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Abstract

Nowadays the term monochromatic and heterochromatic (or rain-
bow, multicolored) subgraphs of an edge-colored graph appeared fre-
quently in literature, and many results on this topic have been ob-
tained. In this paper, we survey results on this subject. We classify the
results into the following categories: vertex-partitions by monochro-
matic subgraphs, such as cycles, paths, trees; vertex partition by some
kinds of heterochromatic subgraphs; the computational complexity of
these partition problems; some kinds of large monochromatic and het-
erochromatic subgraphs. We have to point out that there are a lot of
results on Ramsey type problem of monochromatic and heterochro-
matic subgraphs. However, it is not our purpose to include them in
this survey because this is slightly different from our topics and also
contains too large amount of results to deal with together. There are
also some interesting results on vertex-colored graphs, but we do not
include them, either.
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1 Introduction

The study of monochromatic and heterochromatic subgraphs of an edge-
colored graph may be dated back to the 60’s or 70’s of the last century. But,
the development was not so fast. Since the 90’s, many important results
appeared. Most of the impressive results were obtained by using asymptotic
method [44]. Namely, in an edge-colored graph G, first find a sufficiently
large monochromatic and dense subgraph H having the required structural
properties that will be used in the last step for adjustment. Then remove
the vertices of the dense subgraph H , and greedily remove a number, which
depends on the number of colors, of vertex-disjoint monochromatic subgraphs
(cycles, paths, trees) from the remaining graph until the number of leftover
vertices is much smaller than the number of vertices associated to H . Finally
after some adjustment with respect to H , find a monochromatic subgraph
spanning the remaining vertices of H . Hence we can obtain the desired
spanning monochromatic subgraph of G. The Regularity Lemma plays a
central role in the process.

However, many unsolved problems or conjectures are still open. As
one knows, an asymptotic method does not like a canonical combinatorial
method. The former usually deals with cases of a large size, and the later
aims to solve all cases, small and large. The former gives us a support for
an open problem, however, if one wants to solve the whole problem, asymp-
totic method does not seem to work. This can be found later in the sequel,
for instance, the conjecture that the cycle and tree partition number of an
r-edge-colored complete graph is r and r − 1, respectively. In this paper, we
will survey results in this field. Open problems or conjectures from literature
are listed. We have to point out that there are a lot of results on Ramsey type
problem of monochromatic and heterochromatic subgraphs. However, it is
not our purpose to include them in this survey, because their taste and proof
techniques are slightly different from those of the topics dealt with in this
survey and the length of the survey is limited. There are also some interesting
results on vertex-colored graphs [60], we do not survey them, either.

We use Chartrand and Lesniak [20] for terminology and notations not
defined here and consider only simple graphs, which have neither loops nor
multiple edges, unless otherwise stated.

Let G = (V, E) be a graph with vertex set V = V (G) and edge set E =
E(G). Then |V | and |E| are called the order and the size of G, respectively.
By an edge coloring of G we mean a function col : E → {1, 2, · · · , r}, and
if the function col is surjective, it is called an r-edge coloring of G. If G is
assigned such colorings, we say that G is an edge-colored graph or r-edge-
colored graph. If the edges of G is colored so that no color is appeared in

2



more than k edges, we refer to this as a k-bounded coloring. A subgraph of an
edge-colored graph is called monochromatic if all of its edges have the same
color, and called heterochromatic if all of its edges have distinct colors. A
heterochromatic subgraph is also called rainbow, multicolored, polychromatic
or colorful. The complete k-partite graph K(n1, n2, . . . , nk) has the vertex set
V1 ∪V2 ∪ . . .∪Vk such that Vi ∩ Vj = ∅ and |Vi| = ni for every 1 ≤ i < j ≤ k,
and the edge set {xixj | xi ∈ Vi, xj ∈ Vj, 1 ≤ i < j ≤ k}.

Erdős, Gyárfás, and Pyber [32] introduced the following notions. The
monochromatic tree partition number of an r-edge-colored graph G, denoted
by monotreer(G), is the minimum number k such that whenever the edges
of G are colored with r colors, the vertices of G can be covered by at most
k vertex-disjoint monochromatic trees. The monochromatic path partition
number and monochromatic cycle partition number of an r-edge-colored graph
G are defined analogously. Also the heterochromatic tree partition number of
an r-edge-colored graph G, denoted by hetetreer(G), heterochromatic path
partition number and heterochromatic cycle partition number can be defined
similarly by using heterochromatic subgraphs instead of monochromatic sub-
graphs.

In Sections 2 and 3, we will focus on vertex-partition problems by monochro-
matic paths, cycles, and trees including the monochromatic partition num-
bers defined above. Then consider similar problems of heterochromatic paths,
cycles and trees. In Sections 4 and 5, we survey the results on the existence
of some kind of monochromatic and heterochromatic subgraphs. In the last
section, we give some other results. Heterochromatic subgraphs in random
colored graph, proper colored subgraphs, subgraphs of given color pattern
will be discussed here.

2 Monochromatic Vertex Partitions

In this section we survey results concerning vertex coverings and vertex par-
titions by monochromatic subgraphs in edge-colored graphs.

We discuss vertex partition problems with respect to monochromatic
path, cycle, k-regular subgraph and tree, respectively. Almost all these ver-
tex partition problems employ the asymptotic method as described in the
introduction. The last part of this section is devoted to the corresponding
optimization problems of these partitions and their computational complex-
ity.
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2.1 Partitions by Monochromatic Paths

We begin with vertex partition by monochromatic paths in 2-edge-colored
graphs. A graph is 2-edge-colored if each edge is colored either red or blue.
So its monochromatic path can be called a red path or a blue path.

Theorem 1 [39, 41] Every 2-edge-colored complete graph Kn contains either
a monochromatic hamiltonian path or vertex-disjoint one red path and one
blue path that together cover the vertices of Kn.

This interesting result was mentioned by Gerencsér and Gyárfás in a
footnote in [39]. Its proof shown in Gyárfás [41] gives an algorithm, which
enables us to find the required paths in the above Theorem 1 in O(n) time,
consequently, the algorithm gives us a monochromatic path of length at least
n/2 in O(n) time. Later, Gyárfás, Jagota and Schelp [43] obtained a similar
theorem for 2-edge-colored nearly complete graphs.

Theorem 2 [43] Let n ≥ 5 be an integer and G be a graph obtained from
the complete graph Kn by removing at most ⌊n/2⌋ edges. Then every 2-edge-
colored graph G contains vertex-disjoint one red path and one blue path that
together cover the vertices of Kn.

In 1978, Rado [70] obtained the following result.

Theorem 3 [70] Let Γ = (V, E) be an infinite directed graph such that A ⊆
V , |A| ≤ ℵ0 ≤ |V | and E ⊆ A × V . Suppose that, for every x ∈ A,
|{y ∈ V : (x, y) /∈ E}| < |V |, and every arc of Γ receives a color from the
color set I. Let ω denote the least infinite ordinal. Then there exists a subset
J ⊆ I such that for every j ∈ J , letting mj ∈ L = {1, 3, 5, . . .} ∪ {ω}, the
vertices xj(ν) ∈ V for 0 ≤ ν < mj satisfy the following:

(i) every x ∈ A occurs among the xj(ν),
(ii) xi(µ) = xj(ν) implies (i, µ) = (j, ν),
(iii) if j ∈ J and 0 < ν < mj and ν is odd, then

(xj(ν − 1), xj(ν)) and (xj(ν + 1), xj(ν))

are two arcs colored with j.

