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Abstract

Let γ(G) be the domination number of a graphG. A graphG is domination-
vertex-critical, or γ-vertex-critical, if γ(G − v) < γ(G) for every vertex
v ∈ V (G). In this paper, we show that: Let G be a γ-vertex-critical graph
and γ(G) = 3. (1) If G is of even order and K1,6-free, then G has a perfect
matching; (2) If G is of odd order and K1,7-free, then G has a near perfect
matching with only three exceptions. All these results improve the known
results.
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1 Introduction
Let G be a finite simple graph with vertex set V (G) and edge set E(G). A set
S ⊆ V is a dominating set of G if every vertex in V is either in S or is adjacent
to a vertex in S. For two sets A and B, A dominates B if every vertex of B has
a neighbor in A or is a vertex of A; sometimes, we also say that B is dominated
by A. Let u ∈ V and A ⊆ V − {u}, if u is adjacent to some vertex of A, then
we say that u is adjacent to A. The domination number of G, denoted by γ(G), is
the minimum cardinality of dominating sets ofG. A graphG is domination vertex
critical, or γ-vertex-critical, if γ(G − v) < γ(G) for every vertex v ∈ V (G).
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Indeed, if γ(G−v) < γ(G), then γ(G−v) = γ(G)−1. A graphG is domination
edge critical, if γ(G+ e) < γ(G) for any edge e /∈ E(G). We call a graph G k-
γ-vertex-critical (resp. k-γ-edge-critical) if it is domination vertex critical (resp.
domination edge critical) and γ(G) = k.

A matching is perfect if it is incident with every vertex of G. If G − v has a
perfect matching for every choice of v ∈ V (G),G is said to be factor-critical. The
concept of factor-critical graphs was first introduced by Gallai in 1963 and it plays
an important role in the study of matching theory. Contrary to its apparent strict
condition, such graphs form a relatively rich family for study. It is the essential
“building block” for well-known Gallai-Edmonds Matching Structure Theorem.

The subject of γ-vertex-critical graphs was studied first by Brigham, Chinn
and Dutton [4] and continued by Fulman, Hanson and Macgillivray [6]. Clearly,
the only 1-γ-vertex-critical graph is K1 (i.e., a single vertex). Brigham, Chinn
and Dutton [4] pointed out that the 2-γ-vertex-critical graphs are precisely the
family of graphs obtained from the complete graphs K2n with a perfect matching
removed (Theorem 1.1). For k > 2, however, much remains unknown about the
structure of k-γ-vertex-critical graphs. Recently, Ananchuen and Plummer [1, 3]
began to investigate matchings in 3-γ-vertex-critical graphs. They showed that
a K1,5-free 3-γ-vertex-critical graph of even order has a perfect matching (see
[3]). For the graphs of odd order, they proved that the condition of K1,4-freedom
is sufficient for factor-criticality (see [1]). Wang and Yu [8] improved this result
by weakening the condition of K1,4-freedom to almost K1,5-freedom. In [9],
they also studied the k-factor-criticality in 3-γ-edge-critical graphs and obtained
several useful results on connectivity of 3-γ-vertex-critical graphs.

The relevant theorems are stated formally below.

Theorem 1.1 (Brigham et al., [4]). A graph G is 2-γ-vertex-critical if and only if
it is isomorphic to K2n with a perfect matching removed.

Theorem 1.2 (Ananchuen and Plummer, [3]). Let G be a 3-γ-vertex-critical
graph of even order. If G is K1,5-free, then G has a perfect matching.

Theorem 1.3 (Ananchuen and Plummer, [1]). Let G be a 3-γ-vertex-critical
graph of odd order at least 11. If G is K1,5-free, then G contains a near per-
fect matching.

For v ∈ V (G), we denote a minimum dominating set of G − v by Dv . The
following facts about Dv follow immediately from the definition of 3-γ-vertex-
criticality and we shall use it frequently in the proofs of the main theorems.

Facts: If G is 3-γ-vertex-critical, then the followings hold
(1) For every vertex v of G, |Dv| = 2;
(2) If Dv = {x, y}, then x and y are not adjacent to v;
(3) For every pair of distinct vertices v and w, Dv 6= Dw.
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In this paper, we utilize the techniques developed in [8] and [9] to extend
Theorem 1.2 and Theorem 1.3 to the following theorem.

