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Abstract

Let G be a graph and d(u) denote the degree of a vertex u in G. The

zeroth-order Randić index of G is defined as 0R(G) =
∑

u∈V (G)(d(u))−
1

2 .

Let Wn,m denote the set of connected graphs of order n with a maximum

matching of size m, and Pn,k the set of connected graphs of order n with

exactly k pendant vertices. In this paper, we first determine the graphs

with minimum and maximum zeroth-order Randić index in Wn,m. Then, we

determine the extremal graphs in Pn,k. Finally, we determine the extremal

graphs for k-colorable graphs and hamiltonian graphs, respectively.

Keywords: zeroth-order Randić index, maximum matching, k-colorable

graph, Hamiltonian graph.

1 Introduction

All graphs G = (V,E) considered here will be finite, undirected, simple and connected.

The degree of a vertex u ∈ V (G) will be denoted by d(u). The graph that arises from G by

deleting an edge uv ∈ E(G) or adding an edge xy 6∈ E(G) will be denoted by G − uv and

G + xy, respectively. The join G1 + G2 of two disjoint graphs G1 and G2 is obtained from
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G1 ∪G2 by joining each vertex of G1 to each vertex of G2. The path of order n is denoted by

Pn, and the star of order n is denoted by Sn. The complement of a graph G will be denoted

by G.

In [10] Randić proposed a topological index, suitable for measuring the extent of branching

of the carbon-atom skeleton of saturated hydrocarbons. The Randić index is defined in [10]

as follows:

R(G) =
∑

uv∈E(G)

1
√

d(u)d(v)
,

which is well correlated with a variety of physico-chemical properties of alcanes. The Randić

index thus becomes one of the most popular molecular descriptors and has been widely

studied (see [1, 2, 4, 5, 9]). The zeroth-order Randić index 0R(G) is defined by Kier and Hall

[6, 7] as follows:
0R(G) =

∑

u∈V (G)

(d(u))−
1

2 .

It is the purpose of this paper to find extremal graphs on the zeroth-order Randić index for

some classes of graphs.

Let Wn,m denote the set of connected graphs of order n with a maximum matching of

cardinality m. Define a tree A(n,m) of order n as follows: A(n,m) is obtained from the star

graph Sn−m+1 with n−m + 1 vertices by attaching a pendant edge to each of certain m− 1

non-central vertices of Sn−m+1. We call A(n,m) a spur and note that it has a matching of

size m.

For n ≤ 4m, we set

M =

{

s : h(s) = min
1≤x≤m

(

x√
n − 1

+
n − 2m + x − 1√

x
+

2m − 2x + 1√
2m − x

)}

In Section 2, we prove that

if n ≥ 4m + 1, then Km + Kn−m is the unique graph with minimum zeroth-order Randić

index in Wn,m;

if s ∈ M and 2m ≤ n ≤ 4m, then Ks +(K2m−2s+1 ∪Kn−2m+s−1) is the graph with minimum

zeroth-order Randić index in Wn,m; and

A(n,m) is the unique graph with maximum zeroth-order Randić index in Wn,m.

Let Pn,k be the graph obtained from Kn−k by adding k pendant vertices to it such that

the vertices of Kn−k have almost equal number pendant vertices, i.e., the difference of the

numbers of pendant vertices at any two vertices is at most 1.



In Section 3, we prove that Pn,k is the graph with minimum zeroth-order Randić index

among all graphs which contains exactly k pendant vertices, whereas the starlike tree with

k pendant vertices is the graph with maximum zeroth-order Randić index among all these

kind of graphs.

In Section 4, we prove that the complete k-partite graph with almost equal parts and

the star Sn are the k-colorable graphs with minimum and maximum zeroth-order Randić

index, respectively, and Kn and Cn are the Hamiltonian graphs with minimum and maximum

zeroth-order Randić index, respectively.

2 Extremal graphs in Wn,m

A component of a graph is odd or even according as it has an odd or even number of

vertices. For a subset S of V (G), we denote by c0(G − S) the number of odd components

of G − S. Let M be a maximum matching of G with order n and |M | = m. We define the

deficiency of G, def(G), by the equation def(G) = n − 2m. Hence def(G) is the number of

vertices left unsaturated by any maximum matching. Let S be a subset of V (G) and |S| = s.

