Bounds on the local bases of primitive, non-powerful, minimally strong signed digraphs

Hongping Ma *

Center for Combinatorics, Nankai University, Tianjin, 300071, China

Abstract

In this paper, we study the local bases of primitive, non-powerful, minimally strong signed digraphs of order $n \ge 7$. We obtain the first two or three largest kth local bases, depending on whether n is odd or even, together with complete characterization of the equality cases, for primitive, non-powerful, minimally strong signed digraphs.

Key words: Signed digraph; Local base; Primitive minimally strong digraph; Powerful

AMS Subject Classifications: 05C20, 05C22, 15A48,

1. Introduction

A sign pattern matrix is a matrix each of whose entries is 1, -1 or 0. For a square sign pattern matrix A, notice that in the computations of (the signs of) the entries of the power A^k , the ambiguous sign may arise when -1 is added to 1. So a new symbol "#" was introduced in [1] to denote the ambiguous sign. In [1], the set $\Gamma = \{0, 1, -1, \#\}$ is defined as the generalized sign set and the addition and multiplication involving the symbol # are defined as follows:

$$(-1) + 1 = 1 + (-1) = \#;$$
 $a + \# = \# + a = \#$ for all $a \in \Gamma;$
 $0 \cdot \# = \# \cdot 0 = 0;$ $b \cdot \# = \# \cdot b = \#$ for all $b \in \Gamma \setminus \{0\}.$

A matrix with entries in the set Γ is called a generalized sign pattern matrix. In this paper we assume that all the matrix operations considered are operations on matrices over Γ .

We now introduce some graph theoretical concepts.

When we say a digraph, we always permit loops but no multiple arcs. A signed digraph S is a digraph where each arc of S is assigned a sign 1 or -1. A generalized signed digraph S is a digraph where each arc of S is assigned a sign 1, -1 or #. A walk W in a signed digraph is a sequence of arcs e_1, e_2, \dots, e_k such that the terminal vertex of e_i is the same as the initial vertex of e_{i+1} for $i = 1, 2, \dots, k-1$. The number k is called the length of the walk W, denoted by l(W). The sign of the walk W (in a signed digraph), denoted by $\operatorname{sgn}(W)$, is defined to be $\prod_{i=1}^{k} \operatorname{sgn}(e_i)$.

Email address: hpma@163.com.

Two walks W_1 and W_2 in a signed digraph are called a pair of SSSD walks, if they have the same initial vertex, same terminal vertex and same length, but they have different signs.

Let $A = (a_{ij})$ be a square sign pattern matrix of order n. The associated digraph D(A) of A (possibly with loops) is defined to be the digraph with vertex set $V = \{1, 2, \dots, n\}$ and arc set $E = \{(i, j) \mid a_{ij} \neq 0\}$. The associated signed digraph S(A) of A is obtained from D(A) by assigning the sign of a_{ij} to each arc (i, j) in D(A).

A square generalized sign pattern matrix A is called powerful if each power of A contains no # entry. It is easy to see that a sign pattern matrix A is powerful if and only if the associated signed digraph S(A) contains no pairs of SSSD walks.

Definition 1.1 ([2]). Let A be a square generalized sign pattern matrix of order n and A, A^2, A^3, \cdots be the sequence of powers of A. Suppose A^l is the first power that is repeated in the sequence. Namely, suppose l is the least positive integer such that there is a positive integer p such that

$$A^l = A^{l+p}. (1.1)$$

Then l is called the generalized base (or simply base) of A, denoted by l(A). The least positive integer p such that (1.1) holds for l = l(A) is called the generalized period (or simply period) of A, denoted by p(A).

For convenience, we will also define the corresponding concepts for signed digraphs. Let S be a signed digraph of order n. Then there is a sign pattern matrix A of order n such that S(A) = S. We say that S is powerful if A is powerful (i.e., S contains no pairs of SSSD walks). Also we define l(S) = l(A) and p(S) = p(A).

A digraph D is called minimally strong provided that D is strong connected (or strong) and each digraph obtained from D by the removal of an arc is not strong.

Let D be a digraph. We denote by L(D) the set of distinct lengths of all cycles of D; and s(D) the length of the shortest cycle of D.

A digraph D is called a primitive digraph, if there is a positive integer k such that for each vertex x and vertex y (not necessarily distinct) in D, there exists a walk of length k from x to y. The least such k is called the primitive exponent of D, denoted by $\exp(D)$. It is well known that D is primitive if and only if D is strong and $\gcd(r_1, r_2, \dots, r_k) = 1$, where $L(D) = \{r_1, r_2, \dots, r_k\}$.

A signed digraph S is called primitive if the underlying digraph D is primitive, and in this case we define $\exp(S) = \exp(D)$. Similarly, S is called minimally strong if D is minimally strong.

A square matrix A is reducible if there exists a permutation matrix P such that

$$PAP^T = \left(\begin{array}{cc} B & 0\\ D & C \end{array}\right),$$

where B and C are square non-vacuous matrices. The matrix A is irreducible if it is not reducible and is nearly reducible if it is irreducible and each matrix obtained from A by replacing a nonzero entry by 0 is reducible. A square sign pattern matrix A is called primitive if D(A) is primitive and is called nearly reducible if |A| is nearly reducible. Clearly, a sign pattern matrix A is nearly reducible if and only if D(A) is minimally strong.

Let D be a primitive digraph of order n and $x \in V(D)$. The exponent of D at vertex x, denoted by $\exp_D(x)$, is the least positive integer k such that there is a walk of length k from x to each $y \in V(D)$. We choose to order the vertices of D in such a way that $\exp_D(v_{i_1}) \leq$ $\exp_D(v_{i_2}) \leq \cdots \leq \exp_D(v_{i_n})$; then the number $\exp_D(v_{i_k})$ is called the kth local exponent of D, denoted by $\exp_D(k)$. It is well known that $\exp(D) = \exp_D(n)$.

It was shown in [2] that if a signed digraph S is primitive non-powerful, then l(S) is the least positive integer k such that there is a pair of SSSD walks of length k between any two vertices in S.

Definition 1.2 ([3]). Let S be a primitive non-powerful signed digraph of order n. The base of S at a vertex $x \in V(S)$, denoted by $l_S(x)$, is defined to be the least positive integer l such that there is a pair of SSSD walks of length k from x to each $y \in V(S)$ for each integer $k \ge l$. We choose to order the vertices of S in such a way that $l_S(v_{i_1}) \le l_S(v_{i_2}) \le \cdots \le l_S(v_{i_n})$; then we call $l_S(v_{i_k})$ the kth local base of S, denoted by $l_S(k)$.

Clearly, $l(S) = l_S(n)$. Let D be the underlying digraph of S; we define $\exp_S(x) = \exp_D(x)$ and $\exp_S(k) = \exp_D(k)$.

In [3], L. Wang et al. obtained sharp bounds of local bases for primitive non-powerful signed digraphs. In [4], B. Liu and L. You gave sharp upper bounds of the base for primitive nearly reducible sign pattern matrices. Define:

$$m_1(n,k) = \begin{cases} 2n^2 - 8n + 9 + k, & \text{if } 1 \le k \le n-2, \\ 2n^2 - 8n + 8 + k, & \text{if } n-1 \le k \le n; \end{cases}$$
$$m_2(n,k) = \begin{cases} 2n^2 - 10n + 13 + k, & \text{if } 1 \le k \le n-3, \\ 2n^2 - 10n + 12 + k, & \text{if } n-2 \le k \le n; \end{cases}$$

and

$$m_3(n,k) = \begin{cases} 2n^2 - 12n + 20 + k, & \text{if } 1 \le k \le n - 4, \\ 2n^2 - 12n + 19 + k, & \text{if } n - 3 \le k \le n - 2, \\ 2n^2 - 12n + 18 + k, & \text{if } n - 1 \le k \le n. \end{cases}$$

In the remainder of this paper, let $D_{n,s}$ $(n \ge 4, 2 \le s \le n-1)$ and H_n $(n \ge 6)$ be the digraphs of order *n* given in Fig. 1 and $H_n^{(i)}$ (i = 1, 2, 3, 4, 5) be the primitive, minimally strong digraph of order $n \ge 6$ given in Fig. 3, respectively. In this paper, we study the local bases of primitive, non-powerful, minimally strong signed digraphs and obtain the following:

Main Theorem. Let S be a primitive, non-powerful, minimally strong signed digraph of order $n \ge 7$. Then

(1) $l_S(k) \le m_1(n,k)$ for $1 \le k \le n$,

with equality if and only if the underlying digraph is isomorphic to $D_{n,n-2}$.

