Bounds on the local bases of primitive, non-powerful, minimally strong signed digraphs

Hongping Ma *
Center for Combinatorics, Nankai University, Tianjin, 300071, China

Abstract

In this paper, we study the local bases of primitive, non-powerful, minimally strong signed digraphs of order $n \geq 7$. We obtain the first two or three largest k th local bases, depending on whether n is odd or even, together with complete characterization of the equality cases, for primitive, non-powerful, minimally strong signed digraphs.

Key words: Signed digraph; Local base; Primitive minimally strong digraph; Powerful
AMS Subject Classifications: 05C20, 05C22, 15A48,

1. Introduction

A sign pattern matrix is a matrix each of whose entries is $1,-1$ or 0 . For a square sign pattern matrix A, notice that in the computations of (the signs of) the entries of the power A^{k}, the ambiguous sign may arise when -1 is added to 1 . So a new symbol "\#" was introduced in [1] to denote the ambiguous sign. In [1], the set $\Gamma=\{0,1,-1, \#\}$ is defined as the generalized sign set and the addition and multiplication involving the symbol \# are defined as follows:

$$
\begin{gathered}
(-1)+1=1+(-1)=\# ; \quad a+\#=\#+a=\# \text { for all } a \in \Gamma ; \\
0 \cdot \#=\# \cdot 0=0 ; \quad b \cdot \#=\# \cdot b=\# \text { for all } b \in \Gamma \backslash\{0\} .
\end{gathered}
$$

A matrix with entries in the set Γ is called a generalized sign pattern matrix. In this paper we assume that all the matrix operations considered are operations on matrices over Γ.

We now introduce some graph theoretical concepts.
When we say a digraph, we always permit loops but no multiple arcs. A signed digraph S is a digraph where each arc of S is assigned a sign 1 or -1 . A generalized signed digraph S is a digraph where each arc of S is assigned a sign $1,-1$ or $\#$. A walk W in a signed digraph is a sequence of arcs $e_{1}, e_{2}, \cdots, e_{k}$ such that the terminal vertex of e_{i} is the same as the initial vertex of e_{i+1} for $i=1,2, \cdots, k-1$. The number k is called the length of the walk W, denoted by $l(W)$. The sign of the walk W (in a signed digraph), denoted by $\operatorname{sgn}(W)$, is defined to be $\prod_{i=1}^{k} \operatorname{sgn}\left(e_{i}\right)$.

[^0]Two walks W_{1} and W_{2} in a signed digraph are called a pair of $S S S D$ walks, if they have the same initial vertex, same terminal vertex and same length, but they have different signs.

Let $A=\left(a_{i j}\right)$ be a square sign pattern matrix of order n. The associated digraph $D(A)$ of A (possibly with loops) is defined to be the digraph with vertex set $V=\{1,2, \cdots, n\}$ and arc set $E=\left\{(i, j) \mid a_{i j} \neq 0\right\}$. The associated signed digraph $S(A)$ of A is obtained from $D(A)$ by assigning the sign of $a_{i j}$ to each arc (i, j) in $D(A)$.

A square generalized sign pattern matrix A is called powerful if each power of A contains no \# entry. It is easy to see that a sign pattern matrix A is powerful if and only if the associated signed digraph $S(A)$ contains no pairs of $S S S D$ walks.

Definition 1.1 ([2]). Let A be a square generalized sign pattern matrix of order n and A, A^{2}, A^{3}, \cdots be the sequence of powers of A. Suppose A^{l} is the first power that is repeated in the sequence. Namely, suppose l is the least positive integer such that there is a positive integer p such that

$$
\begin{equation*}
A^{l}=A^{l+p} . \tag{1.1}
\end{equation*}
$$

Then l is called the generalized base (or simply base) of A, denoted by $l(A)$. The least positive integer p such that (1.1) holds for $l=l(A)$ is called the generalized period (or simply period) of A, denoted by $p(A)$.

For convenience, we will also define the corresponding concepts for signed digraphs. Let S be a signed digraph of order n. Then there is a sign pattern matrix A of order n such that $S(A)$ $=S$. We say that S is powerful if A is powerful (i.e., S contains no pairs of $S S S D$ walks). Also we define $l(S)=l(A)$ and $p(S)=p(A)$.

A digraph D is called minimally strong provided that D is strong connected (or strong) and each digraph obtained from D by the removal of an arc is not strong.

Let D be a digraph. We denote by $L(D)$ the set of distinct lengths of all cycles of D; and $s(D)$ the length of the shortest cycle of D.

A digraph D is called a primitive digraph, if there is a positive integer k such that for each vertex x and vertex y (not necessarily distinct) in D, there exists a walk of length k from x to y. The least such k is called the primitive exponent of D, denoted by $\exp (D)$. It is well known that D is primitive if and only if D is strong and $\operatorname{gcd}\left(r_{1}, r_{2}, \cdots, r_{k}\right)=1$, where $L(D)=\left\{r_{1}, r_{2}, \cdots, r_{k}\right\}$.

A signed digraph S is called primitive if the underlying digraph D is primitive, and in this case we define $\exp (S)=\exp (D)$. Similarly, S is called minimally strong if D is minimally strong.

A square matrix A is reducible if there exists a permutation matrix P such that

$$
P A P^{T}=\left(\begin{array}{ll}
B & 0 \\
D & C
\end{array}\right),
$$

where B and C are square non-vacuous matrices. The matrix A is irreducible if it is not reducible and is nearly reducible if it is irreducible and each matrix obtained from A by replacing a nonzero
entry by 0 is reducible. A square sign pattern matrix A is called primitive if $D(A)$ is primitive and is called nearly reducible if $|A|$ is nearly reducible. Clearly, a sign pattern matrix A is nearly reducible if and only if $D(A)$ is minimally strong.

Let D be a primitive digraph of order n and $x \in V(D)$. The exponent of D at vertex x, denoted by $\exp _{D}(x)$, is the least positive integer k such that there is a walk of length k from x to each $y \in V(D)$. We choose to order the vertices of D in such a way that $\exp _{D}\left(v_{i_{1}}\right) \leq$ $\exp _{D}\left(v_{i_{2}}\right) \leq \cdots \leq \exp _{D}\left(v_{i_{n}}\right)$; then the number $\exp _{D}\left(v_{i_{k}}\right)$ is called the k th local exponent of D, denoted by $\exp _{D}(k)$. It is well known that $\exp (D)=\exp _{D}(n)$.

It was shown in [2] that if a signed digraph S is primitive non-powerful, then $l(S)$ is the least positive integer k such that there is a pair of $S S S D$ walks of length k between any two vertices in S.

Definition 1.2 ([3]). Let S be a primitive non-powerful signed digraph of order n. The base of S at a vertex $x \in V(S)$, denoted by $l_{S}(x)$, is defined to be the least positive integer l such that there is a pair of $S S S D$ walks of length k from x to each $y \in V(S)$ for each integer $k \geq l$. We choose to order the vertices of S in such a way that $l_{S}\left(v_{i_{1}}\right) \leq l_{S}\left(v_{i_{2}}\right) \leq \cdots \leq l_{S}\left(v_{i_{n}}\right)$; then we call $l_{S}\left(v_{i_{k}}\right)$ the k th local base of S, denoted by $l_{S}(k)$.

Clearly, $l(S)=l_{S}(n)$. Let D be the underlying digraph of S; we define $\exp { }_{S}(x)=\exp _{D}(x)$ and $\exp _{S}(k)=\exp _{D}(k)$.

In [3], L. Wang et al. obtained sharp bounds of local bases for primitive non-powerful signed digraphs. In [4], B. Liu and L. You gave sharp upper bounds of the base for primitive nearly reducible sign pattern matrices. Define:

$$
\begin{gathered}
m_{1}(n, k)= \begin{cases}2 n^{2}-8 n+9+k, & \text { if } 1 \leq k \leq n-2, \\
2 n^{2}-8 n+8+k, & \text { if } n-1 \leq k \leq n\end{cases} \\
m_{2}(n, k)= \begin{cases}2 n^{2}-10 n+13+k, & \text { if } 1 \leq k \leq n-3, \\
2 n^{2}-10 n+12+k, & \text { if } n-2 \leq k \leq n\end{cases}
\end{gathered}
$$

and

$$
m_{3}(n, k)= \begin{cases}2 n^{2}-12 n+20+k, & \text { if } 1 \leq k \leq n-4, \\ 2 n^{2}-12 n+19+k, & \text { if } n-3 \leq k \leq n-2, \\ 2 n^{2}-12 n+18+k, & \text { if } n-1 \leq k \leq n .\end{cases}
$$

In the remainder of this paper, let $D_{n, s}(n \geq 4,2 \leq s \leq n-1)$ and $H_{n}(n \geq 6)$ be the digraphs of order n given in Fig. 1 and $H_{n}^{(i)}(i=1,2,3,4,5)$ be the primitive, minimally strong digraph of order $n \geq 6$ given in Fig. 3, respectively. In this paper, we study the local bases of primitive, non-powerful, minimally strong signed digraphs and obtain the following:

Main Theorem. Let S be a primitive, non-powerful, minimally strong signed digraph of order $n \geq 7$. Then
(1) $l_{S}(k) \leq m_{1}(n, k)$ for $1 \leq k \leq n$,
with equality if and only if the underlying digraph is isomorphic to $D_{n, n-2}$.
(2) For each integer l with $m_{2}(n, k)<l<m_{1}(n, k)$ or $m_{3}(n, k)<l<m_{2}(n, k)$, there is no primitive, non-powerful, minimally strong signed digraph of order n with $l_{S}(k)=l$ for $1 \leq k \leq n$.
(3) $l_{S}(k)=m_{2}(n, k)$ for $1 \leq k \leq n$ if and only if n is even and the underlying digraph is isomorphic to $D_{n, n-3}$; and there is no primitive, non-powerful, minimally strong signed digraph of order n with $l_{S}(k)=m_{2}(n, k)$ if n is odd.
(4) $l_{S}(k)=m_{3}(n, k)$ for $k=1,2, \cdots, n-4, n-2, n$ if and only if the underlying digraph is isomorphic to $H_{n} ; l_{S}(n-1)=m_{3}(n, n-1)$ if and only if the underlying digraph is isomorphic to H_{n} or $H_{n}^{(1)}$ whose two cycles of length $n-2$ have the same sign in S; and $l_{S}(n-3)=m_{3}(n, n-3)$ if and only if the underlying digraph is isomorphic to H_{n} or $H_{n}^{(i)}(i=1,2)$ whose two cycles of length $n-2$ have the same sign in S.

