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Graph Energy
Ivan Gutman,1, Xueliang Li2, and Jianbin Zhang3

1.1
Introduction

In this Chapter we are concerned with the eigenvalues of graphs and some of
their chemical applications. Let G be a (simple) graph, with vertex set V(G)
and edge set E(G) . The number of vertices of G is n , and its vertices are la-
belled by v1, v2, . . . , vn . The adjacency matrix A(G) of the graph G is a square
matrix of order n , whose (i, j)-entry is equal to 1 if the vertices vi and vj are
adjacent, and is equal to zero otherwise.

The eigenvalues λ1, λ2, . . . , λn of the adjacency matrix A(G) are said to be
the eigenvalues of the graph G and to form its spectrum. Details of the spectral
theory of graphs can be found in the seminal monograph [1].

The characteristic polynomial of the adjacency matrix, i. e., det(λ In −
A(G)) , where In is the unit matrix of order n , is said to be the characteristic
polynomial of the graph G and will be denoted by φ(G, λ) . From linear alge-
bra is known that the graph eigenvalues are just the solutions of the equation
φ(G, λ) = 0 .

One of the most remarkable chemical application of graph theory is based
on the close correspondence between the graph eigenvalues and the molecu-
lar orbital energy levels of π-electrons in conjugated hydrocarbons. For de-
tails, see [2–4]. If G is a molecular graph of a conjugated hydrocarbons with
n vertices and λ1, λ2, . . . , λn are its eigenvalues, then in the so-called Hüchkel
molecular orbital (HMO) approximation [3,5], the energy of the i-th molecular
orbital is given by

Ei = α + λi β
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2 1 Graph Energy

where α and β are pertinent constants. In order to simplify the formalism, it is
customary to set α = 0 and β = 1 in which case the π-electron orbital energies
and the graph eigenvalues coincide.

The total π-electron energy (E) is equal to the sum of the energies of all π-

electrons that are present in the respective molecule, i. e., E =
n
∑

i=1
gi Ei =

n
∑

i=1
gi λi , where gi is the number of electrons in the i-th molecular orbital

(whose energy is Ei). Because of restrictions coming from the Pauli exclu-
sion principle [5], gi is 2, 1, or 0. In the majority of chemically relevant cases,
gi = 2 whenever λi > 0 and gi = 0 whenever λi < 0 , implying E = 2 ∑

+
λi

with ∑
+

indicating the summation over positive eigenvalues. Because the sum

of all eigenvalues is zero, one immediately arrives at

E = E(G) =
n

∑
i=0

|λi| . (1.1)

The total π-electron energy and, in particular, the right–hand side of Eq.
(1.1) was studied already in the pioneering days of quantum chemistry (see,
e. g., [6]). In the 1970s one of the present authors [7] came to the idea to define
the energy of a graph G as the sum of the absolute values of its eigenvalues. By
this, Eq.(1.1) could now be viewed as the definition of a graph invariant (that
in the case of some special graphs has a chemical interpretation), but which is
applicable to all graphs. This seemingly insignificant change of the approach
to E(G) eventually resulted in the development of an entire new theory of graph
energy. In this Chapter we outline its main results, especially those obtained
in the last decade. For earlier mathematical results on graph energy see the
review [8] whereas for its chemical aspects [9, 10]

Although put forward already in the 1970s [7], and having much older roots
in theoretical chemistry [6], the concept of graph energy has for a long time
failed to attract the attention of mathematicians and mathematical chemists.
However, around the year 2000, research on graph energy suddenly became a
very popular topic, resulting in numerous significant discoveries, and in a re-
markable number of publications. Since 2001 over one hundred mathematical
papers on E were produced, more than one per month.

This Chapter has six sections, followed by a detailed (yet far from com-
plete) bibliography on graph energy. In the second section numerous upper
and lower bounds for graph energy are given, and in many cases the graphs
achieving these bounds are characterized. The third section is concerned with
hyperenergetic (E > 2n − 2) and hypoenergetic (E < n) graphs, as well as
with pairs of equienergetic graphs (E(G1) = E(G2)). The fourth section out-
lines some selected (of very many existing) results on graphs extremal with
regard to energy. In the sixth section we briefly state a few results on graph
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energy, that could not be included in the previous three sections. Concluding
remarks are given in the last section.

1.2
Bounds for the energy of graphs

Let G be a graph possessing n vertices and m edges. We say that G is an
(n, m)-graphs.

For any (n, m)-graph [1],
n
∑

i=1
λ2

i = 2m .

In what follows we assume that the graph eigenvalues are labelled in a non-
increasing manner, i. e., that

λ1 ≥ λ2 ≥ · · · ≥ λn .

If G is connected, then λ1 > λ2 [1]. Because λ1 ≥ |λi| , i = 2, . . . , n , the
eigenvalue λ1 is referred to as the spectral radius of the graph G .

Some simplest and long time known [8] bounds for energy of are the fol-
lowing:

Theorem 1.1 [11] For an (n, m)-graph G ,

E(G) ≤
√

2mn

with equality if and only if G is either an empty graph (with m = 0 , i. e., G ∼= Kn),
or a regular graph of degree 1, i. e., G ∼= (n/2)K2 .

Theorem 1.2 [12] For a graph G with m edges,

2
√

m ≤ E(G) ≤ 2m .

Equality E(G) = 2
√

m holds if and only if G consists of a complete bipartite graph
Ka,b , such that a · b = m , and arbitrarily many isolated vertices. Equality E(G) =
2m holds if and only if G consists of m copies of K2 and arbitrarily many isolated
vertices.

1.2.1
Some upper bounds

Using
n

∑
i=2

λ2
i = 2m − λ2

1
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together with the Cauchy–Schwarz inequality, applied to the (n − 1)-dimen-
sional vectors (|λ2|, . . . , |λn|) and (1, . . . , 1) , we obtain the inequality

n

∑
i=2

|λi| ≤
√

(n − 1)(2m − λ2
1) .

Thus, we have

E(G) ≤ λ1 +
√

(n − 1)(2m − λ2
1) .

Since F(x) := x +
√

(n − 1)(2m − x2) is a decreasing function in the variable
x , and the spectral radius obeys the inequality λ1 ≥ 2m/n [1], we have:

Theorem 1.3 [13] Let G be an (n, m)-graph. If 2m ≥ n , then

E(G) ≤ 2m
n

+

√

√

√

√(n − 1)

[

2m −
(

2m
n

)2
]

. (1.2)

Moreover, equality holds in (1.2) if and only if G consists of n/2 copies of K2 , or G ∼=
Kn , or G is a non-complete connected strongly regular graph with two non-trivial
eigenvalues both having absolute values equal to

√

(2m − (2m/n)2)/(n − 1) .
If 2m ≤ n , then the inequality

E(G) ≤ 2m (1.3)

holds. Moreover, equality holds in (1.3) if and only if G is a disjoint union of edges
and isolated vertices.