(2) For each integer l with $m_2(n,k) < l < m_1(n,k)$ or $m_3(n,k) < l < m_2(n,k)$, there is no primitive, non-powerful, minimally strong signed digraph of order n with $l_S(k) = l$ for $1 \le k \le n$.

(3) $l_S(k) = m_2(n,k)$ for $1 \le k \le n$ if and only if n is even and the underlying digraph is isomorphic to $D_{n,n-3}$; and there is no primitive, non-powerful, minimally strong signed digraph of order n with $l_S(k) = m_2(n,k)$ if n is odd.

(4) $l_S(k) = m_3(n,k)$ for $k = 1, 2, \dots, n-4, n-2, n$ if and only if the underlying digraph is isomorphic to H_n ; $l_S(n-1) = m_3(n, n-1)$ if and only if the underlying digraph is isomorphic to H_n or $H_n^{(1)}$ whose two cycles of length n-2 have the same sign in S; and $l_S(n-3) = m_3(n, n-3)$ if and only if the underlying digraph is isomorphic to H_n or $H_n^{(i)}$ (i = 1, 2) whose two cycles of length n-2 have the same sign in S.

Theorem 4.1 in [4] is exactly the case $l_S(n) = l(S)$ in Main Theorem.

2. Some preliminaries

In this section, we introduce some definitions, notations and properties which we need to use in the next sections.

Lemma 2.1 ([2]). If S is a primitive signed digraph, then S is non-powerful if and only if S contains a pair of cycles C_1 and C_2 (say, with lengths p_1 and p_2 , respectively) satisfying one of the following two conditions:

(A1) p_1 is odd and p_2 is even and $sgn(C_2) = -1$;

(A2) Both p_1 and p_2 are odd and $\operatorname{sgn}(C_1) = -\operatorname{sgn}(C_2)$.

A pair of cycles C_1 and C_2 satisfying (A_1) or (A_2) is a "distinguished cycle pair". It is easy to see that if C_1 and C_2 are a distinguished cycle pair with lengths p_1 and p_2 , respectively, then the closed walks $W_1 = p_2C_1$ (walk around $C_1 p_2$ times) and $W_2 = p_1C_2$ have the same length p_1p_2 and different signs:

$$(\operatorname{sgn}(C_1))^{p_2} = -(\operatorname{sgn}(C_2))^{p_1} \tag{2.1}$$

If t is a nonnegative integer, we denote by $R_t(x)$ the set of vertices of digraph D that can be reached by a walk of length t that begins at vertex x.

Lemma 2.2. Let *D* be a primitive digraph and x, y be two different vertices in *D* with $R_t(x) = \{y\}$. Then $\exp_D(x) = \exp_D(y) + t$.

Proof. Since $R_t(x) = \{y\}$, it is obvious that $\exp_D(x) \leq \exp_D(y) + t$. If $t \geq \exp_D(x)$, then by the definition of $\exp_D(x)$, we have $R_t(x) = V(D) \neq \{y\}$, which is a contradiction. Hence $t < \exp_D(x)$. Since there is a walk of length $\exp_D(x)$ from x to each $v \in V(D)$, and $R_t(x) = \{y\}$; it is clear that there is a walk of length $\exp_D(x) - t$ from y to each $v \in V(D)$. Therefore $\exp_D(y) \leq \exp_D(x) - t$. Hence $\exp_D(x) = \exp_D(y) + t$. \Box

Lemma 2.3 ([5]). Let D be a primitive digraph of order n. Then

$$\exp_D(k+1) \le \exp_D(k) + 1 \quad \text{for} \quad 1 \le k \le n-1.$$

Let a_1, a_2, \dots, a_k be positive integers. Define the Frobenius set $S(a_1, a_2, \dots, a_k)$ as:

$$S(a_1, a_2, \cdots, a_k) = \{r_1 a_1 + \cdots + r_k a_k \mid r_1, \cdots, r_k \text{ are nonnegative integers}\}.$$

It is well known that if $gcd(a_1, a_2, \dots, a_k) = 1$, then $S(a_1, a_2, \dots, a_k)$ contains all the sufficiently large positive integers. In this case we define the Frobenius number $\phi(a_1, a_2, \dots, a_k)$ to be the least integer ϕ such that $m \in S(a_1, a_2, \dots, a_k)$ for all integers $m \ge \phi$. Clearly, $\phi(a_1, a_2, \dots, a_k) - 1$ is not in $S(a_1, a_2, \dots, a_k)$. It is well known that if a, b are coprime positive integers, then $\phi(a, b) = (a - 1)(b - 1)$.

Also, by using the formula for the Frobenius number of arithmetical progressions ([6]), we have

$$\phi(n-4, n-3, n-2) \le \lfloor \frac{n-4}{2} \rfloor (n-4).$$
(2.2)

Let $R = \{l_1, l_2, \dots, l_k\}$ be a set of cycle lengths in a primitive digraph D such that $gcd(l_1, l_2, \dots, l_k) = 1$. For any $x, y \in V(D)$, the relative distance $d_R(x, y)$ from x to y is defined to be the length of the shortest walk from x to y which meets at least one cycle of each length l_i for $i = 1, 2, \dots, k$. Let $\phi_R = \phi(l_1, l_2, \dots, l_k)$ be the Frobenius number, $d_R = \max_{x,y \in V(D)} d_R(x, y)$. We have the following known upper bounds ([7]):

$$\exp_D(x) \le \phi_R + \max_{y \in V(D)} d_R(x, y); \tag{2.3}$$

$$\exp(D) \le \phi_R + d_R. \tag{2.4}$$

An ordered pair of vertices x, y in a digraph D is said to have the unique walk property if every walk from x to y of length at least $d_{L(D)}(x, y)$ consists of some walk π of length $d_{L(D)}(x, y)$ form x to y augmented by a number of cycles each of which has a vertex in common with π .

Lemma 2.4 ([8]). Let D be a primitive digraph with $d_{L(D)}(x, y) = d_{L(D)}$. If the ordered pair of vertices x, y has the unique walk property, then

$$\exp(D) = \phi_{L(D)} + d_{L(D)}.$$

Lemma 2.5 ([4]). Let $R = \{l_1, l_2, \dots, l_k\}$ be a set of cycle lengths in a primitive digraph D of order n with $\frac{n}{2} < l_1 < l_2 < \dots < l_k$ and $gcd(l_1, l_2, \dots, l_k) = 1$. Then for each vertex x and each vertex y in D, we have

$$d_R(x,y) \le n - 1 + \max\{l_{i+1} - l_i \mid i \in \{1, 2, \cdots, k - 1\}\}.$$

Lemma 2.6 ([9]). Let D be a primitive digraph of order n and $L(D) = \{p, q\}$ with $3 \le p < q$, p + q > n. Then $\exp(D) \le n + p(q - 2)$.

Lemma 2.7 ([10]). Let D be a primitive, minimally strong digraph of order n. Then the length of the longest cycle of D does not exceed n - 1.

Lemma 2.8 ([4]). Let D be a primitive, minimally strong digraph of order n with a cycle of length n - 1. Then there only exists a unique cycle of length l (1 < l < n - 1) satisfying gcd(n - 1, l) = 1 in D.

Lemma 2.9 ([11]). Let D be a primitive, minimally strong digraph of order n, and s(D) = s. Then

$$\exp_D(k) \le \begin{cases} k+1+s(n-3), & \text{if } 1 \le k \le s, \\ k+s(n-3), & \text{if } s+1 \le k \le n \end{cases}$$

with equality if and only if D is isomorphic to $D_{n,s}$. If $gcd(s, n-1) \neq 1$, then

$$\exp_D(k) < \begin{cases} k+1+s(n-3), & \text{if } 1 \le k \le s, \\ k+s(n-3), & \text{if } s+1 \le k \le n. \end{cases}$$

And if gcd(s, n - 1) = 1, then $D_{n,s}$ is a primitive, minimally strong digraph of order n with

$$\exp_{D_{n,s}}(k) = \begin{cases} k+1+s(n-3), & \text{if } 1 \le k \le s, \\ k+s(n-3), & \text{if } s+1 \le k \le n. \end{cases}$$

(a) The digraph $D_{n,s}$ $(n \ge 4, 2 \le s \le n-1)$

Fig. 1. The digraph $D_{n,s}$ and the digraph H_n

Lemma 2.10 ([3]). Let S be a primitive, non-powerful signed digraph of order n. Then

$$l_S(k+1) \le l_S(k) + 1$$
 for $1 \le k \le n-1$

Lemma 2.11. Let S be a primitive, non-powerful signed digraph and x, y be two different vertices in S with $R_t(x) = \{y\}$. If all the walks of length t from x to y have the same sign, then $l_S(x) = l_S(y) + t$.