Theorem 4.1 in [4] is exactly the case $l_{S}(n)=l(S)$ in Main Theorem.

2. Some preliminaries

In this section, we introduce some definitions, notations and properties which we need to use in the next sections.

Lemma 2.1 ([2]). If S is a primitive signed digraph, then S is non-powerful if and only if S contains a pair of cycles C_{1} and C_{2} (say, with lengths p_{1} and p_{2}, respectively) satisfying one of the following two conditions:
(A1) p_{1} is odd and p_{2} is even and $\operatorname{sgn}\left(C_{2}\right)=-1$;
(A2) Both p_{1} and p_{2} are odd and $\operatorname{sgn}\left(C_{1}\right)=-\operatorname{sgn}\left(C_{2}\right)$.
A pair of cycles C_{1} and C_{2} satisfying $\left(A_{1}\right)$ or $\left(A_{2}\right)$ is a "distinguished cycle pair". It is easy to see that if C_{1} and C_{2} are a distinguished cycle pair with lengths p_{1} and p_{2}, respectively, then the closed walks $W_{1}=p_{2} C_{1}$ (walk around $C_{1} p_{2}$ times) and $W_{2}=p_{1} C_{2}$ have the same length $p_{1} p_{2}$ and different signs:

$$
\begin{equation*}
\left(\operatorname{sgn}\left(C_{1}\right)\right)^{p_{2}}=-\left(\operatorname{sgn}\left(C_{2}\right)\right)^{p_{1}} \tag{2.1}
\end{equation*}
$$

If t is a nonnegative integer, we denote by $R_{t}(x)$ the set of vertices of digraph D that can be reached by a walk of length t that begins at vertex x.

Lemma 2.2. Let D be a primitive digraph and x, y be two different vertices in D with $R_{t}(x)=\{y\}$. Then $\exp _{D}(x)=\exp _{D}(y)+t$.

Proof. Since $R_{t}(x)=\{y\}$, it is obvious that $\exp _{D}(x) \leq \exp _{D}(y)+t$. If $t \geq \exp _{D}(x)$, then by the definition of $\exp _{D}(x)$, we have $R_{t}(x)=V(D) \neq\{y\}$, which is a contradiction. Hence $t<$ $\exp _{D}(x)$. Since there is a walk of length $\exp _{D}(x)$ from x to each $v \in V(D)$, and $R_{t}(x)=\{y\}$; it is clear that there is a walk of length $\exp _{D}(x)-t$ from y to each $v \in V(D)$. Therefore $\exp _{D}(y) \leq$ $\exp _{D}(x)-t$. Hence $\exp _{D}(x)=\exp _{D}(y)+t$.

Lemma 2.3 ([5]). Let D be a primitive digraph of order n. Then

$$
\exp _{D}(k+1) \leq \exp _{D}(k)+1 \text { for } 1 \leq k \leq n-1
$$

Let $a_{1}, a_{2}, \cdots, a_{k}$ be positive integers. Define the Frobenius set $S\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ as:

$$
S\left(a_{1}, a_{2}, \cdots, a_{k}\right)=\left\{r_{1} a_{1}+\cdots+r_{k} a_{k} \mid r_{1}, \cdots, r_{k} \text { are nonnegative integers }\right\} .
$$

It is well known that if $\operatorname{gcd}\left(a_{1}, a_{2}, \cdots, a_{k}\right)=1$, then $S\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ contains all the sufficiently large positive integers. In this case we define the Frobenius number $\phi\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ to be the least integer ϕ such that $m \in S\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ for all integers $m \geq \phi$. Clearly, $\phi\left(a_{1}, a_{2}, \cdots, a_{k}\right)-1$ is not in $S\left(a_{1}, a_{2}, \cdots, a_{k}\right)$. It is well known that if a, b are coprime positive integers, then $\phi(a, b)=(a-1)(b-1)$.

Also, by using the formula for the Frobenius number of arithmetical progressions ([6]), we have

$$
\begin{equation*}
\phi(n-4, n-3, n-2) \leq\left\lfloor\frac{n-4}{2}\right\rfloor(n-4) . \tag{2.2}
\end{equation*}
$$

Let $R=\left\{l_{1}, l_{2}, \cdots, l_{k}\right\}$ be a set of cycle lengths in a primitive digraph D such that $\operatorname{gcd}\left(l_{1}\right.$, $\left.l_{2}, \cdots, l_{k}\right)=1$. For any $x, y \in V(D)$, the relative distance $d_{R}(x, y)$ from x to y is defined to be the length of the shortest walk from x to y which meets at least one cycle of each length l_{i} for $i=1,2, \cdots, k$. Let $\phi_{R}=\phi\left(l_{1}, l_{2}, \cdots, l_{k}\right)$ be the Frobenius number, $d_{R}=\max _{x, y \in V(D)} d_{R}(x, y)$. We have the following known upper bounds ([7]):

$$
\begin{gather*}
\exp _{D}(x) \leq \phi_{R}+\max _{y \in V(D)} d_{R}(x, y) \tag{2.3}\\
\exp (D) \leq \phi_{R}+d_{R} \tag{2.4}
\end{gather*}
$$

An ordered pair of vertices x, y in a digraph D is said to have the unique walk property if every walk from x to y of length at least $d_{L(D)}(x, y)$ consists of some walk π of length $d_{L(D)}(x, y)$ form x to y augmented by a number of cycles each of which has a vertex in common with π.

Lemma 2.4 ([8]). Let D be a primitive digraph with $d_{L(D)}(x, y)=d_{L(D)}$. If the ordered pair of vertices x, y has the unique walk property, then

$$
\exp (D)=\phi_{L(D)}+d_{L(D)}
$$

Lemma 2.5 ([4]). Let $R=\left\{l_{1}, l_{2}, \cdots, l_{k}\right\}$ be a set of cycle lengths in a primitive digraph D of order n with $\frac{n}{2}<l_{1}<l_{2}<\cdots<l_{k}$ and $\operatorname{gcd}\left(l_{1}, l_{2}, \cdots, l_{k}\right)=1$. Then for each vertex x and each vertex y in D, we have

$$
d_{R}(x, y) \leq n-1+\max \left\{l_{i+1}-l_{i} \mid i \in\{1,2, \cdots, k-1\}\right\} .
$$

Lemma 2.6 ([9]). Let D be a primitive digraph of order n and $L(D)=\{p, q\}$ with $3 \leq p<q$, $p+q>n$. Then $\exp (D) \leq n+p(q-2)$.

Lemma 2.7 ([10]). Let D be a primitive, minimally strong digraph of order n. Then the length of the longest cycle of D does not exceed $n-1$.

Lemma 2.8 ([4]). Let D be a primitive, minimally strong digraph of order n with a cycle of length $n-1$. Then there only exists a unique cycle of length $l(1<l<n-1)$ satisfying $\operatorname{gcd}(n-1, l)=1$ in D.

Lemma 2.9 ([11]). Let D be a primitive, minimally strong digraph of order n, and $s(D)=s$. Then

$$
\exp _{D}(k) \leq \begin{cases}k+1+s(n-3), & \text { if } 1 \leq k \leq s \\ k+s(n-3), & \text { if } s+1 \leq k \leq n\end{cases}
$$

with equality if and only if D is isomorphic to $D_{n, s}$. If $\operatorname{gcd}(s, n-1) \neq 1$, then

$$
\exp _{D}(k)< \begin{cases}k+1+s(n-3), & \text { if } 1 \leq k \leq s \\ k+s(n-3), & \text { if } s+1 \leq k \leq n\end{cases}
$$

And if $\operatorname{gcd}(s, n-1)=1$, then $D_{n, s}$ is a primitive, minimally strong digraph of order n with

$$
\exp _{D_{n, s}}(k)= \begin{cases}k+1+s(n-3), & \text { if } 1 \leq k \leq s \\ k+s(n-3), & \text { if } s+1 \leq k \leq n\end{cases}
$$

(b) The digraph $H_{n}(n \geq 6)$
(a) The digraph $D_{n, s}(n \geq 4,2 \leq s \leq n-1)$

Fig. 1. The digraph $D_{n, s}$ and the digraph H_{n}
Lemma 2.10 ([3]). Let S be a primitive, non-powerful signed digraph of order n. Then

$$
l_{S}(k+1) \leq l_{S}(k)+1 \text { for } 1 \leq k \leq n-1 .
$$

Lemma 2.11. Let S be a primitive, non-powerful signed digraph and x, y be two different vertices in S with $R_{t}(x)=\{y\}$. If all the walks of length t from x to y have the same sign, then $l_{S}(x)=l_{S}(y)+t$.

