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Abstract. The energy E of a graph G is equal to the sum of the absolute values of the

eigenvalues of G . In 2005 Lin et al. determined the trees with a given maximum vertex

degree ∆ and maximum E , that happen to be trees with a single vertex of degree ∆ . We

now offer a simple proof of this result and, in addition, characterize the maximum energy

trees having two vertices of maximum degree ∆ .
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1. Introduction

If λ1, λ2, . . . , λn are the eigenvalues of a graph G [1], then the energy of G is defined

in 1978 as [2, 3]

E = E(G) =

n∑

i=1

|λi| . (1)

This definition was motivated by a large number of earlier results for the Hückel

molecular orbital total π-electron energy, bond orders, and related quantities [4–13].

In all these works it was, explicitly or tacitly, assumed that the total π-electron energy

satisfies the relation (1) (which is tantamount to the requirement that all bonding

MOs are doubly filled and all antibonding MOs are empty). The expression on the

right–hand side of (1) has a certain mathematical beauty, and in our time graph energy

became a popular topic of research in mathematical chemistry and mathematics.
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One of the fundamental questions that is encountered in the study of graph en-

ergy is which graphs (from a given class) have greatest and smallest E-values. The

first such result was obtained for trees [13], when it was demonstrated that the star

has minimum and the path maximum energy. In the meantime, a remarkably large

number of papers were published on such extremal problems: for general graphs [14–

17], trees and chemical trees [18–27], unicyclic [28–40], bicyclic [41–45], and tricyclic

graphs [46], as well as for benzenoid and related polycyclic systems [47–50].

In 2005 Lin et al. [20] showed that among trees with a fixed number n of vertices

and fixed maximum vertex degree ∆ , the species with maximum energy are those

depicted in Fig. 1.

q

pp

p + q = ∆, n ≤ 2∆. p + 1 = ∆, n ≥ 2∆ + 1.

Figure 1 The maximum energy trees with n vertices and maximum vertex degree ∆ ,
according to Lin et al. [20].

A vertex of a tree whose degree is three or greater will be called a branching vertex .

A pendent vertex attached to a vertex of degree two will be called a 2-branch.

In what follows we offer a simplified proof of the result of Lin et al. [20], from

which it will become evident that it can be stated as:

Theorem 1. Among trees with a fixed number of vertices (n) and of maximum

vertex degree (∆), the maximum energy tree has exactly one branching vertex (of

degree ∆) and as many as possible 2-branches.

Using the same way of reasoning we show that a closely analogous result holds for

trees with two maximum degree vertices:

Theorem 2. Among trees with a fixed number of vertices (n) and two vertices of

maximum degree (∆), the maximum energy tree has as many as possible 2-branches.

(1) If n ≥ 4∆−1 , then the maximum energy tree is either the graph (a) or the graph
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(b), depicted in Fig. 2. (2) If n ≤ 4∆ − 2 , then the maximum energy tree is the

graph (c) depicted in Fig. 2 , in which the numbers of pendent vertices attached to

the two branching vertices u and v differ by at most 1.

u v

t t

p q

u u

(a)

vv

(c)(b)

d(u) = d(v) = ∆, t = n − 4∆ + 4, |p − q| ≤ 1.

Figure 2 The maximum energy trees with n vertices and two vertices u and v of
maximum degree ∆.

In order to prove Theorems 1 and 2 we need some preparations.

2. Preliminaries

Denote by m(G, k) the number of selections of k mutually independent edges in

the graph G . This quantity is also known as the k-th matching number of G . The

proofs in this paper are based on the applications of the following long–time known

results:

Lemma 1 [13, 51]. If for two trees T ′ and T ′′ ,

m(T ′, k) ≥ m(T ′′, k) holds for all k ≥ 0 (2)

then E(T ′) ≥ E(T ′′) . Moreover, if at least one of the inequalities in (2) is strict

(which happens in all non-trivial cases), then E(T ′) > E(T ′′) .

The fact that relations (2) are satisfied will be written in an abbreviated manner

as: T ′ ≻ T ′′ or T ′′ ≺ T ′ . Thus, T ′ ≻ T ′′ implies E(T ′) > E(T ′′) . For instance, in

[13] it was demonstrated that for Tn being any n-vertex tree, different from the path

(Pn) and the star (Sn), then Pn ≻ Tn ≻ Sn , implying that Pn and Sn are the n-vertex

trees with, respectively, maximum and minimum energy.
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Lemma 2 [52]. Let Xn,i be the graph whose structure is depicted in Fig. 3. For the

fragment X being an arbitrary tree (or more generally: an arbitrary bipartite graph),

Xn,1 ≻ Xn,3 ≻ Xn,5 ≻ · · · ≻ Xn,4 ≻ Xn,2 .