Proof. Let v be any given vertex in S. By the definition of local base, there is a pair of SSSD walks W_1 and W_2 (Q_1 and Q_2 , respectively) from y (x, respectively) to v with length $l_S(y)$ ($l_S(x)$, respectively). Since $R_t(x) = \{y\}$, it is clear that there is a pair of SSSD walks from x to v with length $l_S(y) + t$. So $l_S(x) \leq l_S(y) + t$. For i = 1, 2, let Q'_i be the subwalk of

 Q_i from y to v with length $l_S(x) - t > 0$. (If $t \ge l_S(x)$, then $R_t(x) = V(S) \ne \{y\}$, which is a contradiction). Since all the walks of length t from x to y have the same sign, Q'_1 and Q'_2 are also a pair of SSSD walks. So $l_S(y) \le l_S(x) - t$. Hence $l_S(x) = l_S(y) + t$. \Box

Let S be a primitive, non-powerful signed digraph. For any $x \in V(S)$, let r(x) be the least positive integer k such that there is a pair of SSSD walks of length k from x to x. It is clear that $r(x) \leq l_S(x)$. From Lemma 2.6 in [3], we know that if there is a pair of SSSD walks with length r from x to x, then $l_S(x) \leq \exp_S(x) + r$. So the following Lemma 2.12 holds.

Lemma 2.12. Let S be a primitive, non-powerful signed digraph and $x \in V(S)$. Then $l_S(x) \leq \exp_S(x) + r(x)$.

3. Some special cases

In this section, we consider those primitive, non-powerful, minimally strong signed digraphs whose underlying digraphs are $D_{n,s}$, H_n and $H_n^{(i)}$ (i = 1, 2, 3, 4, 5).

In the remainder of this paper, let $D_{n,t,s}$ $(n \ge 4, 1 \le t \le n - s, 2 \le s \le n - 1)$ be the digraph given in Fig. 2. Then we have $D_{n,s} = D_{n,1,s}$ and $H_n = D_{n,2,n-3}$. So we first consider the primitive, non-powerful signed digraph whose underlying digraph is $D_{n,t,s}$.

Fig. 2. The digraph $D_{n,t,s}$ $(n \ge 4, 1 \le t \le n-s, 2 \le s \le n-1)$.

Theorem 3.1. Let S be a primitive, non-powerful signed digraph of order $n \ge 4$ with $D_{n,t,s}$ as its underlying digraph. Then

(1)

$$\exp_{S}(k) = \begin{cases} s(n-t-2)+t+k, & \text{if } 1 \le k \le s-t+1, \\ s(n-t-2)+t+k-1, & \text{if } s-t+2 \le k \le s-t+3, \\ s(n-t-2)+t+k-2, & \text{if } s-t+4 \le k \le s-t+5, \\ \vdots & \vdots \\ s(n-t-2)+k+1, & \text{if } s+t-2 \le k \le s+t-1, \\ s(n-t-2)+k, & \text{if } s+t \le k \le n. \end{cases}$$
(3.1)

(2) $l_S(k) = \exp_S(k) + (n-t)s$, i.e.,

$$l_{S}(k) = \begin{cases} 2s(n-t-1)+t+k, & \text{if } 1 \le k \le s-t+1, \\ 2s(n-t-1)+t+k-1, & \text{if } s-t+2 \le k \le s-t+3, \\ 2s(n-t-1)+t+k-2, & \text{if } s-t+4 \le k \le s-t+5, \\ \vdots & \vdots \\ 2s(n-t-1)+k+1, & \text{if } s+t-2 \le k \le s+t-1, \\ 2s(n-t-1)+k, & \text{if } s+t \le k \le n. \end{cases}$$
(3.2)

Proof. Since S is primitive, and $L(S) = \{n - t, s\}$, we know that gcd(n - t, s) = 1 and t < n - s. Let C_{n-t} and C_s be the cycles of lengths n - t and s in S.

(1) Note that $d_{L(S)} = d_{L(S)}(v_{n-t}, v_{s-t+1}) = n-t+n-s-1 = 2n-s-t-1$, and the vertices v_{n-t}, v_{s-t+1} have the unique walk property. By Lemma 2.4 and (2.3), we have

$$\exp(S) = \exp_S(v_{n-t}) = \phi(n-t,s) + d_{L(S)} = (n-t-1)(s-1) + 2n-s-t - 1 = (n-t-2)s + n.$$

Since $|R_1(v_i)| = 1$ for $2 \le i \le n$, it follows from Lemma 2.2 that $\exp_S(v_{n-t+1}) = \exp_S(v_{s-t}) + 1$ 1 and $\exp_S(v_i) = \exp_S(v_{i-1}) + 1$ for $i = 2, \dots, n-t, n-t+2, \dots, n$. Hence we have $\exp_S(v_i) = (n-t-2)s + t + i$ for $1 \le i \le n-t$ and $\exp_S(v_{n-t+j}) = \exp_S(v_{s-t+j})$ for $1 \le j \le t$.

So by directly computing, we can obtain formula (3.1). In particular, $\exp_S(v_1) = \exp_S(1)$.

(2) First we show that $l_S(v_1) = \exp_S(v_1) + (n-t)s = 2s(n-t-1) + t + 1$. Since S is nonpowerful and C_{n-t} and C_s are the only two cycles of S, C_{n-t} and C_s must be a distinguished cycle pair by Lemma 2.1. So sC_{n-t} and $(n-t)C_s$ have different signs by (2.1). Because v_1 is a common vertex of C_{n-t} and C_s , we have $r(v_1) \leq (n-t)s$. Hence $l_S(v_1) \leq \exp_S(v_1) + (n-t)s$ by Lemma 2.12.

Next we show that there is no pair of SSSD walks of length k = 2s(n - t - 1) + t from v_1 to v_{s-t+1} . Suppose that W_1, W_2 are two walks of length k from v_1 to v_{s-t+1} . Then each W_i (i = 1, 2) is a "union" of the path P from v_1 to v_{s-t+1} with length n - s and cycles, that is, $W_i = P + a_i C_{n-t} + b_i C_s, a_i \ge 0, b_i \ge 0, (i = 1, 2)$. Thus we have

$$k = l(W_i) = n - s + a_i(n - t) + b_i s, \ a_i \ge 0, b_i \ge 0, (i = 1, 2).$$

So $(a_2 - a_1)(n - t) = (b_1 - b_2)s$. Write $b_1 - b_2 = (n - t)x$; then $a_2 - a_1 = sx$. We claim that x = 0.

If $x \ge 1$, then $a_2 \ge s$; so $k = n - s + a_2(n-t) + b_2s = n - s + (a_2 - s)(n-t) + s(n-t) + b_2s$, which implies that $\phi(n-t,s) - 1 = (n-t-1)(s-1) - 1 = k - n + s - (n-t)s = (a_2 - s)(n-t) + b_2s \in S(n-t,s)$, contradicting the definition of $\phi(n-t,s)$. Similarly we can get a contradiction if $x \le -1$. Thus we have x = 0. So $a_1 = a_2, b_1 = b_2$ and thus $\operatorname{sgn}(W_1) = \operatorname{sgn}(W_2)$. This argument shows that $l_S(v_1) \ge k + 1 = \exp_S(v_1) + (n-t)s$. Hence $l_S(v_1) = \exp_S(v_1) + (n-t)s$.

Again since $|R_1(v_i)| = 1$ for $2 \le i \le n$, it follows from Lemma 2.11 that $l_S(v_{n-t+1}) = l_S(v_{s-t}) + 1$ and $l_S(v_i) = l_S(v_{i-1}) + 1$ for $i = 2, \dots, n-t, n-t+2, \dots, n$. So it is not difficult to see that $l_S(v_i) = \exp_S(v_i) + (n-t)s$ for $1 \le i \le n$. Furthermore, $l_S(k) = \exp_S(k) + (n-t)s$ for $1 \le k \le n$. Hence by (3.1), we can obtain formula (3.2). \Box

Since $D_{n,s} = D_{n,1,s}$, it is easy to check that the following Corollary 3.1 holds by Theorem 3.1.

Corollary 3.1. Let S be a primitive, non-powerful signed digraph of order $n \ge 4$ with $D_{n,s}$ as its underlying digraph. Then

$$l_S(k) = \begin{cases} 2s(n-2) + k + 1, & \text{if } 1 \le k \le s, \\ 2s(n-2) + k, & \text{if } s + 1 \le k \le n. \end{cases}$$
(3.3)

Note that the digraph $D_{n,n-2}$ is primitive and $D_{n,n-3}$ is primitive if and only if n is even. So the following Corollaries 3.2 and 3.3 hold by Corollary 3.1.