Theorem 1.4. Let G be a 3-γ-vertex-critical graph.

(a) If G is K1,6-free and |V (G)| is even, |V (G)| 6= 12, then G has a perfect
matching.

(b) If G is K1,7-free of odd order, and co(G) = 1, |V (G)| 6= 13, then either G
has a near perfect matching or G is one of Fig. 1 and Fig. 4.

In theory of matching, Tutte’s 1-Factor Theorem plays a central role. From
1-Factor Theorem, a characterization of a graph with a near perfect matching can
be easily derived. Following the convention of [7], we use c(G) (resp. co(G)) to
denote the number of (resp. odd) components of G.

Theorem 1.5 (Tutte’s 1-Factor Theorem). A graph G has a perfect matching if
and only if for any S ⊆ V (G), co(G− S) 6 |S|.

Theorem 1.6. A graph G of odd order has no near perfect matching if and only
if there exits a set S ⊆ V (G), co(G− S) > |S|+ 3.

Proof. Let G′ be a graph obtained from G by adding a new vertex u and joining
u to every vertex of G. Then G has a near perfect matching if and only if G′ has
a perfect matching.

By Tutte’s 1-Factor Theroem, and the parity, G′ has no perfect matching if
and only if there exists a vertex set S′ ⊆ V (G′) such that co(G′−S′) > |S′|+ 2.
Since u is adjacent to every vertex of G, then u ∈ S′. Let S = S′ \ {u} ⊆ V (G).
Then co(G− S) = co(G′ − S′) > |S′|+ 2 = |S|+ 3.

The following lemma is proven by Ananchuen and Plummer in [1], they are
useful to deal with the graphs with smaller cut sets. We will use them in our proof
several times.

Lemma 1. Let G be a 3-γ-vertex-critical graph.

(a) IfG is disconnected, thenG = 3K1 orG is a disjoint union of a 2-γ-vertex-
critical graph and an isolated vertex;

(b) If G has a cut-vertex u, then c(G − u) = 2. Furthermore, let Ci be a
component of G−u (i = 1, 2), then G[V (Ci)∪{u}] is 2-γ-vertex-critical;

(c) If G has a 2-cut S, then c(G−S) 6 3. Furthermore, if c(G−S) = 3, then
G− S must contain at least one singleton.

We also need the following results in our proof.
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Lemma 2 (Wang and Yu, [8]). Let G be a 3-γ-vertex-critical graph and S ⊆
V (G). If Du ⊆ S for each vertex u ∈ S, then there exists no vertex of degree one
in G[S].

Theorem 1.7 (Wang and Yu, [9]). Let G be a 3-γ-vertex-critical graph of even
order. If the minimum degree is at least three, then G is 3-connected.

Theorem 1.8 (Mantel, see [10]). The maximum number of edges in a triangle-free
simple graph of order n is bn2

4 c.

2 Proof of Theorem 1.4
In this section, we provide a proof of Theorem 1.4.

Proof. Suppose, to the contrary, that the theorem does not hold. From Theo-
rem 1.5 and Theorem 1.6, and the parity, there exists a vertex set S ⊆ V (G), such
that co(G − S) > |S| + k − 4 (k = 6, 7). Without loss of generality, let S be
minimal such a set. By Lemma 1, |S| > 3.

Claim 1. Each vertex of S is adjacent to at least three odd components of G−S.

Otherwise, there exists a vertex v ∈ S such that v is adjacent to at most two
odd components of G − S. Let S′ = S − {v}. It is easy to see that S′ is a
nonempty set which satisfies the condition co(G−S′) > |S′|+ k− 4, contradict-
ing the minimality of S.

Let C1, C2, . . . , Ct be the odd components and E1, E2, . . . , En be the even
components of G− S.

Case 1. |S| = 3, say S = {u, v, w}.
Then t > k − 1.

Claim 2. For every vertex s ∈ S, Ds ⊆ S.