Then, we have

Lemma 1 [8] Let def(G) denote the deficiency of a graph G. Then, def(G) = max{c0(G −
S) − s|S ⊆ V (G)}.

Lemma 2 Let uv ∈ E(G). Then 0R(G − uv) > 0R(G).

Proof. By definition, we have

0R(G − uv) − 0R(G) =
1

√

d(u) − 1
+

1
√

d(v) − 1
− 1

√

d(u)
− 1

√

d(v)
> 0.

This completes the proof of the lemma. �

Apply Lemma 2, we have

Lemma 3 Let T be a spanning tree of a graph G. Then 0R(T ) ≥ 0R(G) with equality if and

only if G is a tree.

Lemma 4 Let s, x, y be positive integers and f(x, y) = x√
x−1+s

+ y√
y−1+s

− x−2√
x−3+s

− y+2√
y+1+s

.

Then f(x, y) > 0 for y ≥ x ≥ 3.



Proof. Set t = s − 1,
√

x + t = a,
√

y + t = b. Then b ≥ a ≥
√

3 and

f(t) =

(

a2 − t

a
+

b2 − t

b

)

−
(

a2 − t − 2√
a2 − 2

+
b2 + 2 − t√

b2 + 2

)

.

Let g(b) = b2−t
b

− b2+2−t√
b2+2

. Then g′(b) = 1 + t
b2

− b3+2b+tb

(b2+2)
3
2

. From this we know that g′(b) > 0

if and only if (b2 + 2)3(b2 + t)2 − (b3 + 2b + bt)2b4 > 0. Since

(b2 + 2)3(b2 + t)2 − (b3 + 2b + bt)2b4

= 2b8 + 8b6t + 6b4t2 + 8b6 + 24b4t + 12b2t2 + 8b4 + 16b2t + 8t2 > 0,

we have

f(t) ≥
(

a2 − t

a
− a2 − 2 − t√

a2 − 2

)

−
(

a2 − t + 2√
a2 + 2

+
a2 − t

a

)

.

Let Θ(u) = u2+2−t√
u2+2

− u2−t
u

. Then f(t) ≥ Θ(
√

a2 − 2) − Θ(a). Since Θ′(u) = −g′(u) < 0, we

have f(t) > 0. �

Lemma 5 Let s, n, m be positive integers satisfying 1 ≤ s ≤ m, 2m ≤ n and h(s) =
s√
n−1

+ n−2m+s−1√
s

+ 2m−2s+1√
2m−s

. Then h(s) ≤ h(m) when n ≥ 4m + 1, with equality if and only

if s = m.

Proof. It suffices to prove that h′(s) < 0 for 1 ≤ s ≤ m, 4m + 1 ≤ n.

h′(s) = 1√
n−1

+ 1√
s
− n−2m+s−1

2s
√

s
− 2√

2m−s
+ 2m−2s+1

2(2m−s)
√

2m−s

≤ 1√
n−1

+ 1√
s
− n−2m+s−1

2s
√

s
− 2√

2m−s
+ 2m−2s+1

2s
√

s

= 1√
n−1

− n−4m+s−2
2s

√
s

− 2√
2m−s

< 0.

We thus obtain the result. �

Let M be defined the same as in Section 1.

Theorem 1 Let G be a connected graph of order n with a maximum matching of size m.

(i) Let n ≥ 4m + 1. Then 0R(G) ≥ 0R(Km + Kn−m) with equality if and only if G ∼=
Km + Kn−m;

(ii) Let s ∈ M and 2m ≤ n ≤ 4m. Then

0R(G) ≥ 0R(Ks + (K2m−2s+1 ∪ Kn−2m+s−1)),

with equality if and only if there exists a k in M such that G ∼= Kk+(K2m−2k+1∪Kn−2m+k−1).



Proof. Let G be a graph with minimum zeroth-order Randić index in Wn,m. By Lemma

1, there exists a subset S of V (G) such that G − S has n − 2m + s odd components. Let

G1, G2, . . . , Gn−2m+s be its all odd components and ni = |Gi| for i = 1, 2, . . . , n − 2m + s.

