \in[2,4]$ such that $\left|\operatorname{gcd}\left(a^{-1} S_{m}, a^{-1} S_{n}\right)\right| \geq 1$. This implies that $\left|\operatorname{gcd}\left(S_{m}, S_{n}\right)\right| \geq 2$, a contradiction. Thus $\mathrm{v}_{a}\left(S_{2} S_{3} S_{4} S_{5}\right) \leq 2$ for every $a \in S$. Since $\left|S_{2} S_{3} S_{4} S_{5}\right|=12$, we have $\mathrm{v}_{a}\left(S_{2} S_{3} S_{4} S_{5}\right)=2$ for every $a \in S$. This proves the assert.

Re call that $T=S_{1} S_{2} S_{3} S_{4} S_{5}$. By the above assertion, we have $\mathrm{v}_{x_{1}}(T)=$ $\mathrm{v}_{x_{2}}(T)=3$. So we may assume $x_{1} \mid \operatorname{gcd}\left(S_{2}, S_{3}\right)$ and $x_{2} \mid \operatorname{gcd}\left(S_{4}, S_{5}\right)$. Then $x_{2} \nmid \operatorname{gcd}\left(S_{2}, S_{3}\right)$ and $x_{1} \nmid \operatorname{gcd}\left(S_{4}, S_{5}\right)$. Without loss of generality, let $S_{2}=$ $x_{1} \cdot x_{3} \cdot x_{6}$ and $S_{3}=x_{1} \cdot x_{5} \cdot x_{4}$. Since $\left|\operatorname{gcd}\left(S_{4}, S_{2}\right)\right| \leq 1$ and $\left|\operatorname{gcd}\left(S_{4}, S_{3}\right)\right| \leq 1$, we may assume $S_{4}=x_{2} \cdot x_{3} \cdot x_{5}$. Then $S_{5}=x_{2} \cdot x_{4} \cdot x_{6}$ and therefore, \mathcal{A}_{i} is of form ($c 7$).

Case 4: \mathcal{A}_{i} contains no sequence of length 2 . As before, we may assume \mathcal{A}_{i} contains no sequence of length 4. Then $\left|S_{1}\right|=\cdots=\left|S_{5}\right|=3$ and $|T|=15$. Since $|S|=6$, we must have $\mathrm{v}_{a}(T)=3$ for some $a \mid S$. As in Subcase 3.2, there exist $m \neq n$ such that $\left|\operatorname{gcd}\left(S_{m}, S_{n}\right)\right| \geq 2$, giving a contradiction.

This completes the proof.
Lemma 7.10. If $x_{1}+x_{2}=x_{3}+x_{4}=x_{5}+x_{6}+x_{1}+x_{3}=x_{5}+x_{6}+x_{2}+x_{4}=$ $x_{5}+x_{1}+x_{4}$, then $\boldsymbol{f}(S) \geq 19$.
Proof. Let

$$
\begin{aligned}
& a_{1}=x_{1}=x_{2}+x_{6}=x_{4}+x_{5}+x_{6}, \\
& a_{2}=x_{2}=x_{4}+x_{5}=x_{3}+x_{5}+x_{6}, \\
& a_{3}=x_{3}=x_{1}+x_{5}=x_{2}+x_{5}+x_{6}, \\
& a_{4}=x_{4}=x_{3}+x_{6}=x_{1}+x_{5}+x_{6}, \\
& a_{5}=x_{1}+x_{2}=x_{3}+x_{4}=x_{5}+x_{6}+x_{1}+x_{3}=x_{5}+x_{6}+x_{2}+x_{4}=x_{5}+x_{1}+x_{4}, \\
& a_{6}=x_{1}+x_{3}=x_{2}+x_{4}=x_{1}+x_{2}+x_{5}+x_{6}=x_{3}+x_{4}+x_{5}+x_{6}=x_{2}+x_{3}+x_{6}, \\
& a_{7}=x_{1}+x_{2}+x_{3}=x_{1}+x_{3}+x_{4}+x_{5}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6}, \\
& a_{8}=x_{1}+x_{2}+x_{4}=x_{1}+x_{2}+x_{3}+x_{6}=x_{1}+x_{3}+x_{4}+x_{5}+x_{6}, \\
& a_{9}=x_{1}+x_{3}+x_{4}=x_{2}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}+x_{4}+x_{5}+x_{6}, \\
& a_{10}=x_{2}+x_{3}+x_{4}=x_{1}+x_{2}+x_{4}+x_{5}=x_{1}+x_{2}+x_{3}+x_{5}+x_{6}, \\
& a_{11}=x_{1}+x_{2}+x_{3}+x_{4}=x_{1}+x_{2}+2 x_{3}+x_{6}=x_{1}+x_{3}+2 x_{4}+x_{5}, \\
& a_{12}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}, \\
& a_{13}=x_{1}+x_{4}=x_{1}+x_{3}+x_{6}=x_{2}+x_{4}+x_{6}=x_{2}+x_{3}+2 x_{6}, \\
& a_{14}=x_{2}+x_{3}=x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{5}, \\
& a_{15}=x_{1}+x_{2}+x_{6}=x_{3}+x_{4}+x_{6}=x_{1}+x_{4}+x_{5}+x_{6}=x_{1}+x_{3}+x_{5}+2 x_{6}, \\
& a_{16}=x_{1}+x_{3}+x_{5}=x_{2}+x_{4}+x_{5}=x_{2}+x_{3}+x_{5}+x_{6}, \\
& a_{17}=x_{5}+x_{6}, \\
& a_{18}=x_{5}, \\
& a_{19}=x_{6}, \\
& a_{20}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}, \\
& a_{21}=x_{1}+x_{6} .
\end{aligned}
$$