The following theorem, which generalized Theorem 1 to r-edge-colored
countably infinite complete graph K∞, can be easily obtained from Theo-
rem 3 by putting A = V ; |V | = ℵ0; E = V × V − {(x, x) : x ∈ V }; |I| = r
and making the color of every edge independent of its orientation.

4



Theorem 4 If the edges of the countably infinite complete graph K∞ are
colored with r colors, then the vertices of K∞ can be covered by at most r
vertex-disjoint finite or one-way infinite monochromatic paths.

Then, it is natural to ask whether we have a similar result in finite complete
graphs. Gyárfás made the following conjecture.

Conjecture 1 [42] The vertices of every r-edge-colored complete graph Kn

can be covered by at most r vertex-disjoint monochromatic paths.

It is easy to see that Conjecture 1 is true for r = 2 (see Theorem 1) but
for r = 3 it seems to be difficult. It is worth considering the following weaker
versions.

Conjecture 2 [42] The vertices of every r-edge-colored complete graph Kn

can be covered by at most r monochromatic paths, which are not necessary
vertex-disjoint.

Conjecture 3 [42] There exists a function f(r) with the following property:
The vertices of every r-edge-colored complete graph Kn can be covered by at
most f(r) vertex-disjoint monochromatic paths.

Conjecture 2 is open even for r = 3, on the other hand, Conjecture 3 was
solved as explained in the next subsection. For general r, Gyárfás proved the
following theorem, which is weaker than Conjecture 2 or Conjecture 3.

Theorem 5 [42] There exists a function f(r) with the following property:
The vertices of every r-edge-colored complete graph Kn can be covered by at
most f(r) monochromatic paths.

2.2 Partitions by Monochromatic Cycles

In this subsection, for convenience, we regard a vertex K1 or an edge K2 as
a cycle, and call such a cycle and a usual cycle a general cycle, that is, a
general cycle of order at least three is a usual cycle, and a general cycle of
order one or two is also allowed. The cycle partition number is defined by
using general cycles.

Like the above discussion for partitions by monochromatic paths, we first
give a result of a partition by monochromatic cycles in 2-edge-colored graphs.
The following theorem was obtained by Gyárfás in [41].
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Theorem 6 [41] The vertices of a 2-edge-colored complete graph Kn can be
covered by one red general cycle and one blue general cycle that have at most
one vertex in common.

In 1998,  Luczak, Rödl and Szemerédi [66] gave a stronger theorem.

Theorem 7 [66] There exists a constant n0 such that for each n ≥ n0, the
vertices of every 2-edge-colored complete graph Kn can be covered by vertex-
disjoint one red general cycle and one blue general cycle.

Erdős, Gyárfás and Pyber [32] considered a partition by monochromatic
cycles in r-edge-colored complete graphs.

Theorem 8 [32] The vertices of every r-edge-colored complete graph Kn can
be covered by at most cr2 log r vertex-disjoint monochromatic general cycles.

Note that Theorem 8 solved Conjecture 3 in a stronger form since every
cycle can be covered by a path. Theorem 8 implies that the cycle partition
number of r-edge-colored complete graphs depends only on r and is no more
than cr2 log r. In [44] Gyárfás, Ruszinkó, Sárközy and Szemerédi gave a
significant improvement to Theorem 8 for large n.

Theorem 9 [44] For every integer r ≥ 2, there exists a constant n0 = n0(r)
such that for every n ≥ n0, the vertices of every r-edge-colored complete
graph Kn can be covered by at most 100r log r vertex-disjoint monochromatic
general cycles.

In [32], Erdős, Gyárfás and Pyber gave the following example. Consider
a partition A1 ∪ A2 ∪ · · · ∪ An of the vertices of a complete graph, and, for
x ∈ Ai, y ∈ Aj , i ≤ j, color the edge xy with color i. If the sequence |Ai|
grows fast enough, then the vertices of this r-edge-colored complete graph
cannot be covered by less than r vertex-disjoint monochromatic paths. So
the monochromatic path partition number is at least r. This implies that the
monochromatic cycle partition number is also at least r. They conjectured
that this example is best possible and Theorem 8 can be sharpened as follows.

Conjecture 4 [32] The cycle partition number of an r-edge-colored complete
graph is r.

The special case r = 2 of this conjecture was asked earlier by Lehel, and
proved for large n by  Luczak, Rödl and Szemerédi [66] (see Theorem 7).
Some special cases for r = 2 have been solved by Ayel [10].

Erdős, Gyárfás and Pyber [32] also raised the question whether the cycle
partition number for the complete bipartite graph Kn,n is independent of n.
Haxell [49] settled it affirmatively.
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Theorem 10 [49] Let a positive integer r be given. Let ε be a real number
such that

1

16r
< ε <

1

7r
(1 − 1

r3
)(

4

5
− 1

r2
),

and let s ≥ 10 be an integer such that

1

1 − ε
− (1 − ε)1−1/s − 2ε1−1/s > 0.

Then the vertices of every r-edge-colored complete bipartite graph Kn,n can be
covered by at most 2r(s+3) log r+3r2 vertex-disjoint monochromatic general
cycles.

Theorem 10 shows that the cycle partition number of an r-edge-colored
Kn,n is at most O((r log r)2) for large r. Notice that if the requirement that
the cycles are vertex-disjoint is dropped, then as shown in [32], an r-edge-
colored Kn,n can be covered by O(r2) monochromatic cycles.

2.3 Partitions by Monochromatic k-Regular Subgraphs

Notice that cycles can be viewed as 2-regular graphs. So the monochromatic
cycle partition problem can be naturally generalized to k-regular subgraph
partition problem. In [73], Sárközy and Selkow obtained the following re-
sult on partitioning the vertices of an r-edge-colored complete graph into
connected monochromatic k-regular subgraphs.

Theorem 11 [73] There exists a constant c such that for any r, k ≥ 2, the
vertices of every r-edge-colored complete graph Kn can be covered by at most
rc(r log r+k) vertex-disjoint connected monochromatic k-regular subgraphs and
vertices.

The necessity of including vertices in the partition follows from a coloring
in which there is a vertex v such that the edges incident with v are colored
red and all the other edges are colored blue. Sárközy and Selkow gave a
similar theorem for complete bipartite graphs.

Theorem 12 [73] There exists a constant c such that for any r, k ≥ 2, the
vertices of every r-edge-colored complete bipartite graph Kn,n can be covered
by at most rc(r log r+k) vertex-disjoint connected monochromatic k-regular sub-
graphs and vertices.

Sárközy and Selkow mentioned in [73] that they could get c = 200 in
Theorems 11 and 12, but the details were omitted since they thought that it
was far from optimal constant.
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2.4 Partitions by Monochromatic Trees

There are many results on partition or cover by monochromatic trees. We
begin with some results given by Erdős, Gyárfás and Pyber in [32]. They
claimed that the monochromatic tree cover number of an r-edge-colored com-
plete graph is at most r since the monochromatic stars at any vertex give a
good partition in many colorings. They also gave the following example to
show that the monochromatic tree cover number of an r-edge-colored com-
plete graph is at least r−1, when r−1 is a prime power. Consider a complete
graph with vertex set identified with the points of an affine plane of order
r − 1. Color the edge pq with color i (1 ≤ i ≤ r) if the line through p and q
is in the ith parallel class. This example shows that the following conjecture,
if true, is best possible when r − 1 is a prime power.

Conjecture 5 [32] The monochromatic tree partition number of an r-edge-
colored complete graph is r − 1, where r ≥ 2.