X

1 2 i nn-1

Xn,i

Figure 3 The tree considered in Lemma 2.

The next lemma states a well known recursion relation (see, e. g. in [53]):

Lemma 3. Let G be an arbitrary graph, and let e be an edge of G connecting the

vertices u and v . Then

m(G, k) = m(G − e, k) + m(G − u − v, k − 1) .

Let An and A∗
n be trees whose structures are depicted in Fig. 4. By A is denoted

an arbitrary tree. In An the fragment A is attached via the vertex u to a terminal

vertex v of the path Pn . In A∗
n the fragment A is attached to some n-vertex tree

other than Pn .

u v u v

1 n

AA Tn

An A∗
n

Figure 4 The trees considered in Lemma 4.

Lemma 4. An ≻ A∗
n .
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Proof. Apply Lemma 3 to the edges of An and A∗
n , connecting the vertices u and v

(as shown in Fig. 4). Then

m(An, k) = m(A ∪ Pn, k) + m(A − u ∪ Pn−1, k − 1)

m(A∗
n, k) = m(A ∪ Tn, k) + m(A − u ∪ Tn − v, k − 1) .

Since Pn ≻ Tn and Pn−1 ≻ Tn − v , we have that

m(A ∪ Pn, k) ≥ m(A ∪ Tn, k)

m(A − u ∪ Pn−1, k − 1) ≥ m(A − u ∪ Tn − v, k − 1)

and therefore

m(An, k) ≥ m(A∗
n, k) .

Lemma 4 follows.

Let ABn and AB∗
n be trees whose structures are depicted in Fig. 5. By A and B

are denoted arbitrary tree fragments and Tn denotes an n-vertex tree.

1 2

u v u vw w

n

AA BB

AB∗
n ABn

Tn

Figure 5 The trees considered in Lemma 5.

Lemma 5. ABn ≻ AB∗
n .

Proof. Apply Lemma 3 to the edge connecting the vertices v and w of AB∗
n . Using

the same notation as in Lemma 4, we get

m(AB∗
n, k) = m(A∗

n ∪ B, k) + m(A ∪ B − w ∪ Tn − v, k − 1)

and in an analogous manner

m(ABn, k) = m(An ∪ B, k) + m(An−1 ∪ B − w, k − 1) .
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By a repeated application of Lemma 3 and by Pn−1 ≻ Tn − v , we get

m(An−1 ∪ B − w, k − 1)

= m(A ∪ B − w ∪ Pn−1, k − 1) + m(A − u ∪ B − w ∪ Pn−2, k − 2)

≥ m(A ∪ B − w ∪ Tn − v, k − 1) + m(A − u ∪ B − w ∪ Pn−2, k − 2) .

On the other hand, by Lemma 4 it is An ≻ A∗
n . Then m(An ∪B, k) ≥ m(A∗

n ∪B, k) ,

which combined with the above relations yields

m(ABn, k) ≥ m(AB∗
n, k) + m(A − u ∪ B − w ∪ Pn−2, k − 2)

evidently implying

m(ABn, k) ≥ m(AB∗
n, k) .

Lemma 5 follows.

Lemma 6 [19]. Let G be a forest of order n (n > 1) and G′ be a spanning subgraph

(respectively, a proper spanning subgraph) of G . Then G � G′ (respectively, G ≻ G′).

Lemma 7 [22]. Let AXn,n, AXn,2 be the trees shown in Fig. 6, in which X and A

are denoted arbitrary tree fragments and n ≥ 3. Then AXn,n ≻ AXn,2.

u n n-1 2 1 u n 2 13

AA

XX

AXn,n AXn,2

Figure 6 The tree considered in Lemma 7.

Lemma 8. Let AXn,i be the graph whose structure is depicted in Fig. 7. For the

fragments X and A being arbitrary trees, we have AXn,3 ≻ AXn,i for 2 ≤ i ≤

n − 1, i 6= 3 .

Proof. Apply Lemma 3 to the edges of AXn,i and AXn,3 , connecting the vertex u of
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u n n-1 2 1i u n 2 14 3

AA

XX

AXn,i AXn,3

Figure 7 The tree considered in Lemma 8.

A and the n-th vertex of the path. Using the same notation as in Lemma 2, we get

m(AXn,i, k) = m(A ∪ Xn,i, k) + m(A − u ∪ Xn−1,i, k − 1)

m(AXn,3, k) = m(A ∪ Xn,3, k) + m(A − u ∪ Xn−1,3, k − 1) .