By Lemma 2.4, we have

$$
a_{1}, a_{2}, \ldots, a_{16}
$$

are pairwise distinct.
In view of $x_{1}+x_{2}=x_{3}+x_{4}=x_{5}+x_{6}+x_{1}+x_{3}=x_{5}+x_{6}+x_{2}+x_{4}$, we obtain that $2\left(x_{5}+x_{6}\right)=0$. So $a_{17} \neq a_{1}, \ldots, a_{11}, a_{13}, a_{14}$. By Lemma 2.4, we have $a_{17} \neq a_{12}, a_{15}, a_{16}$. Therefore,
are pairwise distinct.
By Lemma 2.4, we have

$$
\begin{aligned}
& a_{18} \neq a_{1}, \ldots, a_{10}, a_{12}, a_{14}, \ldots, a_{17} \\
& a_{19} \neq a_{1}, \ldots, a_{10}, a_{12}, a_{13}, a_{15}, \ldots, a_{18}
\end{aligned}
$$

If $a_{18}=a_{13}$, then $x_{5}=x_{1}+x_{4}=x_{1}+x_{3}+x_{6}=x_{2}+x_{4}+x_{6}$, so $x_{2}=x_{4}+x_{5}=x_{3}+x_{5}+x_{6}=x_{1}+x_{3}+x_{4}+x_{6}$. It follows from Lemma 3.3 that $\mathrm{f}(S) \geq 19$. So, we may assume $a_{18} \neq a_{13}$. Similarly, we may assume that $a_{19} \neq a_{14}$, so $x_{6} \neq x_{2}+x_{3}$.

If $a_{18} \neq a_{11}$ and $a_{19} \neq a_{11}$, then $a_{1}, a_{2}, \ldots, a_{19}$ are pairwise distinct and we are done. Without loss of generality, let $a_{18}=a_{11}$. Then $a_{19} \neq a_{11}$ and thus $a_{1}, a_{2}, \ldots, a_{17}, a_{19}$ are pairwise distinct.

By Lemma 2.4, we have $a_{20} \neq a_{1}, \ldots, a_{14}, a_{16}$. Since $x_{6} \neq x_{2}+x_{3}$, we have $x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \neq x_{1}+x_{4}+x_{5}+x_{6}$, that is $a_{20} \neq a_{15}$. Note that $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=x_{5}+x_{5} \neq x_{5}+x_{6}$. We have $a_{20} \neq a_{17}$. If $a_{20} \neq a_{19}$, then $a_{1}, \ldots a_{17}, a_{19}, a_{20}$ are pairwise distinct and we are done. So, we may assume that $a_{20}=a_{19}$, so $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=x_{6}$. Then we have

$$
a_{21}=x_{1}+x_{6}=x_{2}+x_{6}+x_{6}=x_{1}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}
$$

Since S contains no elements of order 2, again, by Lemma 2.4, we have $a_{21} \neq a_{1}, \ldots, a_{17}, a_{19}$. Therefore

$$
a_{1}, a_{2}, \ldots, a_{17}, a_{19}, a_{21}
$$

are pairwise distinct and we are done.
Lemma 7.11. If $x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{1}+x_{5}+x_{6}=x_{2}+x_{3}+x_{5}=$ $x_{2}+x_{4}+x_{6}$, then $\mathrm{f}(S) \geq 19$.