The case r = 2 in Conjecture 5 is equivalent to the fact that for any
graph G, either G or its complement is connected, an old remark of Erdős
and Rado. The case r = 3 is settled by Erdős, Gyárfás and Pyber in the
same paper [32].

Theorem 13 [32] The monochromatic tree partition number of a 3-edge-
colored complete graph is 2.

A weaker form of Conjecture 5 is that the vertices of an r-edge-colored
complete graph can be covered by r − 1 monochromatic trees, which are not
necessary to be vertex-disjoint. This is equivalent to the following conjecture
of Lovász and Ryser (see, e.g., Füredi [37]). An r-partite intersecting hyper-
graph has a transversal (blocking set) of at most r − 1 elements. (This is
proved by Tuza for r ≤ 5 in [77].) Conjecture 5 implies that an r-edge-colored
complete graph Kn contains a monochromatic tree with at least n/(r − 1)
vertices. This consequence was known to be true in [13, 36, 40].

The monochromatic tree partition number seems to be more under control
for infinite graphs. Hajnal, Komjáth, Soukup and Szalkai [47] proved that the
monochromatic tree partition number of an r-edge-colored infinite complete
graph is at most r. Nagy and Szentmiklóssy proved Theorem 13 for infinite
graphs. For finite complete graphs, Haxell and Kohayakawa [48] proved the
next theorem.

Theorem 14 [48] Let r ≥ 1 and n ≥ 3r4r!(1 − 1/r)3(1−r) log r be integers.
Then the vertices of every r-edge-colored complete graph Kn can be covered
by r vertex-disjoint monochromatic trees with different colors and of radius
at most 2.
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Theorem 14 implies that the monochromatic tree partition number for an
r-edge-colored complete graph Kn is at most r provided n is sufficiently large
with respect to r. It was also mentioned in [49] that the following theorem
can be proved by similar arguments given in the proof of Theorem 14.

Theorem 15 If n is sufficiently large, then the monochromatic tree partition
number of an r-edge-colored complete bipartite graph Kn,n is at most 2r.

In [58], Kaneko, Kano and Suzuki determined the monochromatic tree
partition number for a 2-edge-colored complete multipartite graph K(n1, n2, · · · , nk).

Theorem 16 Let n1, n2, · · ·, nk (2 ≤ k) be integers such that 1 ≤ n1 ≤
n2 ≤ · · · ≤ nk, and let n = n1 + n2 + · · · + nk−1 and m = nk. Then
the monochromatic tree partition number of 2-edge-colored complete k-partite
graph K(n1, n2, · · · , nk) is

⌊m − 2

2n

⌋

+ 2.

Using the proof technique in [52], another (more natural) proof of Theo-
rem 16 could be given.

2.5 Computational Complexity

Now we discuss optimization problems on the vertex partition of edge-colored
graphs: Given an edge-colored graph G, find the minimum number of vertex-
disjoint monochromatic trees, cycles and paths, respectively, which cover the
vertices of G. For convenience, we simply call these three problems the
PGMT, PGMC and PGMP problems, respectively, since there are problems
of partitioning a graph into monochromatic trees, cycles and paths. For a
fixed integer r, the PGMT, PGMC, PGMP problem for an r-edge-colored
graph is addressed as the r-PGMT, r-PGMC and r-PGMP problem, respec-
tively.

The following facts are easily seen: If a given graph G is properly edge-
colored, then both the PGMT and the PGMP problems are equivalent to
finding a maximum matching, which can be solved in polynomial time (see
[38]). By transforming the set cover problem to each of the problems in
polynomial time, Jin and Li [53] showed the following theorems.

Theorem 17 [53] The PGMT, PGMC and PGMP problems are NP-complete.

Theorem 18 [53] There is no constant factor approximation algorithm for
any of the PGMT, PGMC and PGMP problems unless P = NP .
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Jin and Li [54] and Jin, Kano, Li and Wei [52] gave the following theorem
for r-PGMT, r-PGMC and r-PGMP problems.

Theorem 19 [54] For any fixed integer r ≥ 5, the r-PGMT, r-PGMC and
r-PGMP problems are NP-complete.

Theorem 20 [52] Both 2-PGMC and 2-PGMP problems are NP-complete
for complete and complete bipartite graphs. Therefore the 2-PGMC and 2-
PGMP problems are NP-complete in general.

Theorem 21 [52] The 2-PGMT problem is NP-complete for bipartite graphs.

Theorem 22 [52] The 2-PGMT problem can be solved in polynomial time
for complete bipartite and complete multipartite graphs.

Thus the problem of determining whether the r-PGMT, r-PGMC and r-
PGMP problems are NP-complete for r = 3 and 4 is worth mentioning.

3 Heterochromatic Subgraph Partitions

In this section, we consider problems of vertex partition and edge partition
by heterochromatic subgraphs in edge-colored graphs.

3.1 Vertex Partitions

When we consider problems of vertex partition by heterochromatic sub-
graphs, we mainly try to find the minimum number of vertex-disjoint hete-
rochromatic trees, cycles, paths, respectively, which cover the vertices of a
given edge-colored graph. The decision versions of these three problems are
addressed as the minimum heterochromatic tree, cycle, path partition prob-
lem, respectively. On the other hand, for a given graph G, the minimum
number of vertex-disjoint heterochromatic trees, cycles, paths which cover
the vertices of G for all its r-edge colorings is called the heterochromatic tree,
cycle, path number, respectively.

If all the edges of a graph G are colored with the same one color, then the
minimum heterochromatic tree partition problem is equivalent to finding a
maximum matching, which can be solved in polynomial time (see [59]). If all
the edges of G are colored with distinct |E(G)| colors, then a heterochromatic
tree is nothing but an usual tree, and so this case is easy.

Li and Zhang [64] studied the complexity of the heterochromatic tree,
cycle and path partition problems.
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Theorem 23 [64] The minimum heterochromatic tree (cycle) partition prob-
lem is NP-complete, and there does not exist constant factor approximation
algorithm for it. Actually, the minimum heterochromatic tree partition prob-
lem is NP-complete for bipartite graphs.

Theorem 24 [64] The minimum heterochromatic path partition problem is
NP-complete for 2-edge-colored graphs, and therefore, it is NP-complete for
general graphs.

Theorem 24 implies that the minimum heterochromatic tree partition
problem is also NP-complete for 2-edge-colored graphs, since in this case any
heterochromatic tree has at most two edges and therefore is a path. How-
ever, for complete bipartite graphs, Chen, Jin, Li and Tu [21] gave an explicit
formula for the heterochromatic tree partition number of an r-edge-colored
complete bipartite graph Km,n. Notice that it is clear that the heterochro-
matic tree partition number of r-edge-colored star K1,n is n − r + 1.

Theorem 25 [21] Let n, m and r be integers such that 2 ≤ m ≤ n, 1 ≤
r ≤ mn. Then the heterochromatic tree partition number of an r-edge-colored
complete bipartite graph Km,n is

hetetreer(Km,n) =































n if 1 ≤ r ≤ n;
1 if m(n − 1) + 1 ≤ r ≤ mn;
2 if m = n and r = n2 − 2n + 2;
n − ⌊r/m⌋ if m + 1 ≤ r ≤ m(n − 1)

and r ≡ 0, 1 (mod m);
n − ⌊r/m⌋ − 1 otherwise.

Using a different proof method, Jin and Li [56] get the heterochromatic
tree partition number of an r-edge-colored complete graph.

Theorem 26 [56] Let 3 ≤ n, 2 ≤ r ≤
(

n
2

)

and
(

t
2

)

+2 ≤ r ≤
(

t+1
2

)

+1. Then
hetetreer(Kn) = ⌈(n − t)/2⌉.