Corollary 3.2. Let S_1 be a primitive, non-powerful signed digraph of order $n \ge 4$ with

 $D_{n,n-2}$ as its underlying digraph. Then

$$l_{S_1}(k) = m_1(n,k)$$
 for $1 \le k \le n$.

Corollary 3.3. Let $n \ge 6, n \equiv 0 \pmod{2}$. Let S_2 be a primitive, non-powerful signed digraph with $D_{n,n-3}$ as its underlying digraph. Then

$$l_{S_2}(k) = m_2(n,k)$$
 for $1 \le k \le n$.

It is clear that H_n $(n \ge 6)$ is primitive. Since $H_n = D_{n,2,n-3}$, the following Corollary 3.4 holds by Theorem 3.1.

Corollary 3.4. Let S_3 be a primitive, non-powerful signed digraph of order $n \ge 6$ with H_n as its underlying digraph. Then

$$l_{S_3}(k) = m_3(n,k)$$
 for $1 \le k \le n$.

Let D be a primitive, minimally strong digraph of order $n \ge 6$ with $L(D) = \{n-2, n-3\}$. Then according to the results in [10], we know that D is isomorphic to H_n or $H_n^{(i)}$ for some $i \in \{1, 2, 3, 4, 5\}$, and we have:

$$\exp(H_n^{(i)}) = \exp_{H_n^{(i)}}(v_{n-3}) = n^2 - 6n + 11 \quad \text{for} \quad i = 1, 2, 3; \tag{3.4}$$

$$\exp(H_n^{(i)}) = \exp_{H_n^{(i)}}(v_{n-1}) = n^2 - 6n + 10 \text{ for } i = 4, 5.$$
(3.5)

In the following, we consider the primitive, non-powerful signed digraph with $H_n^{(i)}$ (i = 1, 2, 3, 4, 5) as its underlying digraph respectively.

Lemma 3.1. Let $S^{(1)}$ be a primitive, non-powerful signed digraph of order $n \ge 6$ with $H_n^{(1)}$ as its underlying digraph. Then

(1)

$$\exp_{S^{(1)}}(k) = \begin{cases} n^2 - 7n + 13 + k, & \text{if } 1 \le k \le n - 3, \\ n^2 - 7n + 12 + k, & \text{if } n - 2 \le k \le n - 1, \\ n^2 - 7n + 11 + k, & \text{if } k = n. \end{cases}$$
(3.6)

(2) If the (only) two cycles of length n-2 of $S^{(1)}$ have different signs, then

$$l_{S^{(1)}}(k) \le \exp_{S^{(1)}}(k) + n - 2 \qquad \text{for } 1 \le k \le n.$$
(3.7)

(3) If the (only) two cycles of length n-2 of $S^{(1)}$ have the same sign, then $l_{S^{(1)}}(k) = \exp_{S^{(1)}}(k) + (n-2)(n-3)$, i.e.,

$$l_{S^{(1)}}(k) = \begin{cases} 2n^2 - 12n + 19 + k, & \text{if } 1 \le k \le n - 3, \\ 2n^2 - 12n + 18 + k, & \text{if } n - 2 \le k \le n - 1, \\ 2n^2 - 12n + 17 + k, & \text{if } k = n. \end{cases}$$
(3.8)

In particular, $l_{S^{(1)}}(k) = m_3(n,k)$ for k = n-3, n-1 and $l_{S^{(1)}}(k) < m_3(n,k)$ for $k = 1, 2, \dots, n-4, n-2, n$.

Proof. (1) From (3.4), we have $\exp_{S^{(1)}}(v_{n-3}) = n^2 - 6n + 11$. Note that v_n is a copy of v_{n-3} with respect to adjacency, so $\exp_{S^{(1)}}(v_n) = \exp_{S^{(1)}}(v_{n-3})$. Since $|R_1(v_j)| = 1$ for $j = 1, 2, \dots, n-5, n-3, n-2, n-1, n$, it follows from Lemma 2.2 that $\exp_{S^{(1)}}(v_{n-2}) = \exp_{S^{(1)}}(v_{n-3}) - 1$; $\exp_{S^{(1)}}(v_1) = \exp_{S^{(1)}}(v_{n-2}) - 1$; $\exp_{S^{(1)}}(v_j) = \exp_{S^{(1)}}(v_{j-1}) - 1$ for $j = 2, 3, \dots, n-4$ and $\exp_{S^{(1)}}(v_{n-1}) = \exp_{S^{(1)}}(v_1) + 1$. So by directly computing, we can obtain (3.6). In Particular, $\exp_{S^{(1)}}(v_{n-4}) = \exp_{S^{(1)}}(1)$.

(2) If the two cycles of length n-2 of $S^{(1)}$ have different signs, then it is easy to see that $r(v_j) \leq n-2$ for $j = 1, 2, \dots, n-4, n-2$. So $l_{S^{(1)}}(v_j) \leq \exp_{S^{(1)}}(v_j) + n-2$ for $j = 1, 2, \dots, n-4, n-2$ by Lemma 2.12. Since $R_1(v_j) = \{v_{n-2}\}$ for j = n-3, n and $R_1(v_{n-1}) = \{v_1\}$, we have $l_{S^{(1)}}(v_j) = l_{S^{(1)}}(v_{n-2}) + 1 \leq \exp_{S^{(1)}}(v_{n-2}) + 1 = \exp_{S^{(1)}}(v_j) + n-2$ for j = n-3, n and $l_{S^{(1)}}(v_{n-1}) = l_{S^{(1)}}(v_1) + 1 \leq \exp_{S^{(1)}}(v_1) + (n-2) + 1 = \exp_{S^{(1)}}(v_{n-1}) + n-2$. Hence the formula (3.7) holds.

(3) If the two cycles of length n-2 of $S^{(1)}$ have the same sign, then by Lemma 2.1, each cycle of length n-2 and the cycle of length n-3 will form a distinguished cycle pair. Since v_{n-4} is a common vertex of one of the distinguished cycle pairs of $S^{(1)}$, we have $r(v_{n-4}) \leq (n-2)(n-3)$. Hence $l_{S^{(1)}}(v_{n-4}) \leq \exp_{S^{(1)}}(v_{n-4}) + (n-2)(n-3) = \exp_{S^{(1)}}(1) + (n-2)(n-3) = 2n^2 - 12n + 20$ by Lemma 2.12.

Now we show that there is no pair of SSSD walks of length $k = 2n^2 - 12n + 19$ from v_{n-4} to v_{n-2} . Suppose that W_1, W_2 are two walks of length k from v_{n-4} to v_{n-2} . Then each W_i (i = 1, 2) is a "union" of path $P_1 = (v_{n-4}, v_{n-3}, v_{n-2})$ or $P_2 = (v_{n-4}, v_n, v_{n-2})$ and cycles. Since the two cycles of length n - 2 of $S^{(1)}$ have the same sign, then $sgn(P_1) = sgn(P_2)$ and thus we have

$$k = l(W_i) = 2 + a_i(n-3) + b_i(n-2), \quad a_i \ge 0, b_i \ge 0, (i = 1, 2).$$

So $(a_2 - a_1)(n - 3) = (b_1 - b_2)(n - 2)$. Write $b_1 - b_2 = (n - 3)x$; then $a_2 - a_1 = (n - 2)x$. We claim that x = 0.

If $x \ge 1$, then $a_2 \ge n-2$; so $k = 2 + [a_2 - (n-2)](n-3) + (n-2)(n-3) + b_2(n-2)$, which implies that $\phi(n-2, n-3) - 1 = (n-3)(n-4) - 1 = k - (n^2 - 5n + 8) = [a_2 - (n-2)](n-3) + b_2(n-2) \in S(n-2, n-3)$, contradicting the definition of $\phi(n-2, n-3)$. Similarly we can get a contradiction if $x \le -1$. Thus we have x = 0. So $a_1 = a_2, b_1 = b_2$ and thus $\operatorname{sgn}(W_1) = \operatorname{sgn}(W_2)$. This argument shows that $l_{S^{(1)}}(v_{n-4}) \ge k+1 = \exp_{S^{(1)}}(v_{n-4}) + (n-2)(n-3)$. Hence $l_{S^{(1)}}(v_{n-4}) = \exp_{S^{(1)}}(v_{n-4}) + (n-2)(n-3)$.