Without loss of generality, set n1 ≤ n2 ≤ . . . ≤ nn−2m+s.

Claim 1: G − S contains no even component.

Proof. Suppose that there are some even components in G − S and H is their union. Let

G′ be the graph obtained from G by adding some edges such that G′[V (G1) ∪ V (H)] is a

complete graph. By Lemma 2, we have 0R(G) > 0R(G′), a contradiction. �

Similarly, we have

Claim 2: All G[V (G1)], G[V (G2)], . . . , G[V (Gn−2m+s)] and G[S] are complete.

By Claims 1, 2 and Lemma 2, we know that G = Ks + (Kn1
∪ Kn2

∪ · · · ∪ Knn−2m+s
).

Claim 3: n1 = n2 = . . . = nn−2m+s−1 = 1.

Proof. Suppose that there are two odd components Gi, Gj such that 3 ≤ ni ≤ nj. Let

G′′ be the graph obtained from G by moving two vertices from Gi to Gj , that is, G′′ =

Ks +(Kn1
∪ · · · ∪Kni−2 ∪ · · · ∪Knj+2 ∪ · · · ∪Knn−2m+s

). For simplicity, we set ni = x, nj = y.

Then

0R(G) − 0R(G′′) =
x√

x − 1 + s
+

y√
y − 1 + s

− x − 2√
x − 3 + s

− y + 2√
y + 1 + s

.

By Lemma 4, we have 0R(G) > 0R(G′′), again a contradiction. �

By Claims 1,2 and 3, G ∼= Ks+(K2m−2s+1∪Kn−2m+s−1) and 0R(G) = s√
n−1

+ n−2m+s−1√
s

+
2m−2s+1√

2m−s
, where 1 ≤ s ≤ m.

If n ≥ 4m + 1, by Lemma 5 we obtain the result.

If 2m ≤ n ≤ 4m, by choosing s ∈ M, we also obtain the result.

This completes the proof of the theorem. �

Corollary 1 Let G ∈ Wn,m.

If n ≥ 4m + 1, then 0R(G) ≥ m√
n−1

+ n−m√
m

with equality if and only if G ∼= Km + (Kn−m);

If s ∈ M and 2m ≤ n ≤ 4m, then

0R(G) ≥ s√
n − 1

+
n − 2m + s − 1√

s
+

2m − 2s + 1√
2m − s



with equality if and only if there exists a k in M such that G ∼= Kk+(K2m−2k+1∪Kn−2m+k−1)

Let M be a maximum matching of G. A vertex v of G is said to be M -saturated if v

is incident with an edge in M ; otherwise, v is M -unsaturated. An M -alternating path in

G is a path whose edges are alternately in E \ M and M . An M -augmenting path is an

M -alternating path whose origin and terminus are M -unsaturated.

Lemma 6 [3] A matching M in G is maximum if and only if G contains no M -augmenting

path.

Lemma 7 f(d1, d2) = 1√
d1+d2−2

+ 1√
2
− 1√

d1
− 1√

d2
> 0 (d2 ≥ d1 ≥ 3).

Proof. Since ∂f(d1,d2)
∂d1

= − 1
2(d1+d2−2)

√
d1+d2−2

+ 1
2d1

√
d1

> 0, we have f(d1, d2) ≥ f(3, 3) > 0.

�

A tree is said to be starlike if it possesses exactly one vertex of degree greater than two,

which can also be obtained from some paths by identifying its one pendant vertices. These

paths is said to pendant paths of it.

Theorem 2 Let G be a graph of order n (n ≥ 6) with a maximum matching of size m. Then

0R(G) ≤ 0R(A(n,m)), with equality if and only if G is isomorphic to A(n,m).

Proof. Let M be a maximum matching of G. Then G must contain a spanning tree that

contains all edges of M . By Lemma 3, we have 0R(T ) ≥ 0R(G). It suffices to find the tree

with maximum zeroth-order Randić index in Wn,m.