However, to give the heterochromatic tree partition number for all com-
plete multipartite graphs is still under our consideration.

3.2 Edge Partitions

Here we consider a heterochromatic tree partition of the edge set of a properly
edge-colored complete graph. Constantine [26] proved the following result on
the existence of a proper edge coloring of complete graphs whose edges can
be partitioned into heterochromatic spanning trees.
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Theorem 27 [26] For n 6= 1, 3, K2n can be properly edge-colored with 2n −
1 colors in such a way that the edges can be partitioned into edge-disjoint
heterochromatic isomorphic spanning trees.

Yuster [80] gave the following degree condition for a properly edge-colored
graph to have a heterochromatic H-factor, each of whose components is
isomorphic to H .

Theorem 28 [80] Let H be a graph and n ≥ 2 be an integer such that |H| di-
vides n. Then there exists an integer k = k(H) such that every properly edge-
colored graph of order n and with minimum degree at least (1−1/χ(H))n+k
has a heterochromatic H-factor.

Suppose that the edges of the complete K2n are colored with 2n−1 colors
in such a way that the edges of any single color form a perfect matching. Such
a coloring is called a factorization. Observe that every complete graph K2n

with any factorization contains a heterochromatic spanning tree: namely, the
star K1,2n−1 at any vertex. Indeed, the edges of this K2n can be partitioned
into 2n − 1 heterochromatic trees K1,2n−1, · · ·, K1,2, K1,1. On the other
hand, it is well-known that K2n can be partitioned into n spanning trees. So
Brualdi and Hollingsworth [17] made the following conjecture.

Conjecture 6 [17] If the complete graph K2n has a coloring of factorization,
then the edges of K2n can be partitioned into n heterochromatic spanning
trees.

They also proved the following theorem.

Theorem 29 [17] If the complete graph K2n (n ≥ 3) has a coloring of fac-
torization, then there exist two edge-disjoint heterochromatic spanning trees.

Kaneko, Kano and Suzuki [57] extended Theorem 29 to properly edge-
colored complete graphs and gave the following theorem and conjecture.

Theorem 30 [57] Every properly edge-colored complete graph Kn (n ≥ 6)
has three edge-disjoint heterochromatic spanning trees.

Conjecture 7 [57] Every properly edge-colored complete graph Kn (n ≥ 6)
has ⌊n/2⌋ edge-disjoint heterochromatic spanning trees. In particular, if n
is even then the edges of Kn can be partitioned into n/2 heterochromatic
spanning trees.
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If the edges of a graph G are colored by r colors 1, 2, . . . , r, then its color
distribution (a1, a2, · · · , ar) means that the number of edges with color i is
equal to ai for every 1 ≤ i ≤ r. In [1], Akbari and Alipourn generalized
Theorem 29 as follows.

Theorem 31 [1] If the r-edge-colored complete graph Kn has a color distri-
bution (a1, · · · , ar) with 1 ≤ a1 ≤ · · · ≤ ar ≤ (n + 3)/2 and r ≥ n − 1, then
Kn has a heterochromatic spanning tree.

Theorem 32 [1] Suppose that the r-edge-colored complete graph Kn has a
color distribution (a1, · · · , ar) with 2 ≤ a1 ≤ · · · ≤ ar ≤ (n + 1)/2. If
T is a non-star heterochromatic spanning tree of Kn, then Kn − T has a
heterochromatic spanning tree, where T is regarded as an edge subset.

Theorem 33 [1] If the complete graph Kn is r-edge-colored so that its color
distribution (a1, · · · , ar) satisfies 1 ≤ a1 ≤ · · · ≤ ar ≤ n/2, then Kn has two
edge-disjoint heterochromatic spanning trees.

Theorem 34 [1] If the complete graph Kn, n ≥ 3, is r-edge-colored and
r ≥

(

n−2
2

)

+ 2, then Kn has a heterochromatic spanning tree.

Theorem 35 [1] If the complete graph Kn, n ≥ 6, is r-edge-colored and
r ≥

(

n−2
2

)

+ 3, then Kn has two edge-disjoint heterochromatic spanning trees.

Brualdi and Hollingsworth [18] found inequalities and major conditions
on color distributions of the complete bipartite graph Kn,n, which guarantee
the existence of a partitioning the edges into heterochromatic subgraphs of
sizes 2n−1, 2n−3, · · · , 3, 1. Let p = (p1, p2, · · · , pk) and q = (q1, q2, · · · , qk) be
two sequences of nonnegative integers. Then p majorizes q, denoted by p� q,
provided that when the subscripts are re-ordered so that p1 ≤ p2 ≤ · · · ≤ pk

and q1 ≤ q2 ≤ · · · ≤ qk, p and q satisfy

pi + pi+1 + · · · + pk ≥ qi + qi+1 + · · · + qk for all i = 1, 2, · · · , k,

with equality holding when i = 1. Observe that two color distributions for a
given graph G need not be sequences of the same length. We shall sometimes
wish to apply the majorization order to color distributions: in cases in which
the sequences are of different lengths, it is to be understood that the shorter
sequence has been padded with zeroes so that the two sequences may be
compared.
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Theorem 36 [18] If the complete bipartite graph Kn,n is p-edge-colored with
color distribution (a1, a2, · · · , ap), then Kn,n admits an edge partition into
heterochromatic subgraphs of sizes 2n − 1, 2n − 3, · · ·, 3, 1 if and only if

(a1, a2, · · · , ap) � (1, 1, 2, 2, · · · , n − 1, n − 1, n). (1)

Moreover, if Kn,n is p-edge-colored with color distribution (a1, a2, · · · , ap) sat-
isfying (1), then it is possible to partition the edges of Kn,n into heterochro-
matic forests of sizes 2n − 1, 2n − 3, · · · , 3, 1.

Furthermore, Brualdi and Hollingsworth [18] obtained a necessary and
sufficient condition using color distribution for an r-edge-colored complete
bipartite graph to have a heterochromatic spanning tree as follows.

Theorem 37 [18] Every (2n−1)-edge-colored complete bipartite graph Kn,n

with color distribution (a1, a2, · · · , a2n−1) such that a1 ≤ · · · ≤ a2n−1 has a
heterochromatic spanning tree if and only if for every integer k with k ≤
2n − 1, it follows

k
∑

i=1

ai > k2/4.

Brualdi and Hollings made the following conjecture, which strengthens
Theorem 36.

Conjecture 8 [18] The edges of every proper p-edge-colored complete bi-
partite graph Kn,n with color distribution (a1, · · · , ap) satisfying (1) can be
partitioned into n heterochromatic trees of sizes 2n − 1, 2n − 3, · · · , 3, 1.

4 Monochromatic Subgraphs

In this section we survey results on the existence of some monochromatic sub-
graphs. There are a lot of papers that deal with monochromatic subgraphs,
and most of them discuss Ramsey type problems, which form an important
subject in graph theory. But as we already claimed, we do not survey these
results here.

First, we consider the size of a largest monochromatic connected sub-
graph. It is well-known that every 2-edge-colored complete graph Kn has
a monochromatic connected spanning subgraph. Gyárfás [40] generalized
this result to an r-edge-colored complete graph Kn, and obtained the next
theorem.
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Theorem 38 [40] Every r-edge-colored complete graph Kn has a monochro-
matic connected subgraph with order at least n/(r − 1).

In [69], Pyber, Rödl and Szemerédi obtained the following condition for
the existence of a monochromatic k-regular subgraph in an r-edge-colored
complete graph Kn.