Recall [1] that a graph G that is neither complete nor empty is said to be
strongly regular with parameters (n, k, a, c) if it it has n vertices, it is regular
of degree k , every pair of its adjacent vertices has a common neighbors, and
every pair of its nonadjacent vertices has c common neighbors. A strongly reg-
ular graph with parameters (n, k, a, c) has only three distinct eigenvalues and
the eigenvalues of G , that are different from k , are the zeros of the quadratic
polynomial x2 − (a − c)x − (k − c) . Denote these eigenvalues by s and t , and
let ms and mt be, respectively, their multiplicities. Since k has multiplicity
equal to one, and the sum of all the eigenvalues is 0 , we have ms + mt = n − 1
and ms s + mt t = −k .

Using routine calculus, it can be shown that the left hand side of inequality
(1.2) becomes maximal when m = (n2 + n

√
n)/4 . It thus follows:

Theorem 1.4 [13] Let G be a graph on n vertices. Then

E(G) ≤ n
2
(
√

n + 1) (1.4)
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with equality if and only if G is a strongly regular graph with parameters
(

n ,
n +

√
n

2
,

n + 2
√

n
4

,
n + 2

√
n

4

)

.

Obviously, if such a graph with property E = n(
√

n + 1)/2 does exist, then
n must be a square of a positive integer. Very recently, Haemers [14] conjec-
tured that n = p2 is necessary and sufficient for the existence of such graphs.
He also tried to construct such strongly regular graphs, and proved:

Theorem 1.5 [14] There are strongly regular graphs with parameters
(

n ,
n +

√
n

2
,

n + 2
√

n
4

,
n + 2

√
n

4

)

for (i) n = 4p , p ≥ 1 ; (ii) n = 4p q4 , p, q ≥ 1 ; (iii) n = 4p+1 q2 , p ≥ 1 and
4q − 1 is a prime power, or 2q − 1 is a prime power, or q is a square, or q < 167 .

As explained above, the graphs specified in Theorem 1.5 have maximal en-
ergy. Haemers also found that for n = 4, 16, 36 the above extremal graphs are
unique, whereas for n = 64, 100, 144 , these are not unique.

Earlier, McCelland [11] showed that E(G) ≤
√

2mn , see Theorem 1.1. It
is easy to demonstrate [15] that the inequality (1.2), and therefore also (1.4),
improve this bound.

For special classes of graphs one can obtain better bounds.

Theorem 1.6 [16] Let G be a bipartite graph on n > 2 vertices. Then

E(G) ≤ n√
8
(
√

n +
√

2) (1.5)

with equality if and only if n = 2v and G is the incidence graph of a
2-
(

v, v+
√

v
2 , v+2

√
v

4

)

-design.

Recall [17] that a 2-(v, k, λ)-design is a collection of k-subsets or blocks of
a set of v points, such that each 2-set of points lies in exactly λ blocks. The
incident matrix B of a 2-(v, k, λ)-design is the v × b matrix defined so that for
each point x and block S , Bx,s = 0 if x ∈ S and Bx,S = 1 otherwise.

A graph is said to be semiregular bipartite if it is bipartite and each vertex in
the same part of bipartition has the same degree.

Among known bounds for λ1 , we need here the following [18]:

λ1 ≥
√

1
n

n

∑
i=1

d2
i
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where d1, d2, . . . , dn is the degree sequence of the underlying graph G . Equal-
ity holds if and only if G is either regular or semiregular bipartite.

Theorem 1.7 [19] If G is an (n, m)-graph with degree sequence d1, d2, . . . , dn , then

E(G) ≤
√

1
n

n

∑
i=1

d2
i +

√

√

√

√

√(n − 1)



2m −
(√

1
n

n

∑
i=1

d2
i

)2


 .

Equality holds if and only if G is either (n/2)K2 (if m = n/2), or Kn (if
m = n(n − 1)/2), or a non-complete connected strongly regular graph with two
non-trivial eigenvalues both having absolute value

√

(2m − (2m/n)2)/(n − 1) , or
n K1 (if m = 0).

Since

4m2 =

(

n

∑
i=1

di

)2

≤ n
n

∑
i=1

d2
i

and F(x) = x +
√

(n − 1)(2m − x2) decreases for
√

2m/n ≤ x ≤
√

2m , it
follows that the upper bound of Theorem 1.8 is better than that of Theorem
1.6.

Theorem 1.8 [19] If G is a bipartite (n, m)-graph, n > 2 , with degree sequence
d1, d2, . . . , dn , then

E(G) ≤ 2

√

1
n

n

∑
i=1

d2
i +

√

√

√

√(n − 2)

[

2m − 2
n

n

∑
i=1

d2
i

]

.

Equality holds if and only if G is either (n/2)K2 , or a complete bipartite graph,
or the incidence graph of a symmetric 2-(v, k, λ)-design with k = 2m/n and λ =
k(k − 1)/(v − 1) , (n = 2v), or n K1 .

An extension of Theorem 1.8, for the case when the number of zero eigen-
values is known, was reported in [20].

For vi ∈ V(G) , the 2-degree of vi , denoted by ti , is the sum of degrees of the
vertices adjacent to vi . We call ti

di
the average degree of vi . The average 2-degree

of vi , denoted by mi , is the average of the degrees of the vertices adjacent
to vi . Then ti = di mi . Furthermore, denote by σi the sum of the 2-degrees
of the vertices adjacent to vi . A graph G is called p-pseudo-regular if there is
a constant p , such that each vertex of G has average degree equal to p . A
bipartite graph G = (X, Y) is said to be (px, py)-pseudo-semiregular if there are
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two constants px and py , such that each vertex in X has average degree px and
each vertex in Y has average degree py .

Theorem 1.9 [21] Let G be an (n, m)-graph, m > 0 , with degree sequence
d1, d2, . . . , dn , and 2-degree sequence t1, t2, . . . , tn . Let

D2 =
n

∑
i=1

d2
i and T2 =

m

∑
i=1

t2
i .

Then
E(G) ≤ 2

√

T2/D2 +
√

(n − 1)(2m − T2/D2) .

Equality holds if and only if either G ∼= (n/2)K2 or G ∼= Kn or G is a non-bipartite
connected p-pseudo-regular graph with three distinct eigenvalues p ,
√

(2m − p2)/(n − 1) , and −
√

(2m − p2)/(n − 1) , provided p >
√

2m/n .

Theorem 1.10 [21] Let G be a bipartite (n, m)-graph, m > 0 . Using the same
notation as in Theorem 1.9, we have

E(G) ≤ 2
√

T2/D2 +
√

(n − 2)(2m − 2 T2/D2) .