When 2 ≤ i ≤ n − 2, i 6= 3 , we have Xn,3 ≻ Xn,i, Xn−1,3 ≻ Xn−1,i from Lemma

2 . So we have m(A ∪ Xn,3, k) ≥ m(A ∪ Xn,i, k), m(A − u ∪ Xn−1,3, k − 1) ≥ m(A −

u∪Xn−1,i, k− 1), and therefore m(AXn,i, k) ≥ m(AXn,3, k) , that is, AXn,3 ≻ AXn,i .

When i = n − 1 ≥ 2, i 6= 3 , we have n ≥ 3, n 6= 4. If n = 3 , then i = 2. From

Lemma 7 we have AX3,3 ≻ AX3,2, and thus the result is true. If n ≥ 5 , a repeated

application of Lemma 3 gives

m(AXn,n−1, k) = m(A ∪ Xn,n−1, k) + m(A − u ∪ Xn−1,n−1, k − 1)

= m(A ∪ Xn,2, k) + m(A − u ∪ Xn−1,1, k − 1)

= m(A ∪ Xn−1,2, k) + m(A ∪ Xn−2,2, k − 1)

+ m(A − u ∪ Xn−2,1, k − 1) + m(A − u ∪ Xn−3,1, k − 2)

m(AXn,3, k) = m(A ∪ Xn,3, k) + m(A − u ∪ Xn−1,3, k − 1)

= m(A ∪ Xn−1,2, k) + m(A ∪ Xn−2,1, k − 1)

+ m(A − u ∪ Xn−2,2, k − 1) + m(A − u ∪ Xn−3,1, k − 2)
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and therefore

m(AXn,3, k) − m(AXn,n−1, k)

= m(A ∪ Xn−2,1, k − 1) + m(A − u ∪ Xn−2,2, k − 1)

− m(A ∪ Xn−2,2, k − 1) − m(A − u ∪ Xn−2,1, k − 1)

=

k−1∑

j=0

[m(A, j)m(Xn−2,1, k − 1 − j) + m(A − u, j)m(Xn−2,2, k − 1 − j)

− m(A, j)m(Xn−2,2, k − 1 − j) − m(A − u, j)m(Xn−2,1, k − 1 − j)]

=
k−1∑

j=0

[m(A, j) − m(A − u, j)][m(Xn−2,1, k − 1 − j) − m(Xn−2,2, k − 1 − j)] .

By Lemma 6 and Lemma 2, we have A ≻ A − u, Xn−2,1 ≻ Xn−2,2, and so m(A, j) ≥

m(A − u, j) and m(Xn−2,1, k − 1 − j) ≥ m(Xn−2,2, k − 1 − j) . Hence m(AXn,3, k) ≥

m(AXn,n−1, k) and thus the lemma follows.

Lemma 9. Let A and B be the graphs whose structures are depicted in Fig. 8 such

that d(u) = d(v) = ∆− 2, ∆ ≥ 3, 0 < p ≤ ∆− 2 . Then (A− u)∪B ≻ A∪ (B − v).

u

p

v

p-1

A B C

2∆ − 5 − p

Figure 8 The trees considered in Lemma 9.

Proof. Let T1 = (A − u) ∪ B and T2 = A ∪ (B − v) . We show that T1 ≻ T2 . The

orders of T1 and T2 are equal, i. e., |V (T1)| = |V (T2)| = 4∆−p−7 . The characteristic

polynomials of T1 and T2 are denoted by φ(T1) and φ(T2), respectively. It is known

that if T is a forest of order n, then its characteristic polynomial can be written as

[53]

φ(T ) =

⌊n/2⌋∑

k=0

(−1)k m(T, k) xn−2k .

8



When 0 < p ≤ ∆ − 2, direct calculation gives

φ(T1) = xp−1(x2 − 1)2∆−5−p[x4 − (∆ − 1)x2 + p]

φ(T2) = xp−1(x2 − 1)2∆−5−p[x4 − (∆ − 1)x2] .

Then

φ(T1) − φ(T2) = p xp−1(x2 − 1)2∆−5−p .

Also by direct calculation, the characteristic polynomial of the graph C depicted in

Fig. 8 is φ(C) = xp−1(x2 − 1)2∆−5−p . Therefore, φ(T1) − φ(T2) = p φ(C).

On the other hand,

φ(T1) =

⌊n/2⌋∑

k=0

(−1)k m(T1, k) xn−2k , φ(T2) =

⌊n/2⌋∑

k=0

(−1)k m(T2, k) xn−2k

where n = 4∆ − p − 7 is the order of T1 and T2. The order of the graph C is

p − 1 + 2(2∆ − 5 − p) = n − 4 . Then we have

φ(C) =

⌊n−4

2
⌋∑

k=0

(−1)k m(C, k) xn−4−2k .