Proof. Let
$a_{1}=x_{1}=x_{3}+x_{5}=x_{4}+x_{6}$,
$a_{2}=x_{2}=x_{3}+x_{4}=x_{5}+x_{6}$,
$a_{3}=x_{3}$,
$a_{4}=x_{4}$,
$a_{5}=x_{5}$,
$a_{6}=x_{6}$,
$a_{7}=x_{1}+x_{2}=x_{1}+x_{3}+x_{4}=x_{1}+x_{5}+x_{6}=x_{2}+x_{3}+x_{5}=x_{2}+x_{4}+x_{6}$,
$a_{8}=x_{3}+x_{4}+x_{5}+x_{6}=x_{2}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4}=x_{1}+x_{4}+x_{6}=$
$x_{1}+x_{3}+x_{5}$,
$a_{9}=x_{1}+x_{3}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{5}+x_{6}=x_{1}+x_{2}+x_{3}+x_{4}$,
$a_{10}=x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}+x_{5}$,
$a_{11}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$,
$a_{12}=x_{1}+x_{3}=x_{3}+x_{4}+x_{6}=x_{2}+x_{6}$,
$a_{13}=x_{1}+x_{4}=x_{3}+x_{4}+x_{5}=x_{2}+x_{5}$,
$a_{14}=x_{1}+x_{5}=x_{4}+x_{5}+x_{6}=x_{2}+x_{4}$,
$a_{15}=x_{1}+x_{6}=x_{3}+x_{5}+x_{6}=x_{2}+x_{3}$,
$a_{16}=x_{2}+x_{4}+x_{5}+x_{6}=x_{1}+x_{2}+x_{5}=x_{1}+x_{3}+x_{4}+x_{5}$,

$$
\begin{aligned}
& a_{17}=x_{2}+x_{3}+x_{5}+x_{6}=x_{1}+x_{2}+x_{6}=x_{1}+x_{3}+x_{4}+x_{6}, \\
& a_{18}=x_{2}+x_{3}+x_{4}+x_{6}=x_{1}+x_{2}+x_{3}=x_{1}+x_{3}+x_{5}+x_{6} \\
& a_{19}=x_{2}+x_{3}+x_{4}+x_{5}=x_{1}+x_{2}+x_{4}=x_{1}+x_{4}+x_{5}+x_{6}
\end{aligned}
$$

Since S contains no elements of order 2 , we have $a_{3} \neq a_{14}, a_{12} \neq a_{19}, a_{13} \neq$ $a_{18}, a_{14} \neq a_{17}, a_{15} \neq a_{16}$. This together with Lemma 2.4 shows that

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}, a_{18}, a_{19}
$$

are pairwise distinct and we are done.
We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4.

By Lemma 5.1, $\left|\mathcal{A}_{k}\right| \leq 5$ for all $k \in[1, r]$. If \mathcal{A}_{i} has the form $(c 1)$ or ($c 7$) described in Lemma 7.9, then by Lemma 7.10 or Lemma 7.11, we have $\mathrm{f}(S) \geq 19$. Next, we may assume \mathcal{A}_{i} has one of the forms $(c 2),(c 3),(c 4)$, $(c 5)$ and (c6). Then we have one of the following holds correspondingly.

$$
\begin{aligned}
& x_{\tau(2)}=x_{\tau(3)}+x_{\tau(5)}+x_{\tau(6)}=x_{\tau(4)}+x_{\tau(5)}=x_{\tau(1)}+x_{\tau(3)}, \\
& x_{\tau(3)}=x_{\tau(4)}+x_{\tau(5)}+x_{\tau(6)}=x_{\tau(1)}+x_{\tau(5)}=x_{\tau(2)}+x_{\tau(6)}, \\
& x_{\tau(1)}=x_{\tau(2)}+x_{\tau(5)}+x_{\tau(6)}=x_{\tau(3)}+x_{\tau(5)}=x_{\tau(4)}+x_{\tau(6)}, \\
& x_{\tau(2)}=x_{\tau(3)}+x_{\tau(5)}+x_{\tau(6)}=x_{\tau(1)}+x_{\tau(5)}=x_{\tau(3)}+x_{\tau(4)}, \\
& \text { and } \\
& x_{\tau(2)}=x_{\tau(3)}+x_{\tau(5)}+x_{\tau(6)}=x_{\tau(1)}+x_{\tau(5)}=x_{\tau(3)}+x_{\tau(4)} .
\end{aligned}
$$

It follows from Lemma 5.1, Lemma 7.2 that \mathcal{A}_{i} induces a class $\left[x_{\tau(j)}\right]$ of form (b3) described in Lemma 7.2, and therefore, the lemma follows from Lemma 7.4.