Proof. Clearly,Ds∩S 6= ∅. AssumeDv = {u, v′}, where v′ ∈ V (C1∪E1). This
means, if the vertex v′ is in the odd components ofG−S, we assume v′ ∈ V (C1);
if it is in the even components of G − S, we assume v′ ∈ V (E1). By Fact 2,
vu 6∈ E(G), vv′ 6∈ E(G), and u dominates C2 ∪ C3 ∪ · · · ∪ Ct. By Claim 1,
w is adjacent to at least two of C2, C3, . . . , Ct. Without loss of generality, let
wci ∈ E(G), for some ci ∈ V (Ci), i = 2, 3. By Fact 2 again, Dci ∩ S = {v},
i = 2, 3. Then vci /∈ E(G). Since vv′ 6∈ E(G), then Dc2 ∩V (C1 ∪E1) 6= ∅. But
Dc2 can not dominate c3, a contradiction. The claim is proved.

By Claim 2 and Fact 2, S is an independent set, and for any vertex x /∈ S,
|NS(x)| > 2. In fact, |NS(x)| = 2. Since, if |NS(x)| = 3, then Dx ∩ S = ∅.

Claim 3. If t > 5, then G− S has no even components.
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Proof. Suppose, to the contrary, that there exists an even component E1. Choose
a vertex x ∈ V (E1), and consider Dx. Assume Dx = {u, u′}, where u ∈ S
and u′ is in C1 or in an even component. Then u dominates C2 ∪ C3 ∪ · · · ∪ Ct.
By Claim 1, w is adjacent to at least two of C2, C3, . . . , Ct. Without loss of
generality, let wci ∈ E(G), where ci ∈ V (Ci), i = 2, 3. By Fact 2, Dci

∩ S =
{v}, thus vci 6∈ E(G) for i = 2, 3. Then Dc2 ∩ V (C3) 6= ∅ and v dominates
C1 ∪ C4 ∪ C5 ∪ E1. Henceforth Dcj ∩ S = {w} and wcj 6∈ E(G), j = 4, 5.
ConsiderDc4 , since wc5 6∈ E(G), then Dc4 ∩V (C5) 6= ∅ and hence w dominates
C1 ∪ C2 ∪ C3 and E1. Since every vertex of C1 is adjacent to both w and v, then
u is not adjacent to any vertex of C1, hence u′ ∈ V (C1). Since {u, u′} dominates
G − {x}, then u dominates E1 − {x}. Since |E1| > 2, then every vertex of
V (E1) − {x} is adjacent to every vertex of S, a contradiction. So G − S has no
even components.

Case 1.1. There exists a (odd) component, say C1, and a vertex c ∈ V (C1)
such that Dc ∩ V (C1) 6= ∅.

Let Dc = {u, c′}, where c′ ∈ V (C1). Then u dominates C2 ∪ C3 ∪ · · · ∪ Ct.
Let ci ∈ V (Ci), i = 2, . . . , t. Since |NS(ci)| = 2 and uci ∈ E(G), assume
wc2 ∈ E(G) and wc3 ∈ E(G). Then Dci ∩ S = {v} and vci 6∈ E(G) for
i = 2, 3. Since vc3 6∈ E(G), then Dc2 ∩ V (C3) 6= ∅. Therefore, v dominates
C1 ∪ C4 ∪ C5, and hence wc4 6∈ E(G) and wc5 6∈ E(G). Then w dominates
C1 ∪ C2 ∪ C3. So every vertex of C1 is adjacent to both w and v, then u is not
adjacent to any vertex of C1. Therefore, for any vertex x ∈ V (C1),Dx∩S = {u}
and |Dx ∩ V (C1)| = 1. It is easy to see that C1 is 2-γ-vertex-critical, and thus
|V (C1)| is even, a contradiction.

Case 1.2. For any vertex x of Ci, Dx ∩ V (Ci) = ∅.
Assume that |V (C1)| > 3. Let x ∈ V (C1), Dx = {u, x′}. By Claim 2

and the assumption Dx ∩ V (C1) = ∅, we assume that x′ ∈ V (C2). Then u
dominates C3 ∪C4 ∪C5 and C1 − {x}. Since |NS(ci)| = 2 and uci ∈ E(G) for
i = 3, 4, 5, so we assume wc3 ∈ E(G) and wc4 ∈ E(G). Then vc3 6∈ E(G) and
vc4 6∈ E(G). So, Dc3 ∩ V (C4) 6= ∅. It yields that v dominates C1. Since every
vertex of V (C1)−{x} is adjacent to both u and v, then it is not adjacent to w. Let
y ∈ V (C1)− {x}. Then Dy ∩ S = {w}, by the assumption Dy ∩ V (C1) = ∅, so
Dy can not dominate V (C1)− {x, y}, a contradiction.