Proof. Let v be any given vertex in S. By the definition of local base, there is a pair of $S S S D$ walks W_{1} and W_{2} (Q_{1} and Q_{2}, respectively) from y (x, respectively) to v with length $l_{S}(y)\left(l_{S}(x)\right.$, respectively). Since $R_{t}(x)=\{y\}$, it is clear that there is a pair of $S S S D$ walks from x to v with length $l_{S}(y)+t$. So $l_{S}(x) \leq l_{S}(y)+t$. For $i=1,2$, let Q_{i}^{\prime} be the subwalk of
Q_{i} from y to v with length $l_{S}(x)-t>0$. (If $t \geq l_{S}(x)$, then $R_{t}(x)=V(S) \neq\{y\}$, which is a contradiction). Since all the walks of length t from x to y have the same sign, Q_{1}^{\prime} and Q_{2}^{\prime} are also a pair of $S S S D$ walks. So $l_{S}(y) \leq l_{S}(x)-t$. Hence $l_{S}(x)=l_{S}(y)+t$.

Let S be a primitive, non-powerful signed digraph. For any $x \in V(S)$, let $r(x)$ be the least positive integer k such that there is a pair of $S S S D$ walks of length k from x to x. It is clear that $r(x) \leq l_{S}(x)$. From Lemma 2.6 in [3], we know that if there is a pair of $S S S D$ walks with length r from x to x, then $l_{S}(x) \leq \exp _{S}(x)+r$. So the following Lemma 2.12 holds.

Lemma 2.12. Let S be a primitive, non-powerful signed digraph and $x \in V(S)$. Then $l_{S}(x) \leq \exp _{S}(x)+r(x)$.

3. Some special cases

In this section, we consider those primitive, non-powerful, minimally strong signed digraphs whose underlying digraphs are $D_{n, s}, H_{n}$ and $H_{n}^{(i)}(i=1,2,3,4,5)$.

In the remainder of this paper, let $D_{n, t, s}(n \geq 4,1 \leq t \leq n-s, 2 \leq s \leq n-1)$ be the digraph given in Fig. 2. Then we have $D_{n, s}=D_{n, 1, s}$ and $H_{n}=D_{n, 2, n-3}$. So we first consider the primitive, non-powerful signed digraph whose underlying digraph is $D_{n, t, s}$.

Fig. 2. The digraph $D_{n, t, s}(n \geq 4,1 \leq t \leq n-s, 2 \leq s \leq n-1)$.
Theorem 3.1. Let S be a primitive, non-powerful signed digraph of order $n \geq 4$ with $D_{n, t, s}$ as its underlying digraph. Then

$$
\exp _{S}(k)=\left\{\begin{array}{cl}
s(n-t-2)+t+k, & \text { if } 1 \leq k \leq s-t+1 \tag{1}\\
s(n-t-2)+t+k-1, & \text { if } s-t+2 \leq k \leq s-t+3, \\
s(n-t-2)+t+k-2, & \text { if } s-t+4 \leq k \leq s-t+5, \\
\vdots & \quad \vdots \\
s(n-t-2)+k+1, & \text { if } s+t-2 \leq k \leq s+t-1 \\
s(n-t-2)+k, & \text { if } s+t \leq k \leq n
\end{array}\right.
$$

(2) $l_{S}(k)=\exp _{S}(k)+(n-t) s$, i.e.,

$$
l_{S}(k)= \begin{cases}2 s(n-t-1)+t+k, & \text { if } 1 \leq k \leq s-t+1, \tag{3.2}\\ 2 s(n-t-1)+t+k-1, & \text { if } s-t+2 \leq k \leq s-t+3, \\ 2 s(n-t-1)+t+k-2, & \text { if } s-t+4 \leq k \leq s-t+5, \\ \vdots & \quad \vdots \\ 2 s(n-t-1)+k+1, & \text { if } s+t-2 \leq k \leq s+t-1, \\ 2 s(n-t-1)+k, & \text { if } s+t \leq k \leq n .\end{cases}
$$

Proof. Since S is primitive, and $L(S)=\{n-t, s\}$, we know that $\operatorname{gcd}(n-t, s)=1$ and $t<n-s$. Let C_{n-t} and C_{s} be the cycles of lengths $n-t$ and s in S.
(1) Note that $d_{L(S)}=d_{L(S)}\left(v_{n-t}, v_{s-t+1}\right)=n-t+n-s-1=2 n-s-t-1$, and the vertices v_{n-t}, v_{s-t+1} have the unique walk property. By Lemma 2.4 and (2.3), we have
$\exp (S)=\exp _{S}\left(v_{n-t}\right)=\phi(n-t, s)+d_{L(S)}=(n-t-1)(s-1)+2 n-s-t-1=(n-t-2) s+n$.
Since $\left|R_{1}\left(v_{i}\right)\right|=1$ for $2 \leq i \leq n$, it follows from Lemma 2.2 that $\exp _{S}\left(v_{n-t+1}\right)=\exp _{S}\left(v_{s-t}\right)+$ 1 and $\exp _{S}\left(v_{i}\right)=\exp _{S}\left(v_{i-1}\right)+1$ for $i=2, \cdots, n-t, n-t+2, \cdots, n$. Hence we have $\exp _{S}\left(v_{i}\right)=$ $(n-t-2) s+t+i$ for $1 \leq i \leq n-t$ and $\exp _{S}\left(v_{n-t+j}\right)=\exp _{S}\left(v_{s-t+j}\right)$ for $1 \leq j \leq t$.

So by directly computing, we can obtain formula (3.1). In particular, $\exp _{S}\left(v_{1}\right)=\exp _{S}(1)$.
(2) First we show that $l_{S}\left(v_{1}\right)=\exp _{S}\left(v_{1}\right)+(n-t) s=2 s(n-t-1)+t+1$. Since S is nonpowerful and C_{n-t} and C_{s} are the only two cycles of S, C_{n-t} and C_{s} must be a distinguished cycle pair by Lemma 2.1. So $s C_{n-t}$ and $(n-t) C_{s}$ have different signs by (2.1). Because v_{1} is a common vertex of C_{n-t} and C_{s}, we have $r\left(v_{1}\right) \leq(n-t) s$. Hence $l_{S}\left(v_{1}\right) \leq \exp _{S}\left(v_{1}\right)+(n-t) s$ by Lemma 2.12.

Next we show that there is no pair of $S S S D$ walks of length $k=2 s(n-t-1)+t$ from v_{1} to v_{s-t+1}. Suppose that W_{1}, W_{2} are two walks of length k from v_{1} to v_{s-t+1}. Then each W_{i} $(i=1,2)$ is a "union" of the path P from v_{1} to v_{s-t+1} with length $n-s$ and cycles, that is, $W_{i}=P+a_{i} C_{n-t}+b_{i} C_{s}, a_{i} \geq 0, b_{i} \geq 0,(i=1,2)$. Thus we have

$$
k=l\left(W_{i}\right)=n-s+a_{i}(n-t)+b_{i} s, \quad a_{i} \geq 0, b_{i} \geq 0,(i=1,2) .
$$

So $\left(a_{2}-a_{1}\right)(n-t)=\left(b_{1}-b_{2}\right) s$. Write $b_{1}-b_{2}=(n-t) x$; then $a_{2}-a_{1}=s x$. We claim that $x=0$.

If $x \geq 1$, then $a_{2} \geq s$; so $k=n-s+a_{2}(n-t)+b_{2} s=n-s+\left(a_{2}-s\right)(n-t)+s(n-t)+b_{2} s$, which implies that $\phi(n-t, s)-1=(n-t-1)(s-1)-1=k-n+s-(n-t) s=\left(a_{2}-s\right)(n-t)+b_{2} s \in$ $S(n-t, s)$, contradicting the definition of $\phi(n-t, s)$. Similarly we can get a contradiction if $x \leq-1$. Thus we have $x=0$. So $a_{1}=a_{2}, b_{1}=b_{2}$ and thus $\operatorname{sgn}\left(W_{1}\right)=\operatorname{sgn}\left(W_{2}\right)$. This argument shows that $l_{S}\left(v_{1}\right) \geq k+1=\exp _{S}\left(v_{1}\right)+(n-t) s$. Hence $l_{S}\left(v_{1}\right)=\exp _{S}\left(v_{1}\right)+(n-t) s$.

Again since $\left|R_{1}\left(v_{i}\right)\right|=1$ for $2 \leq i \leq n$, it follows from Lemma 2.11 that $l_{S}\left(v_{n-t+1}\right)=$ $l_{S}\left(v_{s-t}\right)+1$ and $l_{S}\left(v_{i}\right)=l_{S}\left(v_{i-1}\right)+1$ for $i=2, \cdots, n-t, n-t+2, \cdots, n$. So it is not difficult to see that $l_{S}\left(v_{i}\right)=\exp _{S}\left(v_{i}\right)+(n-t) s$ for $1 \leq i \leq n$. Furthermore, $l_{S}(k)=\exp _{S}(k)+(n-t) s$ for $1 \leq$ $k \leq n$. Hence by (3.1), we can obtain formula (3.2).

Since $D_{n, s}=D_{n, 1, s}$, it is easy to check that the following Corollary 3.1 holds by Theorem 3.1.