8. Proof of Theorem 1.3

The proof of Theorem 1.3 is based on Theorem 1.2, and it uses ideas of P. Erdős, W. Gao, A. Geroldinger, Y. ould Hamidoune et.al. (see [8, Sections 5.3 and 5.4]).

Let G be cyclic of order $n \geq 3$ and let $S \in \mathcal{F}(G)$ be zero-sum free with

$$
|S| \geq \frac{6 n+28}{19}
$$

Let $q \in \mathbb{N}_{0}$ be maximal such that S has a representation in the form $S=$ $S_{0} S_{1} \cdot \ldots \cdot S_{q}$ with squarefree, zero-sum free sequences $S_{1}, \ldots, S_{q} \in \mathcal{F}(G)$ of length $\left|S_{\nu}\right|=6$ for all $\nu \in[1, q]$. Among all those representations of S choose one for which $d=\left|\operatorname{supp}\left(S_{0}\right)\right|$ is maximal, and set $S_{0}=g_{1}^{r_{1}} \cdot \ldots \cdot g_{d}^{r_{d}}$,
where $g_{1}, \ldots, g_{d} \in G$ are pairwise distinct, $d \in \mathbb{N}_{0}$ and $r_{1} \geq \cdots \geq r_{d} \in \mathbb{N}$. Since q is maximal, we have $d \in[0,5]$.

Assume to the contrary that $r_{1} \leq 1$. Then either $d=0$ or $r_{1}=\ldots=$ $r_{d}=1$, and for convenience we set $\mathrm{F}(0)=0$. By Theorem 1.2, Lemmas 2.1 and 2.2 , it follows that

$$
\begin{aligned}
|\Sigma(S)| & \geq\left|\Sigma\left(S_{0}\right)\right|+\sum_{i=1}^{q}\left|\Sigma\left(S_{i}\right)\right| \geq\left|\Sigma\left(S_{0}\right)\right|+19 q \\
& \geq 19 \frac{|S|-d}{6}+\mathrm{F}(d)=\frac{19|S|-19 d+6 \mathrm{~F}(d)}{6} \geq \frac{19|S|-28}{6} \geq n
\end{aligned}
$$

a contradiction.
Thus it follows that $r_{1} \geq 2$, and we set $g=g_{1}$. We assert that $\mathrm{v}_{g}\left(S_{i}\right) \geq 1$ for all $i \in[1, q]$. Assume to the contrary that there exists some $i \in[1, q]$ with $g \nmid S_{i}$. Then there is an $h \in \operatorname{supp}\left(S_{i}\right)$ with $h \nmid S_{0}$. Since S may be written in the form

$$
S=\left(h g^{-1} S_{0}\right) S_{1} \cdot \ldots \cdot S_{i-1}\left(g h^{-1} S_{i}\right) S_{i+1} \cdot \ldots \cdot S_{q}
$$

and $\left|\operatorname{supp}\left(h g^{-1} S_{0}\right)\right|>\left|\operatorname{supp}\left(S_{0}\right)\right|$, we obtain a contradiction to the maximality of $\left|\operatorname{supp}\left(S_{0}\right)\right|$.

Clearly S_{0} allows a product decomposition of the form

$$
S_{0}=\prod_{i=1}^{5} T_{1}^{(i)} \cdot \ldots \cdot T_{q_{i}}^{(i)}
$$

where all $T_{\nu}^{(i)} \in \mathcal{F}(G)$ are squarefree with $\mathrm{v}_{g}\left(T_{\nu}^{(i)}\right)=1, q_{1}, \ldots, q_{5} \in \mathbb{N}_{0}$ and $\left|T_{1}^{(i)}\right|=\ldots=\left|T_{q_{i}}^{(i)}\right|=i$ for all $i \in[1,5]$. Thus we get

$$
|S|=\left|S_{0}\right|+6 q=q_{1}+2 q_{2}+3 q_{3}+4 q_{4}+5 q_{5}+6 q
$$

$$
\mathrm{v}_{g}\left(S_{0}\right)=q_{1}+\ldots+q_{5} \quad \text { and hence } \quad \mathrm{v}_{g}(S) \geq q+q_{1}+\ldots+q_{5}
$$