Theorem 39 [69] There exists εr > 0 such that every r-edge-colored com-
plete graph Kn has a monochromatic k-regular subgraph with k ≥ εrn.

From Erdős and Gallai’s result [31] on the relationship between the num-
ber of edges and long paths and cycles, one can immediately get the following.

Theorem 40 Let G be an r-edge-colored graph of order n and size m. If
m ≥ rn, then G has a monochromatic path of length at least ⌈(2m)/(rn)⌉,
and a monochromatic cycle of length at least ⌈(2m)/r(n − 1)⌉.

It was shown in [16] that the above bounds are best possible for general
graphs. However, for complete graphs, Faudree and Saito claimed that the
bound can be improved a lot, in the 2006 International Workshop on Discrete
Mathematics and its Applications at Hitach of Japan.

Erdős and Galvin [30] studied the upper density and the strong upper
density of monochromatic paths in an edge-colored infinite complete graph
Kω. Let V (Kω) = {1, 2, · · · , n, · · ·}. The upper density of a subgraph G of
Kω is defined as

lim sup
n→∞

|V (G) ∩ {1, 2, · · · , n}|
n

.

For an infinite path P = (x1, x2, x3, · · ·), the strong upper density of P is

lim sup
n→∞

f(n)

n
where f(n) = sup{m : {x1, · · · , xm} ⊆ {1, · · · , n}}.

Theorem 41 [30] The edges of Kω can be colored with r colors so that every
monochromatic infinite path has upper density ≤ 2/r. Moreover, the edges of
Kω can be colored with two colors so that every monochromatic infinite path
has upper density ≤ 8/9.

Theorem 42 [30] (i) The edges of Kω can be colored with three colors so
that every monochromatic infinite path has strong upper density 0.

(ii) The edges of Kω can be colored with two colors so that every monochro-
matic infinite path has strong upper density ≤ 2/3.

(iii) If the edges of Kω are colored with two colors, then there is a monochro-
matic infinite path with strong upper density ≥ 1/(3 +

√
3).
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Theorem 43 [30] Let r ≥ 1 be an integer, and let α1, · · · , αr be real numbers
such that α1 + · · · + αr = 1. If the edges of Kω are colored with r colors
1, 2, · · · , r, then either, for every i, there is a monochromatic infinite path of
color i with upper density αi, or else, for some j, there is a monochromatic
infinite path of color j with upper density > αj.

Akiyama et al. [3] showed that every cubic graph has a 2-edge coloring
such that every monochromatic component is a path. In 1984, Bermond,
Fouquet, Habib and Péroche [11] conjectured that every cubic graph has a
2-edge coloring such that each monochromatic component is a path of length
at most 5. Note that they [11] pointed out that the number 5 cannot be
replaced by 4, but the two cubic graphs of order 6 are the only known cubic
connected graph for which 5 cannot be replaced by 4. Some weaker versions
of this conjecture were obtained by Jackson and Wormald [51] and Aldred
and Wormald [2]. Finally in 1999, Thomassen [76] settled this conjecture as
follows by considering an orientation of the given graph.

Theorem 44 [76] Let G be a connected graph with maximum degree at most
3. Then the edges of G can be colored with two colors so that every monochro-
matic component is a path of length at most 5.

In [45], Gyárfás and Simonyi studied some monochromatic subgraphs in
Gallai coloring of a complete graph Kn, where Gallai coloring is an edge
coloring of a complete graph in which no triangle is heterochromatic. The
following Theorem 45 was conjectured in [12]. A broom consists of a path
and a star such that an end-vertex of the path is identified with the center
of the star.

Theorem 45 [45] In every Gallai coloring of a complete graph, there exists
a monochromatic spanning broom.

Theorem 46 [45] In every Gallai coloring of a complete graph, there exists
a monochromatic spanning tree with diameter at most four.

Theorem 47 [45] In every Gallai coloring of a complete graph Kn, there
exist a vertex v and a color i such that the number of edges incident with v
and colored with i is at least 2n/5.

5 Heterochromatic Subgraphs

In this section, we consider heterochromatic subgraphs. For example, we deal
with heterochromatic Hamiltonian cycles, heterochromatic spanning trees
and other kinds of heterochromatic subgraphs.
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5.1 Heterochromatic Hamiltonian Cycle

The problem to find a large bound k = k(n) such that every k-bounded edge-
colored complete graph Kn contains a heterochromatic Hamiltonian cycle
was mentioned in Erdős, Nesetril and Rödl [33]. They addressed it as an
Erdős-Stein problem and showed that k can be any constant.

Theorem 48 [46] There exists a constant number c such that if n ≥ ck3

then every k-bounded edge-colored complete graph Kn has a heterochromatic
Hamiltonian cycle.

The above Theorem 48 was obtained by Hahn and Thomassen [46] and
implies that k could grow as fast as n1/3 to guarantee that a k-bounded edge-
colored Kn contains a heterochromatic Hamiltonian cycle. It was conjectured
in [46] that the growth rate of k could in fact be linear. In unpublished work
Rödl and Winkler in 1984 improved the growth rate of k to

√
n. Frieze and

Reed [35] made further progress.

Theorem 49 [35] There exists a constant number c such that if n is suffi-
ciently large and k ≤ n/(c ln n), then every k-bounded edge-colored complete
graph Kn contains a heterochromatic Hamiltonian cycle.

In [4], Albert, Frieze and Reed improved Theorem 49 and proved the
conjecture of [46].

Theorem 50 [4] Let c < 1/32. If n is sufficiently large and k ≤ ⌈cn⌉, then
every k-bounded edge-colored complete graph Kn contains a heterochromatic
Hamiltonian cycle.

Albert, Frieze and Reed also obtained a similar result in the case of di-
rected graphs.

Theorem 51 [4] Let c < 1/64. If n is sufficiently large and k ≤ ⌈cn⌉, then

every k-bounded edge-colored complete digraph
−→
Kn contains a heterochromatic

Hamiltonian directed cycle.

Hahn and Thomassen [46] considered the heterochromatic Hamiltonian
path in infinite complete graph Kω.

Theorem 52 [46] Assume that the infinite complete graph Kω is edge-colored
so that each monochromatic subgraph is locally finite. Then it either con-
tains K∗ or for every vertex v, there exists a heterochromatic Hamiltonian
path starting at v, where K∗ denotes the complete graph with vertex set
ω = {1, 2, · · ·} and whose edge coloring col : ω × ω → ω satisfies col(ij) = j
if i < j.
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Corollary 53 [46] If Kω is edge-colored so that no color is used more than
k times for a fixed k, then it contains a heterochromatic Hamiltonian path.

Erdős and Tuza [34] generalized Theorem 52 as follows.

Theorem 54 [34] Every edge-colored infinite complete graph Kω contains a
heterochromatic Hamiltonian path, provided that the edges of a single color
incident with a vertex are of measure 0, in particular, if they are finitely
many.

5.2 Heterochromatic Spanning Tree

Here we give some sufficient conditions for the existence of heterochromatic
spanning trees. Recall that Theorem 29, Conjecture 6, Theorem 30, Conjec-
ture 7, Theorems 31 through 35 and Theorem 37 are all about this problem.

An edge coloring of a graph G is called an edge coloring with complete
bipartite decomposition if each color class forms a complete bipartite subgraph
of G. In unpublished work de Caen conjectured that if a complete graph Kn

is edge-colored with complete bipartite decomposition using n−1 colors, then
Kn has a heterochromatic spanning tree. In [6], Alon, Brualdi and Shader
proved the following stronger result.