Corollary 3.1. Let S be a primitive, non-powerful signed digraph of order $n \geq 4$ with $D_{n, s}$ as its underlying digraph. Then

$$
l_{S}(k)= \begin{cases}2 s(n-2)+k+1, & \text { if } 1 \leq k \leq s \tag{3.3}\\ 2 s(n-2)+k, & \text { if } s+1 \leq k \leq n\end{cases}
$$

Note that the digraph $D_{n, n-2}$ is primitive and $D_{n, n-3}$ is primitive if and only if n is even. So the following Corollaries 3.2 and 3.3 hold by Corollary 3.1.

(a) The digraph $H_{n}^{(1)}$

(b) The digraph $H_{n}^{(2)}$

(c) The digraph $H_{n}^{(3)}(i=1,2, \cdots, n-6)$

(d) The digraph $H_{n}^{(4)}$

(e) The digraph $H_{n}^{(5)}$

Fig. 3. The digraph $H_{n}^{(i)}(i=1,2,3,4,5)$.
Corollary 3.2. Let S_{1} be a primitive, non-powerful signed digraph of order $n \geq 4$ with
$D_{n, n-2}$ as its underlying digraph. Then

$$
l_{S_{1}}(k)=m_{1}(n, k) \quad \text { for } \quad 1 \leq k \leq n .
$$

Corollary 3.3. Let $n \geq 6, n \equiv 0(\bmod 2)$. Let S_{2} be a primitive, non-powerful signed digraph with $D_{n, n-3}$ as its underlying digraph. Then

$$
l_{S_{2}}(k)=m_{2}(n, k) \quad \text { for } \quad 1 \leq k \leq n .
$$

It is clear that $H_{n}(n \geq 6)$ is primitive. Since $H_{n}=D_{n, 2, n-3}$, the following Corollary 3.4 holds by Theorem 3.1.

Corollary 3.4. Let S_{3} be a primitive, non-powerful signed digraph of order $n \geq 6$ with H_{n} as its underlying digraph. Then

$$
l_{S_{3}}(k)=m_{3}(n, k) \quad \text { for } \quad 1 \leq k \leq n .
$$

Let D be a primitive, minimally strong digraph of order $n \geq 6$ with $L(D)=\{n-2, n-3\}$. Then according to the results in [10], we know that D is isomorphic to H_{n} or $H_{n}^{(i)}$ for some $i \in\{1,2,3,4,5\}$, and we have:

$$
\begin{gather*}
\exp \left(H_{n}^{(i)}\right)=\exp _{H_{n}^{(i)}}\left(v_{n-3}\right)=n^{2}-6 n+11 \text { for } i=1,2,3 ; \tag{3.4}\\
\exp \left(H_{n}^{(i)}\right)=\exp _{H_{n}^{(i)}\left(v_{n-1}\right)=n^{2}-6 n+10 \text { for } i=4,5 .} . \tag{3.5}
\end{gather*}
$$

In the following, we consider the primitive, non-powerful signed digraph with $H_{n}^{(i)}(i=$ $1,2,3,4,5)$ as its underlying digraph respectively.

Lemma 3.1. Let $S^{(1)}$ be a primitive, non-powerful signed digraph of order $n \geq 6$ with $H_{n}^{(1)}$ as its underlying digraph. Then

$$
\exp _{S^{(1)}}(k)= \begin{cases}n^{2}-7 n+13+k, & \text { if } 1 \leq k \leq n-3 \tag{1}\\ n^{2}-7 n+12+k, & \text { if } n-2 \leq k \leq n-1, \\ n^{2}-7 n+11+k, & \text { if } k=n\end{cases}
$$

(2) If the (only) two cycles of length $n-2$ of $S^{(1)}$ have different signs, then

$$
\begin{equation*}
l_{S^{(1)}}(k) \leq \exp _{S^{(1)}}(k)+n-2 \quad \text { for } \quad 1 \leq k \leq n \tag{3.7}
\end{equation*}
$$

(3) If the (only) two cycles of length $n-2$ of $S^{(1)}$ have the same sign, then $l_{S^{(1)}}(k)=$ $\exp _{S^{(1)}}(k)+(n-2)(n-3)$, i.e.,

$$
l_{S^{(1)}}(k)= \begin{cases}2 n^{2}-12 n+19+k, & \text { if } 1 \leq k \leq n-3, \tag{3.8}\\ 2 n^{2}-12 n+18+k, & \text { if } n-2 \leq k \leq n-1, \\ 2 n^{2}-12 n+17+k, & \text { if } k=n .\end{cases}
$$

In particular, $l_{S^{(1)}}(k)=m_{3}(n, k)$ for $k=n-3, n-1$ and $l_{S^{(1)}}(k)<m_{3}(n, k)$ for $k=1,2, \cdots, n-$ $4, n-2, n$.

Proof. (1) From (3.4), we have $\exp _{S^{(1)}}\left(v_{n-3}\right)=n^{2}-6 n+11$. Note that v_{n} is a copy of v_{n-3} with respect to adjacency, so $\exp _{S^{(1)}}\left(v_{n}\right)=\exp _{S^{(1)}}\left(v_{n-3}\right)$. Since $\left|R_{1}\left(v_{j}\right)\right|=1$ for $j=1,2, \cdots, n-$ $5, n-3, n-2, n-1, n$, it follows from Lemma 2.2 that $\exp _{S^{(1)}}\left(v_{n-2}\right)=\exp _{S^{(1)}}\left(v_{n-3}\right)-1$; $\exp _{S^{(1)}}\left(v_{1}\right)=\exp _{S^{(1)}}\left(v_{n-2}\right)-1 ; \exp _{S^{(1)}}\left(v_{j}\right)=\exp _{S^{(1)}}\left(v_{j-1}\right)-1$ for $j=2,3, \cdots, n-4$ and $\exp _{S^{(1)}}\left(v_{n-1}\right)=\exp _{S^{(1)}}\left(v_{1}\right)+1$. So by directly computing, we can obtain (3.6). In Particular, $\exp _{S^{(1)}}\left(v_{n-4}\right)=\exp _{S^{(1)}}(1)$.
(2) If the two cycles of length $n-2$ of $S^{(1)}$ have different signs, then it is easy to see that $r\left(v_{j}\right) \leq n-2$ for $j=1,2, \cdots, n-4, n-2$. So $l_{S^{(1)}}\left(v_{j}\right) \leq \exp _{S^{(1)}}\left(v_{j}\right)+n-2$ for $j=$ $1,2, \cdots, n-4, n-2$ by Lemma 2.12. Since $R_{1}\left(v_{j}\right)=\left\{v_{n-2}\right\}$ for $j=n-3, n$ and $R_{1}\left(v_{n-1}\right)=\left\{v_{1}\right\}$, we have $l_{S^{(1)}}\left(v_{j}\right)=l_{S^{(1)}}\left(v_{n-2}\right)+1 \leq \exp _{S^{(1)}}\left(v_{n-2}\right)+(n-2)+1=\exp _{S^{(1)}}\left(v_{j}\right)+n-2$ for $j=n-3, n$ and $l_{S^{(1)}}\left(v_{n-1}\right)=l_{S^{(1)}}\left(v_{1}\right)+1 \leq \exp _{S^{(1)}}\left(v_{1}\right)+(n-2)+1=\exp _{S^{(1)}}\left(v_{n-1}\right)+n-2$. Hence the formula (3.7) holds.
(3) If the two cycles of length $n-2$ of $S^{(1)}$ have the same sign, then by Lemma 2.1, each cycle of length $n-2$ and the cycle of length $n-3$ will form a distinguished cycle pair. Since v_{n-4} is a common vertex of one of the distinguished cycle pairs of $S^{(1)}$, we have $r\left(v_{n-4}\right) \leq(n-2)(n-3)$. Hence $l_{S^{(1)}}\left(v_{n-4}\right) \leq \exp _{S^{(1)}}\left(v_{n-4}\right)+(n-2)(n-3)=\exp _{S^{(1)}}(1)+(n-2)(n-3)=2 n^{2}-12 n+20$ by Lemma 2.12.

Now we show that there is no pair of SSSD walks of length $k=2 n^{2}-12 n+19$ from v_{n-4} to v_{n-2}. Suppose that W_{1}, W_{2} are two walks of length k from v_{n-4} to v_{n-2}. Then each W_{i} $(i=1,2)$ is a "union" of path $P_{1}=\left(v_{n-4}, v_{n-3}, v_{n-2}\right)$ or $P_{2}=\left(v_{n-4}, v_{n}, v_{n-2}\right)$ and cycles. Since the two cycles of length $n-2$ of $S^{(1)}$ have the same sign, then $\operatorname{sgn}\left(P_{1}\right)=\operatorname{sgn}\left(P_{2}\right)$ and thus we have

$$
k=l\left(W_{i}\right)=2+a_{i}(n-3)+b_{i}(n-2), \quad a_{i} \geq 0, b_{i} \geq 0,(i=1,2) .
$$

So $\left(a_{2}-a_{1}\right)(n-3)=\left(b_{1}-b_{2}\right)(n-2)$. Write $b_{1}-b_{2}=(n-3) x$; then $a_{2}-a_{1}=(n-2) x$. We claim that $x=0$.