Therefore all the components of G − S are singletons, i.e., Ci = {ci}. As-
sume Dc1 = {u, c2}. Then uc1 6∈ E(G), c2v ∈ E(G) and c2w ∈ E(G). Since
|NS(c2)| = 2, then c2u 6∈ E(G). Thus u dominates G−S−{c1, c2}. Therefore,
Dc2 = {u, c1}. Similarly, we see Dc3 = {v, c4}, Dc4 = {v, c3}, Dc5 = {w, c6}
and Dc6 = {w, c5}. Hence, there is only one 9-vertex graph satisfying this con-
ditions (see Fig. 1).

Case 2. |S| = 4, and thus t > k.
We first show that there exists a vertex a ∈ S such that Da * S. Otherwise,

5



Fig. 1: A 9-vertex graph which has no near perfect matching.

Db ⊆ S for every vertex b ∈ S. By Fact 2 and Lemma 2, S is an independent set.
It is easy to check that this is impossible.

So let u be a vertex of S withDu * S. Clearly,Du∩S 6= ∅. LetDu = {v, x},
where v ∈ S and x ∈ V (G)−S. SinceG isK1,k-free, so t = k andG−S has no
even components. Without loss of generality, let x ∈ V (C1), then v dominates all
vertices of

⋃k
i=2 V (Ci). Moreover, by K1,k-freedom again, C2, C3, . . . , Ck are

all complete, and v is not adjacent to any vertex of V (C1).
Let S − {u, v} = {w, z}. By Claim 1, let wci ∈ E(G), for some ci ∈

V (Ci), i = 2, 3. Then z ∈ Dc2 . Otherwise, we have Dc2 ∩ S = {u}. Since ux /∈
E(G), then Dc2 ∩ V (C1) 6= ∅, but then Dc2 can not dominate v, a contradiction.
Similarly, z ∈ Dc3 , thus zc2 6∈ E(G) and zc3 6∈ E(G). By Facts 2 and 3, either
Dc2 6= {u, z} or Dc3 6= {u, z}. Assume that Dc2 6= {u, z}, thus Dc2 ∩ S = {z}.
Since zc3 6∈ E(G), then Dc2 ∩ V (C3) 6= ∅, and z dominates V (C1) ∪ V (C4) ∪
V (C5) ∪ V (C6). By a similar argument, w ∈ Dcj

, for some cj ∈ V (Cj), j =
4, 5, 6. Furthermore, wcj 6∈ E(G), j = 4, 5, 6. From Fact 3, Dc4 6= {u,w} or
Dc5 6= {u,w} or Dc6 6= {u,w}. Assume Dc4 6= {u,w}. Since wc5 6∈ E(G),
then Dc4 ∩ V (C5) 6= ∅, but Dc4 can not dominate c6, a contradiction.

Case 3. |S| = 5, and thus t > k + 1.

Claim 4. For every vertex s ∈ S, Ds ⊆ S.

Otherwise, Du * S for some u ∈ S. Clearly, Du ∩ S 6= ∅. Let Du = {y, z},
where y ∈ S and z 6∈ S. Since t > k + 1, y must dominate at least k odd
components of G− S, which contradicts to K1,k-freedom.

By Claim 4 and Lemma 2, each vertex of S has degree 0 or 2 in G[S]. It is
not hard to see that G[S] can only be a 5-cycle or a disjoint union of a 4-cycle
and an isolated vertex. Let S = {s1, s2, s3, s4, s5}. There are

(
5
2

)
= 10 distinct

pairs of vertices in S. By Fact 3 and Claim 4, there must exist a vertex x in an
odd component of G − S such that Dx * S. Assume that x ∈ V (C1). Clearly,
Dx ∩ S 6= ∅. Since G is K1,k-free, we have t = k + 1 and G − S has no even
components.

Case 3.1. G[S] is a 5-cycle.
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Let s1s2s3s4s5s1 be the 5-cycle in the counterclockwise order and Dx =
{s1, x′}, where x′ 6∈ S. Since G is K1,k-free, then x′ /∈ V (C1). Assume that
x′ ∈ V (C2). Then s1 dominates

⋃k+1
i=3 V (Ci) and x′ is adjacent to both s3 and

s4. Moreover, K1,k-freedom of G implies that C3, C4, . . . , Ck+1 are all complete
and s1 is not adjacent to any vertex of V (C1)∪V (C2). Henceforth,C1 is singleton
(i.e., V (C1) = {x}).