Equality holds if and only if either G ∼= (n/2)K2 , or G ∼= Kr1,r2 ∪ (n − r1 −
r2)K1 , where r1 r2 = m , or G is a connected (px, py)-pseudo-semiregular bi-

partite graph with four distinct eigenvalues √px py ,
√

(2m − 2px py)/(n − 2) ,

−
√

(2m − 2px py)/(n − 2) , and −√px py , provided px py >
√

2m/n .

Theorem 1.11 [22] Let G be an (n, m)-graphs, m > 0 with degree sequence
d1, d2, · · · , dn , and 2-degree sequence t1, t2, · · · , tn . Let

S2 =
n

∑
i=1

σ2
i

and let the other symbols be same as in Theorem 1.9. Then

E(G) ≤ 2
√

S2/T2 +
√

(n − 1)(2m − S2/T2) .

Equality holds if and only if either G ∼= (n/2)K2 , or G ∼= Kn , or G is a non-
bipartite connected graph satisfying σ1/t1 = σ2/t2 = · · · = σn/tn = p and has
three distinct eigenvalues p ,

√

(2m − p2)/(n − 1) , and −
√

(2m − p2)/(n − 1) ,
provided p >

√
2m/n .
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Theorem 1.12 [22] Let G be a bipartite (n, m)-graph and everything else same as in
Theorem 1.11. Then

E(G) ≤ 2
√

S2/T2 +
√

(n − 2)(2m − 2 S2/T2) .

Equality holds if and only if either G ∼= (n/2)K2 , or G ∼= Kr1,r2 ∪ (n − r1 − r2)K1 ,
where r1 r2 = m , or G is a connected bipartite graph with V = {v1, v2, . . . , vs} ∪
{vs+1, vs+2, . . . , vn} such that σ1/t1 = · · · = σs/ts = px and σs+1/ts+1 = · · · =

σn/tn = py , and has four distinct eigenvalues √px py ,
√

(2m − 2px py)/(n − 2) ,

−
√

(2m − 2px py)/(n − 2)„ and −√px py , provided px py >
√

2m/n .

For v ∈ V(G) , the k-degree dk(v) of v is the number of walks of length k of
G , starting at v .

Theorem 1.13 [23] Let G be an (n, m)-graph, m > 0 . Then

E(G) ≤

√

√

√

√

∑v∈V(G) d2
2(v)

∑v∈V(G) d2(v)
+

√

√

√

√(n − 1)

(

2m − ∑v∈V(G) d2
2(v)

∑v∈V(G) d2(v)

)

.

Equality holds if and only if either G ∼= (n/2)K2 , or G ∼= Kn , or G is a
non-bipartite connected p-pseudo-regular graph with three distinct eigenvalues p ,
√

(2m − p2)/(n − 1) , and −
√

(2m − p2)/(n − 1) , provided p >
√

2m/n .

Theorem 1.14 [23] Let G be a connected (n, m)-graph. Then

E(G) ≤

√

√

√

√

∑v∈V(G) d2
k+1(v)

∑v∈V(G) d2
k(v)

+

√

√

√

√(n − 1)

(

2m − ∑v∈V(G) d2
k+1(v)

∑v∈V(G) d2
k(v)

)

.

Equality holds if and only if G is either the complete graph Kn or G is a strongly
regular graph with two nontrivial eigenvalues both having absolute value equal to
√

[2m − (2m/n)2]/(n − 1) .

Theorem 1.15 [23] Let G be a connected (n, m)-graph, n ≥ 2 . Then

E(G) ≤ 2

√

√

√

√

∑v∈V(G) d2
k+1(v)

∑v∈V(G) d2
k(v)

+

√

√

√

√(n − 2)

(

2m − 2
∑v∈V(G) d2

k+1(v)

∑v∈V(G) d2
k(v)

)

.

Equality holds if and only if G is either the complete bipartite graph or G is the in-
cidence graph of a symmetric 2-(ν, k, λ)-design with ν = n/2 , k = 2m/n , and
λ = k(k − 1)/(ν − 1) .
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More upper bounds of the same kind can be found in [24, 25].

It is well known [1] that the eigenvalues of a bipartite graph G on n = 2N
vertices occur in pairs: ±λ1,±λ2, · · · ,±λN , where λ1 ≥ λ2 ≥ · · · ≥ λN .
Then the energy of G is given by

E(G) = 2(λ1 + λ2 + · · · + λN)

and
N

∑
i=1

λ2
i = m .

Let q =
N
∑

i=1
λ4

i . By the Cauchy–Schwarz inequality, m2 ≤ Nq .

Theorem 1.16 [26] Let G be a bipartite graph on 2N vertices. Then the following
holds. (i) m2 = Nq if and only if G ∼= N K2 . (ii) m2 = q if and only if G is the
direct sum of h isolated vertices and a copy of a complete bipartite graph Kr,s , such
that rs = m and h + r + s = 2N . (iii) If 1 < m2/q < N , then

E(G) ≤ 2√
N

[(

m −
√

(N − 1)Q
)

+ (N − 1)

(

m −
√

Q/(N − 1)

)]

(1.6)

where Q = Nq − m2 . Equality holds if G is the graph of a symmetric BIBD. Con-
versely, if the equality holds and G is regular, then G is the graph of a symmetric
BIBD.

Recall [17] that a balanced incomplete block design (BIBD) is a family of b blocks
of a set of v elements, such that (i) each element is contained in r blocks, (ii)
each block contains k elements, and (iii) each pair of elements is simultane-
ously contained in λ blocks. The integers (v, b, r, k, λ) are called the parameters
of the design. In the particular case r = k the design is said to be symmetric.
The graph of a design is formed in the following way: the b + v vertices of the
graph correspond to the blocks and elements of the design with two vertices
adjacent if and only if one corresponds to a block and the other corresponds
to an element contained in that block.

Theorem 1.17 [26] Let G be a bipartite graph on 2N + 1 vertices. Then the following
holds. (i) Q ≥ 0 and the equality is obeyed if and only if G is the direct sum of an
isolated vertex with N K2 . (ii) Inequality (1.6) remains true if q < m2 < Nq , and
the equality holds if G consists of an isolated vertex and a copy of the graph of a
symmetric BIBD.
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If n = 2N and m ≥ N , then the upper bound of Theorem 1.3 is

E∗(N, m) =
2m
N

+ 2

√

(N − 1)

[

m −
(m

N

)2
]

.

Theorem 1.18 [26] If N3 q ≥ m4 , then E(G) ≤ E∗(N, m) .

Therefore, if N3 q ≤ m4 , then the bound of Theorem 1.16 improves that of
Theorem 1.3.

Ending this subsection we state one of the several bounds for energy ob-
tained by Morales [27–29]. Let G be a bipartite graph on 2N vertices. Then

E(G) ≤ 2

√

√

√

√m(N − 1) +

√

N(m2 − q)
N − 1

.