If $x \geq 1$, then $a_{2} \geq n-2$; so $k=2+\left[a_{2}-(n-2)\right](n-3)+(n-2)(n-3)+b_{2}(n-2)$, which implies that $\phi(n-2, n-3)-1=(n-3)(n-4)-1=k-\left(n^{2}-5 n+8\right)=\left[a_{2}-(n-2)\right](n-$ $3)+b_{2}(n-2) \in S(n-2, n-3)$, contradicting the definition of $\phi(n-2, n-3)$. Similarly we can get a contradiction if $x \leq-1$. Thus we have $x=0$. So $a_{1}=a_{2}, b_{1}=b_{2}$ and thus $\operatorname{sgn}\left(W_{1}\right)=$ $\operatorname{sgn}\left(W_{2}\right)$. This argument shows that $l_{S^{(1)}}\left(v_{n-4}\right) \geq k+1=\exp _{S^{(1)}}\left(v_{n-4}\right)+(n-2)(n-3)$. Hence $l_{S^{(1)}}\left(v_{n-4}\right)=\exp _{S^{(1)}}\left(v_{n-4}\right)+(n-2)(n-3)$.

Again since $\left|R_{1}\left(v_{j}\right)\right|=1$ for $j=1,2, \cdots, n-5, n-3, n-2, n-1, n$, it follows from Lemma 2.11 that $l_{S^{(1)}}\left(v_{j}\right)=l_{S^{(1)}}\left(v_{j+1}\right)+1$ for $j=1,2, \cdots, n-5, n-3 ; l_{S^{(1)}}\left(v_{n-2}\right)=l_{S^{(1)}}\left(v_{n-1}\right)=l_{S^{(1)}}\left(v_{1}\right)+1$ and $l_{S^{(1)}}\left(v_{n}\right)=l_{S^{(1)}}\left(v_{n-2}\right)+1$. So it is not difficult to check that $l_{S^{(1)}}\left(v_{i}\right)=\exp _{S^{(1)}}\left(v_{i}\right)+(n-$ $2)(n-3)$ for $1 \leq i \leq n$. Furthermore, $l_{S^{(1)}}(k)=\exp _{S^{(1)}}(k)+(n-2)(n-3)$ for $1 \leq k \leq n$. Hence by (3.6), we can obtain formula (3.8). By the definition of $m_{3}(n, k), l_{S^{(1)}}(k) \leq m_{3}(n, k)$, with
equality if and only if $k=n-3$ or $n-1$.
Lemma 3.2. Let $S^{(2)}$ be a primitive, non-powerful signed digraph of order $n \geq 6$ with $H_{n}^{(2)}$ as its underlying digraph. Then

$$
\exp _{S^{(2)}}(k)= \begin{cases}n^{2}-7 n+13+k, & \text { if } 1 \leq k \leq n-3 \tag{1}\\ n^{2}-7 n+12+k, & \text { if } k=n-2 \\ n^{2}-7 n+11+k, & \text { if } n-1 \leq k \leq n\end{cases}
$$

(2) If the (only) two cycles of length $n-2$ of $S^{(2)}$ have different signs, then

$$
\begin{equation*}
l_{S^{(2)}}(k) \leq \exp _{S^{(2)}}(k)+n-2 \quad \text { for } \quad 1 \leq k \leq n \tag{3.10}
\end{equation*}
$$

(3) If the (only) two cycles of length $n-2$ of $S^{(2)}$ have the same sign, then $l_{S^{(2)}}(k)=$ $\exp _{S^{(2)}}(k)+(n-2)(n-3)$, i.e.,

$$
l_{S^{(2)}}(k)= \begin{cases}2 n^{2}-12 n+19+k, & \text { if } 1 \leq k \leq n-3 \tag{3.11}\\ 2 n^{2}-12 n+18+k, & \text { if } k=n-2 \\ 2 n^{2}-12 n+17+k, & \text { if } n-1 \leq k \leq n\end{cases}
$$

In particular, $l_{S^{(2)}}(k)=m_{3}(n, k)$ for $k=n-3$ and $l_{S^{(2)}}(k)<m_{3}(n, k)$ for $k=1,2, \cdots, n-4, n-$ $2, n-1, n$.

Proof. Note that $R_{2}\left(v_{n-3}\right)=\left\{v_{1}\right\}$. If the two cycles of length $n-2$ of $S^{(2)}$ have different signs, then $r\left(v_{j}\right) \leq n-2$ for $j=1,2, \cdots, n-3$. Also if the two cycles of length $n-2$ of $S^{(2)}$ have the same sign, the only two walks of length 2 from v_{n-3} to v_{1} have the same sign too. So we can prove this lemma by using a method similar to the proof of Lemma 3.1.

Lemma 3.3. Let $S^{(3)}$ be a primitive, non-powerful signed digraph of order $n \geq 7$ with $H_{n}^{(3)}$ as its underlying digraph. Then

$$
\exp _{S^{(3)}}(k)= \begin{cases}n^{2}-7 n+13+k, & \text { if } 1 \leq k \leq n-4-i \tag{1}\\ n^{2}-7 n+12+k, & \text { if } n-3-i \leq k \leq n-2 \\ n^{2}-7 n+11+k, & \text { if } n-1 \leq k \leq n\end{cases}
$$

(2) If the (only) two cycles of length $n-2$ of $S^{(3)}$ have different signs, then

$$
\begin{equation*}
l_{S^{(3)}}(k) \leq \exp _{S^{(3)}}(k)+n-2 \quad \text { for } \quad 1 \leq k \leq n \tag{3.13}
\end{equation*}
$$

(3) If the (only) two cycles of length $n-2$ of $S^{(3)}$ have the same sign, then $l_{S^{(3)}}(k)=$ $\exp _{S^{(3)}}(k)+(n-2)(n-3)$, i.e.,

$$
l_{S^{(3)}}(k)= \begin{cases}2 n^{2}-12 n+19+k, & \text { if } 1 \leq k \leq n-4-i \tag{3.14}\\ 2 n^{2}-12 n+18+k, & \text { if } n-3-i \leq k \leq n-2 \\ 2 n^{2}-12 n+17+k, & \text { if } n-1 \leq k \leq n\end{cases}
$$

Furthermore, we have $l_{S^{(3)}}(k)<m_{3}(n, k)$ for $1 \leq k \leq n$.

Proof. Note that $R_{2}\left(v_{i}\right)=\left\{v_{i+2}\right\}$. If the two cycles of length $n-2$ of $S^{(3)}$ have different signs, then $r\left(v_{j}\right) \leq n-2$ for $j=1,2, \cdots, i, i+2, i+3, \cdots, n-2$. So similar to the proof of (1) and (2) in Lemma 3.1, we can obtain (3.12) and (3.13).

If the only two cycles of length $n-2$ of $S^{(3)}$ have the same sign, then the only two cycles of length $n-3$ of $S^{(3)}$ must have the same sign too. So by Lemma 2.1, each cycle of length $n-2$ and each cycle of length $n-3$ will form a distinguished cycle pair; and note that the only two walks of length 2 from v_{i} to v_{i+2} have the same sign, using the method similar to (3) in Lemma 3.1, we can obtain (3.14). Since $1 \leq i \leq n-6$, we have $l_{S^{(3)}}(k)<m_{3}(n, k)$ for $1 \leq k \leq n$.

Lemma 3.4. Let $S^{(i)}$ be a primitive, non-powerful signed digraph of order $n \geq 7$ with $H_{n}^{(i)}$ $(i=4,5)$ as its underlying digraph. Then

$$
\exp _{S^{(i)}}(k)= \begin{cases}n^{2}-7 n+12+k, & \text { if } 1 \leq k \leq n-3 \tag{1}\\ n^{2}-7 n+11+k, & \text { if } n-2 \leq k \leq n-1, \\ n^{2}-7 n+10+k, & \text { if } k=n\end{cases}
$$

(2) If the (only) two cycles of length $n-3$ of $S^{(i)}$ have different signs, then

$$
\begin{equation*}
l_{S^{(i)}}(k) \leq \exp _{S^{(i)}}(k)+n-2 \quad \text { for } \quad 1 \leq k \leq n . \tag{3.16}
\end{equation*}
$$

(3) If the (only) two cycles of length $n-3$ of $S^{(i)}$ have the same sign, then $l_{S^{(i)}}(k)=$ $\exp _{S^{(i)}}(k)+(n-2)(n-3)$, i.e.,

$$
l_{S^{(i)}}(k)= \begin{cases}2 n^{2}-12 n+18+k, & \text { if } 1 \leq k \leq n-3 \tag{3.17}\\ 2 n^{2}-12 n+17+k, & \text { if } n-2 \leq k \leq n-1, \\ 2 n^{2}-12 n+16+k, & \text { if } k=n .\end{cases}
$$

Furthermore, we have $l_{S^{(i)}}(k)<m_{3}(n, k)$ for $1 \leq k \leq n$.
Proof. We only show the case $i=4$; and the proof for the case $i=5$ is similar to $i=4$.
(1) From (3.5), we have $\exp _{S^{(4)}}\left(v_{n-1}\right)=n^{2}-6 n+10$. Since $\left|R_{1}\left(v_{j}\right)\right|=1$ for $j=1,2, \cdots, n-$ $6, n-4, n-3, n-1, n$, by Lemma 2.2, we know that $\exp _{S^{(4)}}\left(v_{n-3}\right)=\exp _{S^{(4)}}\left(v_{n-1}\right)-1=n^{2}-6 n+9$; $\exp _{S^{(4)}}\left(v_{1}\right)=\exp _{S^{(4)}}\left(v_{n-3}\right)-1=n^{2}-6 n+8 ; \exp _{S^{(4)}}\left(v_{n-4}\right)=\exp _{S^{(4)}}\left(v_{n-3}\right)+1=n^{2}-6 n+10$; $\exp _{S^{(4)}}\left(v_{n}\right)=\exp _{S^{(4)}}\left(v_{1}\right)+1=n^{2}-6 n+9$ and $\exp _{S^{(4)}}\left(v_{j}\right)=\exp _{S^{(4)}}\left(v_{j-1}\right)-1$ for $j=2,3, \cdots, n-$ 5 , or equivalently, $\exp _{S^{(4)}}\left(v_{j}\right)=n^{2}-6 n+9-j$ for $j=1,2, \cdots, n-5$.