Theorem 55 [6] Every complete graph Kn having an edge coloring with bi-
partite decomposition contains a heterochromatic spanning tree.

Suzuki [75] gave a necessary and sufficient condition for the existence of
a heterochromatic spanning tree in an edge-colored graph.

Theorem 56 [75] An edge-colored connected graph G of order n has a het-
erochromatic spanning tree, if and only if, for any k colors (1 ≤ k ≤ n − 2),
the removal of all the edges colored with these k colors from G results in a
graph having at most k + 1 components.

Using Theorem 56 and the fact that for any partition D1 ∪D2 ∪ · · · ∪Ds

of the vertices of a complete graph Kn (2 ≤ s ≤ n) the total number of edges
whose two ends belong to two different Di is no less than

(

n
2

)

−
(

n−(s−1)
2

)

>
n
2
(s − 2), Suzuki proved the following theorem.

Theorem 57 [75] The (n/2)-bounded edge-colored complete graph Kn has a
heterochromatic spanning tree.

Jin and Li [55] generalized Theorem 56 to the following theorem since by
taking k = n − 1 in Theorem 58, Theorem 56 is obtained.
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Theorem 58 [55] Let (G, col) be an edge-colored connected graph and 1 ≤
k ≤ |G| − 1 be an integer. Then G has a spanning tree with at least k colors
if and only if for any color subset S ⊆ {col(e) : e ∈ E(G)}, it holds that

ω(G − ES) ≤ n − k + |S|,

where ES is the set of edges with colors in S, and ω(G − ES) denotes the
number of components in G − ES.

Akbari and Alipour [1] gave another necessary and sufficient condition for
the existence of a heterochromatic spanning tree in an edge-colored connected
graph.

Theorem 59 [1] An edge-colored connected graph G has a heterochromatic
spanning tree if and only if for every partition of V (G) into t parts, where
1 ≤ t ≤ |V (G)|, there exist at least t − 1 edges with distinct colors that join
different partition sets.

We conclude this subsection with some results on the complexity problem
of finding a spanning tree with as many different colors as possible, and
of finding one with as few different colors as possible, most of which was
obtained by Broersma and Li [15].

Theorem 60 [15] Finding a spanning tree with as many different colors as
possible is equivalent to finding a common independent set of maximum car-
dinality in two matroids, in particular, there is a polynomial time algorithm.

Theorem 61 [15] Finding a spanning tree with as few different colors as
possible is NP-hard.

Broersma and Li used the minimum dominating set problem to prove
Theorem 61. Later, Chang and Leu [19] proved Theorem 61 in a different
way. They showed that finding a spanning tree with as few different colors as
possible is NP-complete even for complete graphs, by using set cover problem,
which implies that there is no constant factor approximation algorithm unless
P = NP .

5.3 Large Heterochromatic Subgraphs

Now we discuss large heterochromatic subgraphs, which are not necessary
to be spanning as before, for example, we consider large heterochromatic
cliques, trees, paths, cycles, matchings, and others.
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In order to explain the results in this section, we need some new no-
tation and definitions. Let (G, col) be an edge-colored graph. The set of
colors appeared in G is denoted by col(G) = {col(e) : e ∈ E(G)}. For
a vertex v of G, the color neighborhood CN(v) of v is defined as the set
{col(e) : e is incident with v} of colors, and the color degree of v is defined as
degcol

G (v) = |CN(v)|. For a vertex set S ⊆ V (G), let CN(S) = ∪x∈SCN(x).
Let (G, col) be an edge-colored bipartite graph with bipartition (X, Y ).

For a vertex set S ⊆ X or Y , a color representative neighborhood of S is
defined as a subset T ⊆ NG(S) such that there exist |T | edges between S
and T that are incident with distinct vertices of T and have distinct colors.
A maximum color representative neighborhood ColRepNei(S) of S is such a
maximum subset T .

We first consider under what condition an edge-colored graph has a longer
heterochromatic path. From Erdös and Gallai’s result [31] on the relationship
between the number of edges and long paths and cycles, one can immediately
get the following.

Theorem 62 Every r-edge-colored graph G of order n has a heterochromatic
path of length at least ⌈(2r)/n⌉, and a heterochromatic cycle of length at least
⌈(2r)/(n − 1)⌉.

Broersma, Li, Woeginger and Zhang [16] obtained the following results.

Theorem 63 [16] Let G be an edge-colored graph. If degcol
G (x) ≥ k for every

vertex x of G, then for every vertex v of G, there exists a heterochromatic
path starting at v and of length at least ⌈(k + 1)/2⌉.

Theorem 64 [16] Let G be an edge-colored graph and s ≥ 2 be an integer.
If |CN(x) ∪ CN(y)| ≥ s for every pair of vertices x and y of G, then G
contains a heterochromatic path of length at least ⌈s/3⌉ + 1.

Chen and Li [22] found a condition for an edge-colored graph to have a
longer heterochromatic path under the conditions in Theorem 63.

Theorem 65 [22] Let G be an edge-colored graph and k ≥ 1 be an integer.
If degcol

G (x) ≥ k for every vertex x of G, then there exists a heterochromatic
path of length at least ⌈(3k)/5⌉ + 1. Moreover, if 1 ≤ k ≤ 7, there exists a
heterochromatic path of length at least k − 1.

Later, Chen and Li improved Theorem 65 as follows.
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Theorem 66 [23] Let G be an edge-colored graph and k ≥ 8 be an integer.
If degcol

G (x) ≥ k for every vertex x of G, then there exists a heterochromatic
path of length at least ⌈(2k)/3⌉ + 1.

The best lower bound for the length of a longest heterochromatic path in
an edge-colored graph with minimum color degree at least k could be k − 1,
which is checked for k ≤ 9. However, general case is still open. If it is true,
it would be best possible. In fact, let Q∗

k−1 be an edge-colored graph, whose
vertices are the ordered (k − 1)-tuples of 0’s and 1’s; two vertices are joined
by an edge if and only if they differ in exactly one coordinate or they differ
in all coordinates. An edge is colored with color j ∈ {1, 2, . . . , k − 1} if its
two ends differ in exactly the jth coordinate, or with color k if its two ends
differ in all the coordinates. Then it is not difficult to check that Q∗

k−1 is the
desired graph, whose longest heterochromatic path has length exactly k − 1.
Another class of such graphs is given as follows: Suppose the complete graph
K2n with vertex set {v0, v1, v2, . . . , v2n−1} is properly edge-colored with 2n−1
colors such that the edge (vi, vj) is colored with color (i + j) (mod 2n − 1)
if 0 ≤ i 6= j ≤ 2n − 2 and the edge (vi, v2n−1) is colored with color 2i
(mod 2n−1) if 0 ≤ i ≤ 2n−2. Then it is not hard to check that the longest
heterochromatic path in this edge-colored graph is of length 2n − 2.

Chen and Li [24] improved the result of Theorem 64 as follows.

Theorem 67 [24] Let G be an edge-colored graph. If |CN(x) ∪CN(y)| ≥ s
for every pair of vertices x and y of G, then G has a heterochromatic path
of length at least ⌈(s + 1)/2⌉.

Chen and Li also showed that the lower bound in Theorem 67 is best
possible by the following example. Let s ≥ 1 be an integer. If s is even,
let Gs be the graph obtained from the complete graph K(s+4)/2 by deleting
an edge; if s is odd, let Gs be the complete graph K(s+3)/2. Then, color
all the edges of Gs with different colors. So, for any s ≥ 1 we have that
|CN(x)∪CN(y)| ≥ s for any pair of vertices x and y in G, and every longest
heterochromatic path in G is of length ⌈(s + 1)/2⌉.