1.2.2
Some lower bounds

In [30] it was shown that for all regular graphs G with degree k > 0 , the
energy is not less than the number of vertices, E(G) ≥ n . Equality is attained
if G consists of n/(2p) components isomorphic to the complete bipartite graph
Kp,p .

Eventually several other classes of graphs were characterized for which E ≥
n holds [31]. Among these are the hexagonal systems (representing benzenoid
hydrocarbons [32]).

A lover bound for E was obtained by McClelland [11]. Start with

(

n

∑
i=1

|λi|
)2

=
n

∑
i=1

λ2
i + ∑

i 6=j
|λi||λj| .

Since the geometric mean of positive numbers is not greater than their arith-
metic mean,

1
n(n − 1) ∑

i 6=j
|λi||λj| ≥ ∏

i 6=j
(|λi||λj|)1/n(n−1) =

n

∏
i=1

(|λi|)2/n = |det(A)|2/n .

Hence,

E(G)2 ≥
n

∑
i=1

λ2
i + n(n − 1)|det(A)|2/n .
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Theorem 1.19 [11] E(G) ≥
√

2m + n(n − 1)|det A|2/n .

If det A 6= 0 , which is equivalent to the condition that no graph eigenvalue
is equal to zero, then from Theorem 1.19 follows that E(G) ≥ n .

For bipartite graphs a similar argument yields [33]

E(G) ≥
√

4m + n(n − 2)|det A|2/n .

There are some other lower bounds:

Theorem 1.20 [26] (i) Let G be a bipartite graph with 2N vertices. Then

E(G) ≥ 2m
√

m
q

. (1.7)

Equality holds if and only if either G = N K2 or G is the direct sum of isolated vertices
and complete bipartite graphs Kr1,s1 , . . . , Krj ,sj , such that r1 s1 = · · · = rj sj .

(ii) If G is a bipartite graph with 2N + 1 vertices, then inequality 1.7 remains true.
Moreover, the equality holds if and and only if G is the direct sum of isolated vertices
and complete bipartite graphs Kr1,s1 , . . . , Krj ,sj , such that r1 s1 = · · · = rj sj .

Theorem 1.21 [34] Let G be a bipartite graph with at least one edge and let r, s, t be
positive integers, such that 4r = s + t + 2 . Then

E(G) ≥ Mr(G)2[Ms(G)Mt(G)]−1/2 (1.8)

where Mk = Mk(G) =
n
∑

i=1
(λi)

k is the k-th spectral moment of the graph G .

For a bipartite graph, the odd spectral moments are necessarily zero. In
order to overcome this limitation we define the moment-like quantities

M∗
k = M∗

k (G) =
n

∑
i−1

|λi|k .

Then we have

Theorem 1.22 [35] Let G be a graph with at least one edge and let r, s, t be non-
negative real numbers, such that 4r = s + t + 2 . Then

E(G) ≥ M∗
r (G)2[M∗

s (G)M∗
t (G)]−

1
2 (1.9)

with equality if and only if the components of the graph G are isolated vertices and
complete bipartite graphs Kp1,q1 , . . . , Kpk ,qk for some k ≥ 1 , such that p1 q1 = · · · =
pk qk .
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From [11] we know that E(G) ≤
√

2mn holds for all graphs. There exists a
constant g such that g

√
2mn is a lower bound for E(G) .

For a quadrangle-free (n, m)-graph G with maximum vertex degree 2, and
no isolated vertices, we have [36]

E(G) >
4
5

√
2mn .

If the maximum vertex degree is 3, then [36]

E(G) >
2
√

6
7

√
2mn .

Some other lower bounds of this type are found in the papers [37–41]. Of
these we state here:

Theorem 1.23 [41] Let G be a quadrangle-free (n, m)-graph with minimum vertex
degree δ ≥ 1 and maximum vertex degree ∆ . Then

E(G) >
2
√

2δ∆

2(δ + ∆) − 1

√
2mn . (1.10)

The authors of [13] expressed the opinion that for a given ε > 0 and al-
most all n ≥ 1 , there exists a graph G on n vertices for which E(G) ≥
(1 − ε)(n/2)(

√
n + 1) . Nikiforov [42, 43] arrived at a stronger statements for

sufficiently large n .

Theorem 1.24 [42] (i) For all sufficiently large n , there exists a graph G of order n
with E(G) ≥ 1

2 n3/2 − n11/10 . (ii) For almost all graphs

(

1
4

+ o(1)

)

n3/2
< E(G) <

(

1
2

+ o(1)

)

n3/2 .

1.3
Hyperenergetic, hypoenergetic and equienergetic graphs

1.3.1
Hyperenergetic graphs

The energy of the n-vertex complete graph Kn is equal to 2(n − 1) . We call
an n-vertex graph G hyperenergetic if E(G) > 2(n − 1) . From Nikiforov’s The-
orem 1.24 we see that almost all graphs are hyperenergetic. Therefore any
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search for hyperenergetic graphs appears nowadays are a futile task. Yet, be-
fore Theorem 1.24 was discovered, a number of such results were obtained.
We outline here some of them.

In [7] it was conjectured that the complete graph Kn has greatest energy
among all n-vertex graphs. This conjecture was soon shown to be false [44].

The first systematic construction of hyperenergetic graphs was proposed
by Walikar et al. [45], who showed that the line graphs of Kn , n ≥ 5 , and of
Kn/2,n/2 , n ≥ 8 , are hyperenergetic. These results were eventually extended
to other graphs with large number of edges [46, 47].

Hou et al. [48] showed that the line graph of any (n, m)-graph, n ≥ 5, m ≥
2n , is hyperenergetic. Also the line graph of any bipartite (n, m)-graph, n ≥
7 , m ≥ 2(n − 1) , is hyperenergetic. Some classes of circulant graphs [49–51]
as well as Kneser graphs and their complements [52] are hyperenergetic. In
fact, almost all circulant graphs are hyperenergetic [49].

Graphs on n vertices with fewer than 2n − 1 edges are not hyperenergetic
[53, 54]. This, in particular, implies that Hückel graphs (graphs representing
conjugated molecules [2–4], in which the vertex degrees do not exceed 3) can-
not be hyperenergetic.

1.3.2
Hypoenergetic graphs

A graph on n vertices, whose energy is less than n is said to be hypoenergetic.
In what follows, for obvious reasons we assume that the graphs considered
have no isolated vertices.

Studies of hypoenergetic graphs started only quite recently [31,55], and un-
til now very few results on such graphs are known.

There are reasons to believe (cf. Theorem 1.24) that there are few hypoener-
getic graphs.