Now we show that $\exp _{S^{(4)}}\left(v_{n-2}\right)=n^{2}-7 n+13$. Since $R_{1}\left(v_{n-5}\right) \supset\left\{v_{n-2}\right\}$, it is clear that $\exp _{S^{(4)}}\left(v_{n-5}\right) \leq \exp _{S^{(4)}}\left(v_{n-2}\right)+1$. Hence $\exp _{S^{(4)}}\left(v_{n-2}\right) \geq \exp _{S^{(4)}}\left(v_{n-5}\right)-1=n^{2}-7 n+13$. For nonnegative integer i, let $A_{i}=R_{i(n-3)+1}\left(v_{n-2}\right)$. Suppose $\left|\bigcup_{j=0}^{i-1} A_{j}\right|<n$ and $\left|A_{i} \backslash \bigcup_{j=0}^{i-1} A_{j}\right|=0$. Then $\left|A_{m} \backslash \bigcup_{j=0}^{i-1} A_{j}\right|=0$ for all $m \geq i$, and so $\left|\bigcup_{j=0}^{\infty} A_{j}\right|<n$, which implies $H_{n}^{(4)}$ is imprimitive, a contradiction. Therefore

$$
\left|A_{i} \backslash \bigcup_{j=0}^{i-1} A_{j}\right| \geq 1, \quad \text { provided } \quad\left|\bigcup_{j=0}^{i-1} A_{j}\right|<n
$$

Since $A_{0}=\left\{v_{n}, v_{n-1}\right\}$ and $A_{1}=\left\{v_{n}, v_{n-1}, v_{n-2}, v_{n-3}, v_{n-4}\right\}$, we have $\left|A_{n-4}\right|=n$ and so $\exp _{S^{(4)}}\left(v_{n-2}\right) \leq(n-4)(n-3)+1=n^{2}-7 n+13$. Hence $\exp _{S^{(4)}}\left(v_{n-2}\right)=n^{2}-7 n+13$.

So by ordering the above local exponents, we can obtain (3.15).
(2) If the two cycles of length $n-3$ of $S^{(4)}$ have different signs, then it is easy to see that $r\left(v_{j}\right) \leq n-3$ for $j=1,2, \cdots, n-5$. So $l_{S^{(4)}}\left(v_{j}\right) \leq \exp _{S^{(4)}}\left(v_{j}\right)+n-3$ for $j=1,2, \cdots, n-5$ by Lemma 2.12. Since $R_{1}\left(v_{j}\right)=\left\{v_{1}\right\}$ for $j=n, n-3$ and $R_{1}\left(v_{j}\right)=\left\{v_{n-3}\right\}$ for $j=n-1, n-4$, by Lemma 2.11, we know that $l_{S^{(4)}}\left(v_{j}\right)=l_{S^{(4)}}\left(v_{1}\right)+1 \leq \exp _{S^{(4)}}\left(v_{1}\right)+(n-3)+1=\exp _{S^{(4)}}\left(v_{j}\right)+n-3$ for $j=n, n-3$ and $l_{S^{(4)}}\left(v_{j}\right)=l_{S^{(4)}}\left(v_{n-3}\right)+1 \leq \exp _{S^{(4)}}\left(v_{n-3}\right)+(n-3)+1=\exp _{S^{(4)}}\left(v_{j}\right)+n-3$ for $j=n-1, n-4$.

For v_{n-2}, because $R_{1}\left(v_{n-2}\right) \supseteq\left\{v_{n}\right\}$, we have $l_{S^{(4)}}\left(v_{n-2}\right) \leq l_{S^{(4)}}\left(v_{n}\right)+1 \leq \exp _{S^{(4)}}\left(v_{n}\right)+(n-$ $3)+1=n^{2}-6 n+9+n-2$.

Now by computing, we can obtain that

$$
l_{S^{(4)}}(k) \leq \begin{cases}n^{2}-6 n+10+k, & \text { if } 1 \leq k \leq n-4, \\ n^{2}-6 n+9+k, & \text { if } n-3 \leq k \leq n-2, \\ n^{2}-6 n+8+k, & \text { if } k=n-1, \\ n^{2}-6 n+7+k, & \text { if } k=n .\end{cases}
$$

Hence $l_{S^{(4)}}(k) \leq \exp _{S^{(4)}}(k)+n-2$ for $1 \leq k \leq n$.
(3) In this case, by using the method similar to (3) in Lemma 3.1, we can show that there is no pair of $S S S D$ walks of length $k=\exp _{S^{(4)}}\left(v_{j}\right)+(n-2)(n-3)-1$ from v_{j} to v_{n-1} for $j=n-5, n-2$. And furthermore, we can obtain (3.17) and $l_{S^{(4)}}(k)<m_{3}(n, k)$ for $1 \leq k \leq n$.

4. Proof of Main Theorem

Proof of Main Theorem. Let D be the underlying digraph of S and $s=s(D)$. By Lemma 2.7, we know that there is no cycle with length n in D. Suppose D contains a cycle of length $n-1$. Then by Lemma $2.8, D$ consists of two cycles of length $n-1$ and l, where $1<l<n-1$ and $\operatorname{gcd}(n-1, l)=1$. Thus $l=s$ and D is isomorphic to $D_{n, s}$. If $s=n-2$, then $l_{S}(k)=m_{1}(n, k)$ for $1 \leq k \leq n$ by Corollary 3.2. If $s=n-3$, then n is even since $D_{n, 3}$ is primitive; and $l_{S}(k)=m_{2}(n, k)$ for $1 \leq k \leq n$ by Corollary 3.3. If $s \leq n-4$, then by Corollary 3.1, $l_{S}(k) \leq 2(n-4)(n-2)+k+1=2 n^{2}-12 n+17+k<m_{3}(n, k)$ for $1 \leq k \leq n$.

Suppose $L(D)=\{n-2, n-3\}$. Then D is isomorphic to H_{n} or $H_{n}^{(i)}$ for some $i \in\{1,2,3,4,5\}$. By Corollary 3.4 and Lemmas 3.1-3.4, we have $l_{S}(k) \leq m_{3}(n, k)$ for $1 \leq k \leq n$. If D is isomorphic to H_{n}, then $l_{S}(k)=m_{3}(n, k)$ for $1 \leq k \leq n$ by Corollary 3.4. If D is isomorphic to $H_{n}^{(1)}$, then by Lemma 3.1, $l_{S}(k)=m_{3}(n, k)$ if and only if the two cycles of length $n-2$ in S have the same sign and $k=n-3, n-1$. If D is isomorphic to $H_{n}^{(2)}$, then by Lemma 3.2, $l_{S}(k)=m_{3}(n, k)$ if and only if the two cycles of length $n-2$ in S have the same sign and $k=n-3$. If D is isomorphic to $H_{n}^{(i)}(i=3,4,5)$, then by Lemmas 3.3 and 3.4, we have $l_{S}(k)<m_{3}(n, k)$ for $1 \leq k \leq n$.

Note that $m_{3}(n, k)<m_{2}(n, k)<m_{1}(n, k)(n \geq 7)$. So it is easy to see that in order to obtain the four parts of this theorem, we only need to show that $l_{S}(k)<m_{3}(n, k)$ for $1 \leq k \leq n$ if D contains no cycle of length $n-1$ and $L(D) \neq\{n-2, n-3\}$.

In the following, we assume that D contains no cycle of length $n-1$ and $L(D) \neq\{n-2, n-3\}$. We will show that $l_{S}(k)<m_{3}(n, k)$ for $1 \leq k \leq n$. By Lemma 2.10 we know that $l_{S}(k) \leq$ $l_{S}(1)+k-1$ for $1 \leq k \leq n$. Hence by the definition of $m_{3}(n, k)$, it suffices to show that $l_{S}(1)<m_{3}(n, 1)-2=2 n^{2}-12 n+19$.

Since S is primitive non-powerful, there is a distinguished cycle pair C_{1} and C_{2} (with lengths, say, p_{1} and p_{2} respectively) by Lemma 2.1, where $p_{1} C_{2}$ and $p_{2} C_{1}$ have different signs by (2.1). Let $p_{1} \leq p_{2}$.

Case 1. C_{1} and C_{2} have no common vertices.
Then $p_{1}+p_{2} \leq n$, and so $p_{1} \leq \frac{n}{2}$. Let Q_{1} be a shortest path with length q_{1} from C_{1} to C_{2}. Let $\left\{v_{1}\right\}=V\left(Q_{1}\right) \cap V\left(C_{1}\right),\left\{v_{2}\right\}=V\left(Q_{1}\right) \cap V\left(C_{2}\right)$, let Q_{2} be a shortest path of length q_{2} from v_{2} to v_{1}. Then $q_{1} \leq n-p_{1}-p_{2}+1$ and $q_{2} \leq n-1$. Clearly, $p_{2} C_{1}+Q_{1}+Q_{2}$ and $p_{1} C_{2}+Q_{1}+Q_{2}$ are a pair of $S S S D$ walks of length $p_{1} p_{2}+q_{1}+q_{2}$ from vertex v_{1} to v_{1}, hence $r\left(v_{1}\right) \leq p_{1} p_{2}+q_{1}+q_{2}$. From the proof of Case 1 in [3, Theorem 3.3], we know that $\exp _{D}\left(v_{1}\right) \leq p_{1}(n-2)+1$.