Let T be a tree of order n with a maximum matching M of size m, V ∗(T ) = {v ∈ V (T ) :

d(v) ≥ 3}. If V ∗ = φ, T is a path on n vertices. Assume that V ∗ 6= φ. If there are two

vertices that belong to it, say u, v, and d(u) ≥ d(v) ≥ 3. Suppose there exists no vertex that

belongs to V ∗(T ) in the unique path connecting u, v. We obtain a new tree T1 by moving

d(v)− 2 edges from v to u and leaving the edge of M that incident to v if it has. Clearly, T1

has a M -augmenting path if and only if T has, too. By Lemma 6, we have T1 ∈ Wn,m; and

0R(T1) − 0R(T ) =
1

√

d(u) + d(v) − 2
+

1√
2
− 1

√

d(u)
− 1

√

d(v)
,

by Lemma 7, we have 0R(T1) ≥ 0R(T ). Beside it we have V ∗(T1) = V ∗(T ) − 1. Repeating

this process, we finally obtain a tree T2 such that 0R(T2) ≥ 0R(T ) and V ∗(T2) = 1, that is,

T2 is a starlike tree that has larger zeroth-order Randić index than T . Moreover, M is still a



maximum matching of it. Assume that u is the center vertex and d(u) = k ≥ 3. If there is a

pendant path P = uv1v2v3 · · · vl (l ≥ 3), letting T3 = T − v2v3 + uv3, then T3 ∈ Wn,m and

0R(T3) − 0R(T2) =
1√

k + 1
+ 1 − 1√

2
− 1√

k
≥ 1

2
+ 1 − 1√

2
− 1√

3
> 0.

Repeating this process, we finally obtain the tree A(n,m). In the following, we will compare

the zeroth-order Randić indices of A(n,m) and Pn when n = 2m and n = 2m + 1. By simple

computation, we obtain

0R(Pn) = 2 + n−2√
2

0R(A(n,m)) = 1√
n−m

+ m−1√
2

+ n − m

When n = 2m,

0R(A(2m,m)) − 0R(P2m) =
1√
m

+
m − 1√

2
+ m − 2 − 2m − 2√

2
=

{

a = 0 m = 1, 2,

a > 0 m ≥ 3.

When n = 2m + 1,

0R(A(2m + 1,m)) − 0R(P2m+1) = 1√
m+1

+ m√
2

+ m + 1 − 2 − 2m−1√
2

> 0.

This completes this proof of the theorem. �

By Theorem 2 we thus have

Corollary 2 Let G ∈ Wn,m(n ≥ 6). Then 0R(G) ≤ 1√
n−m

+ m−1√
2

+ n − m, with equality if

and only if G ∼= A(n,m).

3 Extremal graphs in Pn,k

Let Pn,k be the set of connected graphs of order n with exactly k pendant vertices.

Lemma 8 Let x, k, d be nonnegative integers and 0 ≤ x ≤ k
2 . Then

1√
d + x

+
1√

d + k − x
≥ 1

√

d + ⌊k
2⌋

+
1

√

d + ⌈k
2⌉

.

Proof. Let f(x) = 1√
d+x

+ 1√
d+k−x

. f ′(x) = − 1
2(d+x)

√
d+x

+ 1
2(d+k−x)

√
d+k−x

. When x ≤ k
2 ,

f ′(x) ≤ 0, which completes the proof of the lemma. �

Let Pn,k be the graph obtained from Kn−k by adding k pendant vertices to it such that the

vertices of Kn−k have almost equal number pendant vertices.



Theorem 3 Let G be a graph with exactly k pendant vertices. Then 0R(G) ≥ 0R(Pn,k), with

equality if and only if G ∼= Pn,k.

Proof. Let G be a graph with minimum zeroth-order Randić index in Pn,k. Let V0(G) = {v ∈
V (G) : d(v) = 1} and V ′(G) = V (G) \ V0(G). Then G[V ′(G)] must be isomorphic to Kn−k.

Otherwise, adding some edges will decrease the value of the zeroth-order Randić index of G

by Lemma 2. Since there are k pendant vertices in G, G is also viewed as planting k pendant

edges at Kn−k. Let u, v ∈ V ′(G), planted x, y pendant edges, respectively. Without loss of

generality, let x + y = k and y = k − x ≥ x ≥ 0. Then

0R(G) =
∑

w∈(V (G)−{u,v})

1
√

d(w)
+

1√
n − k − 1 + x

+
1√

n − k − 1 + k − x
.