Since φ(T1) − φ(T2) = p φ(C) , we have m(T1, k) − m(T2, k) = p · m(C, k − 2) ≥ 0 for

2 ≤ k ≤ ⌊n/2⌋ and m(T1, 0) = m(T2, 0) = 1, m(T1, 1) = m(T2, 1) = n−1 . Therefore,

m(T1, k) ≥ m(T2, k) when 0 < p ≤ ∆ − 2, and thus T1 ≻ T2. Lemma 9 follows.

Let Pn be the path with n vertices and u, v be two vertices of a graph G. Two

vertices u and v of G are said to be equivalent if the subgraphs G− u and G − v are

isomorphic. The graph G(u, v)(Pa, Pb) is obtained by joining the terminal vertices

of Pa and Pb to u and v, respectively.

Lemma 10 [52]. If the vertices u and v of a graph G are adjacent and equivalent,

then for n = 4k + i, i ∈ {0, 1, 2, 3}, k ≥ 1,

G(u, v)(P0, Pn) ≻ G(u, v)(P2, Pn−2) ≻ · · · ≻ G(u, v)(P2k, Pn−2k)

≻ G(u, v)(P2k+1, Pn−2k−1) ≻ G(u, v)(P2k−1, Pn−2k+1)

≻ G(u, v)(P1, Pn−1) .
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u v

u

p

v

A

A

AA

B

B

BB

T T ′

G

∆ − 2
∆ − 2 − p

Figure 9 The trees considered in Lemma 11.

Lemma 11. Let T, T ′ be trees whose structure is shown in Fig. 9. If dT (u) =

dT (v) = dT ′(u) = dT ′(v) = ∆, ∆ ≥ 3, 0 ≤ p ≤ ∆ − 2, t ≥ 2, then T ≻ T ′.

Proof. T and T ′ can be denoted by G(u, v)(Pt, P2) and G(u, v)(Pt+1, P1) , respec-

tively, where G is shown in Fig. 9. If p = 0, then A ∼= B . The vertices u and v are

equivalent in G , and then T ≻ T ′ by Lemma 10. So in what follows we assume that

0 < p ≤ ∆ − 2 .

Applying Lemma 3 to T and T ′ , and using the same notations as in Lemmas 4

and 8, we get

m(T, k) = m(G(u, v)(Pt, P1), k) + m(G(u, v)(Pt, P0), k − 1)

= m(G(u, v)(Pt, P1), k) + m(G(u, v)(Pt−1, P0), k − 1)

+ m(G(u, v)(Pt−2, P0), k − 2)

m(T ′, k) = m(G(u, v)(Pt, P1), k) + m(G(u, v)(Pt−1, P1), k − 1)

= m(G(u, v)(Pt, P1), k) + m(G(u, v)(Pt−1, P0), k − 1)

+ m(At−1 ∪ (B − v), k − 2) .

Then m(T, k) − m(T ′, k) = m(G(u, v)(Pt−2, P0), k − 2) − m(At−1 ∪ B − v, k − 2) .

When t = 2, the graph At−1 ∪ (B − v) is a proper subgraph of G(u, v)(Pt−2, P0),

and then m(T, k) ≥ m(T ′, k) by Lemma 6.
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When t ≥ 3, a repeated application of Lemma 3 gives

m(T, k) − m(T ′, k) = m(G(u, v)(Pt−2, P0), k − 2) − m(At−1 ∪ (B − v), k − 2)

= m(At−2 ∪ B, k − 2) + m((A − u) ∪ (B − v) ∪ Pt−2, k − 3)

− m(A ∪ (B − v) ∪ Pt−1, k − 2)

− m((A − u) ∪ (B − v) ∪ Pt−2, k − 3)

= m(At−2 ∪ B, k − 2) − m(A ∪ (B − v) ∪ Pt−1, k − 2)

= m(A ∪ B ∪ Pt−2, k − 2) + m((A − u) ∪ B ∪ Pt−3, k − 3)

− m(A ∪ (B − v) ∪ Pt−2, k − 2)

− m(A ∪ (B − v) ∪ Pt−3, k − 3) .