Subcase 1.1. $n \geq 8$. Since $p_{1} p_{2}+q_{1}+q_{2} \leq p_{1} p_{2}-p_{1}-p_{2}+2 n=\left(p_{1}-1\right)\left(p_{2}-1\right)+2 n-1 \leq$ $\left(\frac{p_{1}+p_{2}-2}{2}\right)^{2}+2 n-1 \leq\left(\frac{n-2}{2}\right)^{2}+2 n-1=\frac{n^{2}}{4}+n$, by Lemma 2.12, $l_{S}\left(v_{1}\right) \leq \exp _{D}\left(v_{1}\right)+r\left(v_{1}\right) \leq$ $\frac{n}{2}(n-2)+1+\frac{n^{2}}{4}+n=\frac{3 n^{2}}{4}+1$. Thus $l_{S}(1) \leq l_{S}\left(v_{1}\right) \leq \frac{3 n^{2}}{4}+1<2 n^{2}-12 n+19$ for $n \geq 8$.

Subcase 1.2. $n=7$. Let $V(D)=\left\{v_{1}, v_{2}, \cdots, v_{7}\right\}$.
Subcase 1.2.1. $p_{1}=2$. Then $p_{2} \leq 5$ and $\exp _{D}\left(v_{1}\right) \leq p_{1}(n-2)+1=2 \times 5+1=11$. Now, $r\left(v_{1}\right) \leq p_{1} p_{2}+q_{1}+q_{2} \leq p_{1} p_{2}-p_{1}-p_{2}+2 n=\left(p_{1}-1\right)\left(p_{2}-1\right)+2 n-1 \leq 1 \times 4+13=17$. By Lemma 2.12, $l_{S}\left(v_{1}\right) \leq 11+17=28$. Hence $l_{S}(1) \leq l_{S}\left(v_{1}\right) \leq 28<33=m_{3}(7,1)-2$.

Subcase 1.2.2. $p_{1}=3$. Then $\exp _{D}\left(v_{1}\right) \leq p_{1}(n-2)+1=3 \times 5+1=16$.
Suppose $p_{2}=3$. Then $q_{1} \leq 2$. We claim that $q_{2} \leq 5$. If $q_{1}=1$, then $q_{2} \leq 4$ since D contains no cycle of length 6 or 7 . If $q_{1}=2$, we can assume that $C_{1}=\left(v_{1}, v_{5}, v_{6}\right), C_{2}=\left(v_{2}, v_{3}, v_{4}\right)$ and $\left(v_{1}, v_{7}\right)$ and $\left(v_{7}, v_{2}\right)$ are two arcs of D. Since $p_{1}=p_{2}$, by symmetry, we can assume that the length of the shortest path from C_{2} to C_{1} is also 2. Note that $\left(v_{4}, v_{7}\right)$ must not be an arc of D and $\left(v_{2}, v_{7}\right) \in E(D)$ implies that the digraph induced by vertex set $\left\{v_{1}, v_{5}, v_{6}, v_{7}\right\}$ is minimally strong. Thus $q_{2} \leq 5$. Therefore $r\left(v_{1}\right) \leq p_{1} p_{2}+q_{1}+q_{2} \leq 3 \times 3+2+5=16$ and so $l_{S}\left(v_{1}\right) \leq 16+16=32$ by Lemma 2.12. Thus $l_{S}(1) \leq l_{S}\left(v_{1}\right) \leq 32<33=m_{3}(7,1)-2$.

Suppose $p_{2}=4$. Then $q_{1}=1$ and so $q_{2} \leq 4$ since D contains no cycle of length 6 or 7 . If $q_{2} \leq 3$, then $r\left(v_{1}\right) \leq p_{1} p_{2}+q_{1}+q_{2} \leq 3 \times 4+1+3=16$ and so $l_{S}\left(v_{1}\right) \leq 16+16=32$ by Lemma 2.12. Hence $l_{S}(1) \leq l_{S}\left(v_{1}\right) \leq 32<33=m_{3}(7,1)-2$. If $q_{2}=4$, then without loss of generality, we can assume that D consists of two cycles $C_{1}=\left(v_{1}, v_{6}, v_{7}\right), C_{2}=\left(v_{2}, v_{3}, v_{4}, v_{5}\right)$ and two additional arcs $\left(v_{1}, v_{2}\right)$ and $\left(v_{4}, v_{7}\right)$. Since $L(D)=\{3,4,5\}$, by (2.3), we have $\exp _{D}\left(v_{1}\right) \leq$ $\phi(3,4,5)+\max _{v_{i} \in V(D)} d_{L(D)}\left(v_{1}, v_{i}\right) \leq 3+6=9$. Thus $r\left(v_{1}\right) \leq p_{1} p_{2}+q_{1}+q_{2}=3 \times 4+1+4=17$ and so $l_{S}\left(v_{1}\right) \leq 9+17=26$ by Lemma 2.12. Hence $l_{S}(1) \leq l_{S}\left(v_{1}\right) \leq 26<33=m_{3}(7,1)-2$.

Case 2. C_{1} and C_{2} have some common vertices.
Subcase 2.1. $p_{1}=p_{2}$.

Then C_{1} and C_{2} are also a pair of $S S S D$ walks of length p_{1}. Let $x \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$. Then $r(x) \leq p_{1} \leq n-2$. By Lemma 2.9, we have $\exp (D) \leq n+s(n-3) \leq n+(n-2)(n-3)=n^{2}-4 n+6$. Thus by Lemma 2.12, $l_{S}(1) \leq l_{S}(x) \leq \exp _{S}(x)+r(x) \leq \exp (S)+r(x) \leq\left(n^{2}-4 n+6\right)+(n-2)=$ $n^{2}-3 n+4<2 n^{2}-12 n+19$.

In the following cases, we will consider the situation $p_{1} \neq p_{2}$. It is clear that $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \geq$ $p_{1}+p_{2}-n$; and for any $u \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$, we have $r(u) \leq p_{1} p_{2}$.

Subcase 2.2. $p_{2}=n-2, p_{1}=n-3$.
Subcase 2.2.1. $s=n-4$, i.e., $L(D)=\{n-2, n-3, n-4\}$.
Subcase 2.2.1.1. $n>8$. It follows from Lemma 2.5 that $d_{L(D)}=\max _{x, y \in V(D)} d_{L(D)}(x, y) \leq n$. By (2.2), we have $\phi(n-2, n-3, n-4) \leq\left\lfloor\frac{(n-4)^{2}}{2}\right\rfloor$. Then by (2.4), we obtain

$$
\exp (D) \leq \phi(n-2, n-3, n-4)+d_{L(D)} \leq\left\lfloor\frac{(n-4)^{2}}{2}\right\rfloor+n
$$

Let $x \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$; then by Lemma 2.12, we have $l_{S}(x) \leq \exp _{D}(x)+r(x) \leq \exp (D)+r(x) \leq$ $\left\lfloor\frac{(n-4)^{2}}{2}\right\rfloor+n+(n-2)(n-3)=\left\lfloor\frac{n^{2}}{2}\right\rfloor+n^{2}-8 n+14$. Thus $l_{S}(1) \leq l_{S}(x) \leq\left\lfloor\frac{n^{2}}{2}\right\rfloor+n^{2}-8 n+14<$ $2 n^{2}-12 n+19$.

Subcase 2.2.1.2. $n=7$. Let $V(D)=\left\{v_{1}, v_{2}, \cdots, v_{7}\right\}$. Since D is a primitive, minimally strong digraph, it is clear that $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right|=3$. Without loss of generality, we assume that $C_{2}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and $C_{1}=\left(v_{1}, v_{2}, v_{3}, v_{6}\right)$. Because D contains a cycle of length $n-4=3$, then we have $E(D)=E\left(C_{1}\right) \cup E\left(C_{2}\right) \cup\left\{\left(v_{j}, v_{7}\right),\left(v_{7}, v_{i}\right)\right\}$, where $\left(v_{i}, v_{j}\right)$ is an arc of C_{1} or C_{2}. Let $C_{3}=\left(v_{i}, v_{j}, v_{7}\right)$. If there exists a vertex $u \in\left\{v_{1}, v_{2}, v_{3}\right\}$ such that u also meets C_{3}, then we have $\max _{x \in V(D)} d_{\{3,4,5\}}(u, x) \leq n-1=6$ and so $\exp _{D}(u) \leq \phi(3,4,5)+6=9$ by (2.3). Otherwise, we have $v_{i}=v_{4}$ and $v_{j}=v_{5}$. Thus $\max _{x \in V(D)} d_{\{3,4,5\}}\left(v_{3}, x\right)=d_{\{3,4,5\}}\left(v_{3}, v_{6}\right)=6$ and $\exp _{D}\left(v_{3}\right) \leq \phi(3,4,5)+6=9$ by (2.3). Hence, there exists a vertex $u \in\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $\exp _{D}(u) \leq 9$. Since $r\left(v_{i}\right) \leq(n-2)(n-3)=5 \times 4=20$ for $i=1,2,3$, by Lemma 2.12, we have $l_{S}(1) \leq l_{S}(u) \leq \exp _{D}(u)+r(u) \leq 20+9<33=m_{3}(7,1)-2$.

Subcase 2.2.1.3. $n=8$. Similar to the proof of Subcase 2.2.1.2, we can show that $l_{S}(1) \leq(n-2)(n-3)+\phi(4,5,6)+n-1=6 \times 5+8+7=45<51=m_{3}(8,1)-2$.