Again since $|R_1(v_j)| = 1$ for $j = 1, 2, \dots, n-5, n-3, n-2, n-1, n$, it follows from Lemma 2.11 that $l_{S^{(1)}}(v_j) = l_{S^{(1)}}(v_{j+1}) + 1$ for $j = 1, 2, \dots, n-5, n-3; l_{S^{(1)}}(v_{n-2}) = l_{S^{(1)}}(v_{n-1}) = l_{S^{(1)}}(v_1) + 1$ and $l_{S^{(1)}}(v_n) = l_{S^{(1)}}(v_{n-2}) + 1$. So it is not difficult to check that $l_{S^{(1)}}(v_i) = \exp_{S^{(1)}}(v_i) + (n-2)(n-3)$ for $1 \le i \le n$. Furthermore, $l_{S^{(1)}}(k) = \exp_{S^{(1)}}(k) + (n-2)(n-3)$ for $1 \le k \le n$. Hence by (3.6), we can obtain formula (3.8). By the definition of $m_3(n,k), l_{S^{(1)}}(k) \le m_3(n,k)$, with equality if and only if k = n - 3 or n - 1. \Box

Lemma 3.2. Let $S^{(2)}$ be a primitive, non-powerful signed digraph of order $n \ge 6$ with $H_n^{(2)}$ as its underlying digraph. Then

(1)

$$\exp_{S^{(2)}}(k) = \begin{cases} n^2 - 7n + 13 + k, & \text{if } 1 \le k \le n - 3, \\ n^2 - 7n + 12 + k, & \text{if } k = n - 2, \\ n^2 - 7n + 11 + k, & \text{if } n - 1 \le k \le n. \end{cases}$$
(3.9)

(2) If the (only) two cycles of length n-2 of $S^{(2)}$ have different signs, then

$$l_{S^{(2)}}(k) \le \exp_{S^{(2)}}(k) + n - 2 \qquad \text{for } 1 \le k \le n.$$
(3.10)

(3) If the (only) two cycles of length n-2 of $S^{(2)}$ have the same sign, then $l_{S^{(2)}}(k) = \exp_{S^{(2)}}(k) + (n-2)(n-3)$, i.e.,

$$l_{S^{(2)}}(k) = \begin{cases} 2n^2 - 12n + 19 + k, & \text{if } 1 \le k \le n - 3, \\ 2n^2 - 12n + 18 + k, & \text{if } k = n - 2, \\ 2n^2 - 12n + 17 + k, & \text{if } n - 1 \le k \le n. \end{cases}$$
(3.11)

In particular, $l_{S^{(2)}}(k) = m_3(n,k)$ for k = n-3 and $l_{S^{(2)}}(k) < m_3(n,k)$ for $k = 1, 2, \dots, n-4, n-2, n-1, n$.

Proof. Note that $R_2(v_{n-3}) = \{v_1\}$. If the two cycles of length n-2 of $S^{(2)}$ have different signs, then $r(v_j) \leq n-2$ for $j = 1, 2, \dots, n-3$. Also if the two cycles of length n-2 of $S^{(2)}$ have the same sign, the only two walks of length 2 from v_{n-3} to v_1 have the same sign too. So we can prove this lemma by using a method similar to the proof of Lemma 3.1. \Box

Lemma 3.3. Let $S^{(3)}$ be a primitive, non-powerful signed digraph of order $n \ge 7$ with $H_n^{(3)}$ as its underlying digraph. Then

(1)

$$\exp_{S^{(3)}}(k) = \begin{cases} n^2 - 7n + 13 + k, & \text{if } 1 \le k \le n - 4 - i, \\ n^2 - 7n + 12 + k, & \text{if } n - 3 - i \le k \le n - 2, \\ n^2 - 7n + 11 + k, & \text{if } n - 1 \le k \le n. \end{cases}$$
(3.12)

(2) If the (only) two cycles of length n-2 of $S^{(3)}$ have different signs, then

$$l_{S^{(3)}}(k) \le \exp_{S^{(3)}}(k) + n - 2 \qquad \text{for } 1 \le k \le n.$$
(3.13)

(3) If the (only) two cycles of length n-2 of $S^{(3)}$ have the same sign, then $l_{S^{(3)}}(k) = \exp_{S^{(3)}}(k) + (n-2)(n-3)$, i.e.,

$$l_{S^{(3)}}(k) = \begin{cases} 2n^2 - 12n + 19 + k, & \text{if } 1 \le k \le n - 4 - i, \\ 2n^2 - 12n + 18 + k, & \text{if } n - 3 - i \le k \le n - 2, \\ 2n^2 - 12n + 17 + k, & \text{if } n - 1 \le k \le n. \end{cases}$$
(3.14)

Furthermore, we have $l_{S^{(3)}}(k) < m_3(n,k)$ for $1 \le k \le n$.

Proof. Note that $R_2(v_i) = \{v_{i+2}\}$. If the two cycles of length n-2 of $S^{(3)}$ have different signs, then $r(v_j) \leq n-2$ for $j = 1, 2, \dots, i, i+2, i+3, \dots, n-2$. So similar to the proof of (1) and (2) in Lemma 3.1, we can obtain (3.12) and (3.13).

If the only two cycles of length n-2 of $S^{(3)}$ have the same sign, then the only two cycles of length n-3 of $S^{(3)}$ must have the same sign too. So by Lemma 2.1, each cycle of length n-2and each cycle of length n-3 will form a distinguished cycle pair; and note that the only two walks of length 2 from v_i to v_{i+2} have the same sign, using the method similar to (3) in Lemma 3.1, we can obtain (3.14). Since $1 \le i \le n-6$, we have $l_{S^{(3)}}(k) < m_3(n,k)$ for $1 \le k \le n$. \Box

Lemma 3.4. Let $S^{(i)}$ be a primitive, non-powerful signed digraph of order $n \ge 7$ with $H_n^{(i)}$ (i = 4, 5) as its underlying digraph. Then

(1)

$$\exp_{S^{(i)}}(k) = \begin{cases} n^2 - 7n + 12 + k, & \text{if } 1 \le k \le n - 3, \\ n^2 - 7n + 11 + k, & \text{if } n - 2 \le k \le n - 1, \\ n^2 - 7n + 10 + k, & \text{if } k = n. \end{cases}$$
(3.15)

(2) If the (only) two cycles of length n-3 of $S^{(i)}$ have different signs, then

$$l_{S^{(i)}}(k) \le \exp_{S^{(i)}}(k) + n - 2$$
 for $1 \le k \le n.$ (3.16)

(3) If the (only) two cycles of length n-3 of $S^{(i)}$ have the same sign, then $l_{S^{(i)}}(k) = \exp_{S^{(i)}}(k) + (n-2)(n-3)$, i.e.,

$$l_{S^{(i)}}(k) = \begin{cases} 2n^2 - 12n + 18 + k, & \text{if } 1 \le k \le n - 3, \\ 2n^2 - 12n + 17 + k, & \text{if } n - 2 \le k \le n - 1, \\ 2n^2 - 12n + 16 + k, & \text{if } k = n. \end{cases}$$
(3.17)

Furthermore, we have $l_{S^{(i)}}(k) < m_3(n,k)$ for $1 \le k \le n$.

Proof. We only show the case i = 4; and the proof for the case i = 5 is similar to i = 4.

(1) From (3.5), we have $\exp_{S^{(4)}}(v_{n-1}) = n^2 - 6n + 10$. Since $|R_1(v_j)| = 1$ for $j = 1, 2, \dots, n - 6, n-4, n-3, n-1, n$, by Lemma 2.2, we know that $\exp_{S^{(4)}}(v_{n-3}) = \exp_{S^{(4)}}(v_{n-1}) - 1 = n^2 - 6n + 9$; $\exp_{S^{(4)}}(v_1) = \exp_{S^{(4)}}(v_{n-3}) - 1 = n^2 - 6n + 8$; $\exp_{S^{(4)}}(v_{n-4}) = \exp_{S^{(4)}}(v_{n-3}) + 1 = n^2 - 6n + 10$; $\exp_{S^{(4)}}(v_n) = \exp_{S^{(4)}}(v_1) + 1 = n^2 - 6n + 9$ and $\exp_{S^{(4)}}(v_j) = \exp_{S^{(4)}}(v_{j-1}) - 1$ for $j = 2, 3, \dots, n - 5$, or equivalently, $\exp_{S^{(4)}}(v_j) = n^2 - 6n + 9 - j$ for $j = 1, 2, \dots, n - 5$.