Since Ds3 = {s1, s5}, then s5 dominates V (C1) ∪ V (C2). Similarly, since
Ds4 = {s1, s2}, s2 dominates V (C1) ∪ V (C2). Therefore, x′ is adjacent to all
vertices of S − {s1}. Now consider Dx′ . Since Dx′ ∩ S = {s1} and s1x 6∈
E(G), it follows that Dx′ = {s1, x}. Hence, x is adjacent to both s3 and s4,
and V (C2) = {x′}. But then {s1, s3} is a dominating set in G, contradicting the
assumption that γ(G) = 3.

Case 3.2. G[S] is a disjoint union of a 4-cycle and an isolated vertex.
Let s1s2s3s4s1 be the 4-cycle in the counterclockwise order and s5 be the

isolated vertex in G[S]. Then Ds1 = {s3, s5}, Ds2 = {s4, s5}, Ds3 = {s1, s5},
and Ds4 = {s2, s5}.

Since G is K1,k-free, s5 is adjacent to at most k − 1 (odd) components of
G − S. Without loss of generality, let C1, . . . , Cr be the components which are
not adjacent to s5. Then t = k+1 implies r > 2. Thus si dominates

⋃r
j=1 V (Cj)

for i = 1, 2, 3, 4. Now considerDc1 , where c1 ∈ V (C1). Clearly,Dc1∩S = {s5}.
Since s5 is not adjacent to V (C2), then Dc1 ∩ V (C2) 6= ∅. Therefore, r = 2 and
s5 dominates

⋃k+1
j=3 V (Cj). Moreover, V (C1) = {c1}. By a similar argument,

C2 is also a singleton.
For any vertex v ∈

⋃k+1
j=3 V (Cj), by Fact 2, s5 6∈ Dv , but the vertices in

S − {s5} do not dominate s5. Then Dv 6⊆ S and Dv ∩ {s1, s2, s3, s4} 6= ∅.
From K1,k-freedom of G, it implies that C3, C4, . . . , Ck+1 are all singletons, say
V (Cj) = {cj} for j = 3, . . . , k + 1. Then |V (G)| = 12 or 13 (see examples:
Fig. 2, Fig. 3).

Fig. 2: A K1,6-free graph without
perfect matching.

Fig. 3: A K1,7-free graph without
near perfect matching.

Case 4. |S| > 6, and thus t > k + 2.
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Claim 5. For every vertex s ∈ V (G), Ds ⊆ S.

Suppose that Dx * S for some x ∈ V (G). Clearly, Dx ∩ S 6= ∅. Let
Dx = {y, z}, where y ∈ S and z 6∈ S. Since t > k + 2, y must dominate at least
k odd components of G− S, a contradiction.

For each i = 1, . . . , t, let Si ⊆ S be the set of vertices in S which are adjacent
to some vertex in Ci, and let d = min{|Si|}. Without loss of generality, assume
that |S1| = d. Note that for any vertex v ∈ V (G) − V (C1), Dv ⊂ S has to
dominate C1, thus, Dv ∩ S1 6= ∅. We call such a set Dv normal 2-set associated
with v and S1, or normal set in short. By a simple counting argument, we see that
there are at most

(|S|
2

)
−
(|S|−d

2

)
normal sets.

Case 4.1. G is K1,6-free, and |V (G)| is even.
Since every vertex in S is adjacent to at most five components of G− S, then

c(G− S) 6 10. Henceforth, 6 6 |S| 6 8 and d 6 b 5|S|
|S|+2c 6 4.

If |S| = 6, then
(
6
2

)
−
(
6−d
2

)
> 13, and thus d > 4. But d 6 b 5×6

6+2c < 4, a
contradiction.

If |S| = 7, then (
7
2

)
−
(

7− d
2

)
> 15 (2.1)

or d > 3. Since d 6 b 5×7
7+2c < 4, then d = 3 and the equality hold in (2.1). Let

S1 = {u, v, w}, then {u, v}, {u,w}, {v, w} are all corresponding to some Dx

where x 6∈ V (C1). Since u is adjacent to at most five components of G − S, so
we may assume that u is not adjacent to C6, C7, . . . , C9. Then v dominates at
least three of them, and v is adjacent to at most two of C1, C2, . . . , C5. Similarly,
w is adjacent to at most two of C1, C2, . . . , C5. Both v and w are adjacent to
C1, then {v, w} can dominate at most two of C2, C3, . . . , C5, hence it can not be
realized a Dx for some x 6∈ V (C1), a contradiction.