Theorem 1.25 [56] (i) There exist hypoenergetic trees of order n with maximum
vertex degree ∆ ≤ 3 only for n = 1, 3, 4, 7 (a single such tree for each value of n , see
Fig. 1.1); (ii) If ∆ = 4 , then there exist hypoenergetic trees for all n ≥ 5 , such that
n ≡ k (mod 4) k = 0, 1, 3; (iii) If ∆ ≥ 5 , then there exist hypoenergetic trees for all
n ≥ ∆ + 1 .

Fig. 1.1 The only four hypoenergetic trees with maximum vertex de-
gree not exceeding 3.
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Independently of the paper [56], and almost in the same time, Nikiforov [57]
arrived at results essentially same as Theorem 1.25, (i).

Computer search indicates that there exist hypoenergetic trees with ∆ = 4
also for n ≡ 2 (mod 4) . The existence of these kind of trees is still under our
consideration.

1.3.3
Equienergetic graphs

Two non-isomorphic graphs are said to be equienergetic if they have the same
energy. There exist numerous pairs of graphs with identical spectra, so-called
cospectral graphs [1]. In a trivial manner such graphs are equienergetic.

Therefore, in what follows we will be interested only in non-cospectral
equienergetic graphs.

It is also trivial that the graphs G and G ∪ Kp (which are not cospectral) are
equienergetic. Namely, the spectrum of the graph whose components are G
and additional p isolated vertices consists of the eigenvalues of G and of p
zeros.

The smallest triplet of non-trivial equienergetic graphs (all having E = 4) is
shown in Fig. 1.2. The smallest pair of equienergetic non-cospectral connected
graphs with equal number of vertices is shown in Fig. 1.3. These examples in-
dicate that there exist many (non-trivial) families of equienergetic graphs, and
that the construction/finding of such families will not be particularly difficult.

The concept of equienergetic graphs was put forward independently and
almost simultaneously by Brankov et al. [58] and Balakrishnan [59]. Since
2004 a plethora of papers was published on equienergetic graphs [60–72]. In
what follows we state some of the results obtained along these lines.

Let G be a graph on n vertices and let V(G) = {v1, v2, . . . , vn} . Take another
set of vertices U = {u1, u2, . . . , un} . Define a graph DG whose vertex set is
V(HDG) = V(G) ∪ U and whose edge set consists only of the edges joining

G G G1 2 3

Fig. 1.2 Three non-cospectral equienergetic graphs with E = 4 .
Note that Sp(G1) = {2,−1,−1} , Sp(G2) = {1, 1,−1,−1} , and
Sp(G3) = {2, 0, 0,−2} .
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ui to the neighbors of vi in G , for i = 1, 2, . . . , n . The resulting graph DG is
called the identity duplication graph of G [64, 73].

With the same notation as above, and let u1, u2, . . . , un be vertices of another
copy of G . Make ui adjacent to the neighbors of vi in G , for i = 1, 2, . . . , n .
The resulting graph [64] is denoted by D2G .

The adjacency matrix of DH is

A(DG) =

[

0 A(G)
A(G) 0

]

= A
⊗

[

0 1
1 0

]

.

Thus if spec(G) = {λi , i = 1, . . . , n} , then spec(DH) = {λi, λi , i = 1, . . . , n} .
The adjacency matrix of D2H is

A(D2G) =

[

A(G), A(G)
A(G), A(G)

]

= A
⊗

[

1, 1
1, 1

]

.

and therefore spec(D2G) = {2λ1, 2λ2 . . . , 2λn, 0, 0, . . . , 0} . We thus have:

Theorem 1.26 [64] DG and D2G are a pair of equienergetic graphs.

Let G be an r-regular graph on n vertices, and V(G) = {v1, . . . , vn} . Intro-
duce a set of n isolated vertices {u1, u2, . . . , un} and make each ui adjacent to
the neighbors of vi in G for every i . Then introduce a set of k , (k ≥ 0) , isolated
vertices and make all of them adjacent to all vertices of G . The resultant graph
is denoted by H .

By direct computation it follows that

E(H) =
√

5

[

E(G) +

√

r2 +
4
5

n k − r

]

.

Combining this and Theorem 1.26 one arrives at:

Fig. 1.3 The smallest pair of connected equienergetic graphs with
equal number of vertices.
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Theorem 1.27 [64] There exists a pair of n-vertex non-cospectral equienergetic
graphs for n = 6, 14, 18 and n ≥ 20 .

Ramane and Walikar [65] recently obtained a stronger result.:

Theorem 1.28 [65] There exists a pair of connected non-cospectral equienergetic n-
vertex graphs for all n ≥ 9 .

If G is a graph and L(G) = L1(G) its line graph, then Lk(G), k = 2, 3, . . . ,
defined recursively via Lk(G) = L(Lk−1(G)) , are the iterated line graphs of
G .

If G is an r-regular graph with n vertices and m edges, then the characteristic
polynomials of G and L(G) are related as [1]

φ(L(G), x) = (x + 2)m−nφ(G, x − r + 2) .

If spec(G) = {r, λ2, . . . , λn} , then spec(L(G)) = {r + r − 2, λ2 + r −
2, . . . , λn + r − 2,−2, . . . ,−2} and spec(L2(G)) = {2r − 6, . . . , 2r − 6, r + 3r −
6, λ2 + 3r − 6, . . . , λn + 3r − 6,−2, . . . ,−2} . Now, because the eigenvalues of
any r-regular graph G obey the condition |λi| ≤ r , we see that the only nega-
tive eigenvalues of L2(G) are those equal to -2, whose multiplicity is equal to
nr(r − 2)/2 . Consequently,

E(L2(G)) = 2 × 2 × nr(r − 2)

2
= 2nr(r − 2) .

In a similar manner, also E(Lk(G)) , k > 2 , depends solely on n and r .

Theorem 1.29 [62] Let G1 and G2 be two non-cospectral regular graphs of the same
order and of the same degree r ≥ 3 . Then for k ≥ 2 the iterated line graphs Lk(G1)
and Lk(G2) form a pair of non-cospectral equienergetic graphs of equal order and with
the same number of edges. If, in addition, G1 and G2 are chosen to be connected, then
also Lk(G1) and Lk(G2) are connected.

Let G1 and G2 be two r-regular graphs of order n , from [61] we know that
L2(G1) and L2(G2) are also equienergetic, and E(L2(G1)) = E(L2(G2)) =
(nr − 4)(2r − 3) − 2 , where G denotes the complement of the graph G .

Let G be a simple graph with vertex set V = {v1, v2, . . . , vn} . The extended
double cover of G , denoted by G∗ , is the bipartite graph with bipartition
(X, Y) where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} , in which xi and yi
are adjacent if and only if G is connected, and G∗ is regular of degree r + 1 if
and only if G is regular of degree r . Then we have:
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Theorem 1.30 [66] Let G1, G2 be two r-regular graphs of order n . Then

(i) (L2(G1))
∗ and (L2(G2))

∗ are equienergetic bipartite graphs, and

E((L2(G1))
∗) = E((L2(G2))

∗) = nr(3r − 5) .

