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Abstract

Using the decomposition theory of modular and integral flow polynomials, we answer

a problem of Beck and Zaslavsky, by providing a general situation in which the

integral flow polynomial is a multiple of the modular flow polynomial.
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In this note we present an answer to an open problem proposed by Beck and

Zaslavsky [1] in the decomposition theory of flow polynomials, by showing a

general situation in which the integral flow polynomial is a multiple of the

modular flow polynomial.
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Let us start with reviewing some definitions and notations. By a graph G =

(V (G), E(G)), we mean that G has finite vertex set V (G) and edge set E(G).

Loops and multiple edges are allowed. Assume that all graphs considered here

are connected. Each edge e ∈ E(G) is incident with two vertices u, v ∈ V (G),

and it can be assigned a direction either from u to v or from v to u, but not

both. In particular, a loop has two directions from a vertex to itself. If each

edge of G has a direction, we say that G is oriented. Let O(G) denote the set

of all orientations of G.

Fix an orientation ε ∈ O(G). By a circle of G we mean a 2-regular connected

subgraph in G. A directed cycle is a circle in which all edges have a consistent

direction with respect to ε. We say that ε is a totally cyclic orientation if every

edge belongs to a directed cycle. Denote the set of totally cyclic orientations

by CO(G). Given two orientations ε1, ε2 ∈ O(G), let E(ε1 6= ε2) denote the

subset of E(G) composed of the edges having opposite directions with respect

to ε1 and ε2. We say that ε1, ε2 are Eulerian-equivalent if E(ε1 6= ε2) can

be written as a disjoint union of directed cycles. As shown in [3,4], Eulerian-

equivalence relation is indeed an equivalence relation on O(G) and induces an

equivalence relation on CO(G). Let [ε] be the Eulerian-equivalence class of ε.

Let [CO(G)] be the set of all Eulerian-equivalence classes in CO(G).

For a fixed orientation ε ∈ O(G) and a given vertex v ∈ V (G), let E+(v, ε)

be the set of edges taking v as the head and E−(v, ε) the set of edges taking

v as the tail. A nowhere-zero flow of G is a function f : E(G) → A such that

∑

e∈E+(v,ε)

f(e) =
∑

e∈E−(v,ε)

f(e), ∀v ∈ V (G)

holds, where A is an abelian group and f never takes the value 0. Taking A =

Z, an integral nowhere-zero flow is called a nowhere-zero k-flow if |f(e)| < k
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for every edge e ∈ E(G). It was known that both the number of nowhere-zero

flows with values in a finite abelian group and the number of nowhere-zero k-

flows are independent of the chosen orientation and the actual group structure

[3,4,6,7]. The former one is a polynomial function of the order of the finite

abelian group A, and is called the modular flow polynomial, denoted φ(G, k).

The latter one is a polynomial function of k, and is called the integral flow

polynomial, denoted φZ(G, k). For each orientation ε ∈ O(G), the number of

nowhere-zero integral flows with values in {0, 1, . . . , k−1} is also a polynomial

function of k [3,4], denoted φZ(G, ε, k).

Lemma 1 ([3,4]) If ε and ε′ are two Eulerian-equivalent orientations, then

φZ(G, ε, k) = φZ(G, ε′, k). (1)

Beck and Zaslavsky noticed that both φZ(3K2, x) (3K2 is the graph of 3 paral-

lel links) and φZ(K4, x) (K4 is the complete graph of 4 vertices) have integral

coefficients, and moreover φZ(3K2, x) = 3φ(3K2, x), φZ(K4, x) = 4φ(K4, x);

see [1, Example 3.4]. Then, they proposed the following problem [1, Problem

3.5]:

Is there any general reason why for 3K2 and K4 both of the integral flow

polynomials have integral coefficients and the integral flow polynomial is a

multiple of the modular polynomial?

Now we can answer the above problem. Note that the modular flow polyno-

mials always have integral coefficients [1,3]. Therefore, we focus on the reason

why φZ(G, x) is a multiple of φ(G, x) for some graph G. In fact, the answer is

implied in the following theorem due to Kochol [4, Equations (1) and (2)] and

Chen and Stanley [3, Theorems 4.4 and 5.6], which shows that the modular
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and integral flow polynomials admit a nice decomposition.

Proposition 2 ([3,4]) Given a graph G, let φ(G, x) be the modular flow poly-

nomial and φZ(G, x) the integral flow polynomial. Then

φ(G, x)=
∑

[ε]∈[CO(G)]

φZ(G, ε, x) (2)

φZ(G, x) =
∑

ε∈CO(G)

φZ(G, ε, x) (3)

Note that similar results hold for integral and modular tension polynomials

of graphs, see [2,5]. Our main result is an immediate consequence of Lemma

1 and Proposition 2.