If |S| = 8, c(G − S) = co(G − S) = 10. We construct a graph H with
vertex set S and uv ∈ E(H) if and only if Dx = {u, v} for some x ∈ V (G).
We show that H is triangle-free. Let u, v, w ∈ S, if uv ∈ E(H), uw ∈ E(H)
and u is not adjacent to C6, . . . , C10, then both v and w are adjacent to at least
four of them. Hence both v and w are all adjacent to at most one component
of C1, C2, . . . , C5. Therefore {v, w} is not a Dx for any x ∈ V (G). By Theo-
rem 1.8, |E(H)| 6 b 8

2

4 c = 16 < |V (G)|, a contradiction.

Case 4.2. G is K1,7-free and |V (G)| is odd.
Since every vertex in S is adjacent to at most six components of G − S, then

c(G− S) 6 12. So 6 6 |S| 6 9.
If |S| = 6, by Claim 5 and Fact 3,

(
6
2

)
> |V (G)| > 6+9. Then |V (G)| = 15,

and G − S is an independent set of nine vertices. Moreover, every pair in S is
corresponding to a Dx for some x ∈ V (G). As

(
6
2

)
−
(
6−d
2

)
> 14, so d > 4.

For any x 6∈ S, Dx ⊂ S, by Fact 2, every vertex in G− S has degree 4, and then
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every vertex of S is adjacent to six components of G− S. Let δ be the minimum
degree of G[S] and dG[S](u) = d. If d ≤ 2, then there exists at least one pair in
S \NG[S][u] which is not corresponding to Du, and thus it does not dominate u, a
contradiction. By Fact 2, G[S] is a 3-regular graph. From the above information,
it is not hard to see that there are only two such graphs (see Fig. 4).

Fig. 4: Two exceptions when G is K1,7-free and |V (G)| is odd.

If |S| = 7, we construct an auxiliary graph H with vertex set S and uv ∈
E(H) if and only if Dx = {u, v} for some x ∈ S. Assume that uv, uw ∈ E(H),
and u is not adjacent to C7, . . . , C10. Then both v and w dominate C7, . . . , C10,
and are all adjacent to at most two of C1, C2, . . . , C6. Hence {v, w} can not
be realized as a Dv for some v ∈ V (G). Therefore, H is triangle-free. If H
contains a cycle of length at least five, then at least five pairs can not be realized
as a Dx for some x ∈ V (G),

(
7
2

)
− 5 = 16 < 17 6 |V (G)|, a contradiction.

As |E(H)| > |V (H)| − 1, so H only contains cycles of length four, and H is
bipartite. Let s1s2s3s4 be a four cycle in H . |E(H)| > |V (H)| − 1 = 6, it yields
that the component which contains the 4-cycle s1s2s3s4, say H ′, has at least six
vertices. The pairs in the same partite of H ′ can not be realized as a Dx for some
x ∈ V (G), a simple counting argument shows that H has at least five such pairs.
So
(
7
2

)
− 5 = 16 < 17 6 |V (G)|, a contradiction.

If 8 6 |S| 6 9, we construct a graph H as in the case that “G is K1,6-free,
|V (G)| is even, and |S| = 8”. Similarly, H is triangle-free, by Theorem 1.8,
|E(G)| 6 b |S|

2

4 c < |V (G)|, a contradiction.

Remark 1. The conclusion in this theorem holds for all graphs except |V (G)| =
12 or 13. For these cases, we can determine the exceptions precisely in some cases
(such as in Case 4.2) but fail to determine all of them in other cases (such as in
Case 3.2). With some efforts, one may be able to find all graphs which have no
perfect matching or near-perfect matching for |V (G)| = 12 or 13.

Remark 2. Ananchuen and Plummer showed that: let G be a connected 3-γ-
vertex- critical graph of even order. If G is claw-free, then G is bicritical. The
authors also generalized this result, and proved that: let G be a 3-γ-vertex-critical
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graph of even order, if G is K1,4-free, and the minimum degree is at least four,
then G is bicritical.
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