Now we show that $\exp_{S^{(4)}}(v_{n-2}) = n^2 - 7n + 13$. Since $R_1(v_{n-5}) \supset \{v_{n-2}\}$, it is clear that $\exp_{S^{(4)}}(v_{n-5}) \leq \exp_{S^{(4)}}(v_{n-2}) + 1$. Hence $\exp_{S^{(4)}}(v_{n-2}) \geq \exp_{S^{(4)}}(v_{n-5}) - 1 = n^2 - 7n + 13$. For nonnegative integer i, let $A_i = R_{i(n-3)+1}(v_{n-2})$. Suppose $|\bigcup_{j=0}^{i-1} A_j| < n$ and $|A_i \setminus \bigcup_{j=0}^{i-1} A_j| = 0$. Then $|A_m \setminus \bigcup_{j=0}^{i-1} A_j| = 0$ for all $m \geq i$, and so $|\bigcup_{j=0}^{\infty} A_j| < n$, which implies $H_n^{(4)}$ is imprimitive, a contradiction. Therefore

$$|A_i \setminus \bigcup_{j=0}^{i-1} A_j| \ge 1$$
, provided $|\bigcup_{j=0}^{i-1} A_j| < n$.

Since $A_0 = \{v_n, v_{n-1}\}$ and $A_1 = \{v_n, v_{n-1}, v_{n-2}, v_{n-3}, v_{n-4}\}$, we have $|A_{n-4}| = n$ and so $\exp_{S^{(4)}}(v_{n-2}) \le (n-4)(n-3) + 1 = n^2 - 7n + 13$. Hence $\exp_{S^{(4)}}(v_{n-2}) = n^2 - 7n + 13$.

So by ordering the above local exponents, we can obtain (3.15).

(2) If the two cycles of length n-3 of $S^{(4)}$ have different signs, then it is easy to see that $r(v_j) \leq n-3$ for $j = 1, 2, \dots, n-5$. So $l_{S^{(4)}}(v_j) \leq \exp_{S^{(4)}}(v_j) + n-3$ for $j = 1, 2, \dots, n-5$ by Lemma 2.12. Since $R_1(v_j) = \{v_1\}$ for j = n, n-3 and $R_1(v_j) = \{v_{n-3}\}$ for j = n-1, n-4, by Lemma 2.11, we know that $l_{S^{(4)}}(v_j) = l_{S^{(4)}}(v_1) + 1 \leq \exp_{S^{(4)}}(v_1) + (n-3) + 1 = \exp_{S^{(4)}}(v_j) + n-3$ for j = n, n-3 and $l_{S^{(4)}}(v_j) = l_{S^{(4)}}(v_{n-3}) + 1 \leq \exp_{S^{(4)}}(v_{n-3}) + 1 = \exp_{S^{(4)}}(v_j) + n-3$ for j = n-1, n-4.

For v_{n-2} , because $R_1(v_{n-2}) \supseteq \{v_n\}$, we have $l_{S^{(4)}}(v_{n-2}) \le l_{S^{(4)}}(v_n) + 1 \le \exp_{S^{(4)}}(v_n) + (n-3) + 1 = n^2 - 6n + 9 + n - 2$.

Now by computing, we can obtain that

$$l_{S^{(4)}}(k) \leq \begin{cases} n^2 - 6n + 10 + k, & \text{if } 1 \leq k \leq n - 4, \\ n^2 - 6n + 9 + k, & \text{if } n - 3 \leq k \leq n - 2, \\ n^2 - 6n + 8 + k, & \text{if } k = n - 1, \\ n^2 - 6n + 7 + k, & \text{if } k = n. \end{cases}$$

Hence $l_{S^{(4)}}(k) \le \exp_{S^{(4)}}(k) + n - 2$ for $1 \le k \le n$.

(3) In this case, by using the method similar to (3) in Lemma 3.1, we can show that there is no pair of SSSD walks of length $k = \exp_{S^{(4)}}(v_j) + (n-2)(n-3) - 1$ from v_j to v_{n-1} for j = n - 5, n - 2. And furthermore, we can obtain (3.17) and $l_{S^{(4)}}(k) < m_3(n,k)$ for $1 \le k \le n$. \Box

4. Proof of Main Theorem

Proof of Main Theorem. Let D be the underlying digraph of S and s = s(D). By Lemma 2.7, we know that there is no cycle with length n in D. Suppose D contains a cycle of length n - 1. Then by Lemma 2.8, D consists of two cycles of length n - 1 and l, where 1 < l < n - 1 and gcd(n - 1, l) = 1. Thus l = s and D is isomorphic to $D_{n,s}$. If s = n - 2, then $l_S(k) = m_1(n,k)$ for $1 \le k \le n$ by Corollary 3.2. If s = n - 3, then n is even since $D_{n,3}$ is primitive; and $l_S(k) = m_2(n,k)$ for $1 \le k \le n$ by Corollary 3.3. If $s \le n - 4$, then by Corollary $3.1, l_S(k) \le 2(n - 4)(n - 2) + k + 1 = 2n^2 - 12n + 17 + k < m_3(n,k)$ for $1 \le k \le n$.

Suppose $L(D) = \{n-2, n-3\}$. Then D is isomorphic to H_n or $H_n^{(i)}$ for some $i \in \{1, 2, 3, 4, 5\}$. By Corollary 3.4 and Lemmas 3.1-3.4, we have $l_S(k) \leq m_3(n, k)$ for $1 \leq k \leq n$. If D is isomorphic to H_n , then $l_S(k) = m_3(n, k)$ for $1 \leq k \leq n$ by Corollary 3.4. If D is isomorphic to $H_n^{(1)}$, then by Lemma 3.1, $l_S(k) = m_3(n, k)$ if and only if the two cycles of length n-2 in S have the same sign and k = n-3, n-1. If D is isomorphic to $H_n^{(2)}$, then by Lemma 3.2, $l_S(k) = m_3(n, k)$ if and only if the two cycles of length n-2 in S have the same sign and k = n-3, n-1. If D is isomorphic to $H_n^{(2)}$, then by Lemma 3.2, $l_S(k) = m_3(n, k)$ if and only if the two cycles of length n-2 in S have the same sign and k = n-3. If D is isomorphic to $H_n^{(i)}$ (i = 3, 4, 5), then by Lemmas 3.3 and 3.4, we have $l_S(k) < m_3(n, k)$ for $1 \leq k \leq n$.

Note that $m_3(n,k) < m_2(n,k) < m_1(n,k)$ $(n \ge 7)$. So it is easy to see that in order to obtain the four parts of this theorem, we only need to show that $l_S(k) < m_3(n,k)$ for $1 \le k \le n$ if D contains no cycle of length n-1 and $L(D) \ne \{n-2, n-3\}$.

In the following, we assume that D contains no cycle of length n-1 and $L(D) \neq \{n-2, n-3\}$. We will show that $l_S(k) < m_3(n,k)$ for $1 \le k \le n$. By Lemma 2.10 we know that $l_S(k) \le l_S(1) + k - 1$ for $1 \le k \le n$. Hence by the definition of $m_3(n,k)$, it suffices to show that $l_S(1) < m_3(n,1) - 2 = 2n^2 - 12n + 19$.

Since S is primitive non-powerful, there is a distinguished cycle pair C_1 and C_2 (with lengths, say, p_1 and p_2 respectively) by Lemma 2.1, where p_1C_2 and p_2C_1 have different signs by (2.1). Let $p_1 \leq p_2$.

Case 1. C_1 and C_2 have no common vertices.

Then $p_1 + p_2 \leq n$, and so $p_1 \leq \frac{n}{2}$. Let Q_1 be a shortest path with length q_1 from C_1 to C_2 . Let $\{v_1\} = V(Q_1) \cap V(C_1), \{v_2\} = V(Q_1) \cap V(C_2)$, let Q_2 be a shortest path of length q_2 from v_2 to v_1 . Then $q_1 \leq n - p_1 - p_2 + 1$ and $q_2 \leq n - 1$. Clearly, $p_2C_1 + Q_1 + Q_2$ and $p_1C_2 + Q_1 + Q_2$ are a pair of SSSD walks of length $p_1p_2 + q_1 + q_2$ from vertex v_1 to v_1 , hence $r(v_1) \leq p_1p_2 + q_1 + q_2$. From the proof of Case 1 in [3, Theorem 3.3], we know that $\exp_D(v_1) \leq p_1(n-2) + 1$.