Subcase 2.2.2. $s \leq n-5$.
Now $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \geq p_{1}+p_{2}-n=n-5$. If $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right|=n-5$, then D must be isomorphic to H_{n}, which is a contradiction. So $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \geq n-4$. Let $x \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$ with $\exp _{D}(x)=\min \left\{\exp _{D}(u): u \in V\left(C_{1}\right) \cap V\left(C_{2}\right)\right\}$. Then $\exp _{D}(x) \leq \exp _{D}(5)$. Since D is not isomorphic to $D_{n, s}$, by Lemma 2.9, we have $\exp _{D}(1) \leq(n-5)(n-3)+1$. Thus by Lemma 2.3, $\exp _{D}(x) \leq \exp _{D}(5) \leq \exp _{D}(1)+4 \leq n^{2}-8 n+20$. Since $r(x) \leq(n-2)(n-3)$, by Lemma 2.12, we have $l_{S}(x) \leq \exp _{D}(x)+r(x) \leq 2 n^{2}-13 n+26$. Hence $l_{S}(1) \leq l_{S}(x) \leq 2 n^{2}-13 n+26<$ $2 n^{2}-12 n+19$ for $n>7$.

Suppose $n=7$. Since D is a primitive, minimally strong digraph, we have $s=n-5=2$ and $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right|=3$. Without loss of generality, we assume that $C_{2}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and
$C_{1}=\left(v_{1}, v_{2}, v_{3}, v_{6}\right)$. Because D contains a cycle of length 2, we get that $E(D)=E\left(C_{1}\right) \cup E\left(C_{2}\right) \cup$ $\left\{\left(v_{i}, v_{7}\right),\left(v_{7}, v_{i}\right)\right\}$, where $i \in\{1,2,3,4,5,6\}$. Now $L(D)=\{2,4,5\}$; by using the method similar to Subcase 2.2.1.2, we can show that $l_{S}(1) \leq(n-2)(n-3)+\phi(2,4,5)+n-1=5 \times 4+4+6=$ $30<33=m_{3}(7,1)-2$.

Subcase 2.3. $p_{2}=n-2, p_{1}=n-4$. Now, n is odd by Lemma 2.1.
Let $x \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$ with $\exp _{D}(x)=\min \left\{\exp _{D}(u): u \in V\left(C_{1}\right) \cap V\left(C_{2}\right)\right\}$. Then $r(x) \leq$ $(n-2)(n-4)$. Since $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \geq p_{1}+p_{2}-n=n-6$, we have $\exp _{D}(x) \leq \exp _{D}(7)$.

Subcase 2.3.1. $s=n-4$.
Since D is not isomorphic to $D_{n, s}$, by Lemma 2.9, we have $\exp _{D}(1) \leq(n-4)(n-3)+1=$ $n^{2}-7 n+13$. Thus by Lemma 2.3, $\exp _{D}(x) \leq \exp _{D}(7) \leq \exp _{D}(1)+6 \leq n^{2}-7 n+19$. Consequently, $l_{S}(x) \leq \exp _{D}(x)+r(x) \leq n^{2}-7 n+19+(n-2)(n-4)$ by Lemma 2.12. Hence $l_{S}(1) \leq l_{S}(x) \leq 2 n^{2}-13 n+27<2 n^{2}-12 n+19$ for $n \geq 9$.

Suppose $n=7$. We only need to consider two cases $L(D)=\{n-2, n-4\}$ and $L(D)=\{n-$ $2, n-3, n-4\}$. If $L(D)=\{n-2, n-4\}$, then $p_{1}=n-4 \geq 3$ and $p_{1}+p_{2}=2 n-6>n$. So by Lemma 2.6, $\exp _{D}(x) \leq \exp (D) \leq n+p_{1}\left(p_{2}-2\right)=7+3(5-2)=16$. Since $r(x) \leq(n-2)(n-4)=5 \times 3=$ 15 , then $l_{S}(x) \leq 16+15=31$ by Lemma 2.12. Hence $l_{S}(1) \leq l_{S}(x) \leq 31<33=m_{3}(7,1)-2$. If $L(D)=\{n-2, n-3, n-4\}$, then $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right|=2$. Let $V(D)=\left\{v_{1}, v_{2}, \cdots, v_{7}\right\}$. Without loss of generality, we assume that $C_{2}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and $C_{1}=\left(v_{1}, v_{2}, v_{6}\right)$. Let C_{3} be a cycle of D with length 4 , then $\left|V\left(C_{3}\right) \cap V\left(C_{2}\right)\right| \geq 2$. Thus $\max _{x \in V(D)} d_{\{3,4,5\}}\left(v_{1}, x\right) \leq\left|V\left(C_{2}\right)\right|+n-1=$ $5+6=11$. By $(2.3), \exp _{D}\left(v_{1}\right) \leq \phi(3,4,5)+\max _{x \in V(D)} d_{\{3,4,5\}}\left(v_{1}, x\right) \leq 3+11=14$. Since $r\left(v_{1}\right) \leq(n-2)(n-4)=5 \times 3=15$, by Lemma 2.12, we have $l_{S}\left(v_{1}\right) \leq 14+15=29$. Hence $l_{S}(1) \leq l_{S}\left(v_{1}\right) \leq 29<33=m_{3}(7,1)-2$.

Subcase 2.3.2. $s \leq n-5$.
Since D is not isomorphic to $D_{n, s}$, by Lemma 2.9, we have $\exp _{D}(1) \leq(n-5)(n-3)+1=$ $n^{2}-8 n+16$. Thus by Lemma 2.3, $\exp _{D}(x) \leq \exp _{D}(7) \leq \exp _{D}(1)+6 \leq n^{2}-8 n+22$. Consequently, $l_{S}(x) \leq \exp _{D}(x)+r(x) \leq n^{2}-8 n+22+(n-2)(n-4)$ by Lemma 2.12. Hence $l_{S}(1) \leq l_{S}(x) \leq 2 n^{2}-14 n+30<2 n^{2}-12 n+19$.

Subcase 2.4. $p_{2}=n-3, p_{1}=n-4$.
Let $x \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$ with $\exp _{D}(x)=\min \left\{\exp _{D}(u): u \in V\left(C_{1}\right) \cap V\left(C_{2}\right)\right\}$. Then $r(x) \leq$ $(n-3)(n-4)$. Since $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \geq p_{1}+p_{2}-n=n-7$, we have $\exp _{D}(x) \leq \exp _{D}(8)$. Because D is not isomorphic to $D_{n, s}$, by Lemma 2.9, we have $\exp _{D}(1) \leq(n-4)(n-3)+1=$ $n^{2}-7 n+13$. Thus by Lemma 2.3, $\exp _{D}(x) \leq \exp _{D}(8) \leq \exp _{D}(1)+7 \leq n^{2}-7 n+20$. Consequently, $l_{S}(x) \leq \exp _{D}(x)+r(x) \leq n^{2}-7 n+20+(n-3)(n-4)$ by Lemma 2.12. Hence $l_{S}(1) \leq l_{S}(x) \leq 2 n^{2}-14 n+32<2 n^{2}-12 n+19$.

Subcase 2.5. $p_{2} \leq n-2, p_{1} \leq n-5$.
By Lemma 2.9, we have $\exp (D) \leq n+(n-5)(n-3)=n^{2}-7 n+15$. Let $x \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$. Then $r(x) \leq(n-2)(n-5)$ and so $l_{S}(x) \leq \exp _{D}(x)+r(x) \leq \exp (D)+r(x) \leq 2 n^{2}-14 n+25$ by Lemma 2.12. Hence $l_{S}(1) \leq l_{S}(x) \leq 2 n^{2}-14 n+25<2 n^{2}-12 n+19$.

Combining the above Cases, the proof of this theorem is completed.

Acknowledgements

I would like to thank the referee for many helpful comments and suggestions and for bringing Ref. [3] to my attention.

References

[1] Z. Li, F. Hall and C. Eschenbach, On the period and base of a sign pattern matrix, Linear Algebra Appl. 212/213 (1994), 101-120.
[2] L.H. You, J.Y. Shao and H.Y. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, Linear Algebra Appl. 427 (2007), 285-300.
[3] L.Q. Wang, Z.K. Miao and C. Yan, Local bases of primitive non-powerful signed digraphs, Discrete Math. (2008), doi:10.1016/j.disc.2008.01.012.
[4] B.L. Liu and L.H. You, Bounds on the base of primitive nearly reducible sign pattern matrices, Linear Algebra Appl. 418(2006), 863-881.
[5] R.A. Brualdi and B.L. Liu, Generalized exponents of primitive digraphs, J. Graph Theory 14(1990), 483-499.
[6] J.B. Roberts, Notes on linear forms, Proc. Amer. Math. Soc. 7(1956), 456-469.
[7] J.Y. Shao, On the exponent of a primitive digraph, Linear Algebra Appl. 64(1985), 21-31.
[8] A.L. Dulmage and N.S. Mendelsohn, Gaps in the exponent set of primitive matrices, Illinois J. Math. 8(1964), 642-656.
[9] M. Lewin and Y. Vitek, A system of gaps in the exponent set of primitive matrices, Illinois J. Math. 25(1981), 87-98.
[10] J.A. Ross, On the exponent of a primitive, nearly reducible matrix. II, SIAM J. Alg. Disc. Meth. 3(1982), 395-410.
[11] Y.H. Hu, P.Z. Yuan and W.J. Liu, The k-exponents of primitive, nearly reducible matrices, Ars Combin. 83(2007), 47-63.

[^0]: Email address: hpma@163.com.