(ii) (L2(G1))
∗ and (L2(G2))

∗ are equienergetic bipartite graphs, and

E((L2(G1))
∗) = E((L2(G2))

∗) = (5nr − 16)(r − 2) + nr − 8 .

(iii) (L2(G1))∗ and (L2(G2))∗ are equienergetic bipartite graphs, and

E((L2(G1))∗) = E((L2(G2))∗) = (2nr − 4)(2r − 3) − 2 .

By means of a computer search it was shown that there are numerous pairs
of non-cospectral equienergetic trees [58]. Some of these are depicted in Fig.
1.4.

Numerical calculations, no matter how accurate they are, cannot be consid-
ered as a proof that two graphs are equienergetic. In the case of equienergetic
trees this problem can, sometimes, be overcome as in the following example.

Consider the trees TA , TB , and TC , depicted at the bottom of Fig. 1.4. Using
standard recursive methods [1, 4],one can compute their characteristic poly-

(

(

(

(

(

(

() )

)

)

)

)

)

Fig. 1.4 Equienergetic trees [58]. Of the three 18-vertex trees at the
bottom of this figure, the first two are cospectral, but not cospectral
with the third tree.
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nomials as:

φ(TA, λ) = λ18 − 17 λ16 + 117 λ14 − 421 λ12 + 853 λ10

− 973 λ8 + 588 λ6 − 164 λ4 + 16 λ2

φ(TB, λ) = λ18 − 17 λ16 + 117 λ14 − 421 λ12 + 853 λ10

− 973 λ8 + 588 λ6 − 164 λ4 + 16 λ2

φ(TC, λ) = λ18 − 17 λ16 + 111 λ14 − 359 λ12 + 632 λ10

− 632 λ8 + 359 λ6 − 111 λ4 + 17 λ2 − 1 .

The trees TA and TB have identical characteristic polynomials and, conse-
quently, they are cospectral. The characteristic polynomial of TC is different,
implying that TC is not cospectral with TA and TB .

Now, if we are lucky, the above characteristic polynomials can be factored.
In this particular case we are lucky, and by easy calculation we find that:

φ(TA, λ) = λ2 (λ2 − 1)(λ2 − 2)2 (λ2 − 4)(λ4 − 3 λ2 + 1)(λ4 − 5 λ2 + 1)

φ(TC, λ) = (λ2 − 1)3 (λ4 − 3 λ2 + 1)(λ4 − 5 λ2 + 1)(λ4 − 6 λ2 + 1) .

It is now an elementary exercise in algebra to verify that

E(TA) = E(TB) = E(TC) = 6 + 4
√

2 + 2
√

5 + 2
√

7 .

If, however, the characteristic polynomials cannot be properly factored,
then at the present moment there is no way to prove that the underlying trees
are equienergetic. Note that until now no general method (different from com-
puter search) for finding equienergetic trees has been discovered.

1.4
Graphs extremal with regard to energy

One of the fundamental questions that is encountered in the study of graph
energy is which graphs (from a given class) have greatest and smallest E-
values. The first such result was obtained for trees [74], when it was demon-
strated that the star has minimum and the path maximum energy. In the
meantime, a remarkably large number of papers were published on such ex-
tremal problems: for general graphs [13, 14, 16, 75–78], trees and chemical
trees [79–93], unicyclic [94–107], bicyclic [108–114], tricyclic [115, 116], and
tetracyclic graphs [117], as well as for benzenoid and related polycyclic sys-
tems [118–122].

In this section we state a few of these results, selecting those that can be
formulated in a simple manner.
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We first mention to elementary results.
The n-vertex graph with minimum energy is Kn , the graph consisting of

isolated vertices. Its energy is zero.
The minimum–energy n-vertex graph without isolated vertices is the com-

plete bipartite graph Kn−1,1 , also known as the star [12]. Its energy is equal to
2
√

n − 1 , cf. Theorem 1.2.
Finding the maximum–energy n-vertex graph(s) is a much more difficult

task, and a complete solution of this problem is not known. For some results
along these lines see Theorem 1.5.

Let G be a graph on n vertices and A(G) its adjacency matrix. As before, let
the characteristic polynomial of G be

φ(G, λ) = det(λIn − A(G)) =
n

∑
k=0

ak λn−k .

A classical result of the theory of graph energy is [6, 8] that E(G) can be com-
puted from the characteristic polynomial of G , by by means of

E(G) =
1
π

+∞
∫

−∞

[

n − ix φ ′(G, ix)

φ(G, ix)

]

dx

where φ ′(G, λ) denotes the first derivative of φ(G, λ) , and where i =
√
−1 .

More on the Coulson integral formula can be found elsewhere [4, 123, 124].
Another way to write the Coulson integral formula is [74]

E(G) =
1
π

+∞
∫

−∞

1
x2 ln





(

∑
k≥0

(−1)k a2k x2k

)2

+

(

∑
k≥0

(−1)k a2k+1 x2k+1

)2


 dx .

(1.11)

If the graph G is bipartite, then its characteristic polynomial is of the form

φ(G, λ) = ∑
k≥0

(−1)k bk λn−2k

and bk ≥ 0 . Then the Coulson integral formula is simplified as:

E(G) =
2
π

+∞
∫

0

1
x2 ln

[

1 + ∑
k≥1

bk x2k

]

dx.

If G is a tree (or, more generally, a forest), then

φ(G, λ) = ∑
k≥0

(−1)k m(G, k) λn−2k
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and

E(G) =
2
π

+∞
∫

0

1
x2 ln

[

1 + ∑
k≥1

m(G, k) x2k

]

dx (1.12)

where m(G, k) is the number of matchings of size k of G , i. e., the number of
selections of k independent edges in G .

Consider now Eq. (1.11) and let G1 and G2 be two graphs. If the inequalities

(−1)k a2k(G1) ≤ (−1)k a2k(G2)

(−1)k a2k+1(G1) ≤ (−1)k a2k+1(G2)
(1.13)

are satisfied by all values of k , then from Eq. (1.11) follows that E(G1) ≤
E(G2) . If, in addition, at least one of these inequalities is strict, then E(G1) <

E(G2) .
Bearing this in mind we define a partial order ≺ and write G1 � G2 or

G2 � G1 if the conditions (1.13) are obeyed by all k . If, moreover, at least one
of the inequalities in (1.13)is strict, then we write G1 ≺ G2 or G2 � G1 . Thus
we have:

G1 � G2 ⇒ E(G1) ≤ E(G2)

G1 ≺ G2 ⇒ E(G1) < E(G2) .