 $\begin{aligned} & \textbf{Subcase 1.1.} \ n \geq 8. \ \text{Since } p_1p_2 + q_1 + q_2 \leq p_1p_2 - p_1 - p_2 + 2n = (p_1 - 1)(p_2 - 1) + 2n - 1 \leq \\ & (\frac{p_1 + p_2 - 2}{2})^2 + 2n - 1 \leq (\frac{n - 2}{2})^2 + 2n - 1 = \frac{n^2}{4} + n, \text{ by Lemma 2.12, } l_S(v_1) \leq \exp_D(v_1) + r(v_1) \leq \\ & \frac{n}{2}(n - 2) + 1 + \frac{n^2}{4} + n = \frac{3n^2}{4} + 1. \ \text{Thus } l_S(1) \leq l_S(v_1) \leq \frac{3n^2}{4} + 1 < 2n^2 - 12n + 19 \text{ for } n \geq 8. \\ & \textbf{Subcase 1.2.} \ n = 7. \ \text{Let } V(D) = \{v_1, v_2, \cdots, v_7\}. \end{aligned}$

Subcase 1.2.1. $p_1 = 2$. Then $p_2 \le 5$ and $\exp_D(v_1) \le p_1(n-2) + 1 = 2 \times 5 + 1 = 11$. Now, $r(v_1) \le p_1 p_2 + q_1 + q_2 \le p_1 p_2 - p_1 - p_2 + 2n = (p_1 - 1)(p_2 - 1) + 2n - 1 \le 1 \times 4 + 13 = 17$. By Lemma 2.12, $l_S(v_1) \le 11 + 17 = 28$. Hence $l_S(1) \le l_S(v_1) \le 28 < 33 = m_3(7, 1) - 2$.

Subcase 1.2.2. $p_1 = 3$. Then $\exp_D(v_1) \le p_1(n-2) + 1 = 3 \times 5 + 1 = 16$.

Suppose $p_2 = 3$. Then $q_1 \leq 2$. We claim that $q_2 \leq 5$. If $q_1 = 1$, then $q_2 \leq 4$ since D contains no cycle of length 6 or 7. If $q_1 = 2$, we can assume that $C_1 = (v_1, v_5, v_6)$, $C_2 = (v_2, v_3, v_4)$ and (v_1, v_7) and (v_7, v_2) are two arcs of D. Since $p_1 = p_2$, by symmetry, we can assume that the length of the shortest path from C_2 to C_1 is also 2. Note that (v_4, v_7) must not be an arc of D and $(v_2, v_7) \in E(D)$ implies that the digraph induced by vertex set $\{v_1, v_5, v_6, v_7\}$ is minimally strong. Thus $q_2 \leq 5$. Therefore $r(v_1) \leq p_1 p_2 + q_1 + q_2 \leq 3 \times 3 + 2 + 5 = 16$ and so $l_S(v_1) \leq 16 + 16 = 32$ by Lemma 2.12. Thus $l_S(1) \leq l_S(v_1) \leq 32 < 33 = m_3(7, 1) - 2$.

Suppose $p_2 = 4$. Then $q_1 = 1$ and so $q_2 \le 4$ since D contains no cycle of length 6 or 7. If $q_2 \le 3$, then $r(v_1) \le p_1 p_2 + q_1 + q_2 \le 3 \times 4 + 1 + 3 = 16$ and so $l_S(v_1) \le 16 + 16 = 32$ by Lemma 2.12. Hence $l_S(1) \le l_S(v_1) \le 32 < 33 = m_3(7,1) - 2$. If $q_2 = 4$, then without loss of generality, we can assume that D consists of two cycles $C_1 = (v_1, v_6, v_7), C_2 = (v_2, v_3, v_4, v_5)$ and two additional arcs (v_1, v_2) and (v_4, v_7) . Since $L(D) = \{3, 4, 5\}$, by (2.3), we have $\exp_D(v_1) \le \phi(3, 4, 5) + \max_{v_i \in V(D)} d_{L(D)}(v_1, v_i) \le 3 + 6 = 9$. Thus $r(v_1) \le p_1 p_2 + q_1 + q_2 = 3 \times 4 + 1 + 4 = 17$ and so $l_S(v_1) \le 9 + 17 = 26$ by Lemma 2.12. Hence $l_S(1) \le l_S(v_1) \le 26 < 33 = m_3(7, 1) - 2$.

Case 2. C_1 and C_2 have some common vertices.

Subcase 2.1. $p_1 = p_2$.

Then C_1 and C_2 are also a pair of SSSD walks of length p_1 . Let $x \in V(C_1) \cap V(C_2)$. Then $r(x) \leq p_1 \leq n-2$. By Lemma 2.9, we have $\exp(D) \leq n+s(n-3) \leq n+(n-2)(n-3) = n^2-4n+6$. Thus by Lemma 2.12, $l_S(1) \leq l_S(x) \leq \exp_S(x) + r(x) \leq \exp(S) + r(x) \leq (n^2-4n+6) + (n-2) = n^2 - 3n + 4 < 2n^2 - 12n + 19$.

In the following cases, we will consider the situation $p_1 \neq p_2$. It is clear that $|V(C_1) \cap V(C_2)| \ge p_1 + p_2 - n$; and for any $u \in V(C_1) \cap V(C_2)$, we have $r(u) \le p_1 p_2$.

Subcase 2.2. $p_2 = n - 2, p_1 = n - 3.$

Subcase 2.2.1. s = n - 4, i.e., $L(D) = \{n - 2, n - 3, n - 4\}$.

Subcase 2.2.1.1. n > 8. It follows from Lemma 2.5 that $d_{L(D)} = \max_{x,y \in V(D)} d_{L(D)}(x,y) \le n$.

By (2.2), we have $\phi(n-2, n-3, n-4) \le \lfloor \frac{(n-4)^2}{2} \rfloor$. Then by (2.4), we obtain

$$\exp(D) \le \phi(n-2, n-3, n-4) + d_{L(D)} \le \lfloor \frac{(n-4)^2}{2} \rfloor + n.$$

Let $x \in V(C_1) \cap V(C_2)$; then by Lemma 2.12, we have $l_S(x) \le \exp_D(x) + r(x) \le \exp(D) + r(x) \le \lfloor \frac{(n-4)^2}{2} \rfloor + n + (n-2)(n-3) = \lfloor \frac{n^2}{2} \rfloor + n^2 - 8n + 14$. Thus $l_S(1) \le l_S(x) \le \lfloor \frac{n^2}{2} \rfloor + n^2 - 8n + 14 < 2n^2 - 12n + 19$.

Subcase 2.2.1.2. n = 7. Let $V(D) = \{v_1, v_2, \dots, v_7\}$. Since D is a primitive, minimally strong digraph, it is clear that $|V(C_1) \cap V(C_2)| = 3$. Without loss of generality, we assume that $C_2 = (v_1, v_2, v_3, v_4, v_5)$ and $C_1 = (v_1, v_2, v_3, v_6)$. Because D contains a cycle of length n - 4 = 3, then we have $E(D) = E(C_1) \cup E(C_2) \cup \{(v_j, v_7), (v_7, v_i)\}$, where (v_i, v_j) is an arc of C_1 or C_2 . Let $C_3 = (v_i, v_j, v_7)$. If there exists a vertex $u \in \{v_1, v_2, v_3\}$ such that u also meets C_3 , then we have $\max_{x \in V(D)} d_{\{3,4,5\}}(u, x) \le n - 1 = 6$ and so $\exp_D(u) \le \phi(3, 4, 5) + 6 = 9$ by (2.3). Otherwise, we have $v_i = v_4$ and $v_j = v_5$. Thus $\max_{x \in V(D)} d_{\{3,4,5\}}(v_3, x) = d_{\{3,4,5\}}(v_3, v_6) = 6$ and $\exp_D(v_3) \le \phi(3, 4, 5) + 6 = 9$ by (2.3). Hence, there exists a vertex $u \in \{v_1, v_2, v_3\}$ such that $\exp_D(u) \le 9$. Since $r(v_i) \le (n - 2)(n - 3) = 5 \times 4 = 20$ for i = 1, 2, 3, by Lemma 2.12, we have $l_S(1) \le l_S(u) \le \exp_D(u) + r(u) \le 20 + 9 < 33 = m_3(7, 1) - 2$.

Subcase 2.2.1.3. n = 8. Similar to the proof of Subcase 2.2.1.2, we can show that $l_S(1) \le (n-2)(n-3) + \phi(4,5,6) + n - 1 = 6 \times 5 + 8 + 7 = 45 < 51 = m_3(8,1) - 2.$

Subcase 2.2.2. $s \le n - 5$.

Now $|V(C_1) \cap V(C_2)| \ge p_1 + p_2 - n = n - 5$. If $|V(C_1) \cap V(C_2)| = n - 5$, then *D* must be isomorphic to H_n , which is a contradiction. So $|V(C_1) \cap V(C_2)| \ge n - 4$. Let $x \in V(C_1) \cap V(C_2)$ with $\exp_D(x) = \min\{\exp_D(u) : u \in V(C_1) \cap V(C_2)\}$. Then $\exp_D(x) \le \exp_D(5)$. Since *D* is not isomorphic to $D_{n,s}$, by Lemma 2.9, we have $\exp_D(1) \le (n - 5)(n - 3) + 1$. Thus by Lemma 2.3, $\exp_D(x) \le \exp_D(5) \le \exp_D(1) + 4 \le n^2 - 8n + 20$. Since $r(x) \le (n - 2)(n - 3)$, by Lemma 2.12, we have $l_S(x) \le \exp_D(x) + r(x) \le 2n^2 - 13n + 26$. Hence $l_S(1) \le l_S(x) \le 2n^2 - 13n + 26 < 2n^2 - 12n + 19$ for n > 7.