Theorem 3 If each equivalence class of [CO(G)] has the same number of

totally cyclic orientations, say m, then we have

φZ(G, x) = mφ(G, x). (4)

Before answering the problem of Beck and Zaslavsky, let us recall the definition

of isomorphism between two directed multigraphs. Suppose D = (V, E) and

D′ = (V ′, E ′) are directed multigraphs. We say that D is isomorphic to D′ if

there is a bijection θ : V → V ′ such that for all vertices u, v in V the number

of edges from u to v in D is the same as the number of edges from θ(u) to

θ(v) in D′. Then θ is called an isomorphism from D to D′. Given a graph G,

note that each orientation ε ∈ O(G) determines a unique directed graph Dε.

We say that two orientations ε1, ε2 ∈ O(G) are isomorphic if Dε1
and Dε2

are

isomorphic to each other. By Theorem 3, we obtain the following result.

Corollary 4 If G is a graph such that any two non-Eulerian-equivalent ori-

entations in CO(G) are isomorphic, then the integral flow polynomial φZ(G, x)
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has integral coefficients and is a multiple of the modular flow polynomial

φ(G, x).

Proof. If [CO(G)] has only one Eulerian-equivalence class, then the result

clearly holds. Otherwise, suppose that ε1 and ε2 are any two totally cyclic

orientations which are not Eulerian-equivalent, and we will show that [ε1] and

[ε2] have the same number of totally cyclic orientations. Let θ be the isomor-

phism from Dε1
to Dε2

. For any orientation ε′1 in [ε1], the edge set E(ε1 6= ε′1)

can be written as a disjoint union of directed cycles with respect to ε1. Since

ε1 and ε2 are isomorphic, then the edge set E(ε1 6= ε′1) can also be written as

a disjoint union of directed cycles with respect to ε2. For the orientation ε2, by

reversing the direction of the edges in E(ε1 6= ε′1) and keeping the direction of

other edges, we obtain an orientation ε′2 which obviously belongs to [ε2]. Note

that the orientation ε′2 is uniquely determined by ε′1 when fixing ε1, ε
′
1 and the

isomorphism from Dε1
to Dε2

. This implies that the cardinality of [ε1] is less

than or equal to that of [ε2]. Similarly, we can prove that the cardinality of

[ε2] is less than or equal to that of [ε1]. Therefore, each Eulerian-equivalence

class of [CO(G)] has the same number of totally cyclic orientations. Applying

Theorem 3, we complete the proof.

In particular, we have the following conclusion.

Corollary 5 If G is 3K2 or K4, then any two totally cyclic orientations of

CO(G) are isomorphic. Therefore, in both cases the integral flow polynomial

is a multiple of the modular flow polynomial.

Proof. Let us first consider graph 3K2 with the vertex set {v1, v2}. For any

totally cyclic orientation ε ∈ CO(3K2), we have either |E+(v1, ε)| = 2 or

|E+(v1, ε)| = 1. Given any two totally cyclic orientations ε1 and ε2, if |E+(v1, ε1)| =
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|E+(v1, ε2)| then the identity map is an isomorphism between Dε1
and Dε2

. If

|E+(v1, ε1)| 6= |E+(v1, ε2)|, then we take the bijection θ given by θ(v1) = v2

and θ(v2) = v1 as the desired isomorphism.

For any totally cyclic orientation ε ∈ CO(K4), the equality

∑

v∈V (K4)

|E+(v, ε)| =
∑

v∈V (K4)

|E−(v, ε)|

forces that there are exactly two vertices, say v1, v2, such that |E+(v1, ε)| =

|E+(v2, ε)| = 2, and exactly two vertices, say v3, v4, such that |E+(v3, ε)| =

|E+(v4, ε)| = 1. Without loss of generality, we may assume that for ε the

edge incident with {v1, v2} is directed from v2 to v1 and the edge incident

with {v2, v3} is directed from v3 to v2. In this case, the directions of the

remained edges are uniquely determined. For any two orientations ε1, ε2 ∈

CO(K4), we label the vertices of Dε1
and Dε2

as above. Suppose that V (Dε1
) =

{v1, v2, v3, v4} and V (Dε2
) = {v′

1, v
′
2, v

′
3, v

′
4}. Then the bijection θ with θ(vi) =

v′
i is clearly an isomorphism between Dε1

and Dε2
.

Theorem 3, Corollary 4 and 5 actually present an answer to the problem

of Beck and Zaslavsky. For the graph 3K2, there are 2 Eulerian-equivalence

classes in [CO(3K2)], and each class has 3 totally cyclic orientations. Therefore,

φZ(3K2, x) = 3φ(3K2, x). For the graph K4, there are 6 Eulerian-equivalence

classes in [CO(K4)], and each class has 4 totally cyclic orientations. Therefore,

φZ(K4, x) = 4φ(K4, x). However, there exists some graph G for which the con-

dition of Corollary 4 is not satisfied but its integral flow polynomial φZ(G, x)

is still a multiple of φ(G, x). For such a graph, the reader may consult the

graph K4 minus one edge.
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