As a special case of the above, if G1 and G2 are a bipartite graphs, then [125]

G1 ≺ G2 ⇔ (∀k) bk(G1) ≤ bk(G2)

whereas if G1 and G2 are trees (or, more generally, forests), then

G1 ≺ G2 ⇔ (∀k) m(G1, k) ≤ m(G2, k) .

If for some k′ 6= k′′ ,

(−1)k′ a2k′(G1) < (−1)k′ a2k′(G2)

(−1)k′′ a2k′′ (G1) > (−1)k′′ a2k′′ (G2)

or

(−1)k′ a2k′+1(G1) < (−1)k′ a2k′+1(G2)

(−1)k′′ a2k′′+1(G1) > (−1)k′′ a2k′′+1(G2)

then the graphs G1 and G2 cannot be compared by means of the relation ≺ .
Then their energies cannot be compared by using the Coulson integral for-
mula.
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Practically all (above quoted) results on graphs that are extremal with re-
gard to energy were obtained by establishing the existence of the relation ≺
between the elements of some class of graphs.

Theorem 1.31 [74] If Tn is a tree on n vertices, then

E(Sn) ≤ E(G) ≤ E(Pn)

where Sn and Pn denote, respectively, the star and the path with n vertices. Equality
holds only if G ∼= Sn or G ∼= Pn .

Eventually, the first few minimum– and maximum–energies n-vertex trees
were determined [88,89]. For instance, let P∗

n be the tree obtained by attaching
a P3 to the third vertex of Pn−2 . Then P∗

n is the tree with second–maximum
energy [74].

Denote by Φn the class of trees on n vertices having a perfect matching,
and by Ψn the subclass of Φn consisting of trees whose vertex degrees do not
exceed 3. Let Fn be obtained by adding a pendent edge to each vertex of the
star K1,(n/2)−1 , Bn be the graph obtained from Fn−1 by attaching a P3 to the
2-degree vertex of a pendent edge. Let Gn be obtained by adding a pendent
edge to each vertex of the path Pn/2 , Dn be the tree obtained from Gn+2 by
deleting the third and the fourth pendent edges.

Theorem 1.32 [79] (i) Fn and Bn are, respectively, the unique tree with minimum
and second–minimum energy in Φn .

(ii) Gn and Dn are, respectively, the unique tree with minimum and second–
minimum energy in Ψn .

Eventually, Zhang and Li [80] determined the first four trees with maximum
energy in Φn .

Let Bn,d be obtained from the path Pd with d vertices by attaching n − d
pendent edges to an end vertex of Pd .

Theorem 1.33 [82] Among n-vertex trees with diameter at least d , Bn,d is the
unique tree with minimum energy (see Fig. 1.5).

Theorem 1.34 [86, 87] Among n-vertex trees having exactly k pendent vertices,
Bn,n−k+1 is the unique tree with minimum energy (see Fig. 1.5).

Let S(n, m, r) be obtained by attaching one pendent vertex to each of the m
pendent vertices of the star K1,m+r . Let Y(n, m, r) be obtained by attaching m
P2’s to one end vertex of Pr+1 . Let D(n, p, q) be obtained from P2 by adding p
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and q pendent vertices to the vertices of P2 . Let T2
r,s,t be the tree obtained from

P3 by adding r, s, t pendent vertices to its first, second, and third vertex. Lin et
al. [84] determined the trees of given maximum degree ∆ , having minimum
and maximum energies.

Theorem 1.35 [84] Let T be an n-vertex tree, n ≥ 4 . Let

T∗
1 (n, ∆) ∼=



















S(n, n − ∆ − 1, 2∆ − n + 1) if 3 ≤ b n
2 c ≤ ∆(T) ≥ n − 2

Y(n, ∆ − 1, 2∆ − n + 1) if 3 ≤ ∆(T) ≤ b n
2 c

Pn if ∆(T) = 2

.

Then E(T) ≤ E(T∗
1 (n, ∆)) , with equality if and only if T ∼= T∗

1 (n, ∆) .

Theorem 1.36 [84] Let T be an n-vertex tree, n ≥ 7 . Let

T∗
2 (n, ∆) ∼=







D(n, ∆ − 1, n − ∆ − 1) if d n
2 e ≤ ∆(T) ≤ n − 2

T2
∆−1,∆−1,n−2∆−1 if d n

2 e ≤ ∆(T) ≤ d n
2 e − 1

.

If d(n + 1)/3e ≤ ∆(T) ≤ n − 2 , then E(T) ≤ E(T∗
2 (n, ∆)) , with equality if and

only if T ∼= T∗
2 (n, ∆) .

In the above, the trees with a given maximum vertex degree ∆ and maxi-
mum E happen to be trees with a single vertex of degree ∆ . Recently, we [93]
offered a simple proof of this result and, in addition, characterized the maxi-
mum energy trees having two vertices of maximum degree ∆ .

Let D(p, q) be a double star obtained by joining the centers of two stars
Sp and Sq by an edge, and F(p, q) be the tree obtained from D(p − 1, q) by
attaching a pendent edge to one of the vertices of degree one which joins the
vertex of degree q in D(p − 1, q) .

Fig. 1.5 The minimal–energy tree with prescribed diameter [82]. This
is also the minimal–energy tree with prescribed number of pendent
vertices [86,87].
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Theorem 1.37 [81] Let T be a tree with a (p, q)-bipartition (p, q ≥ 1, p + q ≥ 3) .
Then

E(T) ≥
√

2(p + q − 1) + 2
√

(p + q − 1)2 − 4(p − 1)(q − 1)

+

√

2(p + q − 1) − 2
√

(p + q − 1)2 − 4(p − 1)(q − 1)

with equality if and only if T ∼= D(p, q) .
Furthermore, if q ≥ p ≥ 2 and T 6∼= D(p, q) , then E(T) ≥ E(F(p, q)) , with

equality if and only if T ∼= F(p, q) .

Let B(p, q) be the graph formed by attaching p − 2 and q − 2 vertices to
two adjacent vertices of a quadrangle, respectively, and H(3, q) be the graph
formed by attaching q − 2 vertices to the pendent vertex of B(2, 3) .

Theorem 1.38 [97] In the class of bipartite unicyclic graphs with a (p, q)-bipartition,
(q ≥ p ≥ 2) , the graph B(p, q) has minimum energy if p ≥ 4 or p = 2 , whereas
B(3, q) or H(3, q) have minimum energy if p = 3 .

Let S3
n be the graph obtained from the star graph with n vertices by adding

an edge. Hou [94] showed that S3
n is the graph with minimum energy among

all unicyclic graphs, see Fig. 1.6.

Let U (n, d) be the class of connected unicyclic graphs with n vertices and
diameter d , where 2 ≤ d ≤ n − 2 . Let U(n, d) be the graph obtained by
attaching a path of length d − 3 at a vertex of C4 and n − d − 1 pendent edges
at another vertex, such that these two vertices are not adjacent, see Fig. 1.7.