Suppose n = 7. Since D is a primitive, minimally strong digraph, we have s = n - 5 = 2 and $|V(C_1) \cap V(C_2)| = 3$. Without loss of generality, we assume that $C_2 = (v_1, v_2, v_3, v_4, v_5)$ and

 $C_1 = (v_1, v_2, v_3, v_6)$. Because D contains a cycle of length 2, we get that $E(D) = E(C_1) \cup E(C_2) \cup \{(v_i, v_7), (v_7, v_i)\}$, where $i \in \{1, 2, 3, 4, 5, 6\}$. Now $L(D) = \{2, 4, 5\}$; by using the method similar to Subcase 2.2.1.2, we can show that $l_S(1) \le (n-2)(n-3) + \phi(2,4,5) + n - 1 = 5 \times 4 + 4 + 6 = 30 < 33 = m_3(7,1) - 2$.

Subcase 2.3. $p_2 = n - 2, p_1 = n - 4$. Now, *n* is odd by Lemma 2.1.

Let $x \in V(C_1) \cap V(C_2)$ with $\exp_D(x) = \min\{\exp_D(u) : u \in V(C_1) \cap V(C_2)\}$. Then $r(x) \le (n-2)(n-4)$. Since $|V(C_1) \cap V(C_2)| \ge p_1 + p_2 - n = n - 6$, we have $\exp_D(x) \le \exp_D(7)$. Subcase 2.3.1. s = n - 4.

Since *D* is not isomorphic to $D_{n,s}$, by Lemma 2.9, we have $\exp_D(1) \le (n-4)(n-3) + 1 = n^2 - 7n + 13$. Thus by Lemma 2.3, $\exp_D(x) \le \exp_D(7) \le \exp_D(1) + 6 \le n^2 - 7n + 19$. Consequently, $l_S(x) \le \exp_D(x) + r(x) \le n^2 - 7n + 19 + (n-2)(n-4)$ by Lemma 2.12. Hence $l_S(1) \le l_S(x) \le 2n^2 - 13n + 27 < 2n^2 - 12n + 19$ for $n \ge 9$.

Suppose n = 7. We only need to consider two cases $L(D) = \{n - 2, n - 4\}$ and $L(D) = \{n - 2, n - 4\}$. If $L(D) = \{n - 2, n - 4\}$, then $p_1 = n - 4 \ge 3$ and $p_1 + p_2 = 2n - 6 > n$. So by Lemma 2.6, $\exp_D(x) \le \exp(D) \le n + p_1(p_2 - 2) = 7 + 3(5 - 2) = 16$. Since $r(x) \le (n - 2)(n - 4) = 5 \times 3 = 15$, then $l_S(x) \le 16 + 15 = 31$ by Lemma 2.12. Hence $l_S(1) \le l_S(x) \le 31 < 33 = m_3(7, 1) - 2$. If $L(D) = \{n - 2, n - 3, n - 4\}$, then $|V(C_1) \cap V(C_2)| = 2$. Let $V(D) = \{v_1, v_2, \cdots, v_7\}$. Without loss of generality, we assume that $C_2 = (v_1, v_2, v_3, v_4, v_5)$ and $C_1 = (v_1, v_2, v_6)$. Let C_3 be a cycle of D with length 4, then $|V(C_3) \cap V(C_2)| \ge 2$. Thus $\max_{x \in V(D)} d_{\{3,4,5\}}(v_1, x) \le |V(C_2)| + n - 1 = 5 + 6 = 11$. By (2.3), $\exp_D(v_1) \le \phi(3, 4, 5) + \max_{x \in V(D)} d_{\{3,4,5\}}(v_1, x) \le 3 + 11 = 14$. Since $r(v_1) \le (n - 2)(n - 4) = 5 \times 3 = 15$, by Lemma 2.12, we have $l_S(v_1) \le 14 + 15 = 29$. Hence $l_S(1) \le l_S(v_1) \le 29 < 33 = m_3(7, 1) - 2$.

Subcase 2.3.2. $s \le n - 5$.

Since *D* is not isomorphic to $D_{n,s}$, by Lemma 2.9, we have $\exp_D(1) \le (n-5)(n-3) + 1 = n^2 - 8n + 16$. Thus by Lemma 2.3, $\exp_D(x) \le \exp_D(7) \le \exp_D(1) + 6 \le n^2 - 8n + 22$. Consequently, $l_S(x) \le \exp_D(x) + r(x) \le n^2 - 8n + 22 + (n-2)(n-4)$ by Lemma 2.12. Hence $l_S(1) \le l_S(x) \le 2n^2 - 14n + 30 < 2n^2 - 12n + 19$.

Subcase 2.4. $p_2 = n - 3, p_1 = n - 4.$

Let $x \in V(C_1) \cap V(C_2)$ with $\exp_D(x) = \min\{\exp_D(u) : u \in V(C_1) \cap V(C_2)\}$. Then $r(x) \le (n-3)(n-4)$. Since $|V(C_1) \cap V(C_2)| \ge p_1 + p_2 - n = n-7$, we have $\exp_D(x) \le \exp_D(8)$. Because D is not isomorphic to $D_{n,s}$, by Lemma 2.9, we have $\exp_D(1) \le (n-4)(n-3) + 1 = n^2 - 7n + 13$. Thus by Lemma 2.3, $\exp_D(x) \le \exp_D(8) \le \exp_D(1) + 7 \le n^2 - 7n + 20$. Consequently, $l_S(x) \le \exp_D(x) + r(x) \le n^2 - 7n + 20 + (n-3)(n-4)$ by Lemma 2.12. Hence $l_S(1) \le l_S(x) \le 2n^2 - 14n + 32 < 2n^2 - 12n + 19$.

Subcase 2.5. $p_2 \le n - 2, p_1 \le n - 5.$

By Lemma 2.9, we have $\exp(D) \le n + (n-5)(n-3) = n^2 - 7n + 15$. Let $x \in V(C_1) \cap V(C_2)$. Then $r(x) \le (n-2)(n-5)$ and so $l_S(x) \le \exp_D(x) + r(x) \le \exp(D) + r(x) \le 2n^2 - 14n + 25$ by Lemma 2.12. Hence $l_S(1) \le l_S(x) \le 2n^2 - 14n + 25 < 2n^2 - 12n + 19$. Combining the above Cases, the proof of this theorem is completed. \Box

Acknowledgements

I would like to thank the referee for many helpful comments and suggestions and for bringing Ref. [3] to my attention.

References

- Z. Li, F. Hall and C. Eschenbach, On the period and base of a sign pattern matrix, *Linear Algebra Appl.* 212/213 (1994), 101-120.
- [2] L.H. You, J.Y. Shao and H.Y. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, *Linear Algebra Appl.* 427 (2007), 285-300.
- [3] L.Q. Wang, Z.K. Miao and C. Yan, Local bases of primitive non-powerful signed digraphs, Discrete Math. (2008), doi:10.1016/j.disc.2008.01.012.
- [4] B.L. Liu and L.H. You, Bounds on the base of primitive nearly reducible sign pattern matrices, *Linear Algebra Appl.* 418(2006), 863-881.
- [5] R.A. Brualdi and B.L. Liu, Generalized exponents of primitive digraphs, J. Graph Theory 14(1990), 483-499.
- [6] J.B. Roberts, Notes on linear forms, Proc. Amer. Math. Soc. 7(1956), 456-469.
- [7] J.Y. Shao, On the exponent of a primitive digraph, *Linear Algebra Appl.* 64(1985), 21-31.
- [8] A.L. Dulmage and N.S. Mendelsohn, Gaps in the exponent set of primitive matrices, *Illinois J. Math.* 8(1964), 642-656.
- M. Lewin and Y. Vitek, A system of gaps in the exponent set of primitive matrices, *Illinois J. Math.* 25(1981), 87-98.
- [10] J.A. Ross, On the exponent of a primitive, nearly reducible matrix. II, SIAM J. Alg. Disc. Meth. 3(1982), 395-410.
- [11] Y.H. Hu, P.Z. Yuan and W.J. Liu, The k-exponents of primitive, nearly reducible matrices, Ars Combin. 83(2007), 47-63.