By Lemma 8, we know that x, y must be almost equal. This completes the proof of the

theorem. �

Let k = ⌊ k
n−k

⌋(n − k) + r. By simple computation, we have

Corollary 3 Let G ∈ Pn,k. Then 0R(G) ≥ k + n−k−r
q

n−k−1+⌊ k
n−k

⌋
+ r

q

n−k+⌊ k
n−k

⌋
, with equality

if and only if G ∼= Pn,k.

Let S(n, k) = {G ∈ Pn,k : G is a starlike tree and the degree of its center is exactly k}. Then

we have

Theorem 4 Let G be a graph of order n with exactly k pendant vertices. Then 0R(G) ≤
k + n−k−1√

2
+ 1√

k
, with equality if and only if G ∈ S(n, k).

Proof. In the proof of Theorem 2, the first transform does not change the number of pendant

vertices. Applying it to graph G repeatedly, we thus obtain the result. �

4 Extremal graphs in other classes of graphs

A k-vertex coloring of G is an assignment of k colors 1, 2, . . . , k to the vertices of G. The

coloring is proper if no two distinct adjacent vertices have the same color. We call a graph

k-colorable if G has a proper k-vertex coloring. Let K(n1, n2, . . . , nk) be a complete k-partite

graph and the number of vertices in each part are n1, n2, . . . , nk, respectively. If the numbers

of vertices in any two parts are almost equal, we denote it by Kk
n. Let Cn,k denote the set of

all k-colorable graphs.



Lemma 9 Let n ≥ x ≥ y ≥ 1 be three positive integers and x ≥ y + 2. Then

x√
n − x

+
y√

n − y
≥ x − 1√

n − x + 1
+

y + 1√
n − y − 1

.

Proof. Let x + y = k, 1 ≤ y = k − x ≤ x − 2 and ω(x) = x√
n−x

+ k−x√
n−k+x

. Then

ω′(x) =
1√

n − x
+

x

2(n − x)
√

n − x
− 1√

n − k + x
− k − x

2(n − k + x)
√

n − k + x
.

Since x > k − x, we have n − x < n − k + x. Thus ω′(x) > 0. This completes the proof. �

Theorem 5 Let G be a proper k-colorable graph. Then 0R(Kk
n) ≤ 0R(G) ≤ 0R(Sn), and

Kk
n, Sn are the unique graphs obtaining the low and upper bounds, respectively.

Proof. Similar to the proof of Theorem 2, we easily obtain the upper bound.

Let G be a graph with minimum zeroth-order Randić index in Cn,k. Then G has a partition

(V1, V2, . . . , Vk) of V (G) into k independent sets. Let ni = |Vi| (i = 1, 2, . . . , k). By Lemma 2

G must be a complete k partite graph. Moreover, the numbers of vertices in any two parts

are almost equal. Otherwise, assume ni ≥ nj + 2. Let G′ be the graph obtained from G by

moving 2 vertices from Vi to Vj. Then

0R(G) − 0R(G′) =
ni√

n − ni

+
nj√

n − nj

− ni − 1√
n − ni + 1

− nj + 1
√

n − nj − 1
.

By Lemma 9, 0R(G) > 0R(G′), a contradiction.

This completes the proof of the theorem. �

Let n = ⌊n
k
⌋k + r. Then we have

Corollary 4 Let G ∈ Cn,k. Then

(k − r)⌊n
k
⌋

√

n − ⌊n
k
⌋

+
r⌈n

k
⌉

√

n − ⌈n
k
⌉
≤ 0R(G) ≤ n − 1 +

1√
n − 1

,

and Kk
n, Sn are the unique graphs obtaining the low and upper bounds, respectively.

A Hamiltonian cycle of G is a cycle that contains every vertex of G. A graph is Hamiltonian

if it contains a Hamiltonian cycle. By Lemma 2, we easily obtain

Theorem 6 Let G be a Hamiltonian graph. Then

n√
n − 1

≤ 0R(G) ≤ n√
2
,

and Kn, Cn are the unique graphs obtaining the low and upper bounds, respectively.
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