Broersma, Li, Woeginger and Zhang [16] also considered the complexity
of finding a path between two given vertices with as few different colors as
possible.

Theorem 68 [16] Let G be an edge-colored graph and s and t be two vertices
of G. Then finding a path between s and t with as few different colors as
possible in G is NP-complete.
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Theorem 68 was proved by using 3-SAT problem in [16]. Wirth [78] also
proved Theorem 68 by using the “red and blue set cover” problem, which
implies that there exists no constant factor approximation algorithm unless
P = NP .

From the proof of Theorem 68 in [16], which gives another proof to the
NP-completeness for the problem of finding a spanning tree with as few
different colors as possible, Theorem 61 could be obtained.

Chou, Manoussakis, Megalalaki, Spyratos and Tuza [25] obtained the
following results of alternating paths, whose edges are alternately red and
blue in 2-edge-colored graphs.

Theorem 69 [25] For a 2-edge-colored graph G and three given vertices x, y
and z, finding an alternating path between x and y through z is NP-complete.
For complete graphs, this problem has a polynomial time algorithm, whose
time complexity is O(n3).

We now turn our attention from heterochromatic paths to heterochro-
matic cycles. Rodl and Tuza [71] showed by probabilistic technique that
there exist graphs G with arbitrarily large girth such that every proper edge
coloring of G contains a heterochromatic cycle.

Theorem 70 [71] Let t ≥ 1 be an integer and d be a real number such that
0 < d < 1/(2t + 1), and let n be an integer relatively large with respect to t
and d. Then there exists a graph G of order n with girth at least t + 2 such
that for any i, 2t + 1 < i < nd, every proper edge coloring of G contains a
heterochromatic cycle of length i.

In [16], Broersma, Li, Woeginger and Zhang considered under what con-
ditions there is a heterochromatic triangle or a heterochromatic quadrilateral
in an edge-colored graph.

Theorem 71 [16] Let G be an edge-colored graph of order n ≥ 4, such that
|CN(x) ∪ CN(y)| ≥ n − 1 for every pair of vertices x and y of G. Then G
has at least one heterochromatic triangle or heterochromatic quadrilateral.

Alexeev [5] also got some results on long heterochromatic cycles.

Theorem 72 [5] Let k ≥ 3 be an odd integer. If an edge-colored complete
graph does not contain a heterochromatic cycle of order k, then it contains
no heterochromatic cycle of order m for all sufficiently large m; in particular,
m ≥ 2k2 suffices.
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For even integer k, he showed two examples which demonstrate that a
similar result does not hold [5].

Montellano-Ballesteros [68] considered heterochromatic edge-cuts, and
gave the number of colors could be used in the edge coloring of a graph
G such that there exists no heterochromatic edge-cuts, whose edges have all
distinct colors.

Theorem 73 [68] Let G be a 2-edge connected graph. Then in every edge
coloring of G using at least |E(G)| − |V (G)| + 2 colors, there exists at least
one heterochromatic edge-cut in G.

We conclude this subsection with heterochromatic matchings. Unlike
usual maximum matchings, finding a maximum heterochromatic matching
in an edge-colored graph is NP-complete (see [38], page 203, Multiple Choice
Matching Problem). By our experience, this means that to find a good
necessary and sufficient condition for the existence of perfect heterochromatic
matchings would be hopeless.

Woolbright and Fu [79] showed that in any complete graph of even or-
der with edge coloring by perfect matchings, there exists a heterochromatic
perfect matching.

Theorem 74 [79] Every properly (2n-1)-edge-colored complete graph K2n,
n ≥ 3, has a a heterochromatic perfect matching.

In [29], El-Zanati, Plantholt, Sissokho and Spence gave a similar the-
orem on complete uniform hypergraphs which are edge-colored by perfect
matchings.

Theorem 75 [29] For n ≥ 3 and r ≥ 2, if a complete r-uniform hypergraph

on rn vertices K
(r)
rn is edge-colored by perfect matchings, then there exists a

heterochromatic perfect matching.

In [63], Li and Xu generalized Theorems 74 and 75 to any properly edge-
colored complete graph and complete uniform hypergraph.

Theorem 76 [63] For any proper edge coloring of the complete r-uniform

hypergraph K
(r)
rn with n ≥ 3 and r ≥ 2, there is a heterochromatic perfect

matching.

From Theorem 76 we can easily get Theorem 74 as a corollary.
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Many conditions were also given for the existence of large heterochro-
matic matchings in edge-colored bipartite graphs and general graphs [79].
Hu and Li [50] obtained some sufficient conditions. Because the conditions
are complicated and not useful, we omit their details. Li, Li, Liu and Wang
[61] studied heterochromatic matchings in edge-colored bipartite graphs un-
der a condition related to maximum color representative neighborhoods of
subsets of vertices.

Theorem 77 [61] Let (G, col) be an edge-colored bipartite graph with bi-
partition (X, Y ). If |ColRepNei(S)| ≥ |S| for all S ⊆ X, then G has a
heterochromatic matching of size at least |X|/3.

Theorem 78 [61] Let (G, col) be an edge-colored bipartite graph with bipar-
tition (X, Y ) such that |X| = |Y | = n. If |ColRepNei(S)| ≥ |S| for all
S ⊆ X and S ⊆ Y , then G has a heterochromatic matching of size at least
(3n − 1)/8.

Li and Wang [62] studied the heterochromatic matchings in general graphs
under a color degree condition.

Theorem 79 [62] Let k ≥ 3 and G be an edge-colored graph with maximum
degree △. If degcol

G (x) ≥ k for every vertex x of G, then G has a heterochro-
matic matching of size at least (2k)/3. Moreover there is an O(k△)-time
algorithm to construct such a heterochromatic matching.

Here we point out a strong relation of heterochromatic matchings with
the transversals of Latin squares ([74]).

Suppose that L is an n × n matrix such that each cell is assigned one of
the n symbols 1, 2, · · · , n. If each row and each column of L contains each
symbol exactly once, then L is called a Latin square. A transversal of a Latin
square L is a set of n cells of L such that no two of the cells are taken from
the same row or same column. A partial transversal of L is a subset of a
transversal. A (partial) transversal of L is called Latin if no two of the cells
have the same symbol. A (partial) transversal of an m× n-matrix is defined
similarly.

Notice that an n × n Latin square corresponds to a proper edge coloring
of the complete bipartite Kn,n with n colors, a transversal of a Latin square
corresponds to a perfect matching of Kn,n and a Latin transversal of a Latin
square corresponds to a heterochromatic perfect matching.

On the transversals of Latin square, Ryser [72] conjectured the following.

Conjecture 9 [72] Every Latin square of odd order has a Latin transversal.
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Moreover, Stein [74] and Brualdi [28] conjectured that

Conjecture 10 Every Latin square of order n has a partial Latin transversal
of size at least n − 1.

The conjectures remain unsolved. There are many publications on the
lower bound for the size of a maximum transversals.

At the end of this section, we would like to claim that many other kinds
of heterochromatic subgraphs have also been discussed, but most of them are
of Ramsey type.

6 Some Other Results

We will here mainly study random graphs with random coloring. The study
of random graphs was begun by Erdős and Rényi in 1960s. In [27], Cooper
and Frieze gave a threshold for the random graph Gn,m to be in ARk = {G :
every edge coloring of G with no color appears more than k times contains
a heterochromatic Hamiltonian cycle}.