Since

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)| \geq\left|\Sigma\left(S_{0}\right)\right|+\sum_{i=1}^{5}\left|\Sigma\left(T_{1}^{(i)} \cdot \ldots \cdot T_{q_{i}}^{(i)}\right)\right| \\
& \geq q \mathrm{~F}(6)+\sum_{i=1}^{5} q_{i} \mathrm{~F}(i)=19 q+q_{1}+3 q_{2}+5 q_{3}+8 q_{4}+13 q_{5}
\end{aligned}
$$

we infer that

$$
\begin{aligned}
6|S|-(n-1) & \leq 6\left(q_{1}+2 q_{2}+3 q_{3}+4 q_{4}+5 q_{5}+6 q\right)-\left(q_{1}+3 q_{2}+5 q_{3}+8 q_{4}+13 q_{5}+19 q\right) \\
& =17 q+17 q_{5}+16 q_{4}+13 q_{3}+9 q_{2}+5 q_{1} \\
& \leq 17 \mathrm{v}_{g}(S)
\end{aligned}
$$

We close the paper with a remark on Olson's constant. Let ol (G) denote the maximal length of a squarefree, zero-sum free sequence over G, and let $\mathrm{Ol}(G)$ be the smallest integer $l \in \mathbb{N}$ such that every squarefree sequence $S \in \mathcal{F}(G)$ of length $|S| \geq l$ satisfies $0 \in \Sigma(S)$. Then $1+\mathrm{ol}(G)=\mathrm{OI}(G)$, and $\mathrm{Ol}(G)$ is called Olson's constant. If

$$
\mathrm{F}(G, k) \geq 1+c^{-2} k^{2} \quad \text { for some } \quad k \in \mathbb{N} \text { and } c \in \mathbb{R}_{>0}
$$

then a simple argument shows that $\operatorname{ll}(G)<c \sqrt{|G|-1}$ (see [8, Lemma 5.1.17] for details). A survey on Olson's constant can be found in [6, Section 10].

ACKNOWLEDGMENTS.

The authors would like to thank the referee for very useful suggestion. This research was supported in part by the 973 Project, the PCSIRT Project of the Ministry of Education, the Ministry of Science and Technology, the National Science Foundation of China and a discovery grant from NSERC. This paper was completed during a visit by the first author to Brock University in Canada. He would like to thank the host institution for its kind hospitality.

References

[1] G. Bhowmik, I. Halupczok, and J.-C. Schlage-Puchta, Zero-sum free sequences with small sum-set, manuscript.
[2] J.D. Bovey, P. Erdős, and I. Niven, Conditions for zero sum modulo n, Can. Math. Bull. 18 (1975), $27-29$.
[3] R.B. Eggleton and P. Erdős, Two combinatorial problems in group theory, Scientific paper 117, Dept. of Math., Stat. and Comp. Sci., U. of Calgary. (1971).
[4] _, Two combinatorial problems in group theory, Acta Arith. 21 (1972), 111 116.
[5] W. Gao and A. Geroldinger, On the structure of zerofree sequences, Combinatorica 18 (1998), $519-527$.
[6] , Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), $337-369$.
[7] A. Geroldinger, Additive group theory and non-unique factorizations, to appear in Advanced Courses in Mathematics CRM Barcelona.
[8] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, 700p, vol. 278, Chapman \& Hall/CRC, 2006.
[9] A. Geroldinger and Y. ould Hamidoune, Zero-sumfree sequences in cyclic groups and some arithmetical application, J. Théor. Nombres Bordx. 14 (2002), 221 - 239.
[10] J.E. Olson, Sums of sets of group elements, Acta Arith. 28 (1975), 147 - 156.
[11] S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math. 307 (2007), 2671 - 2679.
[12] \quad, Long n-zero-free sequences in finite cyclic groups, Discrete Math. $\mathbf{3 0 8}$ (2008), $1-8$.

Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: gao@cfc.nankai.edu.cn
Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1

E-mail address: yli@brocku.ca
Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: pjt821111@cfc.nankai.edu.cn
Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: sunfang2005@163.com

[^0]: 2000 Mathematics Subject Classification. Primary 11B75; Secondary 20D60. Key Words: Zero sum free sequences, Abelian groups.
 *Corresponding author: Weidong Gao, Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
 E-mail addresses: gao@cfc.nankai.edu.cn (W. Gao).
 August 24, 2008.