Theorem 1.39 [106] Let G ∈ U (n, d) with d ≥ 3 and G 6= U(n, d) . Then E(G) >

E(Un,d) .

Fig. 1.6 Unicyclic graphs with minimal [94], second–minimal, and
third–minimal energy [98].
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For the (n, m)-graphs with minimum energy we have the following conjec-
ture:

Conjecture 1. [12] If m ≤ n + b(n − 7)/2c , then the connected (n, m)-graph,
n ≥ 6 and n − 1 ≤ m ≤ 2(n − 2) , has minimum energy if it is obtained from
the star, by adding to it m − n + 1 additional edges all incident to the same
vertex. If m > n + b(n − 7)/2c , the minimum–energy graph is the bipartite
graph with two vertices in one class, one of which is connected to all vertices
on the other class.

This conjecture is true for m = n − 1, n (cf. Theorem 1.31). The conjecture
was proved to be true for m = n − 1, 2(n − 2) in [12] by Caporosi et al.,
and for m = n by Hou [94]. Recently, Li, Zhang and Wang [78] obtained a
positive solution to the second part of the conjecture for bipartite graphs, and
furthermore, determined the graph with the second–minimal energy among
connected bipartite (n, m)-graphs, n ≤ m ≤ 2n − 5 .

Let S3,3
n be the graph formed by joining n − 4 pendent vertices to a vertex

of degree three of K4 − e , and P6,6
n be the graph obtained from two C6’s by

joining them by a path of length n − 10 . Let G(n) be the class of bicyclic
graphs G on n vertices containing no disjoint odd cycles of lengths k and `

with k + ` ≡ 2 (mod 4) . Then S3,3
n is the graph with minimum energy in G(n)

[110].
Let P6

n be obtained by connecting a vertex of the cycle C6 with a terminal
vertex of the path Pn−6 .

Theorem 1.40 [96] Among n-vertex bipartite unicyclic graphs either P6
n or Cn have

maximal energy. Thus, if n is odd, then P6
n is the maximal–energy unicyclic n-vertex

graph.

Computer–aided calculation shows that Cn is the maximal–energy unicyclic
graph only for n = 10 [95]. However, the proof of the seemingly very simple
inequality E(Cn) < E(P6

n) has not been accomplished so far. The reason for

Fig. 1.7 The minimal–energy unicyclic graph with prescribed diameter
[106].
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this lies in the fact that the graphs Cn and P6
n are not comparable by the relation

≺ .

For the bicyclic graphs with maximum energy, the following conjecture was
stated, based on computer–aided numerical experiments [75]:

Conjecture 2. If n = 14 and n ≥ 16 the maximum-energy bicyclic molecular
graph is P6,6

n , obtained by attaching six-membered cycles to the end vertices
of the path Pn−12 .

Recently a partial proof of this conjecture was obtained [111].

Theorem 1.41 [111] Let A(n) be the subset consisting of graphs obtained from two
cycles Ca and Cb (a, b ≥ 10 and a ≡ b ≡ 2 (mod 4)) , by joining them by an edge.
Let Bn denote the set of all other bipartite bicyclic graphs on n vertices. Then P6,6

n has
maximum energy in Bn .

1.5
Miscellaneous

We state here a few noteworthy results on graph energy, that did not fit into
the previous sections.

E(G) ≥ 4 holds for all connected graphs, except for K1 , K2 , K2,1 , and K3,1
[126].

The rank ρ of a graph is the rank of its adjacency matrix. For a connected
bipartite graph G of rank ρ , [126]

E(G) ≥
√

(ρ + 1)2 − 5 .

For any graph, E ≥ ρ .

Let χ(G) be the chromatic number of the graph G . For any n-vertex graph
G , E(G) ≥ 2(n − χ(G)) [126].

The inequality E(G) + E(G) ≥ 2n is satisfied by all n-vertex graphs, n ≥ 5 ,
except by Kn and Kn − e [126].

As an immediate special case of the Koolen–Moulton upper bound (1.2), for
an n-vertex regular graph of degree r , we have E(G) ≤ E0 , where

E0 := r +
√

r(n − 1)(n − r) .
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Balakrishnan [59] showed that for any ε > 0 , there exist infinitely many n ,
for which there are n-vertex regular graphs of degree r , r < n − 1 , such that
E(G)/E0 < ε .

No answer is known to the question if there exist n-vertex regular graphs of
degree r for which E(G)/E0 > 1 − ε [59].

A direct consequence of Eq. (1.12) is that by deleting an edge e from a tree
(or forest) T , the energy necessarily decreases, E(T) − E(T − e) > 0 . In the
general case the difference E(G)− E(G− e) may be smaller than, greater, than,
or equal to zero, and the complete solution of this problem is not known. Some
partial results along these lines are recently obtained [127].

The energy of a graph is never an odd integer [128]. The energy of a graph
is never the square root of an odd integer [129].

The way in which the energy depends on various structural features of the
underlying (molecular) graph was much studied in the chemical literature,
in most cases empirically [9, 10]. Scores of approximate formulas for E were
put forward, in particular formulas that relate the E-value of an (n, m)-graph
with n and m [9, 10, 130]. Of these we call the readers’ attention to a recent
empirical finding that E(G) is an almost perfectly linear (decreasing) function
of the number of zeros in the spectrum of G [131, 132].

1.6
Concluding remarks

At this moment the most significant open problem in the theory of graph en-
ergy seems to be the characterization of n-vertex graphs with greatest energy.
Although quite recently much progress in this direction has been achieved (cf.
Theorem 1.5), the problem is still far from being completely solved. An addi-
tional difficulty that recently emerged [14] is the fact that for some values of
n , there exist numerous maximum–energy n-vertex graphs.

There have been several recent attempts to extend the graph–energy con-
cept to eigenvalues of matrices other than the adjacency matrix. Especially
much work was done on the so-called “Laplacian graph energy”, based on the
spectrum of the Laplacian matrix, and on “distance graph energy”, based on the
spectrum of the distance matrix. The “energy” has been re-defined so that it
could be associated with any matrix, including non-square matrices. The dis-
cussion of such energy–like quantities goes, however, beyond the ambit of the
present survey.
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40 Babić, D., Gutman, I., More lower bounds
for the total π-electron energy of alternant
hydrocarbons, MATCH Commun. Math.
Comput. Chem. 32 (1995), 7–17.

41 Zhou, B., Lower bounds for energy of
quadrangle-free graphs, MATCH Commun.
Math. Comput. Chem. 55 (2006), 91–94.

42 Nikiforov, V., The energy of graphs and
matrices, J. Math. Anal. Appl. 326 (2007),
1472–1475.

43 Nikiforov, V., Graphs and matrices with
maximal energy, J. Math. Anal. Appl. 327
(2007), 735–738.
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