Since A ∪ (B − v) is a proper subgraph of A ∪ B , we have A ∪ B ≻ A ∪ (B − v)

and m(A ∪ B ∪ Pt−2, k − 2) ≥ m(A ∪ (B − v) ∪ Pt−2, k − 2) . On the other hand,

(A−u)∪B ≻ A∪ (B − v) follows by Lemma 9. Then m((A−u)∪B ∪Pt−3, k− 3) ≥

m(A∪ (B − v)∪Pt−3, k− 3) . Consequently, m(T, k) ≥ m(T ′, k) . Lemma 11 follows.

3. Proof of Theorem 1

Let T be a tree of order n and maximum degree ∆ with maximum energy. Let u be a

vertex of maximum degree ∆ in T . By Lemma 4, T must contain ∆ pendent paths at

u, i. e., T is a starlike tree with a unique branching vertex of degree ∆ . By Lemma

2, T has as many as possible 2-branches. This completes the proof of Theorem 1.

4. Proof of Theorem 2

Suppose T is a tree of order n having exactly two vertices of maximum degree, with

maximum energy. Let u and v be the vertices of maximum degree. Let Pt be the

unique path connecting u and v . We first claim that there are no branching vertices

in Pt . Otherwise, suppose there is a branching vertex w in Pt and Tn1
is the tree

attached to the path Pt at w . Assume ww1, ww2 are the two edges in the path Pt .

Then we can obtain a new tree T ′ from T by deleting Tn1
and adding a path Pn1

whose two terminal vertices are adjacent to w1, w2 , respectively. From Lemma 5 ,

T ′ ≻ T , a contradiction. By Lemma 4, we know that there are ∆ − 1 pendent paths
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at u and v , respectively.

Next we claim that there is not more than one pendent path with length ≥ 3 in

T . Otherwise, assume there are two or more such paths. By Lemma 2, there is at

most one pendent path of length ≥ 3 at each vertex of u and v . So we can assume

that Pt1 and Pt2 (t1 ≥ 4, t2 ≥ 4) are the unique pendent paths of length ≥ 3 with

terminal vertex u and v in T , respectively. From Lemma 2 the other pendent paths

in T are all of length 2 . If the length of the unique path Pt connecting u and v is

equal to 1, i. e., t = 2, then u and v are adjacent. Then we can construct a new tree

T ′ from T by changing the paths Pt1 and Pt2 to Pt1+t2−3 and P3 , respectively. T ′ ≻ T

follows from Lemma 10, a contradiction. If t ≥ 3 , then we can also obtain a new tree

T ′ from T by changing Pt2 and Pt to P3 and Pt+t2−3 , respectively. T ′ ≻ T follows

from Lemma 8, a contradiction. So the claim follows. From this claim we have that

there is at most one pendent path of length ≥ 3 in T .

In what follows, we consider two cases.

Case 1. T has one such path. Without loss of generality we may assume that it

is attached to vertex u . By Lemma 2, we know that the other pendent paths at u are

all of length 2. By Lemma 8, the length of the path Pt connecting u and v must be

1, i. e., u and v are adjacent in T . Then from Lemma 11 we get that all the pendent

paths at v are of length 2 . Therefore T has the structure (b) depicted in Fig. 2.

Case 2. T has no pendent path of length ≥ 3 . Then all the pendent paths at u

and v are of length 1 or 2 .

If the length of the path Pt is greater than 1, then from Lemma 8 all the pendent

paths in T are of length 2. Then T has the structure (a) depicted in Fig. 2.

If the length of the path Pt is equal to 1 , i. e., u and v are adjacent, then since

each pendent path is either P3 or a pendent edge, then n ≤ 4∆−2 . Assume there are

p pendent edges and ∆−p−1 pendent paths P3 at u , q pendent edges and ∆− q−1

pendent paths P3 at v . Then p + q = 4∆ − n − 2 = m .

By direct calculation the characteristic polynomial of T is

φ(T, x) = xm−2(x2 − 1)2∆−m−4{x8 − (2∆ + 1) x6

+ (∆2 + m + 2) x4 − (∆m + 1) x2 + pq} .
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Thus, when p and q are almost equal, i. e., |p− q| ≤ 1 , then the E-value of T reaches

the maximum which is depicted in (c) of Fig. 2. This completes the proof.

u v

8 8

u v

u v u v

E = 19.5434 E = 19.5301

E = 19.3202 E = 19.3230

n = 16, ∆ = 3

n = 16, ∆ = 4

Figure 10 The energy E of graph (a) and (b) in Theorem 2.

Remark. For n > 4∆−2 , one could ask a natural question: Which of the graphs (a)

and (b) in Theorem 2 has the maximum energy? The examples in Fig. 10 show that

sometimes the energy of graph (a) is greater than that of graph (b), and sometimes

the other round is true, i. e., the energy of graph (b) is greater than that of (a).
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