Theorem 80 [27] If we express m by n and k into m = n(log n + (2k −
1) log log n + cn)/2 and λ = e−c, then

limn→∞ Pr(Gn,m ∈ ARk) =







0 cn → −∞
∑k−1

i=0
e−λλi

i!
cn → c

1 cn → ∞
= limn→∞ Pr(Gn,m ∈ Bk),

where Bk = {G : G has at most k − 1 vertices of degree less than 2k}.

Li and Zheng [65] investigated the problems of having a monochromatic
matching of size k, clique of order k or tree of order k and having a heterochro-
matic matching of size k, clique of order k or tree of order k and obtained the
threshold functions for them in the following probabilistic model of random
graphs. Let Kn be the complete graph with vertex set V = {1, 2, · · · , n} and
1, 2, · · · , r = r(n) be r different colors. Send 1, 2, · · · , r to the edges of Kn

randomly and equiprobably, which means each edge is colored in i(1 ≤ i ≤ r)
with probability 1/r. Thus a random graph Kr

n is produced. This kind of
random graph is somehow interesting, but the results obtained so far is not
deep. The purpose to put forward the concept here is to hope more solid
work coming later. Here we list some of the results in [65].
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Theorem 81 [65] If r ≥ 1 is fixed, then almost every Kr
n has a monochro-

matic matching of size k for every 1 ≤ k ≤ n/2. If k ≥ 2 is fixed, then

(

n!

(n − 2k)!2kk!

)
1

k−1

is the threshold function for the property that Kr
n has a monochromatic match-

ing of size k.

Theorem 82 [65] If r ≥ n/c1, where c1 < e is a constant, then almost no Kr
n

has a monochromatic perfect matching. On the other hand, if r ≤ n/(log n+
c2(n)), where c2(n) → ∞, then almost every Kr

n has a monochromatic perfect
matching.

Theorem 83 [65] If 1 ≤ k ≤ n1−ǫ and k ≤ r, where 0 < ǫ < 1 is an
arbitrarily small constant, then almost every Kr

n contains a heterochromatic
matching of size k.

Theorem 84 [65] If r ≥ c3n, where c3 > 1 is a constant, then almost no
Kr

n contains a monochromatic spanning tree.

Theorem 85 [65] If r is fixed, then almost every Kr
n contains a monochro-

matic tree of order k for any 2 ≤ k ≤ n. If 2 ≤ k ≤ log n and r ≥ k − 1,
then almost every Kr

n contains a heterochromatic tree of order k.

In [14], Bollobás and Erdős gave a conjecture on properly colored Hamil-
tonian cycle.

Conjecture 11 [14] Every edge-colored complete graph Kn with minimum
color degree at least ⌊n/2⌋ has a properly colored Hamiltonian cycle.

In [7], Alon and Gutin got the following result, which is the best known
result toward the conjecture for many years.

Theorem 86 [7] Given ε > 0, there exists a positive integer n0 such that
for all n > n0 and m ≤ (1 − 1/

√
2 − ε)n, every edge coloring of Kn with

minimum color degree at least m has a properly colored Hamiltonian cycle.

In [8], Alon, Jiang, Miller and Pritikin generalized Theorem 86.

Theorem 87 [8] Let G be a graph with n vertices, maximum degree at most
d, and suppose that n > 216(3m + 2d)7(d + 1)20m. Then every edge-colored
Kn with minimum color degree at least m contains a properly colored copy of
G.
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There are also many other results on proper-colored subgraphs, but most
of them are of Ramsey type. For example, [8, 9] gave some Ramsey type
results on proper-colored cycles, cliques, etc.

In [67], Manoussakis, Spyratos and Tuza investigated the existence of
(s, t)-cycles, i.e., cycles of length s+t in which s consecutive edges are colored
red and the remaining t edges are colored blue in a 2-edge-colored complete
graphs Kn, n ≥ 3.

Theorem 88 [67] Let s, t be positive integers such that s ≥ t. If n is large
enough, i.e., n ≥ n0(s) for some function n0(s), then a 2-edge-colored com-
plete graph Kn contains an (s, t)-cycle if, and only if

(i) Kn contains a monochromatic path of length t in each color; and
(ii) in the case where both s and t are odd, Kn does not have a complete

bipartite coloring, i.e., none of the two color classes induces in Kn a complete
bipartite spanning subgraph.

Manoussakis, Spyratos and Tuza [67] investigated Theorem 6, by showing
that there exists just one family of colorings for which no (s, n − s)-cycle
occurs.

Theorem 89 [67] Any 2-edge-colored complete graph Kn, n 6= 5, contains
some Hamiltonian (s, n−s)-cycle C, 1 ≤ s ≤ n−1, unless n is even and the
edge coloring is a complete bipartite coloring with bipartition classes of equal
size.

Theorem 90 [67] Let Kn be a 2-edge-colored complete graph admitting a
monochromatic Hamiltonian cycle. Then Kn contains also an (s, 1)-cycle C,
for

(i) each even s, 2 ≤ s ≤ n − 2, and
(ii) each odd s, 3 ≤ s ≤ n − 2, unless n is even and the edge coloring is

a complete bipartite coloring with bipartition classes of equal size.
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[14] B. Bollobás and P. Erdős, Alternating Hamiltonian cycles, Isr. J. Math.
23(1976) 126–131.

[15] H.J. Broersma and X. Li, Spanning trees with many or few colors in
edge-colored graphs, Discuss. Math. Graph Theory 17(1997), 259–269.

[16] H.J. Broersma, X. Li, G. Woeginger and S. Zhang, Paths and cycles in
colored graphs, Australasian J. Combin. 31(2005), 297–309.

28



[17] R.A. Brualdi and S. Hollingsworth, Multicolored trees in complete
graphs, J. Combin. Theory, Ser.B 68(1996), 310–313.

[18] R.A. Brualdi and S. Hollingsworth, Multicolored forests in complete
bipartite graphs, Disrete Math. 240(2001), 239–245.

[19] R.S. Chang and S.J. Leu, The minimum labelling spanning trees, In-
form. Process. Lett. 63(1997), 277–282.

[20] G. Chartrand and L. Lesniak, Graphs and Combinatorics (third edition),
Chapman & Hall, New York (1996).

[21] H. Chen, Z.M. Jin, X. Li and J.H. Tu, Heterochromatic tree parti-
tion numbers for complete bipartite graphs, Discrete Math., in press,
doi:10.1016/j.disc.2007.07.085.

[22] H. Chen and X. Li, Long heterochromatic paths in edge-colored graphs,
Electron. J. Combin. 12(2005), ♯R33.

[23] H. Chen and X. Li, Color degree and color neighborhood union
conditions for long heterochromatic paths in edge-colored graphs,
arXiv:math.CO/0512144 v1 7 Dec 2005.

[24] H. Chen and X. Li, Color neighborhood union conditions for long
heterochromatic paths in edge-colored graphs, Electron. J. Combin.
14(2007), ♯R77.

[25] W.S. Chou, Y. Manoussakis, O. Megalalaki, M. Spyratos and Zs. Tuza,
Paths through fixed vertices in edge-colored graphs, Math. Inf. Sci. Hun.
32(1994), 49–58.

[26] G.M. Constantine, Colorful isomorphic spanning trees in complete
graphs, Ann. Combin. 9(2005), 163–167.

[27] C. Cooper and A. Frieze, Multicoloured Hamilton cycles in random
graphs; an anti-Ramsey threshold, Electron. J. Combin. 2(1995), ♯R19.
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[45] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tri-
colored triangles, J. Graph Theory 46(2004), 211–216.

[46] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers and
an edge coloring conjecture, Discrete Math. 62(1986), 29–33.
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